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Abstract

In this paper� a new nonparametric regression technique is proposed by extending the local

polynomial �tting to the empirical likelihood context where the distribution of the stochastic

error is not fully speci�cied� The aim of this extension is to reduce the possible modeling bias

of parametric likelihood and to allow one to use the auxiliary information about the stochas�

tic error in the local polynomial �tting� The asymptotic bias and variance� consistency and

asymptotic distribution of the proposed estimators are established� The proposed estimators

are shown to inherit the main advantage of the local polynomial estimator based on the para�

metric likelihood over the Nadaraya�Watson kernel estimator near the boundaries� Moreover�

the proposed estimators can be more �exible and e�cient than the parametric likelihood based

local polynomial estimator when the distribution of the stochastic error is misspeci�ed� The

new method is illustrated with applications to some simulated and real data sets�
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� Introduction

The method of empirical likelihood� introduced by Owen 	�
���� is commonly employed to deal

with the possible modeling bias of parametric likelihood� In this paper� a new estimator for a

nonparametric function is developed by incorporating such a method into the framework of local

polynomial modeling� By local polynomial expansion we reduce the nonparametric function esti


mation problem to several parametric estimation problems� Then the empirical likelihood approach

can be applied to each parametric problem� Unlike the parametric likelihood based estimators 	here

parametric likelihood means the likelihood based on the parametric model of the stochastic error

in the regression case� see� for example� Fan and Gijbels� �

��� the new estimator only requires

one to specify some conditional estimating equations rather than the full probabilistic mechanism

for the observations� So it releases not only the assumptions imposed on the form of a regression

function but also those imposed on the stochastic error�

To highlight the idea of our proposal� we consider the following regression model

Y � �	X� � �

with response Y � covariate X� regression function �� and stochastic error �� Given X� � is assumed

to be symmetrically distributed� that is� �	X� is the center of symmetry of Y � This model is just

the symmetric location model when � is restricted to a �nite dimensional parametric space� which

is well studied 	see� e�g�� Bickel et al�� �

�� pp� �� and pp� ��������� Here we consider the

nonparametric case that � is a nonparametric function from ��� �� to R� with 	p � �� continuous

derivatives� To use the information about �� we let � � s� � s� � ��� � sk� and Sk � �sk��� sk��

� � k � k�� Set Hk 	y� �	x�� � I	y � �	x� � Sk�� I	y � �	x� � �Sk�� � � k � k�� where I	�� is the
indicator of a set� Let H � 	H�� ����Hk��

� � Then we have the conditional equations

EfHk 	Y� �	X�� jXg � �� � � k � k� 	����

for �� Note that as max��k�k�	sk � sk��� � �� k� � �� these equations are asymptotically

equivalent to the assumption that � is symmetric� These kinds of constraints were introduced in

Zhang and Gijbels 	�

���

Let 	xi� yi�� i � �� ���� n be i�i�d� observations from the above model� Given x� � 	�� ��� if we have
n i�i�d� observations y�i� i � �� ���� n with the same covariate x�� then the conditional nonparametric

likelihood at �	x�� is of the form
Qn

i�� pi where pi is the mass we place at point 	x�� y
�
i�� In practice�

it is rare that we have the observations with the same covariate x�� This problem can be solved

by the local modeling technique 	see� e�g�� Fan and Gijbels� �

��� take all 	xi� yi�� weight the

logarithm of the nonparametric likelihood in such a way that it places more emphasis on these

observations with the covariates close to x�� and at the same time approximate �	x� in 	�� �� by
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its pth order Taylor expansion at x�� More speci�cally� let K	�� be a bounded symmetric density
function with support ���� ��� Set Kh	�� � K	��h��h and X	t� � 	�� t� ���� tp�� � Then the pro�le

local polynomial empirical likelihood function at x� is de�ned as follows�

l	�� � supf
nX
i��

Kh	xi � x�� log pijpi � �� � � i � n�
nX
i��

pi � ��

nX
i��

piH	yi� xi� x�� �� � �g 	����

where � is the Kronecker product� � � 	��� ���� �p�� � and

H	yi� xi� x�� �� � H	yi�X		xi � x���h�
����X 		xi � x���h� �

It is easily shown by the Lagrange multiplier method that

l	�� �
nX
i��

Kh	xi � x�� log�Kh	xi � x���
nX

j��

Kh	xj � x���

�
nX
i��

Kh	xi � x�� log 	� � 	n	x�� ��
�H	yi� xi� x�� ��� �

where 	n	x�� �� satis�es

nX
i��

Kh	xi � x��
H	yi� xi� x�� ��

� � 	n	x�� ���H	yi� xi� x�� ��
� �� 	����

Choose an appropriate set ��� Let b� � 	b��� ���� b�p�� be the maximum estimator over �� based

on l	��� Then the local polynomial empirical likelihood estimator of �	x�� is given by b�	x�� � b���
Through the coe�cients of the higher
order terms in the polynomial �t� b� also provides an estimator
for the higher
order derivative ��r�	x��� namely� b�r	x�� � r�b�r�hr�
In this paper� we study this kind of estimator under a more general set of conditional equations�

Under some regularity conditions� the above estimator is proved to be consistent and asymptotically

normal� The asymptotic bias and variance are also derived� which have the same performance as

the parametric likelihood based local polynomial estimator near the boundaries� It is shown that

the new estimator can be more �exible and e�cient than the parametric likelihood based local

polynomial estimator� Especially� in the setting of the symmetric location model� the new estimator

is nearly adaptive with respect to the unknown density function of �� That is� when the number

of the equations in 	�� �� tends to in�nity� we can estimate the regression function asymptotically

equally well whether or not we know the density of �� This implies the least squares based local

polynomial estimator may be ine�cient when the stochastic error is not normal� Note that the

least squares based local polynomial estimator can be used under the assumption that the second

moment of the stochastic error exists�
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The idea of using the local polynomial �tting to the parametric likelihood based regression

models appeared� for example� in Stone 	�
���� Cleveland 	�
�
�� Tibshirani and Hastie 	�
����

Fan and Gijbels 	�

��� Carroll� Ruppert and Welsh 	�

�� developed an alternative method called

the local moment method� It is known that the empirical likelihood has certain advantages over

the moment method 	see Hanfelt and Liang� �

�� Kitamura� �

�� and Qin and Lawless� �

���

In the similar setting� Zhang and Gijbels 	�

�� introduced an approximate empirical likelihood

for a nonparametric function and gave the global convergence rate of the corresponding maximum

estimator� Unlike the above ones� our estimator is based on local weighting of logarithms of

empirical likelihoods�

The remains of this paper proceed as follows� In Section � we investigate the asymptotic prop


erties of the proposed estimator� Applications to both simulated and real data sets are presented

in Section �� The proofs of the main results can be found in the appendix�

� Asymptotic Theory

In what follows� we consider a general nonparametric regression model with response Y and co


variate X� Assume that the regression function �	�� has 	p� �� continuous derivatives� Adopt the
same notations as in 	�� �� and the associated estimators but replace H 	and H� by a more general

vector
valued function G � 	G�� ���� Gk��
� 	and G�� which satis�es

E�Gk	Y� �	X��jX� � �� k � �� �� ���� k�� 	����

Note that the ordinary nonparametric mean regression model and median regression model are two

particular examples if we set G � Y � �	X� and G � I 	Y � �	X�� � ���� respectively� For the
simplicity of the proofs� we assume that G has a continuous derivative with respect to � below�

��� Estimation

Set


j�l �

Z
tj�lK	t�dt� �j�l �

Z
tj�lK�	t�dt�

S � 	
j�l���j�l�p� S� � 	�j�l���j�l�p�

VG	x�� � E�G 	Y� �	x���G
� 	Y� �	x��� jX � x���

DG	x�� � E��G 	Y� �	x��� ���jX � x���


� � 	�	x��� h�
���	x��� ���� h

p��p�	x���p���

�	u� x�� � X 		u� x���h�
� 
��

�



V�G	x�� �
�

f	x��
�DG	x��

�VG	x��
��DG	x���

��S��S�S���

V�G	x�� �
�

f	x��
�VG	x��

�� � VG	x��
��DG	x��

�
DG	x��

�VG	x��
��DG	x��

���
	DG	x��

�VG	x��
���� S��S�S���

Let f be the density of X� If f and ��p��� have continuous derivatives� then de�ne

bias � hp��S��	
p��� ���� 
�p���
� �

�p���	x��

	p� ���

�hp��S��	
p��� ���� 
�p���
�

	f�
�p���	x��

	p� ���
�
��p���	x��

	p� ���

f �	x��

f	x��
g�

Let jj � jj stand for the Euclidean norm and
L�� for convergence in distribution� Assume that


� � ���

Theorems � and � below show that b�	x�� is weakly consistent and asymptotically normal�
Theorem � Under conditions �A��
�A�� in the Appendix� for � � 	� � 	� �	� is de�ned in

condition �A���� as h � hn � �� hn�������log n�� and hp��n���� � �� we have

b� � 
� � op	n
������� 	n	x�� b�� � op	n

�������

Theorem � Suppose that conditions �A��
�A��� �B��� and �B	� in the Appendix hold
 Suppose

that f and ��p��� have continuous derivatives
 Then as h � hn � �� hn������log n � � �	� is

de�ned in condition �A��� and hp��n���� � ��

p
nhV�G	x��

����fb� � 
� � bias	� � o	���g L�� N	�� Ip����

Furthermore� if nh�p�� � �� then

p
nhV�	x��

���� b		x�� L�� N	�� Ik��p�����

where Ip�� and Ik��p��� are the p	 p and k�	p� �� 	 k�	p� �� unit matrices� and N	�� Ip��� and

N	�� Ik��p���� are normal distributions


Remark ��� The requirement that G is di�erentiable in � can be relaxed by imposing some entropy

condition on G �see condition �A��� in the Appendix�
 Then Theorems � and 	 can cover the special
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example in ��
 ��
 For example� suppose G is bounded
 Then� under the conditions �A����A����

and �A
�
�A��� as h � hn � �� hn�log n���

�� � 
� � op	��� 	n	x�� ��� � op	���

Furthermore� the asymptotic normality still holds if we impose the second order di�erentiablity on

EfG	Y� t�jXg with respect to t� Here DG	x�� should be de�ned as �E�G	Y� �	x���jX � x����t� A

rigorous justi�cation of the statement is tedious but very similar to Zhang and Gijbels ������ and

is not pursued here


Remark ��� Surprisingly� the bias of �� is asymptotically free of the constraint �	
 ��
 This leads

to a simple criterion� the asymptotic covariance V�G	x��� for the comparison of the e�ciencies of

the above local estimators derived from a class of constraint functions
 Let l	z� x�� �
� log f�jX�x�

�z

where f�jX�x� is the conditional density of � given X � x�� It follows directly from Bhapkar ������

that

DG	x��
�VG	x��

��DG	x�� � El	z� x��
�

for any estimating function G satisfying

E�G 	Y� �	X�� jX � x�� � �� VG	x�� ��� and DG	x�� exists�

Thus

V�G	x�� � V�l�z�x���

Furthermore� in the setting of the symmetric location model mentioned in Section �� the proposed

estimator is shown to be nearly adaptive with respect to the unknown conditional density� f�jX�x� �

in the sense that there exists 	G�n���n�� such that V�G�n�	x��� V�l�z�x��	x���

To see this� we calculate the asymptotic variance of �� when G � H de�ned in 	�� ��� Under

some mild regularity conditions� we have

DH	x��
�VH	x��

��DH	x�� �
k�X
k��

�
�f�jX�x�	sk�� f�jX�x�	sk����

��
F�jX�x�	sk�� F�jX�x�	sk���

�
� El	z� x��

�

as s� � �� maxk	sk � sk���� � and sk� ��� where F�jX is the distribution function of the error�

So

V�H � �

f	x��
fEl	z� x���g��S��S�S��

which is just the asymptotic variance of the local polynomial estimator based on the local log


likelihood
Pn

i��Kh	xi � x�� log f�jX�xi 	yi � �	xi�� 	see Fan and Gijbels� �

��� This means that

�



we can estimate the regression function asymptotically equally well whether or not we know the

density of �� In particular� we can construct an asymptotically better estimator than the smoothing

spline estimator of � because the latter is equivalent to a kernel regression estimator with some

special kernel 	see Silverman� �
����

Note that f�jX�x� is symmetric if and only if for every t � �Z
sin	tz�f�jX�x�	z�dz � ��

Moreover� if ��	X� is the conditional symmetric center of Y given X� thenZ
sin	y � �	x���fY jX�x� 	y � ��	x��� � �

if and only if �	x�� � ��	x��� This means we can choose a smooth and bounded G instead of G � H

in 	�� ��� For example� for � � s� � s� � ��� � sk� ��� let

Gk 	y� �	x�� � sin 	sk	y � �	x��� � � � k � k��

Then these functions satisfy the equations in 	�� ��� As s� � �� sk� � �� and maxk	sk �
sk��� � �� these equations are asymptotically equivalent to the requirement that f�jX�x� is sym


metric for any x��

Remark ��� Let er�� denote the unit vector with � in the 	r � ��th position
 Then� from Lemma

�
� in the Appendix we obtain the asymptotic biasf��r	x��g �de�ned as the leading term of the bias

of ��r	x���� For the odd p� r�

biasfb�r	x��g � e�r��S
��	
p��� ���� 
�p���

� r�

	p� ���
��p���	x��h

p���r

		� � o	���� 	����

for the even p� r�

biasfb�r	x��g � e�r��S
��	
p��� ���� 
�p���

� r�

	p� ���
���p���	x��

�	p� ����p���	x��
f �	x��

f	x��
�hp���r� 	����

We also have the asymptotic variance of �� �

V arfb�r	x��g � e�r��S
��S�S��er��

	r����DG	x��
�VG	x��

��DG	x���
��

f	x��nh�r��
	� � o	���� 	����

As a result of Theorem 	� we get

V arf��r	x��g����
n
��r	x��� �r	x��� biasf��r	x��g	� � o	���

o
L�� N	�� ���

�



Remark ��� Although we have shown the asymptotic behavior of b�r	x�� for a general r� we are

most interested in estimation of � itself
 Note that for a �xed sequence of bandwidths� the bias of

a linear �t 	p � �� is of order h� �when ����	x�� �� ��� the bias of a quadratic �t is of order h	�

and the bias of a cubic �t is of order h	
 So like the parametric likelihood based local polynomial

�tting� when estimating � at peaks and valleys� which means that ����	x�� �� �� there is a signi�cant

reduction in the biases for the quadratic and cubic �ts compared with the linear �t� while the orders

of the asymptotic variances are always O	n��h���


Remark ��� Since we assume for simplicity that supp�f�������� then the left boundary points are

of the form x� � ch and the right ones are of the form x� � � � ch� with c � �
 When the

kernel function K has support ������� the real boundary points are those for which c � �� whereas

for c � � we have interior points
 The asymptotic bias and variance expressions for the estimator

when x� � ch and x� � �� ch are derived in a way analogous to those for interior points
 Set


j�c �

Z �

�c
ujK	u�du�

S�	
j�l�c���j�l�p�

K�
r�c	t� � e�r��S

��
c 	�� t� ���� tp��K	t��

Then for x� � ch�

biasfb�r	x��g � fZ �

�c
tp��K�

r�c	t�dtg
r�

	p� ���
��p���	���hp���r	� � o	���� 	����

and

V arfb�r	x��g � Z �

�c
K�

r�c
�	t�dt

	r����D	����V 	�����D	������

f	���nh�r��
	� � o	���� 	����

For right boundary points x� � �� ch� the asymptotic bias and variance expressions are similar to

those provided in �	
 
� and �	
 ��� but with the integral interval ��c��� replaced by ����c� and ��

by ��


Remark ��� The odd�degree �tting is better than the even�degree �tting
 The reason is that for

the even p� r not only the unknown derivative ��p���	x�� but also unknown f �	x�� and ��p���	x��

are involved in the asymptotic bias
 Moreover� for the even p� r a comparison of �	
 �� and �	
 ��

with �	
 
� and �	
 �� shows that the order of the asymptotic bias is di�erent at the boundary and

in the interior
 In contrast� for the odd p � r only ��p���	x�� is unknown in the asymptotic bias


The asymptotic bias and variance are also of the same order at the boundary and in the interior
 In

another words� the proposed estimation procedure adapts automatically to the boundary of supp�f�


This feature is parallel to that of the traditional local polynomial �tting


�



� Numerical examples

��� Bandwidth selection

When we apply the local polynomial empirical likelihood estimator to a �nite sample� we must

�rst select the bandwidth� This smoothing parameter plays a very important role in the trade
o�

between reducing bias and variance� So we need to choose it carefully instead of randomly� There

are di�erent kinds of bandwidth selection methods 	see Fan and Gijbels 	�

�� for details�� We use

the suggestion of Carroll� Ruppert and Welsh 	�

�� � The basic idea behind this proposal is that

we view the mean squared error 	MSE� as a function of h� Ideally we should choose the optimal

bandwidth by minimizing the MSE function with respect to h� where

MSE	x�� h� � var	x�� h� � bias
�	x�� h�

with var	x�� h� and bias	x�� h� being the variance and bias of b�	x��� respectively� In practice� the
MSE is unknown and estimated by the empirical bias bandwidth selection 	EBBS� method and

sandwich method�

The basic idea for EBBS is as follows� For �xed x� and h�� according to the asymptotic results

in our asymptotic theories� bias	x�� h�� should have a form like bias	x�� h�� � ��h
p��
� � �����th

p�t
� �

where t � �� � � 	��� ���� �t� unknown� Later we shall denote it by f	h�� ��� The local polynomial
estimator b�	x�� h�� should be well described by �� � f	h�� �� � op	h

p�t
� �� where �� � �	x�� in the

limit� Then let 	b��� b�� minimize PK
k��fb�	x�� hk�� 	b�� � f	hk� b���g�� in which fh�� ���� hKg is a grid

of bandwidths in a neighborhood H�� of h� with K � t��� It is obvious that if H� is small enough�

the bias should be well estimated at h� by f	h�� b��� In practice� we need to choose K and t� See

Carroll� Ruppert� and Welsh 	�

�� for some speci�c selection technique� In our simulation and

real data �tting� we take t�� and K��� We are most attracted by the EBBS property of avoiding

the direct estimation of the higher
order derivatives arising in the asymptotic bias formulas� which

might limit the range of applications because of its complications�

The sandwich formula for the asymptotic covariance matrix of � is analogous to that in Carroll�

Ruppert� and Welsh 	�

��� that is�

ff �D	x��gf �V 	x��g��f �D	x��gg���

where

�D	x�� �
nX
i��

Kh	xi � x���
�G	yi�X		xi � x���h�

� b��
��

�X		xi � x���h�X
� 		xi � x���h���

and

�V 	x�� �
nX
i��

K�
h	xi � x���G	yi� X		xi � x���h�

� b��G� 	yi�X		xi � x���h�
� b��

�X		xi � x���h�X
� 		xi � x���h���






It is easily seen from our asymptotic results that the sandwich formula provides consistent variance

estimators�

��� Simulation

In the following examples the xi�s were generated from the uniform distribution on ������ The local

linear empirical likelihood �tting 	i�e�� p � �� is used to estimate the regression functions�

Example ��� The regression model is

Y � �� ��X � ���X� � ���X� � ���X	 � ��

Given X� � follows the t�distribution with � degrees of freedom and the constraint function is

G	y� �	x�� � y � �	x��

Generate a sample of size ����

Example ��� Adopt the same notations as in Example �
�� except that we now assume that given

X� � follows the normal distribution N	�� �	X���� �	X�� � ��X�
 Generate a sample of size ����

Figures ��� and ��� show the performance of the local linear empirical likehood �tting when �

has heavy tails 	Example ���� or when � is heteroscedastic 	Example �����

��� Application

Example ��� �Great Barrier Reef data�
 In a survey of the fauna on the sea bed in an area lying

between the coast of northern Queensland and the Great Barrier Reef� data are collected at a number

of locations
 In view of the large numbers of types of species captured in the survey the response

variable is expressed as a score� on a log weight scale� which combines information across species


The relationship between the catch score and the spatial coordinates� latitude and longitude was

analyzed in Bowman ans Azzalini ������ pp

��

� via ordinary nonparametric regression
 Here

we use our proposed method to analyze these data
 We let p��� �	x� � y � �	x�� and

G	y� �	x�� � �	x�� 	����

G 	y� �	x�� � 	�	x�� �	x���� � 	����

As an example� in Figure �
� we present the �tting results lsle� lele � �� and lele � � only for

the relationship between the catch score and the latitude� which are based on the least squares local

linear �tting� the local linear empirical likelihood �ttings with the restriction function in ��
 ��� and

with the restriction function in ��
 	�� respectively
 Note that from the proof of Theorem 	 it is

��



easily seen that using the least squares based local polynomial �tting is asymptotically equal to using

normal likelihood based local polynomial �tting
 So it is not surprising that lele � � is very close

to lsle� However� lele � � is signi�cantly di�erent from both lele � � and lsle� It is natural to ask

which one is better
 To this aim� some goodness�of��t tests for these restrictions are needed
 The

details can be found in Fan and Zhang �	����


Appendix	 Proofs of theorems

We begin with some notations� Suppose there exists Z	y� x� 	independent of h� such that

Z	y� x� � sup
��
�

jjG	y�X	x� x�
h

����jjI	jx � x�j � h��

Let Zi � Z	yi� xi�� � � i � n� Denote

An�	x�� �� �
�

n

nX
i��

Kh	xi � x��G	yi� xi� x�� ��I	Zi � n������ 	����

An	x�� �� �
�

n

nX
i��

Kh	xi � x��G	yi� xi� x�� ���

Wn	x�� �� �
�

n

nX
i��

Kh	xi � x��G	yi� xi� x�� ��G
� 	yi� xi� x�� ���

Wn�	x�� �� �
�

n

nX
i��

Kh	xi � x��G	yi� xi� x�� ��G
� 	yi� xi� x�� ��

	I	Zi � n������

To establish the consistency of b�� we impose the following regulrarity conditions 	A��
	A��
when x� � 	�� �� �

A�	 There exists a constant c� such that for x � ��� �� and x�� � ��� ��

jf	x���� f	x�j � c�j�j�

A�	 For some � � 	� � ��

sup
x������

EfZ	Y�X��� jX � xg ���

Here 	� �� means Z	Y�X� is bounded by some constant�

A�	 For � � j � k�� as h � hn � �� uniformly for � � �� and jtj � ��

EfG�
j 	Y�X	

X � x�
h

����jX � x� � thg � O	���

��



A�	 There exists �h�	y� x� such that for �j � ��� j � �� ��

E�h�	Y�X�K	
X � x�

h
� � O	��� EZ	Y�X��h�	Y�X�K	

X � x�
h

� � O	���

and for jx� x�j � h�

jjG	y�X	x� x�
h

������G	y�X	
x� x�
h

����jj � �h�	y� x�jj�� � ��jj�

A�	 The function � has a 	p� ��th continuous derivative and there exists �h�	x� such that

EfKh	X � x���h�	X�jjX	X � x�
h

�jjg � O	���

jjE
�
�G	Y�X	

X � x�
h

�����G	Y� �	X���jX � x

�
jj � �h�	x�	jj� � 
�jj

�jj�	x� x��� �	x�jj�

for � � ��� jx� x�j � h� where �	x� x�� � X	x�x�h ��
��

A�	 As n��� h � hn � ��

PfWn	x�� �� � �� � � ��g � ��

where Wn	x�� �� � � means� Wn	x�� �� is positive de�nite�

A
	 For � � k�� j� � k�� as h � hn � ��

EfG�
k�	Y� �	X�x���G

�
j�	Y� �	X�x���jX � x� � thg � O	��

uniformly for � � �� and jtj � �� As � � � and h � hn � �� uniformly for jj� � 
�jj � ��

jjE
�
G	Y�X	

X � x�
h

����G� 	Y�X	
X � x�

h
����jX � x� � th

�
� VG	x��jj

is of order o	��� Moreover� we suppose VG	x�� and S are positive de�nite�

A�	 For any �xed constant � � � there exists a positive constant c	�� such that as h � hn � ��

inf
jj��	�jj�


jjEKh	X � x��G	Y�X� x�� ��jj � c	���

In addition� there exists a �xed positive constant c such that as jj� � 
�jj � h � �� � � ���

jjEKh	X �x��G	Y�X� x�� ��jj is bounded below by cjj� �
�jj�O	hp���� where c and O	hp��� are

independent of ��

When G is not smooth� we need to replace condition 	A�� by the following condition�

��



A��	 Set

g	y� x� �� � K	
x� x�
h

�Gi�	y�X	
x� x�
h

����	
x� x�
h

�j� �

F	i�� j�� � fg	�� �� �� � � � ��g�

g�	y� x� �� � K	
x� x�
h

�Gi�	y�X	
x� x�
h

����	
x� x�
h

�j�

	Gk�	y�X	
x� x�
h

����	
x� x�
h

�s� �

F	i�� j�� k�� s�� � fg�	�� �� �� � � � ��g�

For some positive constants c�� c�� w�� and w� such that

N	�� L�	Pn��F	i�� j��� � c��
�w� �

N	�� L�	Pn��F	i�� j�� k�� s��� � c��
�w�

where Pn is the empirical distribution of 	xi� yi�� i � �� ���� n� and N	d� L�	Pn�� � is called the

covering number of  � which is de�ned in Pollard 	�
����

To obtain asymptotic normality� we need two additional conditions�

B�	 For the small �� � �� there exists a function U�	y� x� satisfying

EKh	X � x��U�	Y�X� � O	���

EKh	X � x��Z	Y�X�U�	Y�X� � O	���

sup
jj��	�jj��

jj�G	y� x� x�� ��
��

jjI	jx� x�j � h� � U�	y� x��

There exists a function U�	y� x� satisfying

EKh	X � x��U�	Y�X� � O	���

jj�G	y� x� x�� ��
��

� �G	y� x� x�� 
��

��
jj � U�	y� x�jj� � 
�jj�

Furthermore�

EKh	X � x��jj�G	Y�X� x�� 
��
���

jj� � O	���

EKh	X � x��
�G	Y�X� x�� 
��

���
� f	x��DG	x��� S � o	���

��



B�	 For some small �� � �� there exists a function U�	y� x� such that

EKh	X � x��U�	Y�X� � O	���

sup
jj��	�jj���

jj�
�G	y� x� x�� ��

�����
jj � U�	y� x��

For U�	y� x� de�ned in 	B��

EKh	X � x��U�	Y�X�
� � O	���

When G is not smooth� we need to impose some conditions similar to Zhang and Gijbels 	�

���

The details are not pursued here�

For x� � � or �� the conditions similar to 	A��
	A�� and 	B��
	B��� denoted by the same
notations� can be imposed by restricting the value of t 	or 	x � x���h�� to ��� �� or ���� �� in the
above�

Lemmas ���
��� below will be used in the proof of Theorem ��

Lemma ��� Under conditions �A��
�A��� for � � 	� � 	�� as h � hn � � and hn�������log n�
�� there exists a sequence of constants 	dn��

�
n��� � � dn� � �� such that uniformly for � � ���

An	x�� �� � EKh	X � x��G	Y�X� x�� �� � op	n
������dn�� 	����

An�	x�� �� � EKh	X � x��G	Y�X� x�� �� � op	n
������dn�� 	����

Furthermore� under �A
��

EKh	X � x��G	Y�X� x�� �� � O	hp�� � jj� � 
�jj�� 	����

Proof� Without loss of generality� we assume x� � 	�� ��� Write An	x�� �� as

An	x�� �� � An�	x�� �� �An�	x�� ��

with

An�	x�� �� �
�

n

nX
i��

Kh	xi � x��G	yi� xi� x�� ��I	Zi � n������

It follows from 	A�� and 	A�� that� for � � 	� � 	��

E sup
��
�

jjAn�	x�� ��jj � EKh	X � x��Z	Y�X�I	Z	Y�X� � n�����

	pp� �f	x� � th�dt

� o	n������

��



which implies

An	x�� �� � EKh	X � x��G	Y�X� x�� ��

�
�

nh

nX
i��

ffni	���Efni	��g � op	n
������ 	����

where

fni	�� � K	
xi � x�

h
�G	yi� xi� x�� ��I	Zi � n������

Set

g	y� x� �� � n�����K	
x� x�
h

�Gi�	Y�X	
x� x�
h

����

		x� x�
h

�j�I	Z	y� x� � n������

F	i�� j�� � fg	�� �� �� � � � ��g�

Then by conditions 	A�� and 	A�� we have

sup
��
�

Eg�	Y�X� �� � O	hn�������

For g	�j� � g	y� x� �j� � F	i�� j��� j � �� �� by condition 	A��� we have

jg	���� g	���j � n�����K	
x� x�
h

�	
x� x�
h

�j��h�	y� x�jj�� � ��jj�

Let un � hn������ and d�n� � 	log n�un�
���� By Lemma ��� in Zhang and Gijbels 	�

�� there exist

positive constants cj � � � j � �� and w�� such that for any positive constant M�

Pf sup
��
�

j �
nh

nX
i��

�g	yi� xi� ���Eg	Y�X� ���j �M�n
�����dn�g

� c�	n
����h��dn��

w� expf�M
�
�nh

�n�	���d�n�
c�hn�����

g

�c�	hn
�������w� expf�c	nhn�����g� 	����

As h � hn � �� un�log n��� we have

log un � log n � of	un log n����g � o	und
�
n���

therefore� 	�� �� tends to zero� This together with 	�� �� completes the proofs for 	�� �� and 	�� ���

Finally� 	�� �� follows from condition 	A�� and the equality

jjEKh	X � x��G	Y�X� x�� ��jj � jjE
�
Kh	X � x��!	���X	

X � x�
h

�

�
jj�

where

!	�� � E�G	Y�X	
X � x�

h
�����G	Y� �	X��jX��

The proof of Lemma ��� is �nished�

��



Lemma ��� Under conditions �A�� and �A	�� as h � hn � ��

sup
��
�

jjWn�	x�� ��jj � Op	��� 	��
�

Under conditions �A��� �A	�� �A�� and �A��� as h � hn � � and nh���

Wn	x�� �� � f	x��VG	x��� S � op	�� 	�����

uniformly for jj� � 
�jj � � � ��

Proof� Equation 	�� 
� follows from the fact that� under conditions 	A�� and 	A���

E sup
��
�

jjWn�	x�� ��jj � 	p� ��EKh	X � x��Z	Y�X�
� � O	���

Note that� by condition 	A���

jjWn	x�� ���Wn	x�� 
��jj � �

n

nX
i��

Kh	xi � x��Zi�h�	yi� xi�jj� � 
�jj

� Op	��jj� � 
�jj�

In order to prove 	�� ���� it su�ces to show

Wn	x�� 
�� � f	x��VG	x��� S � op	��� 	�����

To this end� we calculate the mean and covariance of Wn	x�� 
��� It is easily seen that� under

conditions 	A�� and 	A���

EWn	x�� �� � f	x��VG	x��� S � op	��� 	�����

For k � 	p� ��	k� � �� � k� and j � 	p� ��	j� � �� � j� with � � k�� j� � k�� � � k�� j� � p� ��

we obtain the variance of the 	k� j��th element of Wn	x�� 
�� is smaller than or equal to

�

n
EKh	X � x��

�G�
k�	Y� �	X�x���G

�
k�	Y� �	X�x���	

X � x�
h

���k��j����

� O	
f	x��

nh
� � o	��

by condition 	A��� This� together with 	�� ���� leads to 	�� ���� The proof is completed�

Lemma ��� Under conditions �A��
 �A��� if both VG	x�� and S are positive de�nite� then� for

any � � 	� � 	�� as h � hn � �� hn�������log n � �� hp��n���� � o	��� there exists a sequence

of constants 	dn��
�
n��� � � dn� � �� such that

	n	x�� �� � op	n
������dn� �O	hp�� � jj� � 
�jj�

uniformly for jj� � 
�jj � O	n�������

��



Proof� Without loss of generality� we assume x� � 	�� ��� By 	A�� we have

max
��i�n

Zi � op	n
������

It follows from Lemma ��� that� as h � hn � �� hn�������log n���

jjAn	x�� ��jj � op	n
������dn� �O	hp�� � jj� � 
�jj� 	�����

for some � � dn� � � and uniformly for jj� � 
�jj � O	n������� Thus� we have

jjAn	x�� �� max
��i�n

Zi

p
p� �jj � op	�� 	�����

uniformly for jj�� 
�jj � O	n������� It follows from Lemma � that there exists a positive constant

c such that� as h � hn � �� hn��� and � � ��

supf�n	x�� �� � jj� � 
�jj � �g � c 	�����

where �n	x�� �� is the minimum eigenvalue of Wn	x�� ��� Finally� by 	�� ���� 	�� ���� 	�� ��� and

by using the technique of Owen 	�
���� we have

jj	n	x�� ��jj � jjAn	x�� ��jj
�n	x�� ��� jjAn	x�� ��jjmax��i�n Zi

p
p� �

� Op	jjAn	x�� ��jj�
� op	n

������dn� �O	hp�� � jj� � 
�jj�

uniformly for jj� � 
�jj � O	n������� The proof is completed�

Proof of Theorem �� Without loss of generality� we assume x� � 	�� ��� We �rst establish
some facts� Let � � 	� � 	�� dn� � �� d�n� � hp��n���� � and dn � maxfdn�� dn�g� where dn� is
de�ned in Lemma ���� Then� by Lemmas ��� and ���� we have

	n	x�� 
�� � op	n
������dn� An	x�� 
�� � op	n

������dn�

We have the �rst fact�

� � � �
n

nX
i��

Kh	xi � x�� log	� � 	n	x�� 
��
�G	yi� xi� x�� 
���

� �	n	x�� 
���An	x�� 
��

� �jop	n������jd�n� 	�����

Let u� � u�	�� � Rk��p���� jju�jj � �� satisfying

u�jjEKh	X � x��G	Y�X� x�� ��jj � EKh	X � x��G	Y�X� x�� ���

��



Denote

Tn� �
�

n

nX
i��

Kh	xi � x�� log	� � n�����dnu
�
�G	yi� xi� x�� ���I	Zi � n������

Then we have

Tn� � n�����dnu
�
�An�	x�� ��� n�����d�nW

�
n�	x�� ��� 	�����

Here An�	x�� �� is in 	�� �� and

W �
n�	x�� �� �

�

n

nX
i��

Kh	xi � x��
�

�	� � ti��
	u��G	yi� xi� x�� ���

�I	Zi � n�����

and for � � i � n� ti lies between � and n�����dnu
�
�G	yi� xi� x�� ��� When maxi Zi � n���� �

maxi jtij �
p
p� �dn uniformly in �� This leads to

W �
n�	x�� �� �

�

�	��pp� �dn��u
�
�Wn�u��

By Lemma � we obtain that W �
n�	x�� �� is uniformly bounded in � � ��� This� in conjunction with

	�� ��� and Lemma ���� leads to the second fact� namely that� uniformly for � � ���

Tn� � n�����dnu
�
�EfKh	X � x��G	Y�X� x�� ��g

�Op	n
������d�n� 	�����

Furthermore�

P 	max
i

Zhi � n����� � o	��� 	���
�

Denote

Tn	x�� �� �
�

n

nX
i��

Kh	xi � x�� log	� � 	n	x�� ��
�G	yi� xi� x�� ����

" � f	 � � � 	�G	yi� xi� x�� �� � �� � � i � ng�

Then� when
�

n

nX
i��

Kh	xi � x��G	yi� xi� x�� ��G
� 	yi� xi� x�� �� � ��

we have

�Tn	x�� �� � min
��


� �
n

nX
i��

Kh	xi � x�� log	� � 	�G	yi� xi� x�� ���� 	�����

Now combining the facts 	�� ���� 	�� ���� 	�� �
�� 	�� ��� and condition 	A��� we obtain that�

for any �xed positive constant �� as n���

��



P

�
sup

jj��	�jj�

	�Tn	x�� ��� � �Tn	x�� 
��

�

� P

�
sup

jj��	�jj�

	�Tn	x�� ��� � �jop	n������jd�n

�

� P

�
sup

jj��	�jj�

	�Tn�� � �jop	n������jd�n

�
�Pfmax

i
Zi � n����g� o	��

� P

�
c inf
jj��	�jj�


jjEKh	X � x��G	Y�X� x�� ��jj � jOp	n
������dnj

�
�o	��

which implies

jjb� � 
�jj � op	��� 	�����

Similarly� for any constants � � �n � � and � small enough� we have

Pf� � jjb� � 
�jj � �ng
� Pfc inf

��jj��	�jj�
n
jj� � 
�jj�O	hp��� � jOp	n

�����dnjg
�o	��� 	�����

It follows from 	�� ��� and 	�� ��� that

�� � 
� � Op	n
������dn �O	hp���

� op	n
�������

Using Lemma ��� again� we obtain 	n	x�� b�� � op	n
������� The proof is completed�

We now turn to some technical lemmas for the proof of Theorem �� For this purpose� we �rst

introduce some additional notations� Let

Bn�	�� 	� �
�

n

nX
i��

Kh	xi � x��
G	yi� xi� x�� ��

� � 	�G	yi� xi� x�� ��
�

Bn�	�� 	� �
�

n

nX
i��

Kh	xi � x��
	��G	yi� xi� x�� �����

�

� � 	�G	yi� xi� x�� ��
�

Cn��	�� 	� �
�Bn�	�� 	�

�	�
� Cn��	�� 	� �

�Bn�	�� 	�

���
�

Cn��	�� 	� �
�Bn�	�� 	�

�	�
� Cn��	�� 	� �

�Bn�	�� 	�

���
�

�




Lemma ��� Under conditions �A��� �A	�� �A�� and �A��� as h � hn � �� and nh��� for any

random vectors �� � 
� � op	�� and 	� � op	��� we have

Cn��	��� 	�� � �f	x��VG	x��� S � op	���

Proof� Note that

Cn��	��� 	�� � �Wn	x�� ��� �Rn���

where

Rn� �
�

n

nX
i��

Kh	xi � x��
	��G	yi� xi� x�� ���	� � 	��G	yi� xi� x�� ����

	� � 	��G	yi� xi� x�� ����
�

	G	yi� xi� x�� ���G� 	yi� xi� x�� ����

Note that� under condition 	A���

max
i

Zi � Op	n
�������

which implies

max
i
jj	��G	yi� xi� x�� ���jj � op	��

by the assumption that 	� � op	n
������� Therefore�

jjRn��jj � 	p� ��jop	��j	� � jop	��j�
	�� jop	��j��

�

n

nX
i��

Kh	xi � x��Z
�
i

� op	���

Now by Lemma ��� and the assumption that �� � 
� � op	�� we complete the proof�

Lemma ��� Under conditions �A��� �A	� and �B��� as h � hn � � and nh��� for any random

vectors �� � 
� � op	�� and 	� � op	n
������� we have

Cn��	��� 	�� � f	x��DG	x��� S � op	���

Cn��	��� 	��
� � f	x��DG	x��� S � op	���

Proof� We only need to consider Cn��	��� 	�� because Cn��	��� 	�� � Cn��	��� 	��
� � For sim


plicity� we write G	yi� xi� x�� ��� as Gi� Note that

Cn��	��� 	�� � Dn	��� �Rn���

where

Dn	�� �
�

n

nX
i��

Kh	xi � x��
�G	yi� xi� x�� ��

��
�

Rn�� � � �
n

nX
i��

Kh	xi � x��
	��Gi

� � 	��Gi

�Gi

���

� �
n

nX
i��

Gi	
�
��Gi���

�

	� � 	��Gi�
�
�

��



By condition 	B��� we have� as h � hn � � and nh���

jjDn	����Dn	
��jj � �

n

nX
i�

Kh	xi � x��U�	yi� xi�jj�� � 
�jj

� Op	jj�� � 
�jj� � op	�� 	�����

and

Dn	
�� � f	x��DG	x��� S � op	��� 	�����

Observe that under condition 	A�� and the assumption that 	� � op	n
������� we have

max
i
j	��Gij � op	��

which� with condition 	B��� implies

jjRn��jj � jop	��j
�� jop	��j

�

n

nX
i��

Kh	xi � x��U�	yi� xi�

�
jop	��j

	�� jop	��j��
�

n

nX
i��

ZiU�	yi� xi�

� op	��� 	�����

Now combining 	�� ���� 	�� ��� and 	�� ���� we get the desired result�

Lemma ��� Under conditions �A��� �A	�� and �B	�� as h � hn � �� for any random vectors

�� � 
� � op	�� and 	� � op	n
������� we have

Cn��	��� 	�� � op	���

Proof� It is similar to the proof of Lemma ��� and thus omitted�

Denote

C �

�	 C�� C��

C�� C��


A � C���� � C�� � C��C
��
�� C���

where

C�� � �f	x��VG	x��� S� C�� � ��

C�� � C�
�� � f	x��DG	x��� S�

��



Lemma ��
 Suppose conditions �A��� �A��� �A��� �B��� and �B	� hold
 Then� as h � hn � ��

we have

nhVar	Bn�	
�� ��� � f	x��VG	x��� S� � o	���

If �	x� has a 	p� ���th continuous derivative ��p���	x�� then

C��
����C��C

��
�� EBn�	
�� �� � bias�	� � o	���

with

bias� � hp��S��	
p��� ���� 
�p���
� ��p���	x���	p� ����

In addition� if f and ��p���	x� have continuous derivatives� then

C��
����C��C

��
�� EBn�	
�� �� � bias	� � o	���

where bias is de�ned in Section 	


Proof� Note that

EBn�	
�� �� � EKh	X � x��E�G	Y� �	X� � 	X � x��
p��

	�
�p���	x��

	p� ���
� op	h

p����jX� �X	
X � x�

h
�

� �EKh	X � x��E

�
�G	Y� �	X��

��
jX
�
	X � x��

p��

	�
�p���	x��

	p� ���
�X	

X � x�
h

� � op	h
p���

� �f	x��DG	x��h
p�� � 	
p��� ���� 
�p���

� �
�p���	x��

	p� ���

		� � op	����

Note that K is symmetric and the 	r � ���th element of S��	
p��� ���� 
�p���
� is zero� To obtain

the non zero bias when p� r is even� we expand EBn�	
�� �� up to order h
p�� �

EBn�	
�� �� � EKh	X � x��E�G	Y� �	X�� 	X � x��
p�� �

�p���	x��

	p� ���

�	X � x��
p�� �

�p���	x��

	p� ���
� op	h

p����jX��X	
X � x�

h
�

� �f	x��DG	x��� �	
p��� ���� 
�p���
� �

�p���	x��

	p� ���
hp��

��	
p��� ���� 
�p���
� �

�p���	x��

	p� ���

f �	x��

f	x��

�	
p��� ���� 
�p���
� �

�p���	x��

	p� ���
�hp���	� � op	����

��



Similarly� we have

Cov	Bn�	
�� ��� �
�

n
�EK�

h	X � x��G	Y�X� x�� 
��G
� 	Y�X� x�� 
���

�EKh	X � x��G	Y�X� x�� 
��

	EKh	X � x��G
� 	Y�X� x�� 
���

�
f	x��

nh
fVG	x��� S� �O	h�p���g�

The proof is completed�

Proof of Theorem �� Write �	 � 	n	x�� b��� Then applying Theorem �� we have
b� � 
� � op	��� �	 � op	���

which� by the assumption� implies that as n is large� b� is an inner point of ��� Since b� is the
maximum estimator� we have

Bn�	b�� �	� � �� Bn�	b�� �	� � ��
By virtue of a Taylor expansion� they become

� � Bn�	
�� �� � Cn��	��� 	���	� Cn��	��� 	��	b� � 
��� 	�����

� � Bn�	
�� �� � Cn��	��� 	���	� Cn��	��� 	��	b� � 
��� 	�����

where 	�j � 	j�� j � �� � are between 	b�� �	� and 	
�� ��� Write
Cn �

�	 Cn��	��� 	�� Cn��	��� 	��

Cn��	��� 	�� Cn��	��� 	��


A �

Applying Lemmas ���� ��� and ���� we have

Cn	��� 	�� � C � op	���

which� in conjunction with 	�� ���� 	�� ���� implies that�	 �	b� � 
�


A � �C��
n

�	 Bn�	
�� ��

�


A
� �C��

�	 Bn�	
�� ��

�


A 	� � op	����

Combining this with 	�� ��� and 	�� ���� we have

p
nh	b� � 
�� � C��

����C��C
��
��

p
nhBn�	
�� ��	� � op	����

��



p
nh�	 � �	C��

�� � C��
�� C��C

��
����C��C

��
�� �

p
nhBn�	
�� ��	� � op	����

Finally� according to the Cram#er
Wold device and Lemma ���� to establish the asymptotic nor


mality of b�� it su�ces to check Lyapounov�s condition for any one
dimensional projection of
C��
����C��C

��
��

p
nh 	Bn�	
�� ��� which can be easily proved�

Analogously� we can prove the result for �	� The proof is completed�
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