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Abstract

As the extensions of Tukey�s depth� a family of a�ne invariant depth functions are introduced for

multivariate location and dispersion� The location depth functions can be used for the purpose of

multivariate ordering� Such a kind of ordering can retain more information from the original data

than that based on Tukey�s depth� The dispersion depth functions provide some additional view of the

dispersion of the data set� It is shown that these sample depth functions converge to their population

versions uniformly on any compact subset of the parameter space� The deepest points of these depth

functions are a�ne equivariant estimators of multivariate location and dispersion� Under some general

conditions these estimators are proved to have asymptotic breakdown points at least ��� and convergence

rates of ��
p
n� Their asymptotic distributions are also obtained under some regularity conditions� A new

algorithm based on the idea of thresholding is presented for computing these kinds of estimators and

realized in the bivariate case� Simulations indicate that some of them could have the empirical mean

squared errors smaller than those based on Tukey�s depth function or Donoho�s depth function�

Key words and Phrases� Depth and outlyingness� location and dispersion estimators� breakdown point�

multivariate ordering�

AMS ���� subject classi�cation� ��E��� ��H���

Short running title� Depth Functions

�



� Introduction

In the last decades much research has been made on how to rank a point relative to a multivariate data set

and on the way of multivariate ordering 	see Tukey� ��
�� Barnett� ��
�� Eddy� ��
�� Reiss� ��
�� Liu� �����

Donoho and Gasko� ����� Liu and Singh� ����� He and Wang� ���
� Koltchinskii� ���
� Small� ���
� Liu�

Parelius and Singh� ����� Rousseeuw and Hubert� ����� Zuo and Ser�ing� ����� and the references therein��

An important notion� now called depth� forms the core of these works� The depth of a point in a parameter

space is its rank relative to a data set� One of the incentives to these developments is that the depth notion

could be a powerful tool for developing a�ne equivariant robust estimators for multivariate location and

dispersion 	see� for example� Tukey� ��
�� Donoho and Gasko� ����� Maronna� Stahel and Yohai� ����� and

Tyler� ������ Tukey�s depth is very simple but it is a step function and uses only the qualitative information

in the data� As a result the related deepest point is quite less e�cient than the sample mean and sometimes

can be locally unstable� jumping suddenly to another value when slight changes are made in the data 	see

Hettmansperger and Sheather� ������ The goal of this paper is to improve the performance of Tukey�s depth

by incorporating some auxiliary functions into Tukey�s depth notion� A similar technique was adapted by

Plackett 	��
�� for some multivariate ordering problems�

To highlight the basic idea behind our extensions� we consider a univariate data set Z � 	z�� � � � � zn� with
empirical distribution FnZ � Let �	�� and s	�� represent translation and scale equivariant location and scale
functional on the family of all univariate distributions� Then the M�estimators of location and scale are�

respectively� de�ned as the solutions 	�� �� of the equations

�

n

nX
i��

�		zi � ���s	FnZ �� � ��
�

n

nX
i��

			zi � �	FnZ����� � �

where � and 	 are commonly taken to be an odd function and an even function� respectively� It is ob�

vious that O�n	�� Z� � jPn
i�� �		zi � ���s	FnZ���nj is a measure of the outlyingness of � relative to Z�

	� � O�n	�� Z��
�� describes the depth of � relative to Z� Similarly 	� � ���n	�� Z��

�� with ���n	�� Z� �

jPn
i�� 			zi � �	FnZ�������nj gives the depth of � relative to 	jz� � �	FnZ�j� � � � � jzn � �	FnZ �j�� The M�

estimators are just the deepest points of these depth functions� For a multivariate data set X � and for

parameters 
 � Rp and positive p � p matrix �� the depths of 
 and � can be easily de�ned by applying

the above idea to the worst one�dimensional projections� namely� 	a�X� a�
� a��a� 	see Section ��� The dis�

persion depth can be established even without the location functional �	��� Like Tukey�s depth� the location
depths can be applied for the ordering of X through its depth contours� while the dispersion depths provide

some additional view of the dispersion of X�

We show that the new depth functions have the basic properties of Tukey�s depth� a�ne invariance�

monotonicity relative to the deepest point� strong and uniform consistence with respect to the compact

subset of the parameter space� and weak convergency� We take the deepest points of these depth functions

to construct some new a�ne equivariant estimates for multivariate location and dispersion� Most of these

estimates are proved to have at least ��� 	sometimes approximate ���� asymptotic breakdown points under

elliptic symmetry� So their resistance to outliers can be better than Tukey�s median whose asymptotic

breakdown point is ���� Our simulations indicate at least in the bivariate case these estimates can be more

e�cient than Tukey�s median and the location estimates studied in Tyler 	������ Furthermore� we show

that these estimates converge weakly to certain functionals of some Gaussian processes and have converges

rates of ��
p
n� In one word� both theoretical and empirical results indicate that the ordering based on our

�



generalized Tukey depths can retain much more information from the original data than that using the Tukey

depth�

Note that depth functions are semiparametric or nonparametric in nature� Another well�known tool to

rank points in a parameter space is the likelihood� It is natural to ask whether the depth contours 	see

He and Wang� ���
� can be interpreted as some contours based on some semiparametric likelihood� In this

paper we show that it is true for Tukey�s depth� In fact� we show that there exists a strictly increasing

transformation between Tukey�s depth and an empirical likelihood of location�

One of our computational algorithms for implementing our new estimators is based on the idea of thresh�

olding which aims at reducing the double optimization problem to a few of single optimization problems�

Another is the direct application of the simulated annealing of Vetterling� Teukolsky� Press and Flannery

	������

The rest of paper is arranged as follows� In Section �� we give a uniform de�nition of the new depth

functions� Then we unveil some of their properties� In Section �� we investigate the breakdown behavior

and asymptotic properties of the multivariate estimators based on these new depth functions� In Section

�� we present some simulation results� In Section �� we establish the relationship between Tukey�s depth

and the projection based empirical likelihood� Technical proofs of the main results are deferred to the last

section� Throughtout the paper we denote by X � 	x�� � � � � xn� a sample of size n from the p�dimensional

distribution F� Let Fn be the empirical distribution function of X� Denote by F a and F a
n the theoretical

and empirical distribution functions of the projected sample in direction a� Let P� Pn� P
a� and P a

n denote the

probability measures induced by F� Fn� F
a and F a

n respectively� For simplicity� we write the expectation of

h under P as Ph� �
L��� means convergence in distribution� Denote by IA the indicator function of set A�

� A family of depth functions

Following the basic idea illustrated in the last section� �rst we choose a univariate function ga for each

direction a� Here ga is allowed to depend on X and 
� Set zi	a� 
� � a� 	xi � 
��s	F a
n � for each i and s	�� in

the last section� Then the projection based outlyingness function of location induced by ga is de�ned by

Ogn	
� � Ogn	X� 
� � max
jjajj��

j �
n

nX
i��

ga	zi	a� 
��j� 	����

The corresponding depth function� namely Dgn	
� is

Dgn	
� � Dgn	X� 
� �
�

� �Ogn	
�
�

Let x���� � � � � x�n� be order statistics according to the corresponding depths Dgn	x���� � � � � � Dgn	x�n���

Then� for � � � � �� the ��th depth contour can be constructed by

Cn	�� � fx � Dgn	x� � Dgn	x��n��g

where ��n� stands for the integer part of �n�

If we let ga	z� � � when z � �� ga	z� � �� when z � �� then the scale s	�� is not required� since
Dgn is scale�free in this case� Moreover� if we let DTn	
� � minjjajj��

Pn
i�� I�a� �xi������� then an equiv�

alent relationship between Dgn and DTn is recovered in the sense that there exists a strictly increasing
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transformation�

Dgn	
� �
�

�� �DTn	
��n
� 	����

We call them equivalent because the depth contours 	see He and Wang� ���
� are invariant when the depth

function is subject to a strictly increasing transformation� DTn is slightly di�erent from the traditional form

of the Tukey depth function� which is de�ned by

min
jjajj��

nX
i��

I�a� �xi������ � min
jjajj��

minf
nX
i��

I�a� �xi�������

nX
i��

I�a� �xi������g� 	����

We call DTn the left continuous version of the Tukey depth function� since DTn becomes the traditional

form if we only replace the left continuous distribution
Pn

i�� I�a� �xi�������n by its right continuous version�

There are other ways to generalize Tukey�s depth function� For example� if we view I�a� �xi������ in 	����

as the absolute score to quantify the contribution of a� 	xi� 
� to the depth of 
� then we have the following

extension�

D��n � minjjajj��minf
Pn

i�� j�	a� 	xi � 
��s	F a
n ��jI�a� �xi�������Pn

i�� j�	a� 	xi � 
��s	F a
n ��jI�a� �xi������g 	����

where � is de�ned in the last section�

Donoho and Gasko 	����� introduced a notion of outlyingness of 
 relative to X� It is de�ned as the

distance between 
 and the center of X in the worst one�dimensional projection�

Odn	
� � max
jjajj��

jMed	
a� 	X � 
�

MAD	a�X�
�j

where Med denotes median and MAD denotes median absolute deviation about Med� We call Ddn �

f� �Odn	
�g�� Donoho�s depth function� Tyler 	����� showed that the deepest point of Donoho�s depth
function has the �nite sample breakdown point close to ���� However� our simulations show that although�

as an estimator of location� it has a high breakdown point� its e�ciency can be signi�cantly lower than some

of the deepest points of the our generalized Tukey depth functions 	see Section ��� We use the weighted sum

of the outlyingness functions Odn and Ogn to construct a new depth function f� �Odn � wOgng�� where
w is a positive constant and Ogn is de�ned by 	����� We demonstrate that under some general conditions

the deepest point of the new depth function has the same �nite breakdown point as that of Ddn� however�

it could be more e�cient�

The following are some special cases�

	�� D��n in 	���� with � being bounded and odd� is equivalent to Dgn with ga	z� � �	��� j�	z�jI�z����
So the traditional form of Tukey�s depth is recovered by Dgn if letting ga	z� � �� I�z����

	�� If

ga	z� �

����
���

z� jzj � c�

c� z 
 c�

�c� z � �c�
with a tuning constant c 
 �� we obtain the generalized Tukey depth function based on Huber�s function�

If let ga	z� � 	�� exp	�cz���	� � exp	�cz�� with a large tuning constant c 
 �� then we obtain a smooth
version of Tukey�s depth function� Such kind of smooth can avoid the local instability of Tukey�s depth�

�



	��Depth functions associated with quantile functions� For � � � � �� let ga	z� � ��I�z����	����I�z	��
or ga	z� � 	� � ��I�z��� � �I�z	��� Then we have a depth function in which a prelimiary univariate scale

estimator is not required�

	�� Depth functions based on trimmed statistics� Let z���	a� 
� � � � � � z�n�	a� 
� denote the order statistics

of z�	a� 
�� � � � � zn	a� 
�� For a fraction � such that �n is a nonnegative integer and ��n � n� �� let

ga	z� � zI�z�n�����a
���z�z�n�n���a
����

Then the depth functions based on the trimmed statistics are obtained� In particular� let � � ��� � ��n
when n is even and � � ���� ��	�n� when n is odd� we recover Donoho�s depth function�
	�� Depth functions based on some discrepancy function� Note that the M�estimator can be de�ned

as the solution of the optimization of a certain discrepancy function� namely g�function� So we can let
ga	z� � g	z�� For bounded g�function� without loss of generality� we assume that � � g � � because the

solution of the above optimization is invariant when g	z� is multiplied by a positive constant or added by

some constant�

In what follows we focus on the case when ga � g is independent of a� 
 and X� The results can be readily

extended to the other depth functions like those based on some trimmed statistics� For completeness� the

following propositions or theorems will include the results of Donoho and Gasko 	������ Nolan 	������ Chen

	����� and He and Wang 	���
� in the case when g is the sign function�

Set z	a� 
� � a� 	x � 
��s	F a� with s	�� in the last section� Then the population version of Dgn	
� can

be expressed as

Dg	
� � Dg	F� 
� �
�

� �Og	
�

where Og	
� � maxjjajj�� jPg	z	a� 
��j�
It is easy to see that Dgn is a�ne invariant� Here we call a depth function D	X� 
� a�ne invariant if for

any nonsingular p� p matrix A and p�vector v�

D	AX � v�A
 � v� � D	X� 
��

The following proposition shows Dgn also has nice asymptotic behavior in which we need the conditions�

�S��� maxjjajj�� js	F a
n �� s	F a�j � �� � � minjjajj�� s	F

a� � maxjjajj�� s	F a� ���

�G��� P jg	s�jjxjj � s��j ��� for any s� 	� �� s� 	� ��
�G���� P jg	s�jjxjj� s��j� ��� for any s� 	� �� s� 	� �� and as jja� bjj� js� tj � ��

Pfg	a�	x� 
��s�� g	b� 	x� 
��t�g� � ��

The commonly used g function satis�es 	B� or 	U� below� See Zhang and Li 	���
� for some examples�

�B�� g	z� attains its minimum � at z � �� g is nonincreasing for z � � and nondecreasing for z 
 ��

furthermore� g	z�� � as jzj � ��

�U�� g	z� attains its minimum � at z � �� g is even and is nondecreasing for z 
 �� limjzj�� g	z� ���
� � g� is continuous in R�� and there exists zo � � such that � is nondecreasing in 	�� zo� and nonincreasing
in 	zo����
For each �xed 
� set ha	x� � g	a� 	x� 
��s	F a���

A	 � fa � Rp � jjajj � �� Pha � max
jjbjj��

jPhbjg�
A� � fa � Rp � jjajj � �� Pha � � max

jjbjj��
jPhbjg�

�



Note that for simplicity� we suppress the notation 
 in ha	x�� A	 and A� above�

Proposition ��� Suppose that g is a monotone function or satis�es one of conditions �B� and �U�� Suppose

that Conditions �S�� and �G�� hold� Then Dgn	
� converges to Dg	
� almost surely and uniformly on any

compact subset of Rp �on Rp when g is bounded�� Furthermore	 if �G�� is replaced by �G��� above	 then

for each 
� p
n	Dgn	
� �Dg	
��

L�� �

	� �Og	
���
maxfmax

a�A�

W 	ha��� min
a�A

�

W 	ha�g�

where fW 	ha� � jjajj � �g is a centered Gaussian process with continuous sample paths and covariance

EW 	ha�W 	hb� � Phahb � PhaPhb�

Here	 we de�ne maxa��f�g � �� when A	 or A� is empty�

In the following corollary� we assume that F has an elliptic density

det	�o�
����fo		x � 
o�

����o 	x� 
o�� 
 �� x � Rp

where �o is positive de�nite� Note that the distribution of a
��

����
o 	x � 
o� is same for all a� jjajj � �� So

we let Fmo denote this common projection distribution�

Corollary ��� Suppose that �S�� holds� Let g be a bounded	 odd function such that j R g	z � v�dFmo	z�j
is strictly increasing with respect to v � �� Assume �G�� holds� Then	 under the Hausdor
 distance	 for

� � � � �� the �n���th depth contour Cn	�� converges almost surely to an ellipsoid of the form fx � Rp �

	x � 
o�
����o 	x � 
o� � q	��g where constant q	�� depends on �� fo and g� Here the Hausdor
 distance of

two sets A and B is de�ned as maxfmaxxB�BminxA�A jjxA � xB jj�maxxA�AminxB�B jjxB � xAjjg�

Remark ��� Suppose that g is a nondecreasing odd function and the underlying distribution is spherical�

Then Dg	
� is monotonically decreasing along any �xed ray stemming from the center of the distribution

�see Liu and Singh ������ for the de�nition of monotonicity for depth function�� Therefore Dg	
� inherits

the monotonicity property of Tukey
s depth function�

We conclude this section by developing a family of depth functions for dispersion� The basic idea hehind

these depths has already been illustrated in the last section� First� we choose an even function ga for each

direction a� To measure the scale alone� we introduce two methods to �lter out the location e�ect� One is

based on the external location functional �	�� de�ned in the last section� another is based on U�statistics�
With �	��� for each positive p� p matrix �� its outlyingness relative to X is de�ned by

O�gn	�� � O�gn	X��� � max
jjajj��

j �
n

nX
i��

ga		a
�xi � �	F a

n ���
p
a��a�j�

Then the depth function of � is de�ned by

D�gn	�� �
�

� �O�gn	��
�

The depth concept can be established even without the help of the external location functional� For this

purpose� we note that for each i� the contribution of a�xi to the outlyingness of
p
a��a can be measured by

�

n� �
nX

j��
j 	�i

ga	a
� 	xi � xj��

p
a��a��

�



Averaging these contributions� we have the following de�nition of the outlyingness of � relative to X by

Ougn	�� � maxjjajj�� j �
n�n���

P
i�j ga	a

� 	xi�xj��
p
a��a�j� The corresponding depth function of � is de�ned

by

Dugn	�� �
�

� �Ougn	��
�

Note that similar to the location case� we can de�ne the population versions� namely D�g	�� and Dug	��

for D�gn	�� and Dugn	��� respectively� It is obvious that the above depth functions are a�ne invariant�

The counterpart of Tukey�s depth function in the dispersion setting is obtained by letting ga	z� �

sign	jzj � ��� Importantly� Ougn	�� requires no external location estimator� making it particularly suitable

for problems such as multivariate dispersion estimation� where robust estimation of location is di�cult�

Let ��� be the deepest point of D�gn� and �a the worst direction� which gives the �deepest� view of

dispersion� that is�

D�gn	��� � j �
n

nX
i��

g
a		�a
�xi � �	F 
a

n ���
p
�a� ���a�j�

We view the dispersion of X by using the depths of fj�a�xi � �	F 
a
n �jg� say fjrijg� with

ri �
�

n

nX
j��

g
a		�a
�xj � �	F 
a

n ���j�a�xi � �	F 
a
n �j�� � � i � n�

where we let ��� � � and c�� �� for c 
 ��

The next proposition concerns the consistency of the proposed depth functions�

Proposition ��� Let ga	z� � g	z� be bounded	 even and be nondecreasing in z 
 �� Then

�i� Dugn	�� converges to Dug	�� uniformly for all positive de�nite p� p matrices ��

�ii� Furthermore	 suppose that there exists a location functional �	F a� such that maxjjajj�� j�	F a
n ���	F a�j

tends to zero almost surely� Then D�gn	�� converges to D�g	�� almost surely and uniformly for all positive

de�nite p� p matrices ��

Remark ��� Dug	�� and D�g	�� also have certain monotonicity property� Assume F has an elliptic density

and a marginal distribution Pmo de�ned in Corollary ���� Suppose that g is a bounded even function and that

j	Pmo�Pmo�g		z��z���s�j is increasing for s � � and is decreasing for � � s � �� Then Dug	��� � Dug	���

when �� � Ip and �� ��� are positive de�nite� Dug	��� � Dug	��� when Ip ��� and �� ��� are positive

de�nite�

� Some properties of the deepest points

In this section we assume that F � F 	�� 
��� is an elliptic distrubution with unknown parameters 
 and ��
There are several kinds of a�ne estimators of 
 and � 	see Huber� ��
�� Stahel� ��
�� Rousseeuw� ��
��

Maronna� Stahel and Yohai� ����� Donoho and Gasko� ����� Tyler� ���� and Zhang and Li� ������ The

deepest points of our new depth functions give some alternative estimators�

Location estimator denoted by �
 � �
	g�X� will be any element of fargmax�Dgn	
�g� Similarly� its
population version will be any element from fargmax�Dg	
�g� Usually the population version is unique�

Dispersion estimator with �� denoted by ��� � ��	�� g�X�� will be any element of fargmax�D�gn	��g� Its
population version ��	F � will be any element of fargmax�D�g	��g� Here � runs over all the p� p positive

de�nite matrices�






Analogously� we de�ne the dispersion estimator� denoted by �� � ��	g�X�� without the location estimator

��

In practice� we select the element according to some �xed rule� For example� for the location estimator� it

should be the nearest one to the coordinate�wise median or Tukey�s median� given for example by Rousseeuw

and Ruts 	���
�� For the large sample� the pair�wise di�erences for the elements of fargmax�Dgn	
�g are
small when the population version is unique�

It is obvious that all these estimators are a�ne equivariant� That is� for any p� p nonsingular matrix A

and p�vector v�

�
	g�AX � v� � A�
	g�X� � v�

���	g�AX � v� � A� ���	g�X�A�

��	g�AX � v� � A� ��	g�X�A�

So� without loss of generality� we assume that the underlying distribution function Fo is spherical with

marginal distribution Fmo� Let Po and Pmo denote the probability measure induced by Fo and Fmo� respec�

tively�

��� Asymptotics

The above estimators have good asymptotic behavior� First� they are consistent under some regularity

conditions� Secondly� some of them have convergence rates of n����� For presenting these theorems� the

following additional conditions are needed�

�G���
R
g	z � ��dPmo	z� � � if and only if � � ��

R
g	z � ��dPmo

	z� is continuous in �� and

lim��� inf jj
jj�� j
R
g	z � ��dPmo	z�j 
 ��

�G��� j R g	z � ��dPmo	z�j attains the minimum only at � � ��

�G	��
R
g		z� � z���s�dPmo	z��dPmo

	z�� � � if and only if s � ��
R
g		z� � z���s�dPmo	z��dPmo	z�� is

continuous in s� and lim��� infs	�����
�� j
R
g		z� � z���s�dPmo	z��dPmo	z��j 
 ��

�G
��
R
g	z�s�dPmo	z� � � if and only if s � ��

R
g	z�s�dPmo	z� is continuous in s� and

lim
���

inf
s	�����
��

j
Z
g	z�s�dPmo	z�j 
 ��

�G��� maxjjajj�� js	F a
n �� �j � � almost surely as n���

�G��� maxjjajj�� j�	F a
n �j � � almost surely as n���

In the following we say that �
	g�X� is consistent 	with the true value� 
o� of parameter� if supfjv � 
oj �
v � fargmax�Dgn	
�gg � � almost surely� Similar notions for ��	g�X� and ��	�� g�X� can be de�ned�

Theorem 	�� �i� Suppose �G�� holds� If g is monotone and satis�es �G�� and �G�� or g satis�es �B�

and �G�� or g satis�es �G��
 �G�� and �U�	 then �
	g�X� is consistent�

�ii� If g is bounded and monotone and satis�es �G	�	 then ��	g�X� is a consistent�

�iii� If g is bounded and monotone and satis�es �G
� and �G��	 then ��	�� g�X� is also consistent�

Remark 	�� Suppose that Fmo has a density with respect to the Lebesgue measure which is even and strictly

decreasing in z � �� Then �G�� holds if g satis�es �B� or g � �	��� j�	z�jI�z��� with �	z� being bounded	
odd and nondecreasing�






To derive the asymptotic distributions of our estimators� we need the further conditions�

�S��
p
n	s	F a

n � � �� �
Pn

i�� sI	a
�xi��

p
n � op	��

L�� Ws	a� where fWs	a� � jjajj � �g is a Gaussian
process�

�G�� g is nondecreasing and satis�es�

Pmog	z� � �� Po fg	s�jjxjj� s��g� ��� s� 	� �� s� 	� ��
Po fg	a� 	x � 
��s�� g	b� 	x � 
���t�g� � �� as jja� bjj� jj
 � 
�jj� js� tj � ��

and  a
�	
� s� � �Pog	a

� 	x � 
��s���
 and  a
�	
� s� � �Pog	a

� 	x � 
��s���s are continuous with  a
�	�� �� �

d	a�a� minjjajj�� jd	a�j 
 ��
Let fW 	g� a� � jjajj � �g be a Gaussian process with zero means and covariance

EW 	g� a�W 	g� b� � Pog	a
�x�g	b�x�� Pog	a

�x�Pog	a
�x��

Theorem 	�� Under Conditions �S�� and �G��	 we have

�
	g�X� � Op	��
p
n��

Furthermore	 p
n�
	g�X�

L�� argminu max
jjajj��

jW 	g� a� � u� a
�	�� �� �Ws	a� 

a
�	�� ��j

provided the argmin is unique with probability ��

We now consider the asymptotic behavior of the dispersion estimators� To begin with� we introduce a

few more notations� Denote

F �

�
g	
a� 	x� � x��p

a��a
� � jjajj � �� � is any p� p positive matrix

�
�

PoF �

�Z
g	
a� 	x� � x�p

a��a
�dPo	x�� � jjajj � �� � is any p� p positive matrix

�
�

Denote by Gp the centered Gaussian process indexed by L
�	Rp� with covariance

EGp	h��Gp	h�� � Poh�h� � Poh�Poh�� h�� h� � L�	Rp��

Denote by Wl the centered Gaussian process with covariance

EWl	a��Wl	a�� � Pol	a
�
�x�l	a

�
�x� � Pol	a

�
�x�Pol	a

�
�x�

where l is a univariate function such that Pmo
l�	z� ���

Set

Un
� 	f� �

�

n	n� ��
X
i�j

f	xi� xj�� f � F �

The following technical conditions are needed in the next theorem�

�G��� Po � Pog	a
� 	x� � x���s� has continuous derivative u	a� s� in s and minjjajj�� ju	a� ��j 
 �� As

jja� bjj� trace	�� ����� ��

Po � Po

�
g	
a� 	x� � x��p

a���a
�� g	

b� 	x� � x��p
b���b

�

��
� ��

�L��� Under Po�

�	F a
n � �

�

n

nX
i��

l	a�xi� � op	n
������

�



Theorem 	�	 �i� Assume that g is bounded and nondecreasing and satis�es Conditions �G	� and �G���

Then

��	g�X� � Ip �Op	n
������

and p
n	��	g�X�� Ip�

L�� argmin� max
jjajj��

jGp	

Z
g	a� 	x� � ���dPo	x��� � u	a� ��a�!a��j

provided the argmin is unique with probability �	 where ! runs over all p� p positive de�nite matrices�

�ii� Assume that Condition �L�� holds and that g is bounded and nondecreasing and satis�es Condition

�G��� Then

��	�� g�X� � Ip �Op	n
�����

and p
n	��	�� g�X�� Ip�

L�� argmin� max
jjajj��

jW 	g� a� �  a
�	�� ��

�Wl	a� �  
a
�	�� ��a

�!a��j

provided that the argmin is unique with probability �	 where ! runs over all p� p positive de�nite matrices

and W 	g� a� is the process de�ned in Theorem ����

Remark 	�� The assumption that the argmin is unique in the above theorems seems reasonable but di�cult

to check� He and Portnoy ������ provided a way to check such assumption�

��� Breakdown behavior

Let H be the set of all distributions on Rp� Recall that 
	��� ��	�� and �	�� are the population versions of
�
� ��� and �� presented in Section �� Then the asymptotic breakdown point of location estimator �
 at the

assumed distribution Fo is

�	
	Fo�� � inff� � � � sup
H�H

j
		�� ��Fo � �H�j ��g�

and the asymptotic breakdown point of dispersion estimator ��� at the assumed distribution Fo is

�	��	Fo�� � inff� � � � inf
H�H

�min	��		�� ��Fo � �H�� � ��

sup
H�H

�max	��		�� ��Fo � �H� ��g

where �min	�� and �max	�� stand for the minimum and maximum eigenvalues� Similarly� we de�ne �	�	Fo��
for the dispersion estimator ��� For the rest of this section we restrict ourselves to the case when Fo �

Fo	�� 
��� is an elliptic distribution with unknown parameters 
 and �� Let Po denote the probability measure
induced by Fo� Note that Lopuha"a and Rousseeuw 	����� showed that the highest asymptotic breakdown

point that the a�ne equivariant estimators of location and dispersion can attain is ����

Theorem 	�
 Suppose that g is bounded	 nondecreasing and odd� Assume that for any � � � � ����

� � inf
jjajj��
H

s		�� ��F a
o � �Ha� � sup

jjajj��
H
s		�� ��F a

o � �Ha� ���

Then �	
	Fo�� � ����

��



Remark 	�	 Theorem ��� can be extended to the case when g is bounded and nondecreasing but not odd�

For this pourpose	 for � � � � ���� we de�ne

C	�� � sup
H�H

min
�
max
jjajj��

jPog	a� 	x� 
��s		�� ��F a
o � �Ha��j�

gu � maxfg	����g	���g� gl � minfg	����g	���g�

Then

�	
	Fo�� � gu � C	�	
	Fo���

�gu � gl � C	�	
	Fo���
�

For example	 if g	z� � ��I�z����	����I�z	��� then under the same condition of Theorem ���	 �	
	Fo�� � ����

Remark 	�
 Chen ������ and He and Wang ������ proved that the asymptotic breakdown point of Tukey
s

median is ���� So Theorem ��� implies that the asymptotic breakdown points of our new location estimators

are not lower than that of Tukey
s median� Generally it remains to see whether our extensions can improve

the breakdown property of Tukey
s median� However	 the next theorem indicates that the answer is positive

if g satis�es Condition �B� and with a suitably chosen tuning constant� See Zhang and Li ������ for several

commonly used g�functions�

For � � � � ���� de�ne

s
	�� � inffs		�� ��F a
o � �Ha�� � jjajj � �� H � Hg�

A
	�� a� �

Z
��� g	a�x�s
	����dFo	x�� A
	�� � min

jjajj��
A
	�� a��

Theorem 	�� Suppose that g satis�es Condition �B�� Then

�	
	Fo�� � supf� � � � � � A
	����� �A
	���g�

Remark 	�� It follows from Zhang and Li �����	 p� ����� that if g is even with a derivative function �	x�

satisfying �Z
g	z � t�dFmo	z�

	�
� �

Z
�	z � t�dFmo	z��

Z
j�	z � t�jdFmo	z� ���

�	z� � � for z � �� and Fo is spherical with density fo	jjx � 
jj�� and fo	z� is even	 strictly decreasing for

z � �� then
A
	�� � sup

t

Z
f�� g		z � t��s
	���g dFmo	z��

For the �xed Fmo� we can adjust the tuning constant in g �see Zhang and Li	 ����	 p� ����� so that �	
	Fo��

is close to ����

We now turn to the breakdown behavior of the dispersion estimator ���

Theorem 	�� Assume that g	z� is nonincreasing for z � � and nondecreasing for z � �� and � � g	�� �
g	��� ��� Assume that Z

g	z� � z��dPmo	z��dPmo	z�� � ��

Then

�	�	Fo�� � ��
r
� � co
� � �co


 �

where co � minfjg	��j� g	��g�maxfjg	��j� g	��g� Especially	 when jg	��j � g	��� �	�	Fo�� � ���
���

��



Remark 	�� For ���� if g is nonincreasing for z � � and nondecreasing for z � �� and � � g	�� �
g	��� ��	 then

�	��	Fo�� � minf� � � � B	�� � j	�� ��minfjg	��j� g	��g � �maxfjg	��j� g	��gjg

with

B	�� � sup
H�H

max
jjajj��

j
Z
g	a�x� �	F a

� ��dF�	x�j� F� � 	�� ��Fo � �H�

Furthermore if Pmog	z� � � and location is known	 then

�	��	Fo�� � minfjg	��j� g	��g
maxfjg	��j� g	��g� jg	��j� g	�� �

In particular	 if jg	��j � g	��� then �	��	Fo�� � ����

� A simulation study

In this section we undertake an extensive simulation study to assess the performance of the deepest points

of our generalized Tukey depth functions in the bivariate location setting� The computation seems awkward

because of the double optimization and of many local optimal points when g is not smooth� We �rst present

what is called the thresholding algorithm to reduce the double optimization to a few of single optimizations�

For simplicity� we focus on the bivariate location case with

g	z� �

����
���

z� jzj � c�

c� z 
 c�

�c� z � �c�
	����

Recall that �
 is any element of set fargmin�Ogn	
�g� Assume that we devise a sieve #n � f
i� � � i � N�g
and use argmin��
nOgn	
� to approximate argmin�Ogn	
�� We take the coordinate�wise median 
co as the

initial vector� Note that by the expression 	����� Ogn	
co� � maxjjajj�� j �n
Pn

i�� g	zi	a� 
co��j� So we can
calculate Ogn	
co� by the direct approximation�

max
a�Uo

j �
n

nX
i��

g	zi	a� 
co��j

where Uo is a set of the grid points of fa � jjajj � �g� and can be made via the expression a � 	cos�� sin��� � �
���� �� and the grid points of ���� ��� Then we choose the smallest among Ogn	
�� 
 � #n and Ogn	
co��

The basic idea here is to avoid full evaluation of depth function for all 
 � #n� For instance� we don�t need

to evalate the depth function at 
� fully if we �nd some a� jjajj � � such that

j �
n

nX
i��

g	zi	a� 
���j 
 Ogn	
co�

which implies Ogn	
� can not attain the minimum at 
�� It turns out that a large number of candidates in #n

can be �ltered out by calculating j �n
Pn

i�� g	zi	a� 
��j only for a in some nested �nite subsets of fa � jjajj � �g�
We note that a similar idea was used independently by He 	����� for the regression depth�

In summary� the thresholding algorithm consists of the following steps�

��



�� Calculate Ogn at the coordinate�wise median 
co� Set 
f � 
co� Calculate Ogn	
co� by the direct

optimization mentioned before�

�� Choose three nested �nite subsets of fa � jjajj � �g� U� 
 U� 
 U� of sizesm�� m� andm�� respectively�

Our numerical experience indicates that for the bivariate case� we can choose m� � ��� m� � ��� and

m� � ���� The �rst two sets act as ��lters� while the last one is used to evaluate the depth approximately

for 
 � #n which has not been �ltered out� For this purpose� set r � ��

�� For 
r� we �rst calculate
�
n

Pn
i�� g	zi	a� 
r�� for a � U�� Observe that if

max
a�U�

j �
n

nX
i��

g	zi	a� 
r��j 
 Ogn	
f �

then Ogn can not reach the minimum at 
r� In this case we need not calculate the values of Ogn on the large

set U�� Set r � r � � and if r � N�� then back to the beginning of Step �� If r 
 N�� then go to Step ��

�� If

max
a�U�

j �
n

nX
i��

g	zi	a� 
r��j � Ogn	
f �

then we calculate Ogn on the set U�� Similarly if

max
a�U�

j �
n

nX
i��

g	zi	a� 
r��j 
 Ogn	
f �

then Ogn can not reach the minimum at 
r� Set r � r�� and if r � N�� then go to Step �� If r 
 N�� then

go to Step ��

�� If

max
a�U�

j �
n

nX
i��

g	zi	a� 
r��j � Ogn	
f �

we calculate the values of Ogn on the set U�� If

max
a�U�

j �
n

nX
i��

g	zi	a� 
r��j � Ogn	
f �

then replace 
f by 
r and Ogn	
f � by Ogn	
r�� Set r � r � � and if r � N�� then go to Step �� If r 
 N�

then go to Step ��

�� Let 
fi� i � �� � � � � p be the components of 
f � Choose a sieve of the interval �
f � �� 
f � �� �

�
f� � �� 
f� � ��� � � � � �
fp � �� 
fp � �� 	� � ���� in our code� and repeat Steps � to � but the sentence �

If r 
 N�� then go to Step �� is replaced �If r 
 N�� then go to Step 
��


� Take the current 
f as an approximation of �
�

The above algorithm can be further re�ned� The code is available from the author�

The similated annealing algorithm of Vetterling� Teukolsky� Press and Flannery 	����� is also applied to

calculate �
� This algorithm could be faster than the above thresholding algorithm when Ogn has many local

minimum points� whereas the idea of thresholding is safer� In our code� we run the subroutine AMEBSA of

Vetterling� Teukolsky� Press and Flannery 	����� with temperature schedule� ���� ����� �������� �������� At

each temperature we run AMEBSA �� times�

We now use these algorithms to simulate the mean squared errors of �
	g�X�� For the sample sizes n � ��

and ��� we respectively generate m � ���� samples from the bivariate standard normal distribution� and

��



apply the thresholding algorithm and simulated annealing algorithm to each sample� From the m estimators

�
�� � � � � �
m we compute the empirical mean squared error�

ERR	c� �
�

m

mX
i��

jj�
ijj��

The results are shown in Table �� In it� ERR	c�t and ERR	c�s� respectively� stand for the corresponding

empirical mean squared errors of �
 when the thresholding algorithm and the simulated annealing algorithm

are applied� Comparing the values of ERR	c�t and ERR	c�s in Table �� we see that in general the above

temperature schedule is suitable for the cases n � ��� and n � ���

At the same time� we calculate the empirical mean squared errors of the sample mean x� coordinate�wise

median 
co� Donoho�s depth based deepest point 
D� the deepest point 
tr of the generalized Tukey depth

based the trimmed function with � � ���� The results are presented in Table ��

From Tables � and �� we see that the empirical e�ciency of our new estimators can be signi�cantly higher

than those of the deepest points of Tukey�s depth and Donoho�s depth� For example� for simple size �� and

c � ���� ERR	����t�ERRT � ��
� and ERR	����t�ERRD � ��
� where ERRT and ERRD denote the

empirical mean squared errors of the deepest points of Tukey�s depth and Donoho�s depth� respectively�

To improve the e�ciency of the estimator based on Donoho�s depth� we combine Donoho�s depth with

the generalized Tukey depth as pointed out in Section ��

DdT � f� �Odn � wOgng��

where w is a positive constant and g is de�ned in 	����� Here we choose w � ��

Applying Tyler�s technique� we can easily show that the asymptotic breakdown point of the deepest point


	w� c� of DdT is ��� under symmetry� We also simulated the mean squared errors for the sample sizes ��

and �� with m � ����� The results are presented in Table ��

Table �� The empirical mean squared errors of �
 based on Huber�s function with tuning constant c�

n � ���m � ����

c ��������� ������� ��� ��� �� ��

ERR	c�t ������ ������ ����
� ������ ������ �����


ERR	c�s �����
 ������ ������ ������ ������ ������

n � ���m � ����

ERR	c�t �����
 ������ ���

� ����
� ������ ������

ERR	c�s �����
 ���

� ���
�� ������ ����
� ����
�

Table �� The empirical mean squared errors of the sample mean� coordinate�wise median� deepest

points based on Donoho�s depth and �
 based on the trimmed with � � ����

n � ���m � ����

x 
D 
tr 
co 
	�� ���� 
	�� ���

ERR ������ ������ ����

 ������ �����
 ������

n � ���m � ����

ERR ������ ����
� ���
�� ����
� ���
� �����

��



� Relation with empirical likelihood

If we know the parametric likelihood� we would prefer ordering the data set by the likelihood contours� When

it is unknown� we often construct a nonparametric likelihood� for example� empirical likelihood� by using the

auxiliary information 	see Owen� ��

�� In another word� the likelihood can be applied to construct some

depth function� But the depth functions are often introduced in an adhoc way� So� as pointed out in Section

�� we hope to check whether some depth contours can be derived from a nonparametric likelihood� In the

following we show that it is true for Tukey�s depth contours� In fact� we �nd that Tukey�s depth function

is equivalent to a projection based empirical likelihood in the sense that there exists a strictly increasing

transformation between them�

To begin with� we construct an empirical likelihood ratio l	a� 
� of a�
 for each direction a as follows�

Consider

max

nX
i��

log pi

subject to

nX
i��

pi � �� pi � �� i � ��
nX
i��

piI�a� �xi������ � ��

Let pi	a� 
�� i � �� �� � � � � n be the solution� Then

l	a� 
� �

nX
i��

log pi	a� 
� � n logn

� �nR	F a
n 	a

�
��

where

R	z� � log � � z log z � 	�� z� log	�� z�� � � z � ��

The projection based empirical likelihood 	the least favorable empirical likelihood among all empirical likeli�

hoods of one�dimensional projections of X�� namely minjjajj�� l	a� 
�� is equal to �nR	Drn	
��n� where Drn

is Tukey�s depth function� Observe that R	z� is strictly decreasing� We have the following proposition�

Proposition ��� Tukey
s depth function is equivalent to the projection based empirical likelihood�

Analogously� we can show that the projection based depth function of ��quantile in Section � is equivalent

to the corresponding projection based empirical likelihood� In this setting�

R	z� � z log	z�	�� ��� � 	�� z� log		�� z�����

However� in general the generalized Tukey depth functions are di�erent from the semiparametric likelihood

based on the corresponding estimation equations�

� Technical proofs

Lemma ��� 	Lemma ��� in Zhang and Li� ������ Let ! be a compact subset of a metric space with metric

d� Let Pn be the empirical distribution of a probability distribution P� For each t � !� V�	t� � V�	t� P �

��



denotes the distribution functional of P and V�n	t� � V�n	t� Pn� stands for the distribution functional of Pn�

Suppose that for the �xed P� V�	t� P � is continuous in t � !� Suppose that supt�� V�n	t� is measurable� Set

B� � ft � ! � V�	t� � sups�� V�	s�g and S�n	t� �
p
n	V�n	t� � V�	t��� t � !� n � �� If there is a process

fS�	t� � t � !g with continuous sample paths such that

sup
t��

jS�n	t�� S�	t�j � �� a�s��

then p
n	sup

t��
V�n	t�� sup

t��
V�	t��� sup

t�B�

S�	t�� a�s��

Proof of Proposition ���� Set

smin � min
jjajj��

s	F a�� smax � max
jjajj��

s	F a��

Let $� be a compact subset of R
p bounded by constant co� For � � � � �� consider the empirical process

f	Pn � P �h � h � F�g

with

F� � fg	a� 	x� 
��s� � jjajj � �� a � Rp� 
 � $�� 	�� ��smin � s � 	� � ��smaxg

and with envelope F�	x� � jg		jjxjj � co��smin�j� We see that the graphs 	or subgraphs� of functions in F�
form a polynomial class 	or a VC subgraph class� of sets 	see Pollard� ��
�� p� �
 for the de�nition�� By

Theorem �� and Lemma �� of Pollard 	��
�� p��� and p��
�� we deduce that as n��

max
����

jOgn	
��Og	
�j � maxfj	Pn � P �hj � h � F�g � �� a�s��

Therefore

max
����

jDgn	
��Dg	
�j � �� a�s�

Similarly we obtain

fpn	Pn � P �h � h � F�g L�� fW 	h� � h � F�g

where W is a centered Gaussian process with covariance

EW 	h��W 	h�� � Ph�h� � Ph�Ph��

Note that when g is bounded� the same result holds if we let $� � Rp�

When maxjjajj�� jPhaj � �� the asymptotic distribution of Dgn can follow directly from the functional

central limit theorem of empirical processes� It remains to consider the case when maxjjajj�� jPhaj 
 �� To
this end� we �rst observe that the above Gaussian process has continuous sample paths in a� jjajj � � almost
surely because of Condition �G���� By the representation theorem of random elements 	Pollard� ��
��� for

each �xed 
� there exist two processes fSn	a� � jjajj � �g and fS	a� � jjajj � �g which follow the same joint
distributions as those of fpn	Pn � P �ha � jjajj � �g and fW 	ha� � jjajj � �g� and satisfy

max
jjajj��

jSn	a�� S	a�j � �� a�s��

��



Set Vn	a� � Sn	a��
p
n� V 	a�� V 	a� � Pha� a � Rp� jjajj � �� Without loss of generality� we assume

that A	 	� � and A� 	� �� Letting V�n � Vn� V� � V� S�n � Sn� S� � S� ! � A	� and B� � A	 in Lemma

���� we obtain that as n���

p
n	max

a�A�

Vn	a�� max
a�A�

V 	a��� max
a�A�

S	a�� a�s��

Similarly� by using Lemma ��� we have

p
n	max

a�A
�

	�Vn	a��� max
a�A

�

	�V 	a���� max
a�A

�

	�S	a��� a�s��

Invoking the facts that maxjjajj�� jVn	a��V 	a�j � � almost surely� that for a � A	� V 	a� � maxjjbjj�� jV 	b�j

 �� and that for a � A�� �V 	a� � maxjjbjj�� jV 	b�j 
 �� we have

max
a�A�

jVn	a�j � max
a�A�

Vn	a�� max
a�A

�

jVn	a�j � max
a�A

�

	�Vn	a��a�s�

as n��� Thus� we have

p
n

�
max
jjajj��

jVn	a�j � max
jjajj��

jV 	a�j
	

�
p
nmax

�
max
a�A�

Vn	a��max
A�

V 	a�� max
a�A

�

	�Vn	a��� max
a�A

�

	�V 	a��
�

� max

�
max
a�A�

S	a�� � min
a�A

�

S	a�

�
� a�s�

which leads to p
n	Ogn	
��Og	
��

L�� maxfmax
a�A�

W 	ha��� min
a�A

�

W 	ha�g�

Now the results follow immediately from the de�nitions of Dgn and Dg �

Proof of Corollary ���� It is similar to the proof of Lemma ��� of Donoho and Gasko 	������

Proof of Proposition ���� It is similar to the proof of Proposition ��� and relies on the result of

Arcones and Gin%e 	������

Proof of Theorem 	��� It is a direct result of Propositions ��� and ����

Proof of Remark 	��� The �rst part is similar to Zhang and Li 	���
� and thus omitted� To prove the

second part� we denote by fmo the density of Fmo and de�ne

K	t� �

Z t

��

j�	z � t�jdFmo	z��

When t 
 �� it follows from the assumption on � that

K	t� �

Z �

�t
�	z � t�fmo	z�dz




Z �

�

�	z�fmo	z�dz � K	���

�




For t� � t� � �� it follows from the assumption on fmo that

K	t�� �

Z �

�

�	z�fmo	z � t��dz

�

Z �

�

�	z�fmo	z � t��dz � K	t���

Consequently� for any �xed s 
 ��

max
jjajj��

Z
	�	��� j�	a� 	x� 
��s�j� I�a� �x������dFo	x�
� �	��� min

jjajj��
K	a�
�s�

� �	���K	�jj
jj�s�

which attains the minimum only at 
 � �� The proof is completed�

Proof of Theorem 	��� To begin with� we consider the empirical process

fpn	Pn � Po�h � h � F�g

with

F� � fg	a� 	x� 
��s� � jjajj � �� jj
jj � c� �� � � s � � � �g�
Set

Wn	a� 
� s� �
p
n	Pn � Po�g	a

� 	x� 
��s��

Without loss of generality� we assume that Po is the underlying distribution with zero location and unit

dispersion� Note that the graphs 	or subgraphs� of functions in F� form a polynomial class of sets 	or a

VC�subgraph class� 	see Pollard� ��
�� p��
�� Then it follows from the theorem in Pollard 	��
�� that the

above empirical process is stochastic equicontinuous� which implies that for any 
n � op	���

max
jjajj��

p
njPng	a� 	x� 
n��s	F

a
n ��j

� max
jjajj��

jWn	a� 
n� s	F
a
n �� � � 

a
�	�� ��

�pn
n � a
�	�� ��

p
n	s	F a

n �� ���	� � op	���j

� max
jjajj��

jpn	Pn � Po�g	a
�x� � op	�� � � 

a
�	�� ��

�pn
n � a
�	�� ��

p
n	s	F a

n �� ���	� � op	���j�	����

Since we have shown that �
 � op	�� in Theorem ���� by comparing the values of maxjjajj��
p
njPng	a� 	x�


��s	F a
n ��j at the points �
 and � and by using 	����� we obtain

max
jjajj��

jpn	Pn � Po�g	a
�x� � op	�� �  

a
�	�� ��

�pn�
	� � op	���

� a
�	�� ��

p
n	s	F a

n �� ��	� � op	���j
� max
jjajj��

jpn	Pn � Po�g	a
�x� � op	�� �  

a
�	�� ��

p
n	s	F a

n �� ��	� � op	���j
� �p	���

This together with the assumptions on  a
i 	�� ��� i � �� � yields that for some positive constant co� and the

large n�

min
jjajj��

jd	a�jjjpn�
jj � co max
jjajj��

jd	a�a�pn�
	� � op	���j

� max
jjajj��

jpn	Pn � Po�g	a
�x� � op	�� �  

a
�	�� ��

p
n	s	F a

n �� ��	� � op	���j� �p	��

�




which implies that

jjpn�
jj � �p	��� 	����

To prove the second part of the theorem� we de�ne 
n	�� � ��
p
n and for any compact #o 
 Rp� consider

the process

fpnPng	a� 	x� 
n	����s	F
a
n �� � jjajj � �� � � #og�

Similar to the argument of 	����� we show that the above empirical process converges weakly to the following

Gaussian process

fW 	h� �  a
�	�� ��

�� � a
�	�� ��Ws	a� � h	x� � g	a�x�� jjajj � �� � � #og

where W is a centered Gausssian process indexed by F� with covariance

EW 	h��W 	h�� � Poh�h� � Poh�Poh��

Now for � � Rp� we de�ne

Z�n	�� � max
jjajj��

p
njPng	a� 	x� 
n	����s	F

a
n �j�

Z�	�� � max
jjajj��

fjW 	h� �  �	�� ��
�� � �	�� ��Ws	a�j � h	x� � g	a�x�� jjajj � �g�

Then� for any compact #o 
 Rp�

fZ�n	�� � � � #og L�� fZ�	�� � � � #og 	����

by virtue of the continuous mapping theorem 	see Pollard� ��
��� Invoking Theorem ��� in Kim and Pollard

	������ we have

fZ�n	�� � � � Rpg L�� fZ�	�� � � � Rpg 	����

Note that by 	�����

Op	�� �
p
nargmin��Rp max

jjajj��
jPng	a� 	x � 
��s	F a

n ��j
� argmin��RpZ�n	��� 	����

Combining this with 	����� we easily show that

Op	�� � arg min
��Rp

Z�	���

By the assumption argmin��RpZ�	�� is uniquely de�ned� We let Zn � Z�n� tn � argmin��RpZ�n	�� and

�n � � in Theorem ��
 of Kim and Pollard 	������ Now the proof is completed by the direct application of

that theorem� since the conditions in that theorem hold by 	���� and 	�����

Proof of Theorem 	�
� First we recall that Fo is an elliptic distribution and s	�� is scale equivariant
by the assumption� So for � � � � ���� jjajj � ��

Pog	�a� 	x� 
��s		�� ��F�ao � �H�a�� � Pog	a
� 	x � 
��s		�� ��F a

o � �Ha���

��



By the assumption that g is odd�

Pog	�a� 	x� 
��s		�� ��F�ao � �H�a�� � �Pog	a� 	x� 
��s		�� ��F a
o � �Ha���

Thus�

Pog	a
� 	x � 
��s		�� ��F a

o � �Ha�� � �

which implies

sup
H�H

min



max
jjajj��

j�	�� ��Po � �H �g	a� 	x� 
��s		�� ��F a
o � �Ha��j � �g	��� 	����

On the other hand� for each � 
 �� if there exists fHng such that the minimizer 
n of

max
jjajj��

j�	�� ��Po � �Hn�g	a
� 	x� 
��s		�� ��F a

o � �Ha
n��j

tends to �� then we show below that

lim inf max
jjajj��

j�	�� ��Po � �Hn�g	a
� 	x� 
n��s		�� ��F a

o � �Ha
n��j � 	�� ���g	��� 	��
�

To this end� for r 
 �� set

Brn � fx � Rp � j
�nx�jj
njj � jj
njjj � rg�

For any � 
 � and �� � ��	�	�� ���� choose r such that

g	r�s
� � g	��� ��

where

s
 � max
jjajj��

sup
H�H

s		�� ��F a
o � �Ha�� 	��
�

Then there exists N	r� ��� when n � N	r� ���

Po	B
c
rn� � �� f�	�� ��g	��g �

Consequently� 	��
� follows from the following arguments�

max
jjajj��

j�	�� ��Po � �Hn�g	a
� 	x� 
n��s		�� ��F a

o � �Ha��j
� 	�� ��g	r�s
�Po	Brn�� 	�� ��g	��Po	Bc

rn�� �g	��
� 	�� ��	g	��� ��� 	�� ��	�	�� ��g	����
�	�� ��g	���� f�	�� ��g	��g � �g	��

� 	�� ���g	��� ��

Combining 	���� and 	��
�� we have

�g	�� � 	�� ���g	���

The proof is completed�

��



Proof of Theorem 	��� The proof is similar to the second part of the proof of Theorem ��� in Zhang

	���
�� It su�ces to prove that for any � � � � ���� � � A
	����� �A
	����

�	
	Fo�� � ��

To this end� we observe that for � � � � A
	����� �A
	���� there exists �� 
 � such that

� � � �
A
	��� ��

� �A
	��� ��
�

Then for any jjajj � ��
� �

A
	�� a�� ��
� �A
	�� a�� ��

�

We choose c� 
 �� � 
 � such that � � g	z� � � when jzj 
 c�� Note that maxjjajj�� ja�xj � jjxjj� We can
choose a compact subset K satisfying for any jjajj � ��

� �
A
	�� a�� �� � F a

o 	K�� � F a
o 	K

c�

� �A
	�� a�� �� � F a
o 	K�� � F a

o 	K
c�

�
A
	�� a�

� �A
	�� a�

where F a
o 	K� �

R
a�x�K dFo	x� and F

a
o 	K

c� �
R
a�x	�K dFo	x�� Then� for any jjajj � ��

Z
f�� g		a�x� s��s	F a

� ��g dF�	x� � 	�� ����F a
o 	K� � F a

o 	K
c�� � �

� 	�� ���A
	�� a�� ���

�
Z
��� g	a�x�s
	����dF�	x� � 	�� ����

�
Z
��� g	a�x�s	F a

� ���dF�	x� � 	�� ����

provided d�	s�K� � infz�K js� zj 
 c�s

 	s
 is de�ned in 	��
� � and F� � 	�� ��Fo � �H�H � H� Thus as

d�	s�K� 
 c�s

� we have

min
jjajj��

Z
f�� g		a�x� s��s	F a

� ��g dF�	x� � min
jjajj��

Z
f�� g	a�x�s	F a

� ��g dF�	x� � 	�� ����

� sup
t
min
jjajj��

Z
f�� g		a�x� t��s	F a

� ��g dF�	x� � 	�� �����

This means that all the solutions of the following minimization problem with respect to t�

max
jjajj��

Z
g		a�x� t��s	F a

� ��dF
a
� 	x� � min&�

stay bounded� The proof is completed�

Proof of Theorem 	��� To prove 	ii�� we �rst set for H � H and dispersion matrix ��

T 	H��� � max
jjajj��

j
Z Z

g


a� 	x� y��

p
a��a

�
		�� ��dPo	x� � �dH	x�� 		�� ��dPo	y� � �dH	y�� j�

Note that

sup
H�H

min
�

T 	H��� � max
jjajj��

jP �
o g	a

� 	x� y��j� sup
H�H

min
�
max
jjajj��

j
Z Z

g	a� 	x� y��
p
a��a�

� ��	�� ��dPo	x�dH	y� � �	�� ��dPo	y�dH	x� � ��dH	x�dH	y�

 j

� �	�� ��maxfg	��� jg	��jg� 	����

��



Assume that there exist fHig such that the minimizer �i of T 	Hi��� is broken down� that is�

maxf�max�	�i�� ���min	�i�g � ��

Then� analogous to the proof of Theorem ���� we obtain

limT 	Hi��i� � 		�� ��� � ��� ���minfg	��� jg	��jg

which together with 	���� yields

�	�� ��maxfg	��� jg	��jg � 		�� ��� � ��� ���minfg	��� jg	��jg�

The desired result follows�

Proof of Remark 	��� The proof is similar to that of Theorem ��� and thus omitted�
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