Some Extensions of Tukey’s Depth Function

Jian Zhang
EURANDOM, Eindhoven and
The Chinese Academy of Sciences, Beijing

revised August 27, 2000

Abstract

As the extensions of Tukey’s depth, a family of affine invariant depth functions are introduced for
multivariate location and dispersion. The location depth functions can be used for the purpose of
multivariate ordering. Such a kind of ordering can retain more information from the original data
than that based on Tukey’s depth. The dispersion depth functions provide some additional view of the
dispersion of the data set. It is shown that these sample depth functions converge to their population
versions uniformly on any compact subset of the parameter space. The deepest points of these depth
functions are affine equivariant estimators of multivariate location and dispersion. Under some general
conditions these estimators are proved to have asymptotic breakdown points at least 1/3 and convergence
rates of 1/+y/n. Their asymptotic distributions are also obtained under some regularity conditions. A new
algorithm based on the idea of thresholding is presented for computing these kinds of estimators and
realized in the bivariate case. Simulations indicate that some of them could have the empirical mean

squared errors smaller than those based on Tukey’s depth function or Donoho’s depth function.
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1 Introduction

In the last decades much research has been made on how to rank a point relative to a multivariate data set
and on the way of multivariate ordering (see Tukey, 1975; Barnett, 1976; Eddy, 1985; Reiss, 1989; Liu, 1990;
Donoho and Gasko, 1992; Liu and Singh, 1993; He and Wang, 1997; Koltchinskii, 1997; Small, 1997; Liu,
Parelius and Singh, 1999; Rousseeuw and Hubert, 1999; Zuo and Serfling, 2000, and the references therein).
An important notion, now called depth, forms the core of these works. The depth of a point in a parameter
space is its rank relative to a data set. One of the incentives to these developments is that the depth notion
could be a powerful tool for developing affine equivariant robust estimators for multivariate location and
dispersion (see, for example, Tukey, 1975; Donoho and Gasko, 1992; Maronna, Stahel and Yohai, 1992; and
Tyler, 1994). Tukey’s depth is very simple but it is a step function and uses only the qualitative information
in the data. As a result the related deepest point is quite less efficient than the sample mean and sometimes
can be locally unstable, jumping suddenly to another value when slight changes are made in the data (see
Hettmansperger and Sheather, 1992). The goal of this paper is to improve the performance of Tukey’s depth
by incorporating some auxiliary functions into Tukey’s depth notion. A similar technique was adapted by
Plackett (1976) for some multivariate ordering problems.

To highlight the basic idea behind our extensions, we consider a univariate data set Z = (21, - -, z,) with
empirical distribution F,,z. Let p(-) and s(-) represent translation and scale equivariant location and scale
functional on the family of all univariate distributions. Then the M-estimators of location and scale are,

respectively, defined as the solutions (8, c) of the equations

L3l = B)/s(Faz) =0, = Y X = n(Faz)) o) =0

where ¢ and x are commonly taken to be an odd function and an even function, respectively. It is ob-
vious that Oy,(8,2) = | Y1, ¥((z; — B)/s(F,z))/n| is a measure of the outlyingness of 3 relative to Z.
(1 + Oyn(B,2Z))"" describes the depth of 8 relative to Z. Similarly (1 4 Ouyn(0, Z)) ™! with 04yn(0, Z) =
| >0 x((zi — w(Fnz))/o))/n| gives the depth of o relative to (|21 — u(Fuz)|,- -+, |2n — p(Fnz)|). The M-
estimators are just the deepest points of these depth functions. For a multivariate data set X, and for
parameters 8 € RP and positive p X p matrix X, the depths of # and ¥ can be easily defined by applying
the above idea to the worst one-dimensional projections, namely, (a” X,a"0,a"Xa) (see Section 2). The dis-
persion depth can be established even without the location functional u(-). Like Tukey’s depth, the location
depths can be applied for the ordering of X through its depth contours, while the dispersion depths provide
some additional view of the dispersion of X.

We show that the new depth functions have the basic properties of Tukey’s depth: affine invariance,
monotonicity relative to the deepest point, strong and uniform consistence with respect to the compact
subset of the parameter space, and weak convergency. We take the deepest points of these depth functions
to construct some new affine equivariant estimates for multivariate location and dispersion. Most of these
estimates are proved to have at least 1/3 (sometimes approximate 1/2) asymptotic breakdown points under
elliptic symmetry. So their resistance to outliers can be better than Tukey’s median whose asymptotic
breakdown point is 1/3. Our simulations indicate at least in the bivariate case these estimates can be more
efficient than Tukey’s median and the location estimates studied in Tyler (1994). Furthermore, we show
that these estimates converge weakly to certain functionals of some Gaussian processes and have converges

rates of 1/y/n. In one word, both theoretical and empirical results indicate that the ordering based on our



generalized Tukey depths can retain much more information from the original data than that using the Tukey
depth.

Note that depth functions are semiparametric or nonparametric in nature. Another well-known tool to
rank points in a parameter space is the likelihood. It is natural to ask whether the depth contours (see
He and Wang, 1997) can be interpreted as some contours based on some semiparametric likelihood. In this
paper we show that it is true for Tukey’s depth. In fact, we show that there exists a strictly increasing
transformation between Tukey’s depth and an empirical likelihood of location.

One of our computational algorithms for implementing our new estimators is based on the idea of thresh-
olding which aims at reducing the double optimization problem to a few of single optimization problems.
Another is the direct application of the simulated annealing of Vetterling, Teukolsky, Press and Flannery
(1992).

The rest of paper is arranged as follows. In Section 2, we give a uniform definition of the new depth
functions. Then we unveil some of their properties. In Section 3, we investigate the breakdown behavior
and asymptotic properties of the multivariate estimators based on these new depth functions. In Section
4, we present some simulation results. In Section 5, we establish the relationship between Tukey’s depth
and the projection based empirical likelihood. Technical proofs of the main results are deferred to the last
section. Throughtout the paper we denote by X = (z1,---,x,) a sample of size n from the p-dimensional
distribution F. Let F,, be the empirical distribution function of X. Denote by F* and F? the theoretical
and empirical distribution functions of the projected sample in direction a. Let P, P,,, P*, and P? denote the
probability measures induced by F, F,,F® and F¢ respectively. For simplicity, we write the expectation of

h under P as Ph. “-“5” means convergence in distribution. Denote by I4 the indicator function of set A.

2 A family of depth functions

Following the basic idea illustrated in the last section, first we choose a univariate function g, for each
direction a. Here g, is allowed to depend on X and 6. Set z;(a,0) = a"(x; — 8)/s(F*) for each i and s(-) in

the last section. Then the projection based outlyingness function of location induced by g, is defined by
Ogn(0) = 0,4, (X, 6) = max nZga zi(a,0)) (2.1)

The corresponding depth function, namely D, () is

1

Dyn(8) = Dgnl(X,6) = 15—

Let x(1), -+, (,) be order statistics according to the corresponding depths Dy, (x(1)) > -+ > Dgn(x(n))-
Then, for 0 < a < 1, the a—th depth contour can be constructed by

Cn(Oé) = {.’IJ : Dg’ﬂ-(m) = Dgn(w[an])}

where [an] stands for the integer part of an.
If we let g,(2) = 1 when z > 0; g.(2) = —1 when z < 0, then the scale s(-) is not required, since
Dy, is scale-free in this case. Moreover, if we let Dr, () = minjja)=1 Y.i—; a7 (2;—0)<0], then an equiv-

alent relationship between D, and Dy, is recovered in the sense that there exists a strictly increasing



transformation:

1

Do) = 5 5D @

(2.2)

We call them equivalent because the depth contours (see He and Wang, 1997) are invariant when the depth
function is subject to a strictly increasing transformation. Dy, is slightly different from the traditional form
of the Tukey depth function, which is defined by

Hzrhlill Z I[aT(zi—o)go] = ||Iﬁ|1£1 min{z I[aT (2i—0)<0]> Z I[af(zi_g)zo]}. (2.3)
=1 1=1 1=1

We call Dr,, the left continuous version of the Tukey depth function, since Dr, becomes the traditional
form if we only replace the left continuous distribution ) .-, I1ar (2,—9)<0)/m by its right continuous version.

There are other ways to generalize Tukey’s depth function. For example, if we view Ijor (2, —0)<o) in (2.3)
as the absolute score to quantify the contribution of a”(x; — @) to the depth of 8, then we have the following

extension:

Dy1n = minjq = min{3 """, [¥(a” (z; — 0)/5(F3) I ar (2;—0)<0]»
Yoy (™ (i = 0)/s(Fy ) ar (2:—0)>01} (2.4)

where 9 is defined in the last section.
Donoho and Gasko (1992) introduced a notion of outlyingness of 6 relative to X. It is defined as the
distance between # and the center of X in the worst one-dimensional projection:

B a”(X —0)
On(0) = lfﬁ?§1|M€d(m)|

where Med denotes median and M AD denotes median absolute deviation about Med. We call Dy, =
{1+ Odn(e)}_1 Donoho’s depth function. Tyler (1994) showed that the deepest point of Donoho’s depth
function has the finite sample breakdown point close to 1/2. However, our simulations show that although,
as an estimator of location, it has a high breakdown point, its efficiency can be significantly lower than some
of the deepest points of the our generalized Tukey depth functions (see Section 4). We use the weighted sum
of the outlyingness functions Og, and Oy, to construct a new depth function {1 + O, + wan}_1 where
w is a positive constant and Oy, is defined by (2.1). We demonstrate that under some general conditions
the deepest point of the new depth function has the same finite breakdown point as that of Dg,, however,
it could be more efficient.

The following are some special cases:

(1) Dy1n in (2.4) with ¢ being bounded and odd, is equivalent to Dy, with g,(z) = ¥(00) — |¥(2)|I[.<0]-
So the traditional form of Tukey’s depth is recovered by Dy, if letting gq(2) = 1 — Ij.<q).

(2) If

z, |z <q
ga(2) =9 ¢ z2>¢
—c, z< —c.

with a tuning constant ¢ > 0, we obtain the generalized Tukey depth function based on Huber’s function.
If let go(z) = (1 — exp(—cz))/(1 + exp(—cz)) with a large tuning constant ¢ > 0, then we obtain a smooth
version of Tukey’s depth function. Such kind of smooth can avoid the local instability of Tukey’s depth.



(3)Depth functions associated with quantile functions. For 0 < a < 1,let g.(2) = —al.<g + (1 =)l
or go(2) = (1 + a@)l1.<o + alf.50)- Then we have a depth function in which a prelimiary univariate scale
estimator is not required.

(4) Depth functions based on trimmed statistics. Let z(1)(a,0) < -+ < 2(»)(a,0) denote the order statistics

of z1(a,0),- -, zn(a, ). For a fraction a such that an is a nonnegative integer and 2an < n — 1, let

9a(2) = 212, 0111 (0,0) <2< 20—y (0,0)]-

Then the depth functions based on the trimmed statistics are obtained. In particular, let « = 1/2 —1/n
when n is even and @ = 1/2 — 1/(2n) when n is odd, we recover Donoho’s depth function.

(5) Depth functions based on some discrepancy function. Note that the M-estimator can be defined
as the solution of the optimization of a certain discrepancy function, namely g—function. So we can let
9a(2) = g(z). For bounded g-function, without loss of generality, we assume that 0 < g < 1 because the
solution of the above optimization is invariant when g(z) is multiplied by a positive constant or added by
some constant.

In what follows we focus on the case when g, = g is independent of a, # and X. The results can be readily
extended to the other depth functions like those based on some trimmed statistics. For completeness, the
following propositions or theorems will include the results of Donoho and Gasko (1992), Nolan (1992), Chen
(1995) and He and Wang (1997) in the case when g is the sign function.

Set z(a,0) = a"(z — 8)/s(F*) with s(-) in the last section. Then the population version of D, () can
be expressed as

D,(6) = D, (F,0) = ﬁ

where O, (0) = max||q||=1 [Pg(z(a,0))|.
It is easy to see that Dy, is affine invariant. Here we call a depth function D(X, ) affine invariant if for

any nonsingular p X p matrix A and p—vector v,
D(AX +v,A0 +v) = D(X,0).

The following proposition shows D,,, also has nice asymptotic behavior in which we need the conditions:
(S0). maxy|q|=1 [s(Fy) — s(F*)] — 0, 0 <minjjg =1 s(F?) < max|qj=1 s(F*) < 00.

(GO). P|g(s1]|z|| + s2)| < o0, for any s1 # 0, s2 # 0.

(G0’). Plg(si]|z|| + s2)|?> < oo, for any s; # 0,82 # 0, and as  |ja —b|| + |s —t| — 0,

P{g(a™(z —8)/s) — g(b"(z — )/1)}* — 0.

The commonly used g function satisfies (B) or (U) below. See Zhang and Li (1998) for some examples.

(B). g(2) attains its minimum 0 at z = 0; g is nonincreasing for z < 0 and nondecreasing for z > 0;
furthermore, g(z) — 1 as |z| — .

(U). g(z) attains its minimum 0 at z = 0; g is even and is nondecreasing for z > 0; lim.| . g(2) = oo;
1 = ¢’ is continuous in R!, and there exists z, > 0 such that ¢ is nondecreasing in (0, z,] and nonincreasing
in (2o, 00).

For each fixed 0, set ho(z) = g(a” (z — 0)/s(F*)),

Ay = {aeRp:IIallzlyPhaZW}IIPhbl},

A_ = {a€RP:|a|]|=1,Ph, =— llril‘?}l |Phy|}.



Note that for simplicity, we suppress the notation 6 in h,(z), A+ and A_ above.

Proposition 2.1 Suppose that g is a monotone function or satisfies one of conditions (B) and (U). Suppose
that Conditions (S0) and (GO) hold. Then Dy, (0) converges to Dy(0) almost surely and uniformly on any
compact subset of RP (on RP when g is bounded). Furthermore, if (GO) is replaced by (GO’) above, then
for each 8,

1 .
Vi(Dy(6) — Dy(6)) = 50,07 max{fel%)i W (ha), — min W(ha)}-

where {W(hg) : ||a]| = 1} is a centered Gaussian process with continuous sample paths and covariance
EW (ho)W (hy) = Phghy — Pho Phy.
Here, we define max,cg{-} = —0o when Ay or A_ is empty.
In the following corollary, we assume that F' has an elliptic density

det(Zo) "/ fo((z — 6,)7S, (z — 60)) >0, = € R”

o

where ¥, is positive definite. Note that the distribution of aTEgl/Q(m —6,) is same for all a, ||a|]| = 1. So

we let Fl,,, denote this common projection distribution.

Corollary 2.1 Suppose that (SO) holds. Let g be a bounded, odd function such that | [ g(z + v)dFmo(2)|
is strictly increasing with respect to v > 0. Assume (GO) holds. Then, under the Hausdorff distance, for
0 < a < 1, the [na]-th depth contour C,(a) converges almost surely to an ellipsoid of the form {x € RP :
(x —0,)"2 (x —6,) = q(a)} where constant q(«) depends on «, f, and g. Here the Hausdorff distance of

two sets A and B is defined as max{maz,  cpming ca ||[xa —xzp||,maz,  camin, e ||z — zAl|}.

Remark 2.1 Suppose that g is a nondecreasing odd function and the underlying distribution is spherical.
Then D,(8) is monotonically decreasing along any fized ray stemming from the center of the distribution
(see Liu and Singh (1993) for the definition of monotonicity for depth function). Therefore Dy(6) inherits
the monotonicity property of Tukey’s depth function.

We conclude this section by developing a family of depth functions for dispersion. The basic idea hehind
these depths has already been illustrated in the last section. First, we choose an even function g, for each
direction a. To measure the scale alone, we introduce two methods to filter out the location effect. One is
based on the external location functional pu(-) defined in the last section, another is based on U-statistics.

With u(-), for each positive p x p matrix X, its outlyingness relative to X is defined by

Ougn(Z) = 0,gn(X, ) = max |—Zga (a"z; — u(F*))/vVaa)).

llall=1"m ¢

Then the depth function of ¥ is defined by
1
14+ Ougn(Z)’

The depth concept can be established even without the help of the external location functional. For this

Dugn(z) =

purpose, we note that for each i, the contribution of a™z; to the outlyingness of v/a”Xa can be measured by

1 - .
p— Z go(a” (z; — z;)/Va"Za).
j=1,5#i




Averaging these contributions, we have the following definition of the outlyingness of X relative to X by
Ougn(¥) = max|q)|=1 |m > icj 9ala” (z;—x;)/Va7a)|. The corresponding depth function of X is defined

by
1

1+ Ougn ()’
Note that similar to the location case, we can define the population versions, namely D, ,(X) and D, 4(X)

Dugn(X) =

for D,gn(X) and Dyg,(X), respectively. It is obvious that the above depth functions are affine invariant.
The counterpart of Tukey’s depth function in the dispersion setting is obtained by letting g.(z) =
sign(]z| — 1). Importantly, Oy, (X) requires no external location estimator, making it particularly suitable
for problems such as multivariate dispersion estimation, where robust estimation of location is difficult.
Let iu be the deepest point of D,,,, and a the worst direction, which gives the “deepest” view of

dispersion, that is,

Dygn(2) = Zga (a7 — p(F))/ Va7 Sa)l.
We view the dispersion of X by using the depths of {|a”x; — u(F2)|}, say {|ri|}, with
Zga aw; — p(Fy)/ a7 — p(Fy))), 1<i<n,

where we let 0/0 =1 and ¢/0 = oo for ¢ > 0.

The next proposition concerns the consistency of the proposed depth functions.

Proposition 2.2 Let g,(z) = g(z) be bounded, even and be nondecreasing in z > 0. Then

(1) Dugn(X) converges to Dyy(X) uniformly for all positive definite p x p matrices T.

(ii) Furthermore, suppose that there exists a location functional u(F'®) such that max||q| =1 [u(Fy)—pu(F*)]
tends to zero almost surely. Then D, q,(X) converges to D,q(X) almost surely and uniformly for all positive

definite p X p matrices X.

Remark 2.2 D, (X) and D, 4(X) also have certain monotonicity property. Assume F' has an elliptic density
and a marginal distribution Pp,, defined in Corollary 2.1. Suppose that g is a bounded even function and that
|(Pmo X Pro)g((z1—22) /)| is increasing for s > 1 and is decreasing for 0 < s < 1. Then Dyg(32) < Dyg(E1)
when X1 — I, and o — Iy are positive definite; Dyg(E2) > Dyg(E1) when I, — o and Iy — X4 are positive
definite.

3 Some properties of the deepest points

In this section we assume that F' = F(-;6,X) is an elliptic distrubution with unknown parameters 6 and X.
There are several kinds of affine estimators of # and ¥ (see Huber, 1981; Stahel, 1981; Rousseeuw, 1985;
Maronna, Stahel and Yohai, 1992; Donoho and Gasko, 1992; Tyler, 1994 and Zhang and Li, 1995). The
deepest points of our new depth functions give some alternative estimators.

Location estimator denoted by § = é(g,X) will be any element of {argmazyDg,(#)}. Similarly, its
population version will be any element from {argmazyD4(#)}. Usually the population version is unique.

Dispersion estimator with u, denoted by EA]# = i(,u,g, X), will be any element of {argmazs D, ¢,(XZ)}. Its
population version ¥, (F') will be any element of {argmaxs D, ,(X)}. Here ¥ runs over all the p X p positive

definite matrices.



Analogously, we define the dispersion estimator, denoted by & = i](g, X), without the location estimator
[b-

In practice, we select the element according to some fixed rule. For example, for the location estimator, it
should be the nearest one to the coordinate-wise median or Tukey’s median, given for example by Rousseeuw
and Ruts (1998). For the large sample, the pair-wise differences for the elements of {argmazyD,.(0)} are
small when the population version is unique.

It is obvious that all these estimators are affine equivariant. That is, for any p x p nonsingular matrix A

and p—vector v,

09, AX +v) = Af(g,X)+v;
i“(g,AX—{—’U) = ATiﬂ(g,X)A;
(g, AX +0v) = A™S(g, X)A.

So, without loss of generality, we assume that the underlying distribution function Fj is spherical with
marginal distribution F),,. Let P, and P,,, denote the probability measure induced by F, and F,,, respec-

tively.

3.1 Asymptotics

The above estimators have good asymptotic behavior. First, they are consistent under some regularity

—1/2_ For presenting these theorems, the

conditions. Secondly, some of them have convergence rates of n
following additional conditions are needed:

(G1): [g(z — B)dPno(z) = 0 if and only if 3 = 0, [g(z — B)dPn, (z) is continuous in 3, and
lims . oo inf| 555 | [ 9(2 — B)dPpo(2)] > 0.

(G2): | [ g(z — B)dP,,,(z)| attains the minimum only at 3 = 0.

(G3): [g((21 — 22)/8)dPpo(21)dPy,, (22) = 0 if and only if s = 1, [ g((z1 — 22)/8)dPmo(21)dPro(22) is
continuous in s, and lims_. o infog1 /s 6 | [ 9((z1 — 22)/8)dPro(21)dPrmo(22)] > 0.

(G4): [g(z/s)dP,,,(z) =0 if and only if s =1, [ g(z/s)dPp0(2) is continuous in s, and

lim  inf APy, 0.
ﬁlﬁrgose[lln/wl/g(z/S) ()| >

(G5): max||q)=1 [s(F7) — 1| — 0 almost surely as n — oc.
(G6): maxj|q=1 |u(F})| — 0 almost surely as n — oco.
In the following we say that é(g, X) is consistent (with the true value, 6,, of parameter) if sup{|v — 8,] :

v € {argmazsDy,(0)}} — 0 almost surely. Similar notions for £(g, X) and ¥(u, g, X) can be defined.

Theorem 3.1 (i) Suppose (G5) holds. If g is monotone and satisfies (GO) and (G1) or g satisfies (B)
and (G2) or g satisfies (GO), (G2) and (U), then (g, X) is consistent.

(it) If g is bounded and monotone and satisfies (G3), then S(g, X) is a consistent.

(iii) If g is bounded and monotone and satisfies (G4) and (G6), then S(u,g,X) is also consistent.

Remark 3.1 Suppose that F,,, has a density with respect to the Lebesgue measure which is even and strictly
decreasing in z > 0. Then (G2) holds if g satisfies (B) or g = ¥(00) — |9(2)|I[.<0) with ¢(2) being bounded,

odd and nondecreasing.



To derive the asymptotic distributions of our estimators, we need the further conditions:
(S1) Vn(s(F2) —1) = > si(a”x;)//n + o0p(1) £, W(a) where {Ws(a) : ||a|| = 1} is a Gaussian
process.

(GT7) g is nondecreasing and satisfies:

Poog(2) = 0; Py {g(sillz|| + s2)}* < 00,81 # 0,52 # 0;
Py {g(a™(z —8)/s) — g(b"(z —61)/D)}* — 0, as |ja—bl[ + (16 — Ol + |s — t| — O;
and U¢(8,s) = OP,g(a™(x —0)/s)/00 and ¥5(0,s) = OP,g(a” (z — 6)/s)/0s are continuous with ¥§(0,1) =
d(a)a, min|je) =1 |d(a)| > 0.
Let {W(g,a) : ||a|]| = 1} be a Gaussian process with zero means and covariance
EW(g,a)W(g,b) = Pog(a”x)g(b"x) — Pog(a™z)Pog(a™x).

Theorem 3.2 Under Conditions (S1) and (GT7), we have

0(g,X) = Op(1/ V).
Furthermore,

V(9. X) £+ argmin. ma. W (g.) + u¥(0.1) + W. ()50, 1)

provided the argmin is unique with probability 1.

We now consider the asymptotic behavior of the dispersion estimators. To begin with, we introduce a

few more notations. Denote

a”(x1 — x2) . . .
F = ————):|la]| =1, ¥ isanypxp positive matrix } ,
{o o2y o) y
a”(x1 — x) . " .
P,F = ———")dP,(z1) : |la|| =1, X isan X ositive matrix p .

Denote by G,, the centered Gaussian process indexed by L?*(RF) with covariance
EG,(h1)Gy(hy) = Pyhihy — P,hyPoha,  hy,hy € L?(RP).
Denote by W; the centered Gaussian process with covariance
EWi(a1)Wi(az) = Pyl(alx)l(a3z) — P,l(ajz)Pyl(a3x)

where [ is a univariate function such that P, [?(z) < oc.
Set
UP) = oy Y flews). S
The following technical conditions are needed in the next theorem:
(G8): P, x Pog(a™(x; — x2)/s) has continuous derivative u(a, s) in s and min)j,—1 |u(a,1)| > 0. As
[la = b|| + trace(X1 — Bs3) — 0,

a”(z1 — z3) b™ (1 — x2) 2
POXPO{Q( \/m _g( \/m )} — 0.

(L1): Under P,,

n

p(ES) = =317 a) + 0y(n 1)

=1



Theorem 3.3 (i) Assume that g is bounded and nondecreasing and satisfies Conditions (G3) and (G8).
Then
XA:(g)‘X) =L+ Op(n71/2))

and
Vn(E(g, X) - 1) £, argmina max |Gp(/ g(a™(x1 —))dP,(z1)) + u(a,1)a” Aa/2|

lla|l=1
provided the argmin is unique with probability 1, where A runs over all p X p positive definite matrices.
(it) Assume that Condition (L1) holds and that g is bounded and nondecreasing and satisfies Condition
(GT7). Then
S(p, 9, X) = I, + Op(n™"/?)

and
V(S g, X) - 1,) £, argmina ‘m?zcl [W(g,a)+ ¥$(0,1)"Wi(a) + ¥5(0,1)a” Aa/2|

lal|=
provided that the argmin is unique with probability 1, where A runs over all p X p positive definite matrices

and W (g, a) is the process defined in Theorem 3.2.

Remark 3.2 The assumption that the argmin is unique in the above theorems seems reasonable but difficult

to check. He and Portnoy (1998) provided a way to check such assumption.

3.2 Breakdown behavior

Let H be the set of all distributions on RP. Recall that 8(-), £,(-) and X(-) are the population versions of
é, f]u and & presented in Section 2. Then the asymptotic breakdown point of location estimator 6 at the

assumed distribution F, is

e(0(F,)) =inf{e >0: sup |8((1 —e)F, + eH)| = oo},
HeH

and the asymptotic breakdown point of dispersion estimator XA]M at the assumed distribution F}, is

(B, (F,)) = inf{fe>0: }}relgi Amin(Z,((1 —e)F, +eH)) =0,
SUP Amaz (X, (1 —¢e)F, +eH) = o0}
HeH

where Apnin(+) and Az (+) stand for the minimum and maximum eigenvalues. Similarly, we define e(X(F,))
for the dispersion estimator 3. For the rest of this section we restrict ourselves to the case when F, =
F,(-;0,%) is an elliptic distribution with unknown parameters 8 and X. Let P, denote the probability measure
induced by F,. Note that Lopuhad and Rousseeuw (1991) showed that the highest asymptotic breakdown

point that the affine equivariant estimators of location and dispersion can attain is 1/2.
Theorem 3.4 Suppose that g is bounded, nondecreasing and odd. Assume that for any 0 <e < 1/3,

0< inf s((1—¢e)F?+eH*) < sup s((1—¢e)F*+ecH?) < 0.
llal|=1,H lla||=1,H

Then e(8(F,)) > 1/3.
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Remark 3.3 Theorem 3.4 can be extended to the case when g is bounded and nondecreasing but not odd.

For this pourpose, for 0 <& < 1/2, we define

Cle) = sup, min e |Pog(a”(z —0)/s((1 —e)Fy +eH"))l,
gu = max{g(c0),—g(-o0)}, @ =min{g(c0),—g(—00)}.

Then

Gu — C(E(Q(Fo)))
F0F) 2 5 e E)))

For example, if g(2) = —al.<o+(1—a)l.5q), then under the same condition of Theorem 8.4, e(0(F,)) > 1/3.

Remark 3.4 Chen (1995) and He and Wang (1997) proved that the asymptotic breakdown point of Tukey’s
median is 1/3. So Theorem 3.4 implies that the asymptotic breakdown points of our new location estimators
are not lower than that of Tukey’s median. Generally it remains to see whether our extensions can improve
the breakdown property of Tukey’s median. However, the next theorem indicates that the answer is positive
if g satisfies Condition (B) and with a suitably chosen tuning constant. See Zhang and Li (1998) for several

commonly used g-functions.

For 0 < ¢ < 1/2, define

s«(e) = inf{s((1 —e)F?+cH®)):|la|]|=1, HE€H},
A.(e,a) = /[1 —g(a"z/s.(€))|dF,(z), A.(le)= ||f.ﬂ|ii11 Ail(e,a).

Theorem 3.5 Suppose that g satisfies Condition (B). Then
e(B(Fy,)) >sup{e > 0:e < A.(e)/[1 + A.(e)]}

Remark 3.5 It follows from Zhang and Li (1998, p. 1177) that if g is even with a derivative function ¥(x)
satisfying
!
([ ot = 0F000)) == [0l = 0F0) [ 106 = 0ldF(e) <

P(z) >0 for 2 >0, and F, is spherical with density fo(||z — 6|?) and f,(2) is even, strictly decreasing for
z >0, then

Au(e) = sup / {1 - g((z = 1)/5.())} dFmo(2)-

For the fized F,,,, we can adjust the tuning constant in g (see Zhang and Li, 1998, p. 1179) so that €(0(F,))
is close to 1/2.

We now turn to the breakdown behavior of the dispersion estimator .

Theorem 3.6 Assume that g(z) is nonincreasing for z < 0 and nondecreasing for z > 0, and 0 < g(oco0) =

g(—00) < co. Assume that
/g(zl - Z?)deo(Zl)dpmg(ZQ) =0.

1+c¢,
S(F,)>1—y/——
e(B(Fo)) 2 1+200>0

where ¢, = min{|g(0)|, g(00)}/ max{|g(0)|, g(c0)}. Especially, when |g(0)| = g(0), e(X(F,)) > 0.1835.

Then
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Remark 3.6 For iﬂ, if g is nonincreasing for z < 0 and nondecreasing for z > 0, and 0 < g(co0) =
g(—00) < 00, then

e(Xu(F,)) 2 min{e 2 0: B(e) 2 |(1 — ) min{|g(0)], g(o0)} — e max{|g(0)], g(c0) }|}

with

B(e) = max |/ a"x — pu(F))dF.(z)], F.=(1—¢)F,+eH.
HeHll al|=1

Furthermore if Pnog(z) =0 and location is known, then

min{|g(0)], g(o0)}
) 2 IO, 9000} + ()] + 9(20)

In particular, if |g(0)] = g(o00), then (X, (F,)) > 1/3.

4 A simulation study

In this section we undertake an extensive simulation study to assess the performance of the deepest points
of our generalized Tukey depth functions in the bivariate location setting. The computation seems awkward
because of the double optimization and of many local optimal points when g is not smooth. We first present
what is called the thresholding algorithm to reduce the double optimization to a few of single optimizations.

For simplicity, we focus on the bivariate location case with

z, |z <q
g(z) =4 & 2>¢ (4.1)
—c, z< —c.

Recall that  is any element of set {argmingOgy,(0)}. Assume that we devise a sieve ©, = {#;,1 <i < N;}
and use argmingeo, Oy, () to approximate argmingOgy,(#). We take the coordinate-wise median 6., as the
initial vector. Note that by the expression (2.1), Ogn(fe0) = maxy|q)=1 |2 > 7, 9(2i(a,0c0))|. So we can

calculate Oy, (0.,) by the direct approximation:

max|—§ 9(zi(a,0.0))
aclU, M

where U, is a set of the grid points of {a : ||a|| = 1}, and can be made via the expression a = (cos ¢,sin @), ¢ €
[, 7] and the grid points of [—m,7]. Then we choose the smallest among Oy (6),0 € ©, and Oy, (8.,)-
The basic idea here is to avoid full evaluation of depth function for all & € ©,,. For instance, we don’t need

to evalate the depth function at 6y fully if we find some a, ||a|| =1 such that

1 n
s > 9(2i(a,61))| > Ogn(8eo)
=1
which implies Oy, (#) can not attain the minimum at #;. It turns out that a large number of candidates in ©,,
can be filtered out by calculating |2 37" | g(z;(a,6))| only for a in some nested finite subsets of {a : ||a|| = 1}.
We note that a similar idea was used independently by He (1999) for the regression depth.

In summary, the thresholding algorithm consists of the following steps:
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1. Calculate Oy, at the coordinate-wise median 6.,. Set §; = 6.,. Calculate O, (6.,) by the direct
optimization mentioned before.

2. Choose three nested finite subsets of {a : ||a|| = 1}: Uy C Uz C Us of sizes my, my and ms, respectively.
Our numerical experience indicates that for the bivariate case, we can choose m; = 25, my = 324 and
mgz = 924. The first two sets act as “filters” while the last one is used to evaluate the depth approximately
for 8 € ©,, which has not been filtered out. For this purpose, set r = 1.

3. For 6,, we first calculate % S 9(zi(a,0,)) for a € Uy. Observe that if

max |~ 3" g(z(a,6.)] > Opn(8))

ac€lUi N 4

then O, can not reach the minimum at #,. In this case we need not calculate the values of Oy, on the large
set Us. Set r <= r 4+ 1 and if » < Ny, then back to the beginning of Step 3. If » > Ny, then go to Step 6.
4. If

aclUs N 4

max |~ 3" g(z(a,6.)] < Oy (8))

then we calculate Oy, on the set Us. Similarly if

max |~ 3 g(z1(,6,))] > Ogn(8))

a€lUs N 4

then Oy, can not reach the minimum at 6,. Set r <= r + 1 and if »r < Ny, then go to Step 3. If r > Nj, then
go to Step 6.
5. If

max |~ 3" g(z(a,6.)] < Oy (8))

a€Uz M 4

we calculate the values of Oy, on the set Us. If

a€Us N “

max |~ 3 g(z1(a,6,))] < Ogn(8))

then replace 65 by 6, and Oy, (05) by Ogn(8,). Set 7 < 7+ 1 and if » < Ny, then go to Step 3. If r > Ny
then go to Step 6.

6. Let 0¢;,i = 1,---,p be the components of #f. Choose a sieve of the interval [f; — 6,0 + 6] =
071 — 6,051 +06] x---x[05p — 08,05, + 6] (6 =0.01 in our code) and repeat Steps 3 to 5 but the sentence “
If r > Ny, then go to Step 6” is replaced “If r > Ny, then go to Step 7.”

7. Take the current 67 as an approximation of 6.

The above algorithm can be further refined. The code is available from the author.

The similated annealing algorithm of Vetterling, Teukolsky, Press and Flannery (1992) is also applied to
calculate . This algorithm could be faster than the above thresholding algorithm when O, has many local
minimum points, whereas the idea of thresholding is safer. In our code, we run the subroutine AMEBSA of
Vetterling, Teukolsky, Press and Flannery (1992) with temperature schedule: 0.1, 0.01,0.01/11,0.01/21. At
each temperature we run AMEBSA 20 times.

We now use these algorithms to simulate the mean squared errors of é(g, X). For the sample sizes n = 30

and 60, we respectively generate m = 1000 samples from the bivariate standard normal distribution, and
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apply the thresholding algorithm and simulated annealing algorithm to each sample. From the m estimators

él, ‘e ,ém we compute the empirical mean squared error:
R,
ERR(c) = — > |16l
i=1

The results are shown in Table 1. In it, ERR(c); and ERR(c)s, respectively, stand for the corresponding
empirical mean squared errors of § when the thresholding algorithm and the simulated annealing algorithm
are applied. Comparing the values of ERR(c¢); and ERR(c), in Table 1, we see that in general the above
temperature schedule is suitable for the cases n = 60, and n = 30.

At the same time, we calculate the empirical mean squared errors of the sample mean T, coordinate-wise
median #.,, Donoho’s depth based deepest point fp, the deepest point 6, of the generalized Tukey depth
based the trimmed function with o = 1/3. The results are presented in Table 2.

From Tables 1 and 2, we see that the empirical efficiency of our new estimators can be significantly higher
than those of the deepest points of Tukey’s depth and Donoho’s depth. For example, for simple size 60 and
¢ =12, ERR(1.2);/ERRr = 0.80 and ERR(1.2);/ERRp = 0.80 where ERRy and ERRp denote the
empirical mean squared errors of the deepest points of Tukey’s depth and Donoho’s depth, respectively.

To improve the efficiency of the estimator based on Donoho’s depth, we combine Donoho’s depth with

the generalized Tukey depth as pointed out in Section 1:
Dyr = {]. + Ogn + wan}il

where w is a positive constant and g is defined in (4.1). Here we choose w = 5.

Applying Tyler’s technique, we can easily show that the asymptotic breakdown point of the deepest point
O(w,c) of Dyr is 1/2 under symmetry. We also simulated the mean squared errors for the sample sizes 60
and 30 with m = 1000. The results are presented in Table 2.

Table 1. The empirical mean squared errors of § based on Huber’s function with tuning constant c.

n = 60, m = 1000

c 0.0000001  0.00001 0.5 1.2 2. 3.

ERR(c); 0.0454  0.0453 0.0382 0.0341 0.0329 0.0327

ERR(c), 0.0457  0.0441 0.0403 0.0355 0.0343 0.0336
n = 30, m = 1000

ERR(c), 0.0958  0.0956 0.0775 0.0680 0.0653 0.0646

ERR(c), 0.0958  0.0885 0.0850 0.0699 0.0670 0.0681

Table 2. The empirical mean squared errors of the sample mean, coordinate-wise median, deepest

points based on Donoho’s depth and 6 based on the trimmed with o = 1/3.

n =60, m = 1000

T p 0, .o 6(5,1.2) 6(5,2.)

ERR 0.0326 0.0421 0.0388 0.0491  0.0348 0.0332
n =30, m = 1000

ERR 0.0645 0.0985 0.0791 0.0984  0.070  0.066
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5 Relation with empirical likelihood

If we know the parametric likelihood, we would prefer ordering the data set by the likelihood contours. When
it is unknown, we often construct a nonparametric likelihood, for example, empirical likelihood, by using the
auxiliary information (see Owen, 1988). In another word, the likelihood can be applied to construct some
depth function. But the depth functions are often introduced in an adhoc way. So, as pointed out in Section
1, we hope to check whether some depth contours can be derived from a nonparametric likelihood. In the
following we show that it is true for Tukey’s depth contours. In fact, we find that Tukey’s depth function
is equivalent to a projection based empirical likelihood in the sense that there exists a strictly increasing
transformation between them.

To begin with, we construct an empirical likelihood ratio I(a, ) of a”6 for each direction a as follows.

Consider R
max Z log p;

=1

subject to

Yopi=1, pi>20, ix1
=1

Zpil[aﬁ(x,:fﬁgm =0.
i=1
Let pi(a,6),i=1,2,---,n be the solution. Then

l(a,0) = Zlogpi(a,0)+nlogn
i=1
— —nR(F2(a"0))
where

R(z)=log2+zlogz+ (1 —2z)log(l—2), 0<z<1.

The projection based empirical likelihood (the least favorable empirical likelihood among all empirical likeli-
hoods of one-dimensional projections of X), namely minj,|—; I(a,8), is equal to —nR(D,,(6)/n) where D,,

is Tukey’s depth function. Observe that R(z) is strictly decreasing. We have the following proposition.
Proposition 5.1 Tukey’s depth function is equivalent to the projection based empirical likelihood.

Analogously, we can show that the projection based depth function of a-quantile in Section 2 is equivalent

to the corresponding projection based empirical likelihood. In this setting,

R(z) = zlog(z/(1 —a)) + (1 — 2)log((1 — 2)/a).

However, in general the generalized Tukey depth functions are different from the semiparametric likelihood

based on the corresponding estimation equations.

6 Technical proofs

Lemma 6.1 (Lemma 3.1 in Zhang and Li, 1993). Let A be a compact subset of a metric space with metric
d. Let P, be the empirical distribution of a probability distribution P. For each ¢t € A, Vi(t) = Vi(¢t, P)
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denotes the distribution functional of P and Vi, (t) = Vi, (¢, P,) stands for the distribution functional of P,.
Suppose that for the fixed P, Vi (t, P) is continuous in ¢ € A. Suppose that sup,;ca Vi, (t) is measurable. Set
By = {t € A: Vi(t) = sup,ca Vi(s)} and S1n(t) = v/n(Vin(t) — Vi(t)),t € A,n > 1. If there is a process
{S1(t) : t € A} with continuous sample paths such that

sup [S1(t) — S1()] = 0, 2.5,
teEA

then

V/n(sup Vi,(t) —sup Vi (t)) — sup S;(t),a.s..
teA teA teB;

Proof of Proposition 2.1. Set

Smin = min s$(F%), Smaer = max s(F?).
lla||=1 [la]|=1

Let 21 be a compact subset of R? bounded by constant ¢,. For 0 < § < 1, consider the empirical process
{(P,—P)h: heF}

with
Fir={g(a"(x—80)/s):|la]| =1,a € R?,0 € Q1,(1L — 86)Smin <5< (14 6)Smaz}

and with envelope Fi(z) = |g((||z|| + ¢o)/Smin)|- We see that the graphs (or subgraphs) of functions in Fy
form a polynomial class (or a VC subgraph class) of sets (see Pollard, 1984, p. 17 for the definition). By
Theorem 24 and Lemma 25 of Pollard (1984, p.25 and p.27), we deduce that as n — oo

max [Ogn(0) — 04(8)] < max{|(P, — P)h| : h € F1} = 0, a.s..

Therefore

max |Dgn(0) — Dy(0)] — 0, a.s.

Similarly we obtain
{V/n(P, = P)h:heF} -5 {(W(h):heF}

where W is a centered Gaussian process with covariance
EW (h1)W(hy) = Phihs — PhyPhs.

Note that when g is bounded, the same result holds if we let Q; = RP.

When max|jq||=1 |Phs| = 0, the asymptotic distribution of Dy, can follow directly from the functional
central limit theorem of empirical processes. It remains to consider the case when max||q(j=1 |Pha| > 0. To
this end, we first observe that the above Gaussian process has continuous sample paths in a, ||a|| = 1 almost
surely because of Condition (G0’). By the representation theorem of random elements (Pollard, 1984), for
each fixed 6, there exist two processes {S,(a) : ||a]| = 1} and {S(a) : ||a|| = 1} which follow the same joint
distributions as those of {\/n(P, — P)h, : ||a|]| = 1} and {W(h,) : ||a|| = 1}, and satisty

||m|?3(1 |Sn(a) — S(a)] — 0, a.s..
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Set Vo(a) = Sn(a)/v/n+V(a), V(a)=Ph,, a€ RP,|la|]|=1. Without loss of generality, we assume
that Ay # 0 and A_ # 0. Letting Vi, = V,,, Vi =V, S1, = Sn, S1 =5, A = Ay, and B; = Ay in Lemma

6.1, we obtain that as n — oo,

Vvn(max V,(a) — max V(a)) — max S(a),a.s..

a€Ay a€Ay a€Ay

Similarly, by using Lemma 6.1 we have

vr(max (=Va(a)) — max(=V(a))) — max(-S(a)),a.s..

Invoking the facts that maxj|q||=1 |Va(a) =V (a)| — 0 almost surely, that for a € Ay, V(a) = max =1 |V (b)]
> 0, and that for a € A, =V(a) = max|=1 [V(b)| > 0, we have

max [Va(a)| = max Va(a), max|V,(a)] = max(=V,(a))a.s.

as n — o0o. Thus, we have
Vi (e (o)l = a1V (o)

= v/nmax { max V,(a) — maxV(a), max(=V,(a))— max(—V(a))}

aCEAL Ay aEA_ aEA_

—>max{max S(a), — min S(a)}, a.s.

a6A+ aCA_
which leads to

V(Ogn(0) — 04(8)) == max{max W (h,), — min W(he)}.

a€Ay a€A_

Now the results follow immediately from the definitions of Dy, and D,.

Proof of Corollary 2.1. It is similar to the proof of Lemma 2.5 of Donoho and Gasko (1992).
Proof of Proposition 2.2. It is similar to the proof of Proposition 2.1 and relies on the result of
Arcones and Giné (1993).

Proof of Theorem 3.1. It is a direct result of Propositions 2.1 and 2.2.

Proof of Remark 3.1. The first part is similar to Zhang and Li (1998) and thus omitted. To prove the
second part, we denote by f,,, the density of F,,, and define

t
K@) = [ 10z = OldF().
When ¢ > 0, it follows from the assumption on % that

K(t) = V(2 +t) fmo(2)dz

> / B(2) fmo(2)dz = K (0).
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For t; <t <0, it follows from the assumption on f,,, that

/000 V(2) fmo(z — t1)dz
/000 U(2) fmo(z — t2)dz = K (t2).

Consequently, for any fixed s > 0,

e [ (6(o<) = [a”(@ = 6)/9) e o) codFoo)

= 1p(o0 )—Hrrhlrg K(a™8/s)

= P(o0) — K(=[|0]|/s)

which attains the minimum only at § = 0. The proof is completed.

Proof of Theorem 3.2. To begin with, we consider the empirical process

{Vn(P, — P,)h: h € F3}
with
Fs={g(a"(x=0)/s):llall =1, |If]]<e, 1-6<s<1+6}
Set
Wa(a,0,8) = v/n(Py — Po)g(a” (z — 0)/s).
Without loss of generality, we assume that P, is the underlying distribution with zero location and unit
dispersion. Note that the graphs (or subgraphs) of functions in F5 form a polynomial class of sets (or a

VC-subgraph class) (see Pollard, 1984, p.17). Then it follows from the theorem in Pollard (1984) that the

above empirical process is stochastic equicontinuous, which implies that for any 6, = 0,(1),

max \/_|Png( T(z —0,)/s(Fy))l

llal|=1

= i W, (0,00, 8(FF) + (250, 1)7 Vil + T30, DVA((F) = DI(L + 0,(1)

= s [VA(P, = P)g(a”®) + 0,(1) + [B(0. 1) Vb, + 50, 1)V/a(s(F) = DI(L+ 0,(1)[(6.1)

Since we have shown that § = 0p(1) in Theorem 3.1, by comparing the values of maxj|q||=1 v7|Png(a” (z—
6)/s(F*))| at the points f and 0 and by using (6.1), we obtain
max [Vi(P, = P,)g(a’) + 0,(1) + §(0,1)"Vnf(1 + 0,(1))

llall=1
+T5(0, )v/n(s(Fy) = 1)(1+ 0p(1))|

S nax, [Vn(Pn = Po)g(a”x) + 0p(1) + ¥5(0, 1)v/n(s(F7) — 1)(1 + 0p(1))]

= 0p(1).

This together with the assumptions on ¥¢(0,1),i = 1,2 yields that for some positive constant ¢,, and the
large n,

HHHH |d(a)|||v/nb]| < c e |d(a)a” /nb(1 + 0,(1))]

< i V(P = Po)g(ae) + 0,(1) + (0, DVa(s(Fz) = (1 +0,(1))] + 0,(1)
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which implies that

v/l = 0,(1). (6.2)

To prove the second part of the theorem, we define 8,,(£) = £/+/n and for any compact @, C RP, consider
the process

{VnPog(a™(z = 0.(8))/s(F)) : llall =1, £ €0,}.

Similar to the argument of (6.1), we show that the above empirical process converges weakly to the following

Gaussian process
{W(h) +97(0,1)7¢ + 5(0,)Wi(a) : h(z) = g(a"z), o]/ =1, &€ O}
where W is a centered Gausssian process indexed by F3 with covariance
EW (h1)W (hy) = Po,h1hy — P,hy Pyho.
Now for ¢ € RP, we define

Z1n(§) = max V/n|Pg(a”(z — 0.(8))/s(F7)],

lal|=1
2(8) = max {|[W(h)+ ¥1(0,1)7¢ + T>(0, YWo(a) - h(z) = glax), |lal| =1}

Then, for any compact ©, C RP?,

{Z1a(6) : £ €0,} 55 {Z,(€) : € € ©,) (6.3)

by virtue of the continuous mapping theorem (see Pollard, 1984). Invoking Theorem 2.3 in Kim and Pollard
(1990), we have

{Zin(6) - € € B} 5 {22(6) : € RY) (6.4)
Note that by (6.2),
O,(1) = +/nargmingers max |Pog(a™ (z —8)/s(F"))]
= argmingcre Z1n(§). (6.5)

Combining this with (6.3), we easily show that

> i .
Op(1) 2 arg min Zi(§)

By the assumption argmingc e Z1 (€) is uniquely defined. We let Z,, = Z1,,, tn, = argmingcpe Z1,(€) and
a, = 0 in Theorem 2.7 of Kim and Pollard (1990). Now the proof is completed by the direct application of
that theorem, since the conditions in that theorem hold by (6.4) and (6.5).

Proof of Theorem 3.4. First we recall that F, is an elliptic distribution and s(-) is scale equivariant

by the assumption. So for 0 < e < 1/3, ||a|| = 1,

Pog(=a™(x —0)/s((1 —e)F,* +eH ")) = Pog(a™(x — 0)/s((1 — ) FJ' + eH?)).
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By the assumption that g is odd,
Pog(~a” (z = 6)/s(1 — )F;* + eH™")) = —Pogla’ (v — 8)/s((1 — £)F + <H")).

Thus,
Pyg(a™(z —0)/s((1 —e)Fy +ecH®*) =0

which implies

sup mén max [[(1 —¢)P, +eH]g(a"(z —0)/s((1 —e)F; +eH"))| <eg(c0).
HeH llal|=1

On the other hand, for each € > 0, if there exists {H,,} such that the minimizer 6,, of

max |[(1 —¢e)P, + eHy,|g(a™ (x — 0)/s((1 —e)F* + eHY))|

[la]|=1

tends to oo, then we show below that

lim inf max [[(1—¢€)P, +eH,)g(a™ (z —0,)/s((1 —e)F +eHS))| > (1 — 2¢)g(00).

lal]
To this end, for r > 0, set
Brn ={z € R”: |072/[10n]] = [16al]] = 7}

For any 6§ > 0 and §; = §/(2(1 —€)), choose r such that

g(r/s") =z g(o0) — &

where

s* = max sup s((1 —e)Fy +eH?).
llell=1 HeH

Then there exists N(r,§), when n > N(r,9),
Po(B;,) < 6/{4(1 —€)g(c0)}.
Consequently, (6.7) follows from the following arguments:

max |[(1 —e)P, + eH,|g(a" (x — 6,)/s((1 — e)Fy + eH®))|

llafl=1
> (1 —e)g(r/s")Po(Brn) — (1 — €)g(00) Po(By,) — £g(c0)
> (1 —e)(g(o0) = é1) (1 = 6/(4(1 —)g(c0)))
—(1 = €)g(00)8/ {4(1 = €)g(o0)} — eg(>0)
> (1 —2e)g(o0) — 6.

Combining (6.6) and (6.7), we have

v

gg(00) > (1 —2¢)g(00).

The proof is completed.
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Proof of Theorem 3.5. The proof is similar to the second part of the proof of Theorem 3.2 in Zhang
(1998). It suffices to prove that for any 0 < e < 1/2, e < A,(e)/[1 + A.(g)],

e(6(F,)) > e.

To this end, we observe that for 0 < e < A.(g)/[1 + A.(e)], there exists y; > 0 such that
A.(e) =
0< <
¢ + A, (6
Then for any ||a|| =1,
A (e,a) —
e < (,a) —m

e ——
We choose ¢; > 0, § > 0 such that 1 — g(z) < 6 when |z| > ¢;. Note that max,) =1 |a"z| = ||z||. We can
choose a compact subset K satisfying for any ||a|| = 1,
Ai(e,0) =7 = ( )8 — F3(K°) A.(e,a)
1+ A.(e,a) — 1 — Fo(K)6 — F2(Ke°) 1+ A.(g,a)

dF,(z) and F3(K®) = [,. 45 AF,(x). Then, for any |[a|| = 1,

e<

where F3(K) = [

/ {1 - g((@7z — )/5(F2))} dF.(z)

IN

(1—¢e)[6Fy(K)+ Fy(K°)] +e¢
< (I=¢)[Aule;a) =l
[1—g(a"z/s.(e))]dFz(z) — (1 —e)n

IN

|
——

[1—glaTz/s(F))dF:(2z) = (1 —&)m

provided da(s, K) = inf.cx |s — z| > e15* (s* is defined in (6.8) ) and F. = (1 —¢)F, +eH,H € H. Thus as
da(s, K) > c¢15*, we have

IN

min/{l— (a"x/s(F®))} dF.(z) — (1 — &)y

llaf|=1

< sup ||m||m1 / {1-g((a"z —t)/s(F2))}dF.(z) = (1 —&)71.

min, [ (1= g((a"s = 9)/s(FE)) }AF(2)

This means that all the solutions of the following minimization problem with respect to t,

max [ (@™~ 0)/s(F)AEF? (z) = mint,

stay bounded. The proof is completed.

Proof of Theorem 3.6. To prove (ii), we first set for H € H and dispersion matrix X,

T(H,%)= max) | // y)/V aTEa) ((1 — €)dP,(z) + edH (z)) ((1 — €)dP,(y) + edH(y)) |.
Note that
Elé%mzinT(H’E) < Hm‘z‘mx |P2g(a™(z —y))] +;1é%m21n|111?§ |// (z —y)/Va Sa)
x (e(1 — €)dP,(z)dH (y) + (1 — €)dP,(y)dH (z) + e°dH (z)dH (y)) |
< £(2 - £) max{g(0), |g(0)]}- 69)
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Assume that there exist {H;} such that the minimizer ¥; of T'(H;, X) is broken down, that is,
max{ Amaz )(Z:), 1/ Amin(Z:)} — 0.
Then, analogous to the proof of Theorem 3.4, we obtain
lim T(H,, 3,) > (1 —¢)? = 2¢ + &) min{g(c0), |g(0)]}
which together with (6.9) yields
e(2 — &) max{g(00), [9(0)[} > ((1 - £)* — 2 + £*) min{g(c0), |(0)[}.

The desired result follows.

Proof of Remark 3.6. The proof is similar to that of Theorem 3.4 and thus omitted.
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