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Abstract

In this paper, a new nonparametric regression technique is proposed by extending the local
polynomial fitting to the empirical likelihood context where the distribution of the stochastic
error is not fully specificied. The aim of this extension is to reduce the possible modeling bias
of parametric likelihood and to allow one to use the auxiliary information about the stochas-
tic error in the local polynomial fitting. The asymptotic bias and variance, consistency and
asymptotic distribution of the proposed estimators are established. The proposed estimators
are shown to inherit the main advantage of the local polynomial estimator based on the para-
metric likelihood over the Nadaraya-Watson kernel estimator near the boundaries. Moreover,
the proposed estimators can be more flexible and efficient than the parametric likelihood based
local polynomial estimator when the distribution of the stochastic error is misspecified. The

new method is illustrated with applications to some simulated and real data sets.
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1 Introduction

The method of empirical likelihood, introduced by Owen (1988), is commonly employed to deal
with the possible modeling bias of parametric likelihood. In this paper, a new estimator for a
nonparametric function is developed by incorporating such a method into the framework of local
polynomial modeling. By local polynomial expansion we reduce the nonparametric function esti-
mation problem to several parametric estimation problems. Then the empirical likelihood approach
can be applied to each parametric problem. Unlike the parametric likelihood based estimators (here
parametric likelihood means the likelihood based on the parametric model of the stochastic error
in the regression case; see, for example, Fan and Gijbels, 1996), the new estimator only requires
one to specify some conditional estimating equations rather than the full probabilistic mechanism
for the observations. So it releases not only the assumptions imposed on the form of a regression

function but also those imposed on the stochastic error.

To highlight the idea of our proposal, we consider the following regression model
Y=0X)+e¢

with response Y, covariate X, regression function #, and stochastic error . Given X, ¢ is assumed
to be symmetrically distributed, that is, §(X) is the center of symmetry of Y. This model is just
the symmetric location model when @ is restricted to a finite dimensional parametric space, which
is well studied (see, e.g., Bickel et al., 1993, pp. 75 and pp. 400-405). Here we consider the
nonparametric case that @ is a nonparametric function from [0,1] to R' with (p 4+ 1) continuous
derivatives. To use the information about e, we let 0 = sp < 51 < ... < sg, and Sk = [sk_1, k).
1 <Fk<ko Set Hy (y,0(z)) =I(y —6(x) € Sp) —I(y — 6(x) € —=Sk), 1 <k < ko, where I(-) is the

indicator of a set. Let H = (Hy, ..., Hy,)". Then we have the conditional equations
E{H, (YV,0(X))|X} =0, 1<k<ko (1.1)

for 0. Note that as maxj<p<g,(sy — sx—1) — 0, kg — 00, these equations are asymptotically
equivalent to the assumption that ¢ is symmetric. These kinds of constraints were introduced in
Zhang and Gijbels (1998).

Let (zi,yi), 1 = 1,...,n be i.i.d. observations from the above model. Given xy € (0,1), if we have
n ii.d. observations yi,i =1,...,n with the same covariate ¢, then the conditional nonparametric
likelihood at 0(xg) is of the form [];_; p; where p; is the mass we place at point (9, y’). In practice,
it is rare that we have the observations with the same covariate zy. This problem can be solved
by the local modeling technique (see, e.g., Fan and Gijbels, 1996): take all (x;,¥;), weight the
logarithm of the nonparametric likelihood in such a way that it places more emphasis on these

observations with the covariates close to zp, and at the same time approximate 6(x) in (1. 1) by



its pth order Taylor expansion at xy. More specifically, let K(-) be a bounded symmetric density
function with support [—1,1]. Set K,(-) = K(-/h)/h and X(t) = (1,t,...,t?)7. Then the profile

local polynomial empirical likelihood function at x( is defined as follows:

(p) = sup{z Kp(x; — x9)logpilpi > 0,1 <i<mn, Zpi =1,
= i=1
" (2
i=1

where @ is the Kronecker product, 3 = (5, ..., 3)", and

H(yi, xiy w0, §) = H(yi, X((xi —0)/h)" ) © X ((wi — x0)/h) -

It is easily shown by the Lagrange multiplier method that
(B) = ZI&h i — x0) log[Kp(x; — x0) /ZKh . — x0)]

- Zﬁh — x9) log (1 + an (w0, B)" H(yi, v, %0, B))

where ay, (g, §) satisfies

. H (yi, v, w0, )
Kp(z; —x — = 0. 1.3

Z h( ! 0)1+Oén($0,ﬂ)7-ﬁ(yi,wi,$0,ﬁ) ( )
Choose an appropriate set ©g. Let 3 = (Bg,...,BP)T be the maximum estimator over ©y based
on [(f3). Then the local polynomial empirical likelihood estimator of #(xg) is given by 5(330) = 3.
Through the coefficients of the higher-order terms in the polynomial fit, B also provides an estimator

for the higher-order derivative 6(") (), namely, 8, (z0) = r!3./h".

In this paper, we study this kind of estimator under a more general set of conditional equations.
Under some regularity conditions, the above estimator is proved to be consistent and asymptotically
normal. The asymptotic bias and variance are also derived, which have the same performance as
the parametric likelihood based local polynomial estimator near the boundaries. It is shown that
the new estimator can be more flexible and efficient than the parametric likelihood based local
polynomial estimator. Especially, in the setting of the symmetric location model, the new estimator
is nearly adaptive with respect to the unknown density function of . That is, when the number
of the equations in (1. 1) tends to infinity, we can estimate the regression function asymptotically
equally well whether or not we know the density of . This implies the least squares based local
polynomial estimator may be inefficient when the stochastic error is not normal. Note that the
least squares based local polynomial estimator can be used under the assumption that the second

moment of the stochastic error exists.



The idea of using the local polynomial fitting to the parametric likelihood based regression
models appeared, for example, in Stone (1977), Cleveland (1979), Tibshirani and Hastie (1987),
Fan and Gijbels (1996). Carroll, Ruppert and Welsh (1998) developed an alternative method called
the local moment method. It is known that the empirical likelihood has certain advantages over
the moment method (see Hanfelt and Liang, 1995, Kitamura, 1997, and Qin and Lawless, 1994).
In the similar setting, Zhang and Gijbels (1998) introduced an approximate empirical likelihood
for a nonparametric function and gave the global convergence rate of the corresponding maximum
estimator. Unlike the above ones, our estimator is based on local weighting of logarithms of

empirical likelihoods.

The remains of this paper proceed as follows. In Section 2 we investigate the asymptotic prop-
erties of the proposed estimator. Applications to both simulated and real data sets are presented

in Section 3. The proofs of the main results can be found in the appendix.

2 Asymptotic Theory

In what follows, we consider a general nonparametric regression model with response Y and co-
variate X. Assume that the regression function () has (p + 1) continuous derivatives. Adopt the
same notations as in (1. 2) and the associated estimators but replace H (and H) by a more general

vector-valued function G = (G, ..., Gi,)" (and G), which satisfies
ElGL(Y,0(X))|X] =0, k=1,2,.. ko. (2.1)

Note that the ordinary nonparametric mean regression model and median regression model are two
particular examples if we set G =Y — 0(X) and G = I (Y < 6(X)) — 1/2, respectively. For the

simplicity of the proofs, we assume that G has a continuous derivative with respect to 6 below.

2.1 Estimation

Set
pivi = [PHE@d vy = [0TR Gt

S = (uj+)o<ji<ps 5™ = (Vj1)o<ji<ps

Va(ro) = E[G (Y,0(20))G™(Y,0(x0)) |X = w0,
Dg(wo) = E[0G (Y,0(w)) /00| X = o),

M= (0(x0), h0W (x0), ..., kPO (o) /pl),
Blu,z9) = X ((u—wx0)/h)" Ao,



Vac(a0) = 5 (Des(a0) V(o) Do) 5715757,
Va(a0) = FaslVi(0)™ = Vis(ao) ™ Do) (Do) Vaao) ™ Destao))

x D (20) Vg (o)™ @ S71s*S~L.

Let f be the density of X. If f and #P*1 have continuous derivatives, then define

COPH) ()
(p+1)!
+hPP2S (i yay o popr2)T
X{G(P+2)(x0) 9(p+1)(900) f'(x0)
(p+2)! (p+ 1! flwo)

bias = APTST (ppq1s e papin)

1.

Let || - || stand for the Euclidean norm and £, for convergence in distribution. Assume that
Ag € Oy.

~

Theorems 1 and 2 below show that 6(xg) is weakly consistent and asymptotically normal.

Theorem 1 Under conditions (A1)~(A8) in the Appendiz, for 2 < a1 < ag (ag is defined in

condition (A1)), as h = h, — 0, hn*~2/%1 [logn — oo and hPTnt/*1 — 0, we have

B =20 =o0p(n71),  au(wy, B) = 0p(n~).

Theorem 2 Suppose that conditions (A1)~(A8), (B1), and (B2) in the Appendiz hold. Suppose
that f and 0PtV have continuous derivatives. Then as h = h, — 0, hnl_/ao/logn — 00 (g is

defined in condition (A1)) and hPTint/e0 — 0,
VnhVaa(wo) YV2{B = Ag — bias(1 + o(1))} = N(0,Ip41).
Furthermore, if nh*?*3 — 0, then
VahVa(ao) a(a0) == N(0, Iy pi)):

where Iy1 and Iy, ey are the p X p and ko(p + 1) X ko(p + 1) unit matrices, and N(0,I,41) and

N(0, Iy(p+1)) are normal distributions.

Remark 2.1 The requirement that G is differentiable in 0 can be relaxed by imposing some entropy

condition on G (see condition (A4') in the Appendiz). Then Theorems 1 and 2 can cover the special



example in (1. 1). For example, suppose G is bounded. Then, under the conditions (Al),(A4'),
and (A5)~(A8), as h = h, — 0, hn/logn — oo,

B=Xo=0,(1), an(xo, ) =0,(1).

Furthermore, the asymptotic normality still holds if we impose the second order differentiablity on
E{G(Y,t)|X} with respect to t. Here Dg(xg) should be defined as OE[G(Y,0(xg))|X = xo]/0t. A
rigorous justification of the statement is tedious but very similar to Zhang and Gijbels (1998) and

18 not pursued here.

Remark 2.2 Surprisingly, the bias ofﬁ is asymptotically free of the constraint (2. 1). This leads
to a simple criterion, the asymptotic covariance Vzg(xo), for the comparison of the efficiencies of
the above local estimators derived from a class of constraint functions. Let 1(z,xq) = mogg#
where f.|x=z, 15 the conditional density of ¢ given X = xo. It follows directly from Bhapkar (1991)
that

D¢ (x0) Va(wo) ' Da(wo) < El(z,x0)°

for any estimating function G satisfying
E[G(Y,0(X))|X =x0] =0, Vg(xg) <oo, and Dg(xg) exists.

Thus
VﬁG(xO) > Vﬁl(z,aco)'
Furthermore, in the setting of the symmetric location model mentioned in Section 1, the proposed

estimator is shown to be nearly adaptive with respect to the unknown conditional density, foix—z,,

in the sense that there exists (G)2 such that Vi (20) = Vai(z,a0)(%0)-

To see this, we calculate the asymptotic variance of B when G = H defined in (1. 1). Under

some mild regularity conditions, we have

]2

_ S0 [feix=ao(58) = fex=ao(5k-1)
Dy (20) Vi (x0) "Dy ( = E 2 0 0
m(x0) V(o) m(zo) P (FE‘X:%(S,C)—FE‘X:;DO(Sk_l)>

—  FEl(z,x0)*

as s1 — 0, maxy(sg — sr—1) — 0 and sy, — oo, where F_|x is the distribution function of the error.

So
1

f(@o)
which is just the asymptotic variance of the local polynomial estimator based on the local log-
likelihood 377y Kp(xi — x0) log fo|x =z, (yi — 0(z;)) (see Fan and Gijbels, 1996). This means that

Vg — {BEl(z,x0)?}1S715*5 !



we can estimate the regression function asymptotically equally well whether or not we know the
density of €. In particular, we can construct an asymptotically better estimator than the smoothing
spline estimator of 6 because the latter is equivalent to a kernel regression estimator with some

special kernel (see Silverman, 1984).

Note that f;|x—s, is symmetric if and only if for every ¢ > 0

/sin(tz)fg‘X:xo(z)dz =0.

Moreover, if 0y(X) is the conditional symmetric center of Y given X, then

[ st = 00) fy sy (5 = dol0)) = 0

if and only if #(xg) = Oy(xp). This means we can choose a smooth and bounded G instead of G = H

n (2. 1). For example, for 0 < 51 < 59 < ... < 5, — 00, let
G (y,0(x)) =sin(sk(y — 0(x))),1 < k < kg.

Then these functions satisfy the equations in (2. 1). As s; — 0, s, — 00, and maxg(s; —
sk_1) — 0, these equations are asymptotically equivalent to the requirement that Je|X=a, IS Sym-

metric for any xg.

Remark 2.3 Let e, 1 denote the unit vector with 1 in the (r + 1)th position. Then, from Lemma
3.7 in the Appendiz we obtain the asymptotic bias{ér(xg)} (defined as the leading term of the bias
of 0,(x0)): For the odd p —r,

. n T — T r! —r
bias{0,(r0)} = €711 S (tprts s fiapt) T 1)!9(p+1)(330)hp+1
X (14 0(1)); (2.2)
for the even p — 1,
. 0 T — T r!
b’LCLS{QT(I‘U)} = er+18 I(Mp+27"'7/~62p+2) (p+2)|[9(p+2)(x0)
+(p+ 2)00H) () LD o2 (23)

f (o)

We also have the asymptotic variance ofé :

(r)*[Da(x0)"Va(xo) ™ Do)l ™"
f(xo)nh2r+1

Var{f,(zo)} = el 1S 18*S e,y (14 0(1)). (2.4)

As a result of Theorem 2, we get

Var{f,(z¢)}~/? {ér(xg) — O, (x0) — bias{B, (xo)}(1 + 0(1))} £, N(0,1).



Remark 2.4 Although we have shown the asymptotic behavior of é\r(l‘g) for a general r, we are
most interested in estimation of 0 itself. Note that for a fixed sequence of bandwidths, the bias of
a linear fit (p = 1) is of order h? [when 03 (xq) # 0], the bias of a quadratic fit is of order h*,
and the bias of a cubic fit is of order h*. So like the parametric likelihood based local polynomial
fitting, when estimating 0 at peaks and valleys, which means that 0 (xy) # 0, there is a significant
reduction in the biases for the quadratic and cubic fits compared with the linear fit, while the orders

of the asymptotic variances are always O(n~th™1).

Remark 2.5 Since we assume for simplicity that supp(f)=[0,1], then the left boundary points are
of the form xoy = ch and the right ones are of the form xg = 1 — ch, with ¢ > 0. When the
kernel function K has support [-1,1], the real boundary points are those for which ¢ < 1, whereas
for ¢ > 1 we have interior points. The asymptotic bias and variance expressions for the estimator
when xg = ch and xy =1 — ch are derived in a way analogous to those for interior points. Set

r
,uj,c:/ w K (u)du,

—c
S=(pj11,e)0<ji<ps
KX (t) = e[ 1 So MLt 7)) K (2).
Then for xy = ch,

r!

T 1)!9(7’+1)(0+)h”“*’"(1 +0(1)). (2.5)

N 1
bias{0,(xo)} = { [ T K} (t)dt}

and

Var{d, (o)) = [ K2 2y PO VOH DO+

— "t FOH)nh2rtT (14 o(1)). (2.6)

For right boundary points xog = 1 — ch, the asymptotic bias and variance expressions are similar to
those provided in (2. 5) and (2. 6), but with the integral interval [-c,1] replaced by [-1,¢] and 0+
by 1—.

Remark 2.6 The odd-degree fitting is better than the even-degree fitting. The reason is that for
the even p — r not only the unknown derivative 8P+ (xq) but also unknown f'(xq) and 0PV (z0)
are involved in the asymptotic bias. Moreover, for the even p—1r a comparison of (2. 3) and (2. /)
with (2. 5) and (2. 6) shows that the order of the asymptotic bias is different at the boundary and
in the interior. In contrast, for the odd p — r only 9(p+1)(x0) is unknown in the asymptotic bias.
The asymptotic bias and variance are also of the same order at the boundary and in the interior. In
another words, the proposed estimation procedure adapts automatically to the boundary of supp(f).

This feature is parallel to that of the traditional local polynomial fitting.



3 Numerical examples

3.1 Bandwidth selection

When we apply the local polynomial empirical likelihood estimator to a finite sample, we must
first select the bandwidth. This smoothing parameter plays a very important role in the trade-off
between reducing bias and variance. So we need to choose it carefully instead of randomly. There
are different kinds of bandwidth selection methods (see Fan and Gijbels (1996) for details). We use
the suggestion of Carroll, Ruppert and Welsh (1998) . The basic idea behind this proposal is that
we view the mean squared error (MSE) as a function of h. Ideally we should choose the optimal

bandwidth by minimizing the MSE function with respect to h, where
MSE(xzg,h) = var(xg, h) + bias®(xo, h)

with var(zg, h) and bias(xg, h) being the variance and bias of §(x0), respectively. In practice, the
MSE is unknown and estimated by the empirical bias bandwidth selection (EBBS) method and
sandwich method.

The basic idea for EBBS is as follows. For fixed zg and hg, according to the asymptotic results
in our asymptotic theories, bias(xg, ho) should have a form like bias(xg, ho) = 71 hg“ +... —|—%hg+t,
where ¢t > 1; v = (71, ...,7¢) unknown. Later we shall denote it by f(hg,7). The local polynomial
estimator 6(zg, ko) should be well described by vo + f(ho, ) + op(h€+t), where vy = 0(xg) in the
limit. Then let (3p,7) minimize S5 {8(xo, he) — (Jo + f(hx, 7)) }2, in which {A, ..., hx} is a grid
of bandwidths in a neighborhood Hy, of hg with K > ¢+ 1. It is obvious that if Hy is small enough,
the bias should be well estimated at hg by f(ho,7). In practice, we need to choose K and t. See
Carroll, Ruppert, and Welsh (1998) for some specific selection technique. In our simulation and
real data fitting, we take t=1 and K=3. We are most attracted by the EBBS property of avoiding
the direct estimation of the higher-order derivatives arising in the asymptotic bias formulas, which
might limit the range of applications because of its complications.

The sandwich formula for the asymptotic covariance matrix of 3 is analogous to that in Carroll,
Ruppert, and Welsh (1998), that is,

{{D (o) H{V (o)} " {D (o) }} 7",
where

D(x) =Y Kp(xi — xo)[aG(yi’X((xge_ 20)/h)" ) @ X((z; — 20)/h) X" ((z; — z0)/1)].
=1

and

n

Virg) = Y Ki(wi —20)[G(yi, X((w; — 20)/h)B)G™ (yis X((xi — x0)/h)"B)
i=1
@X((x; —x0)/h) X7 ((; — 0)/h)].



It is easily seen from our asymptotic results that the sandwich formula provides consistent variance
estimators.
3.2 Simulation

In the following examples the x;’s were generated from the uniform distribution on [0,1]. The local

linear empirical likelihood fitting (i.e., p = 1) is used to estimate the regression functions.
Example 3.1 The regression model is

Y =1-48X +218X% — 315X% + 145X* + <.
Given X, e follows the t-distribution with 3 degrees of freedom and the constraint function is

G(y,0(x)) =y — ().
Generate a sample of size 200.

Example 3.2 Adopt the same notations as in Example 3.1, except that we now assume that given
X, ¢ follows the normal distribution N(0,0(X)?),0(X)? =1+ X2. Generate a sample of size 200.

Figures 3.1 and 3.2 show the performance of the local linear empirical likehood fitting when ¢

has heavy tails (Example 3.1) or when ¢ is heteroscedastic (Example 3.2).

3.3 Application

Example 3.3 (Great Barrier Reef data). In a survey of the fauna on the sea bed in an area lying
between the coast of northern Queensland and the Great Barrier Reef, data are collected at a number
of locations. In view of the large numbers of types of species captured in the survey the response
variable is expressed as a score, on a log weight scale, which combines information across species.
The relationship between the catch score and the spatial coordinates, latitude and longitude was
analyzed in Bowman ans Azzalini (1997, pp.53-55) via ordinary nonparametric regression. Here

we use our proposed method to analyze these data. We let p=1, (x) =y — 0(x), and

G(y,0(x)) = =(x). (3.1)

G (y,0(x)) = (e(x),e(2)°)". (3.2)

As an example, in Figure 3.8 we present the fitting results lsle, lele — 1, and lele — 2 only for
the relationship between the catch score and the latitude, which are based on the least squares local
linear fitting, the local linear empirical likelihood fittings with the restriction function in (3. 1), and

with the restriction function in (3. 2), respectively. Note that from the proof of Theorem 2 it is

10



easily seen that using the least squares based local polynomial fitting is asymptotically equal to using
normal likelihood based local polynomial fitting. So it is not surprising that lele — 1 s very close
to lsle. However, lele — 2 1s significantly different from both lele — 1 and lsle. It is natural to ask
which one is better. To this aim, some goodness-of-fit tests for these restrictions are needed. The

details can be found in Fan and Zhang (2000).

Appendix: Proofs of theorems

We begin with some notations. Suppose there exists Z(y,x) (independent of h) such that

T =0,
Z(y.x) 2 sup [|G(y, X(==)" DI (|x — wo| < h).
BEB
Let Z; = Z(y;,xi), 1 <i<mn.Denote
Api(zg, ) = —Zﬁh i — 20)G(yi, xi, w0, B)I(Z; < n/o), (3.3)
An(xﬂaﬂ) = _Zl(h —.%'0 (?Juxz,xo,ﬁ)
Wi(xo, ) = _Zl(h i — 20)G(Yi, xiy 20, B)GT (yis i, 0, B),
Wnl(x[],ﬁ) = _ZKh _xO (ylaxuxﬂaﬁ) (yiaxiaxmﬁ)

><I(Zi < pllony,

To establish the consistency of 3, we impose the following regulrarity conditions (A1)~(A8)
when zp € (0,1) :

A1: There exists a constant ¢ such that for z € [0,1] and  + A € [0, 1]

|f(x+A) = f(x)] < oAl

A2: For some 2 < ag < 00,

sup E{Z(Y,X)¥|X =z} < 0.
z€[0,1]

Here oy = 0o means Z(Y, X) is bounded by some constant.

A3: For 1 < j < kg, as h = h,, — 0, uniformly for § € ©¢ and |t| <1,

BV, XY BIX = o + th) = O(1)

11



A4: There exists ¥y, (y, x) such that for 3; € ©p, j =1, 2,

X—xo X—x()

Ep (Y, X)K( )=0(1), EZ(Y,X)¢n (Y, X)K( ) =0(1),

and for |z — x| < h,

Xr — X
h

r — X
h

G (y, X( )"B1) = Gy, X( )" Boll < b (y, )| B = Ball-

A5: The function # has a (p + 1)th continuous derivative and there exists ¢p2(x) such that

B{EN(X ~ z)ina (DX ()} = 0(),

X—x()
h

1 {16, X(FT08) ~ GEBCONY =2 Il < da(@)(18 =l

+|5(x, x0) = 0(2)]])
for 3 € Oy, |xr — x| < h, where B(z,z9) = X(552)" Ao.
A6: Asn — oo, h=h, — 0,
P{Wq(x0,3) > 0,8 € ©p} — 0,
where W, (x¢, ) > 0 means: W, (xg, ) is positive definite.
AT: For 1 <ky,51 <kgp,as h=h, — 0,
E{GE, (Y, B(X, 20)) G, (Y, BX, 20))| X = z0 + th} = O(1)

uniformly for 5 € Op and |t| < 1. As 6 — 0 and h = h, — 0, uniformly for ||3 — Ao|| < 6,

X—xo X—ZBU
h h

12 {6V X(E 2 A)GT (V. X (T2 B =0 + th = Vil

is of order o(1). Moreover, we suppose V(o) and S are positive definite.

AS8: For any fixed constant p > 0 there exists a positive constant ¢(p) such that as h = h,, — 0,

inf  ||EKL(X — 20)G(Y. X, 20, 8)|| > c(p).
[1B—Xol|=p

In addition, there exists a fixed positive constant ¢ such that as || — Ao|]| + h — 0,8 € Oy,
||EK,(X —20)G(Y, X, 0, 3)|| is bounded below by ¢||8 — Ao|| + O(hP*1), where ¢ and O(hPT1) are
independent of .

When G is not smooth, we need to replace condition (A4) by the following condition.

12



A4': Set

r — X r — X r — X

9(y, 2, B) = K(==)Ga (9, X(——=)" ) (=),

f(ilvjl) = {g('v 7ﬂ) : ﬂ € @0}'

r — X r — X Xr — X

T — X0 Tr — X

Xle(Z/?K( h )Tﬂ)( h )317

F(i, g1, kss1) = {a1(,-,8) : B € O}
For some positive constants ¢y, c2, wy, and we such that

N(6, Ly(Py), F(ir,71))
N(6,Ly(Pn), F(i1,j1,k1,51)) < 26 ™?

IN

Clé_wl y

where P, is the empirical distribution of (z;,y;), i = 1,...,n, and N(d, L2(P,),Y) is called the
covering number of Y, which is defined in Pollard (1984).

To obtain asymptotic normality, we need two additional conditions.

B1: For the small 6y > 0, there exists a function Uj(y,x) satisfying

EEA(X — )01 (Y, X) = O(1),

EEKy(X —20)Z(Y, X)UL(Y,X) = O(1),
sup ||8Q(y7x7x076)

I(|lr —xzo| <h) < Ui(y,x).
18=oll<5 o5 Mz =0l <h) )

There exists a function Us(y, ) satisfying

EKp(X —20)U2(Y,X) = O(1),
8@(];,1‘,1‘0,5) 8Q(y,$‘,$0,)\0)
I - | < Uy, 2)|IB = Aoll-

op op
Furthermore,
a 0G(Y, X, xg, A
BE (X — )| 2 T Jip = o),
) AG(Y, X, z0, A
EKp(X —20) ( a5 wlo) f(x0)Da(xo) © S 4 o(1).
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B2: For some small 6y > 0, there exists a function Us(y,z) such that

EI(h(X_xO)Ui%(YaX) = 0(1)7

82Q(y7x7x07ﬂ)

sup <
HﬂonHstoH 9popT H

For Uy (y, x) defined in (B1)
EK,(X — 20)Ui (Y, X)? = O(1).

When G is not smooth, we need to impose some conditions similar to Zhang and Gijbels (1998).

The details are not pursued here.

For xp = 0 or 1, the conditions similar to (Al)~(A8) and (B1)~(B2), denoted by the same
notations, can be imposed by restricting the value of ¢ (or (z — z9)/h)) to [0,1] or [—1,0] in the

above.
Lemmas 3.1~3.3 below will be used in the proof of Theorem 1.

Lemma 3.1 Under conditions (A1)~(A4), for2 < aq < ag, as h = h, — 0 and hn'=%/*1 /logn —

00, there exists a sequence of constants (dn1)32 1, 0 < dp1 — 0, such that uniformly for 3 € Oy,

An(x07 ﬂ) = EI(h(X - xO)Q(Ya X7 xo, B) + Op(n_l/al)dnla (34)

Anl(x07ﬂ) = El(h( _:L'O)G(Yv X,.’L'(),B) +0P(n71/a1)dn1- (35)
Furthermore, under (A5),

EKL(X —20)G(Y, X, x0,3) = O(h*T1 + |8 = Xol]). (3.6)

Proof. Without loss of generality, we assume xy € (0,1). Write A, (x, 3) as

An(zo, B) = Ani(wo, B) + Ana(xo, B)

with
Ana (o, 3 Zﬁh — 20)G (i, vi, w0, B)I(Z; > n'/*).

It follows from (A1) and (A2) that, for 2 < aq < ay,
E sup ||[Ana(z0,B)|| < EEKu(X —20)2(Y,X)I(Z(Y,X) > n'/)

BEBg
x\/p + Lf(xo + th)dt
= o(n_l/al)

14



which implies

Ap(xo,8) = EKp(X —x0)G(Y, X, 20, 0)

o ;{fm(ﬁ) — Efui(A)} + opln 1) (3.7)
where
fuilB) = K (P0G g im0, BI(Z: < ™).
Set
gy, 8) = n Y K(E"Ia (v, X(220)7)

(S 2y, @) < ntfe),

f(ilajl) = {9(775) :5660}‘
Then by conditions (A1) and (A3) we have

sup E¢*(Y, X, B) = O(hn=2/*1),
BEBg
For g(8;) = g(y,z, B;) € F(i1,41), Jj=1,2, by condition (A4), we have

r—Tog,,r— X0

A ) A ) b1 (y, )| |81 = Bel|-

. = (log n/uy,)"?. By Lemma 7.2 in Zhang and Gijbels (1998) there exist

positive constants c;, 1 < j <4, and wy, such that for any positive constant My

19(B1) — g(B2)] < n Y K (

Let u, = hn'~2/®1 and d?

n

1 —1l/a
P{sup | =" lg(yi.xi.B) = Eg(¥, X, )]l = Mon /1 dyn}
BEG NNy

Mgnh2n_4/a1d,2ﬂ
c3hn =2/
+ey(hn =) =W exp{—cynhn =21}, (3.8)

<c (nl/a1 hildnl)wo exp{—

As h = hy, — 0, up/logn — oo, we have
log u,, + logn = of (u, log n)1/2} = o(undil),

therefore, (3. 8) tends to zero. This together with (3. 7) completes the proofs for (3. 4) and (3. 5).

Finally, (3. 6) follows from condition (A5) and the equality

IERACX = an) (Y, X0, 8)]| = 1B { Kn(X — a)¥(8) & X(“ )

where
X — i)

h

U(p) = E[G(Y, X( )"B) — G(Y, 0(X))|X].

The proof of Lemma, 3.1 is finished.
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Lemma 3.2 Under conditions (A1) and (A2), as h = hy, — 0,

sup |[Wai(zo, B)|] = Op(1). (3.9)
BEBg

Under conditions (A1), (A2), (A4) and (A7), as h = h, — 0 and nh — oo,
Wi (o, ) = f(x0)Va(zo) @ S+ 0p(1) (3.10)

uniformly for || — Ao]] < 6 — 0.

Proof. Equation (3. 9) follows from the fact that, under conditions (A1) and (A2),
E;U(g [Wai(zo, B)I| < (p + DEER(X — 20)Z(Y, X)* = O(1).
€00

Note that, by condition (A4),

[[Wa(zo, 8) — Walxo, Ao)|] < %Zﬁ'h(wi — 20) Zithn1 (yi, ©:)|| 8 — Aol
-1
= Op(D[B = Aoll-

In order to prove (3. 10), it suffices to show
W (o, M) = f(@0)Va(w0) @ S + op(1). (3.11)

To this end, we calculate the mean and covariance of W, (zg, \g). It is easily seen that, under
conditions (A1) and (A7),

EW, (0, 8) = f(x0)Va(z0) @ S + 0p(1). (3.12)

For k= (p+1)(ki —1)+ky and j = (p+ 1)(j1 — 1) +jo with 1 < ki, j1 < ko, 1 < ko,jo <p+1,
we obtain the variance of the (k,j)—th element of W, (x, \g) is smaller than or equal to

X—.%'O

%EKh(X — 10)°Gi, (Y, B(X, 20))GE, (Y, B(X, 20))( ?

)2(k2+j2—2)

= oL _ o)

by condition (AT7). This, together with (3. 12), leads to (3. 11). The proof is completed.

Lemma 3.3 Under conditions (A1)~ (A7), if both Vi(xg) and S are positive definite, then, for
any 2 < a1 < ag, as h = hy, — 0, hn'=2/%1 Jlogn — oo, h*tInl/0 = o(1), there exists a sequence

of constants (dp1)22q, 0 < dy1 — 0, such that

an (20, B) = 0p(n 1 )dyy + O(RPFH! 4118 — Nol|)

uniformly for || — \o|| < O(n=1/0).
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Proof. Without loss of generality, we assume z( € (0,1). By (A2) we have

Z; = op(n'/?0).
max Z; = op(n'1%)

It follows from Lemma 3.1 that, as h = h,, — 0, hn'=2/*1 /log n. — oo,
14 (20, H)I| = 0p(n /") + OB + 15 = Nol ) (3.13)
for some 0 < d,; — 0 and uniformly for ||3 — Ao|| < O(n~'/%0). Thus, we have

14n (w0, 5) max Zin/p ¥ 1]| = 0,(1) (3.14)

uniformly for ||3 — Ao|| < O(n='/20). It follows from Lemma 2 that there exists a positive constant

c such that, as h = h, — 0, hn — oo, and § — 0,

sup{pn(zo,3) : ||B — Xo|| <6} > ¢ (3.15)

where p, (g, 3) is the minimum eigenvalue of W, (xg, 3). Finally, by (3. 13), (3. 14), (3. 15) and
by using the technique of Owen (1988), we have

|| An (0, B)]
pn(0, B) — || An (20, B)|| maxi<i<n Ziv/p + 1
O, ([|An (0, A1)

= 0p(n ) dpy + O(WPT + 13 = Nol|)

[lon (o, B)II <

uniformly for || — Ao|| < O(n=Y/*°). The proof is completed.

Proof of Theorem 1. Without loss of generality, we assume xg € (0,1). We first establish
some facts. Let 2 < a; < ag, dpy > 0, d?, = petipt/en and d, = max{dp1,dn2}, where d,; is

defined in Lemma 3.3. Then, by Lemmas 3.1 and 3.3, we have
(0, Ao) = 0p(n YN d,, Ay (0, Ao) = 0p(n"1/1)d,,.
We have the first fact:

1 n
0 2 —— 3 Ky(wi = w0)log(1 + au (w0, \o) Gy, w1, 20, \o))
=1
> —ap(we, Ao)" An(x0, o)
= —lop(n )i, (316

Let up = ug(3) € RF®HD |jug|| = 1, satisfying

uo| |EER(X — 20)G(Y, X, o, B)|| = EKp(X — 20)G(Y, X, x9, B).
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Denote
T = ZKh —xp)log(14+n" Verg, wd G (yi, iy 20, B))I(Z; < nl/al)_
Then we have
T =" Y dyuf An (29, ) — 2 W (o, ). (3.17)

Here A,1(xg,3) is in (3. 3) and

1

W K S
(%0, Z Wi = 20) A=

( SQ(yuxuxoaﬁ))2I(Zl < nl/al)

and for 1 < ¢ < n, t; lies between 0 and nfl/aldnugg(yi,xi,xo,ﬂ). When max; Z; < nl/o‘l,
max; [t;| < +/p + 1d,, uniformly in 8. This leads to
1
U
ST prdy)r ot

By Lemma 2 we obtain that W} (xo, #) is uniformly bounded in 3 € ©y. This, in conjunction with

W:l(l‘g, ﬁ)

(3. 17) and Lemma 3.1, leads to the second fact, namely that, uniformly for g € ©,

T = n Yu] E{K,(X — x0)G(Y, X, x9, 8)}
+0,(n~ Y1y, (3.18)
Furthermore,
P(max Zy; > n'/ery = o(1). (3.19)
Denote
To(zo,8) = = ZKh — x9) log(1 + an(x0, B) G(yi, xi, 0, 3)),
E = {a : 1 + a"G(yi, xi, w0, 5) > 0,1 < i < n}.
Then, when
— ZKh — x0)G(yi, i, w0, B)GT (yi, iy 20, 3) > 0
we have
—T (0, 5) = Enelil _ﬁ Z Kp(x; — o) log(1 4+ a" G(y;, xi, x0, ). (3.20)

Now combining the facts (3. 16), (3. 18), (3. 19), (3. 20) and condition (A8), we obtain that,

for any fixed positive constant p, as n — oo,

18



P{ sup (_Tn(xﬂvﬁ))>_Tn(x07)‘0)}

[18=Xol|>p

< P{ sup (=T (zo, ) > —Iop(n‘””‘l)ldi}
18— ol|>p

SP{ i <—Tn1>>—|op<n2/a1>|di}
[18—Xol|>p

+P{max Z; > n'/*1} 4 o(1)
(2

<Plc inf  [|EKL(X —2)G(Y, X, 20, B)|| < [0p(n~")d,]
[|1B—Xol|>p
+o(1)

which implies

15 = Aol = 0p(1). (3.21)
Similarly, for any constants 0 < p, — 0 and ¢ small enough, we have

P> 13~ doll = )
<P(e, it 8= ll+ O < [0y, )
+o(1). (3.22)
It follows from (3. 21) and (3. 22) that
B=X = Oy(n~N)d, +O(h**)

= op(n_l/al).

Using Lemma 3.1 again, we obtain a,(z, B) = op(n_l/al). The proof is completed.

We now turn to some technical lemmas for the proof of Theorem 2. For this purpose, we first

introduce some additional notations. Let

L& G(yi, i, 20, 3)
Bnl(ﬁ,a) o TL;IXh(Il xO)l‘i‘OZTQ(yiaxiaanﬁ)’
1 & ToG 1y by, L0, ap"

i—1 T \Yi, L, L0,
Cnll(ﬁa C() = M%%.(éf’a)a Cle(ﬂa Oé) = %%lié?a)a
CanlBa) = 2P C(5,0) = 22220
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Lemma 3.4 Under conditions (A1), (A2), (A4) and (A7), as h = h, — 0, and nh — oo, for any

random vectors 1 = Ao + 0p(1) and oy = 0,(1), we have

Cn11(C1,00) = = f(20)Va(zo) @ S + 0p(1).

Proof. Note that

Cnll(Cla (11) = _Wn(x07 Cl) + Rn117

where
o1 G(yi, zi, v0,1)(2 + af G(yi, 74, 0, (1))
(1 + o] G(yi, xi,0,¢1))?

XQ(?J“H?Z,UCO, Cl)_ (yivxivx(% Cl)

Ry = _ZKh i — )

Note that, under condition (A2),
max Z; = Op(nfl/o‘o),
which implies
max|[] Gy, . 70, C)I| = 0y(1)

by the assumption that oy = op(n_l/ao). Therefore,

||Ron]] < (p+1 (|10p_(|i|((2)+|0p ZKh i —x0)Z?

= op(1).

Now by Lemma 3.2 and the assumption that (1 = Ao + 0,(1) we complete the proof.

Lemma 3.5 Under conditions (A1), (A2) and (B1), as h = h,, — 0 and nh — oo, for any random
vectors (1 = Ao + 0p(1) and oy = 0,(n~1/%0), we have
Cn12(Cryo1) = f(zo)Da(o) © S + 0p(1),
Cn21(<17 011)7— = f(xo)Dg(xo) &® S + Op(]_).

Proof. We only need to consider C,12({1,aq) because Cy12((1, 1) = Cpo1((1,aq)7. For sim-

plicity, we write G(y;, xi, xo,(1) as G;. Note that

Cn12(C1, 1) = Dy(C1) + R,

where

D.(8) = %zmxi_x())@Q(yu;gxo,ﬂ),

0iG; G,
1+a]G; 08"
1 Z Ga10G, /05
(1+a7G;)?

Ry = ——Zﬁh i — )
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By condition (B1), we have, as h = h,, — 0 and nh — oo,
D1 (¢1) = Du(Mo)l] < = ZKh — x0) Uz (i, 2i)[|¢1 = Aol|
= (||C1 Aoll) = op(1) (3.23)

and

Dy(Ao) = flxo)Da(xo) @ S + 0p(1). (3.24)
Observe that under condition (A2) and the assumption that a; = op(nfl/ao), we have
max |ag G;| = op(1)

which, with condition (B1), implies

[0)

[Ropa]] < —2Wl Ah 20)Us (31, 74)
1
_|0p

|op(1 )I T (e e
HTEEWEEZ“@%>

= o,(1). (3.25)

+

Now combining (3. 23), (3. 24) and (3. 25), we get the desired result.

Lemma 3.6 Under conditions (A1), (A2), and (B2), as h = h, — 0, for any random vectors

¢ = Xo +0,(1) and ay = 0,(n=1/20), we have

Cn22(Cr,a1) = op(1).

Proof. It is similar to the proof of Lemma 3.5 and thus omitted.

Denote

C C
C= e , Cogy = Oy — Cy O Ca,
Coy Oy

where

Cu = —fl(xo)Valrg) @S, Cp =0,
Ci2 = C3 = f(xo)Dg(x0) @ S.
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Lemma 3.7 Suppose conditions (A1), (A4), (A7), (B1), and (B2) hold. Then, as h = h, — 0,

we have
nhVar(Byi(Ao,0)) = f(z0)Va(zo) © S* + o(1).
If 0(x) has a (p 4 1)—th continuous derivative 0PV (x), then
Cyy'1Co1 O EBri( Mo, 0) = bias* (1 + o(1))

with
bias® = WP ST (1, o pap1) 0P () /(p + 1)L

In addition, iof f and 9(p+1)(x) have continuous derivatives, then
Cy511C21C1' EBp1(Xo, 0) = bias(1 + o(1))

where bias is defined in Section 2.

Proof. Note that

FEBn1(A\,0) = FEKu(X —x0)E[G(Y,0(X) — (X — zp)PT!
9(7’“)(3:0) X — xXo
. (p+1)!

— 0p(hPT1))|X] @ X( )

= —EK,(X —x0)E {%p{} (X — )P ™!
o+ (g X -z
- (p+(1)[!]) O X(Z7=) +oplh™h)

79(p+1)(x0)

= —f(x0)Dc(20)h" TN @ (fips1s o oos fr2ps1) TES]

% (14 0p(1)).

Note that K is symmetric and the (r + 1)—th element of S™!(pp41, ..., 12p4+1)" is zero. To obtain

the non zero bias when p — r is even, we expand EB,1()\g,0) up to order hP*2 :

EB,1(\,0) = EKp(X —x20)E[G(Y,0(X) — (X — xo)p+1w

(p+1)!

P 9(p 2)('%'0) P X_:L'O

~x ot o 1) 0 ()
Te(p-l-l)(xo) p+1

= —f(20)Dc(0) @ [(ftpr1s ooy fizpr1)

9% (o) f'(o)
(p+ 1) flxo)

9(p+2)(x0) »
W]h (1 + 0p(1)).

(p+1)!

FH[(tpt1y-es 2ps1)
F(fopt25 o5 fi2pg2)”
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Similarly, we have

1
COU(Bnl()\(),O)) = E[EI(}%(X—ZBU)Q(Y,X,ZBU,)\U)QT(Y,X,ZBU,)\U))
—FEKp(X —29)G(Y, X, 20, \o)

x EKp(X — 20)G7 (Y, X, 20, Ao)]

= L0 w0 57 + 0w,

The proof is completed.

-~

Proof of Theorem 2. Write & = ay, (g, ). Then applying Theorem 1, we have
B =X =o0p(1), a=oy(1),

which, by the assumption, implies that as n is large, B is an inner point of ©y. Since B is the

maximum estimator, we have

Bnl(aa d) = 07 BnQ(Ba OA‘) =0.
By virtue of a Taylor expansion, they become

0 = Bu1(X0,0) 4+ Cr11(Cry 1) + Cria(Cry00)(5 = Ao, (3.26)

0 = B2(X0, 0) + Cra1(G1, 1)d + Croa(Cr 1) (B — Ao, (3.27)
where ((j,q;), j = 1,2 are between (3,&) and (Ao, 0). Write

C. = Cnn1 (Cla al) Cn12(C1, 041) .
! Cn21 (Cla al) Cn22(C1, 041)

Applying Lemmas 3.4, 3.5 and 3.6, we have

Cn(C1y01) = C +0p(1),

which, in conjunction with (3. 26), (3. 27), implies that

& _ o Bn1(Ao,0)
B =X ! 0
_ o ( Bn1(30,0) ) A+ oy(D))

Combining this with (3. 26) and (3. 27), we have
Vnh(B = Xo) = Cy3' Co1 C ' Vnh Bt (Mo, 0)(1 + 0,(1)),
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Vnha = —(Ct 4 C' C1aChyt, Cot C ) Vih B (Mo, 0)(1 4 0,(1)).

Finally, according to the Cramér-Wold device and Lemma 3.7, to establish the asymptotic nor-
mality of 3, it suffices to check Lyapounov’s condition for any one-dimensional projection of
Oyt Co1 O/ nh x Bpi (Mo, 0), which can be easily proved.

Analogously, we can prove the result for &. The proof is completed.
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1+Xx (—48+x (218+x (—315+145 x)))
T T T

Figure 3.1: The smooth curve denotes the underlying regression function while the other is the
estimated curve derived from the local linear empirical likelihood fitting under the first moment

constraint. Given X, € ~ t3, the t-distribution with 3 degrees of freedom.
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1+x (—48+x (218+x (—315+145 X)))
T T T

Figure 3.2: The smooth curve denotes the underlying regression function while the other is the
estimated curve derived from the local linear empirical likelihood fitting under the first moment
constraint. Given X, ¢ ~ N(0,0(X)?) with o(X)? =1+ X2

1.5 . A . .o : . . B

Isle
lele—1

lele—2 =/~
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Figure 3.3: Isle, lele—1 and lele—2 denote the estimators derived, respectively, from the local linear
least squares fitting, the local linear empirical likelihood fitting under the first moment constraint,

and the local linear empirical likelihood fitting under the first and third moment constraints.
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