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Abstract

We consider a Gaussian stationary process with Pickands' conditions and evaluate an
exact asymptotic behavior of probability of two high extremes on two disjoint intervals.

1 Introduction. Main results.

Let X(t), t € R, be a zero mean stationary Gaussian process with unit variance and covariance
function 7(¢). An object of our interest is the asymptotic behaviour of the probability

Pa(u; [N, T3), (T3, Ty)) = P ( max X(f) > u, max

[Ty, T3] te[Ts,Ty)

X(t) > u)

as u — oo, where [T, T3] and [T3, Ty] are disjoint intervals. To evaluate the asymptotic behaviour
we develop an analogue of Pickands’ theory of high extremes of Gaussian processes, see [1] and
extensions in [2]. We follow main steps of the theory. First we assume an analogue of the
Pickands’ conditions.

A1l For some « € (0,2),

r(t) =1— [t[* +of[t|*) as ¢t — O,
|r(t)| <1 for all t> 0.

Then, we specify covariations between values of the process on intervals [T}, T3] and [T3,7Ty].
We assume that there is an only domination point of correlation between the values. This
makes some similarity with Pirabarg&Prisyazhn’uck’s extension of the Pickands’ theory to non-
stationary Gaussian processes.

A2 In the interval § = [T3 — T3,Ty — T1] there exists only point ¢, = argmaxesr(t) €
(T3 — Tb,Ty — Tq), r(t) is twice differentiable in a neighbourhood of ¢, with 7"(¢,) # 0.

As an alternative of assumption A2 one can suppose that the point of maximum of r(¢) is one
of the end points of S, T3 — T is more natural candidate.
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A3 r(t) is continuously differentiable in a neighbourhood of the point tm = T3 — T3, 7' (tm) <0
and r(tn,) > () for all t € (T3 — T, Ty — T3]

A3’ r(¢) is continuously differentiable in a neighbourhood of the point t, = Ty — T}, *'(£n) > 0
and r(t,) > r(t) forall t € T3 — T, Ty — 7).

Denote by Ba(t), t € R, a normed fractional Brownian motion with the Hurst parameter a/2,
that is a Gaussian process with a.s. continuous trajectories, Ba(0) = 0 a.s., EB4(t) = 0, and
E(Ba(t) ~ Ba(s))? = 2|t — s|®. For any set T C R we denote

Ho(T) =Eexp (sup Ba(t) — ltl"‘) .
teT

It is known, (1], [2], that there exists a positive and finite limit

Ha = Jim 2 Ha(0,7), (1)

the Pickands’ constant. Further, for a number ¢ denote
H{(T) = Eexp (sup Bi(t) — |t| - ct) .
teT

It is known, [2], that for any positive c, the limit Hf := limp_,o H§([0, 7)) exists and is positive.
We stand a V b for max(a,b) and a A b for min(a, b). Denote
(L+7)2 _ w2
u,T) = ——————e¢ s
Pa(ur) 2mu?y/1 — 12

and notice that for a Gaussian vector (£,7) where the components are standard Gaussian and
correlation between them is r, P (¢ > u,n > u) = pa(u,7)(1 + 0o(1)) as u — co.

Theorem 1 Let X(t), t € R, be o Gaussian centred stationary process with a.s. continuous
trajectories. Let assumptions Al and A2 be fulfilled for its covariance function r(t). Then
Py(ui[Th, T3], (T3, 7))
=KVIA~(L +7(tm)) "4 H2u= 34 %py (u, r(tm)) (1 + 0(1))

asu — 00, where K =Ty A (Ty —t) = T4 V (T3 — tr) >0,

1 (tm)

A=-3 1+ r(tm))?

Theorem 2 Let X (t), t € R, be a Gaussian centred stationary process with a.s. continuous
trajectories. Let assumptions Al and A3 or A3’ be fulfilled for its covariance function r(t).
Then,

(ifora>1,

Fa(w;[T1, T3], (T3, Ta)) = pa(u, v(Em) N1 + o(1))



as u — 0.
(ii)For a =1,
Pulus (T3, Tl (73, T4)) = (B ) paas, rtm)(1 + (1)

as ¥ — 0o.
(tii) For e < 1,

Py(u; [Ty, Ta), (T3, Tu)) = B™(1 + 7(tm)) ™/ Hiu™ 54/ py(u, 7 (tm))(1 + 0(1))

as . — o0, where
_ T’(tm)
T (Lr(tm))?

2 Lemmas
For a set AC R and a number a we write aAd = {az: z € A} anda+ A={a+z: z € A}.

Lemma 1 Let X(t) be ¢ Gaussian process with mean zero and covariance function 7(t) satis-
Jying assumptions Al, A2. Let a time moment 7 = 7(u) tends {0 t, as u — 00 in such a way
that |7 — t,| < CVlogu/u, for some positive C. Let Ty and Ty be closures of two bounded open
subsets of R. Then

P( max X(t)>wu, max X(t) >u) =
teu—2/aTy tertu—2/aTy

__ (1+r(e)? St L5 _ o
TN ECON ot () B (wrye) G, @

as u — 00, where 0 = {.,.

Lemma 2 Let X(t) be a Gaussion process with mean zero and covariance function r(t) satis-
fuing assumptions Al, A2 with o < 1. Let Ty and Tb be closures of two bounded open subsets
of R. Then, for any (fized) T > 0 the asymptotic relation of Lemma 1 holds true with 6 = 7.

Lemma 3 Let X(t) be a Gaussian process with mean zero and covariance function r(t) satis-
fying assumptions A1, A2 with o = 1. Let T} and T3 be closures of two bounded open subsets
of R. Then

P( max X(t) >wu, max 2X(t)>u) =

tew—2T ter+u—2T:
= T"(T) ""T— -—1’"(‘1’) —T2 u, ™ T (4]
- 8 () B0 (g ) ) +o@), (@

as u — 00,



Proof of Lemmas 1 - 8. We prove the three lemmas simultaneously, computations of
conditional expectation (4) and related evaluations are performed in parallel, separately for
each lemma. We have for u > 0,

P=P( max X() >u, max X(t) >u) =
teu—2/aTy ter+u=2/oTy

+0o0 400

—-[/P( max X(t)>u, max X(t)>u
teu~2am tertu—2/aTy

X(0)=a,X(1) = b) Py, (a,b) dadb,

—00 —00

where

1 a?-— b+ b2
Por(a,b) = 1l oa 2r(t)ab+ ) -

1
—_———ex
2m\/1 —ri(7) p( 2 1 —1r%(7)
Now we change variables, a = v — z/u, b = v — y/u,
1

Por(z,y) = g T R
L (u=o/u)® ~ 2r(7)(u = 2/u)(u — y/u) + (u — y/u)?
X exp ("5 ’ 1 —r2(r) )
1 u?
= ()
( 1 B4 20— 2%+ () +y) - 2r(r):’;#)
Xexp |-y 1—7r2(r)
1 w2 ~
=y = () Py
Hence,
1 1 u? Vi
e e (_ﬁ;(f_))_i_i : (tef}%}‘{'ﬂx(ﬂ -

max  X(t) > u| X(0) = u — z/u, X(7) = u — y/u) P(u, z,y) dzdy.

teT4u—2/aTy

Consider the following families of random processes,
ult) = u (X(u'zf“‘t) - u) +x, teT,

m(t) = u (X('r +u ey — u) +y, teTh.

We have,
+60 +00
P—-———w1 1exp( ————uz )]/P(maxc’(t)>m
T om /T — 727 ul 1 teTy ’
2n/1 — (1) u + r(7) S A

max 1 (t) > y’ X(0)=v—z/u,X(r) =u~ y/ﬂ) P(u,z,y) dzdy.



Compute first two conditional moments of Gaussian random vector process (£,(t), 7.(£))7. We

have
o (S0]20) wn (50 4 (1),
where _
amam ((50). GO (GO GO

A= U (r(u‘2/ o) — r(TYr(T —u=Ht) (1 —uHt) — r(r)r(u=)
T 1= r2(7) \r(T +uHet) — r(r)r(u= %) r(ut) — r(D)r(r + u'z/"‘t))

We denote cov.X, the matrix of covariances of a vector X and cov(X,Y), the matrix of cross-
covariances between components of X and Y. Substituting the values X(0) = u — z/u, X(7) =
u — y/u, of the conditions, we get from here that

I_—TIQ(T) (r(u=%et) (u? —z — r(1)(u? —y)) +

—w—a/u +r(r —u o) (WP —y —r(T)(? - 2))) —uwl + 2
E (fu(t) X(0) = / ) = ()

HX(T)=uv—y/u
h(8)| X(7) y/ — (1- ('r('u. 2/ ep) (u? —y —r(r)(@® - z)) +
r(r +uot) (v —z — (1) (u? — ) —uw +y
In conditions of every lemma 1-3 we have

£u(H)| X(0) = u— z/u _
B (nu(t) X(r) = u~- y/u) = ©)

—um2 ey _ (e =2/
( TR + (1) + W)y gy gl

+u—2/ag)— —r(r4u—2/ oy
T %+ 0(1) +w TR B ) (g () KOs TR0
as i — 0O,

Now, let conditions of the Lemma 1 be fulfilled. Since @ < 2 and +'(7) = O(v/logu/u)
uniformly in |7 — tm| < Cy/logu/u, we have,

LT —u=et) _r(r) o Pyt PO |
14+7(7) = |rmtm] <CvToTT ( )1 ) {1). (6)
Thus
(1) X(0) =u—z/u) _ ( —rge i +o()
e (nﬂ'(t) X(T) =u- y/u) - ( mltl +o(1). (7)
as u — 0.

Let now the conditions of Lemma 2 be fulfilled, that is & < 1. In this situation even for
fixed 7, by Taylor, the third terms in the column array of right-hand part of (5) tend to zero as
u — 00, hence {7) takes place, with § = 7.

Next, let @ = 1, by differentiability of r,

ug(r(r - u“zt) — (1)) = —tr'(t) and u?‘(r('r + u‘2t) —r(1)) = &'(7)

S



as % — 00, therefore in conditions of Lemma 3,

()| X(0) =u—a/u) _ (555 +o(1)
E (%(t) X(ry=u— y/u) - (_JHI%%) + 0(1).) (8)

JEr BT ®

s (4 X0zuz=m)_ (0),

Computing conditional covariance matrix, we have,

o (KSR - () -em i)

X(7) Nult) — 1u(s) (7)
2= (0 750)- GO (G GO

Using expressions for £,(t} and n,(t),

r(u‘2/ ) —r(t)(T —u=? - p(r —u ) — r(7)r(u? ot)—
-—r(u""/“s) +r(7)r(r — u‘z/"‘s) —r(T ~ u'2/°‘s) 4+ r('r)r(u‘zfas)

It is clear that

where

U

B-__"%
1-13(r) (1 +u %) — r(ryr(u ) - r(w¥et) — r(rir(r +uY of)—

~r(r + %) 4 r(T)r(uYs)  r(u=es) + r(r)r(r + u~/s)
Letting now u — co, we get

Eult) — Eu(s)| X(0) =u—E/u\ _ (20t so(1 + (1) o(1)
°°"(nu(t)—nu(s) x<r)=u—n/u)*( o(1) 2|t—s|°f(1+o(1)))’ (10)

where o(1)s are uniform of  and y, moreover they do not depends of values of conditions X(0)
and X(7}. Note that (10) holds true for all & € (0,2). From (10) it also followed that for some
C >0 all t, s and all sufficiently large u,

var (£u(t) = &u()| (X(0), X()) = (u — z/u,u — y/u)) < CJt - s|°, (11)
var (1u(t) — u(s)] (X(0), X (7)) = (u - z/u,u — y/u)) < CJt — s|*. (12)
Thus from (7-11) it follows that the family of conditional Gaussian distributions
£.0)| X(0) =u - o/u
f Gt i) -

is weakly compact in C(T1) x C(T2) and converges weakly, under conditions of Lemmas 1 and
2, to the distribution of the random vector process

(E@,mE) " = (Balt) ~ [t]°/(1 +7(7)), Balt) - {1*/(1 + (1)),

6



t € R, where B is an independent copy of B. If the conditions of Lemma 3 are fulfilled, the
family of Gaussian conditional distributions converges to the distribution of

E@®,n®)T = (B1(t) - (8] +tr' (1) +7(r)), Ba(2) — (] - tr'(7))/(1 + (7)) T
Thus

U—00

lim P (Elé%gu(t) >z, Itléﬁ;l_‘.;(ﬂu(t) > y‘ X0)=u—zfu,X(T) =u— y/u)

=P (rtgg»,:;cﬁ(t) >, maxn(t) > y) :

In order to prove a convergence of the integral

+o0 400
2= [ [P (mme >
—00 —00

max () > y} X(0) = u - fu, X(r) = u - y/u) B(u, 2, y) dody
2

as u — 00, we construct an integrable dominating function, which have different representation
in different quadrants of the plane.

1. For the quadrant (x < 0,y < 0) we bound the probability by 1, and the P(u,z,y) by
exp(l_l_—“‘f(f"—‘;), using relations |r(t)| < 1 and z? +y? > 2xy. The last function is integrable in the
considered quadrant, so it is a desirable dominating function.

2. Within the quadrant (z > 0,y < 0) we bound the probability by

P (Igégglcfu(t) >z, | X(0)=uv—~z/u,X(T)=u-— y/u)

and, using arguments similar the above, we bound P(u, z,y) by

exp (1 +f(tm) 09 +mr(tm)) ’

for sufficiently large «. The function p(z) can be bounded by a function of type C exp(—ex?),
€ is positive, using, for example the Borel inequality with relations (7 - 10). Similar arguments
one can find in [2].

3. Considerations in the quarter-plane (z < 0,y > 0) are similar, the dominating function is

Y x ¥
Cexp( €Yy )exp (1 + r(tm) + 0.9 <+ T(tm)) '

4. In the quarter-plane (z > 0,3 > 0) we bound P by

z y
exp +
094+7(n)  0.9+7(tn)



and the probability by
P ' S — _
((t’s)rgg;fxn () +u(s) >2+y | X(O0)=u—z/u, X(T)=u y/u)

Again, for the probability we can apply the Borel inequality, just in the same way, to get the
bound Cexp(—e(z + y)?), for a positive e.
Thus we have the desirable domination on the hole plane and therefore we have,

+o0 fo0

Jim / P | max&u(t) > =,
—00 —00
masn(t) > y. X(0) = = o/, X(r) = u=y/u) Blusa,) dody
2
+o0 +00
— e ¢ d
f/e P Igelgffé(tbw,gé%n(by xdy
—00 —00
400 +oo
= [ e TOP £ dy.
/e t P(lé:é%g(tpm) da:fe (rtrég%cn()>y) 1y
—00 =00
Then we proceed,
+0c0
f eTHE P (max{(t) > m) de =
teh
—00

= (1+r(0))Eexp

'male (%) _ maxy; Ba(t) — 14;.2535 _
-1_-|-1"(é)_] = (1 + T(G))Eexp [ 1+ ’!‘(9) =

= 1 OB [ Ba ({yore) - (@) |-

= (1+7(f))Eexp /X e Ba(s) — s“} = (1+7(8))Ha ((_1+_1?£1§)-5§75) ;

where we use self-similarity properties of Fractional Brownian Motion. Similarly for 7(), t € T5.

Similarly for H;" ("), Thus Lemmas follow.
The following lemma is proved in (2] in multidimensional case. We formulate it here for

one-dimensional time.

Lemma 4 Suppose that X (t) is a Gaussian stationary zero mean process with covariance func-
tion r(t) satisfying assumption Al. Let ¢, % > e >0 be such that

L i 2 (1) > 1 - 20"
for allt € [0,¢]. Then there exists an absolute constant F' such that the inequality

P max = X(t)>w, max X(t) > u) < FT%y le 2% —5(te~T)°
t6[0,Tu—2/a=l tG[tnu'z/“,(to+T)u—2/°]

8



holds for any T, to > T and for any u > (4T + to)/e)*/2.

The following two lemmas are straightforward consequences of Lemma 6.1, [2].

Lemma 5 Suppose that X (t) is a Gaussian stationary zero mean process with covariance func-
tion r(t) satisfying assumption Al. Then

= Ho([0,T] U [to, e 3% (1 4 o(1))

1
P max X(t) > to+T))~—r
(te[O,Tu-ﬂlalu[tou—Wa,(to+T)u-2/°=] ( ) u) 0 ]) V2mu

as u — 00, where

— _ e
Ha0.T)0 o to+T1) = B (e (Balt) ~ 1))

Lemma 6 Suppose that X(t) is a Gaussion stationary zero mean process with covariance func-
tion r(t) satisfying assumption A1l. Then

P( max X(t) >u X(t)>u)

( , max
£E[0,Tu—2/e) teftou—2/a (to+T)u—2/a]

1
V2mu

= Ho([0,T), [to, to + T])~—=—e" 3% (1 + o(1))

as v — oo, where

oo
e’P (ma.x Ba(t) — [t|* >s, max Bu(t) - [t|* > s) ds.
) (0,7 t€(to,to+T)

Ha(0.T) o, to + 7)) = |

Proof. Write

P( max X(t)>u X(t)>u)

s max
te[0,Tu—2/) teftou=2/e (to+T)u~2/2)

=P( max X(t)>u)+P( max X(t)>u)
te[0,Tu—2/=| teftgu—2/a (to+Tu—2/a]
) > u)

and apply Lemma 6.1, [2] and Lemma 3 to the right-hand part.
From Lemmas 4 and 2 we get,

—P ( max X
te[0,Tu—2/=Uftgu—2/ (to+T)u~2/e]

Lemma 7 For any to > T,
Ha([0,T), [to, to + T1) < FV2aT2e 5=,

When {y = T the Lemma holds true, but the bound is trivial. A non-trivial bound for
H([0,T),[T,2T]) one can get from the proof of Lemma 7.1, {2], see page 107, inequalities
(7.5) and the previous one. These inequalities, Lemma 6.8, [2] and Lemma 5 give the following,



Lemma 8 There erists a constant Fy such that for all T > 1,
Ha([O;T],[T,QT]) _<_ F]. (ﬁ+T2e éTa,-'Q) )

Applying Lemma 1 to the sets 7y = [0, 7] U [to, fo + T), To = [0, T)U [t1,t1 + T] and combining
probabilities similarly as in the proof of Lemma 4, we get,

Lemma 9 Let X(t) be a Gaussian process with mean zero and covariance Junction r(t) sat-
isfying conditions of Theorem 1. Let T = T(u) tends to t,, as u — oo in such a way that
|7 — tm| < Cvlogu/u, for some positive C. Then for all T > 0,to2T, 2T

P(: max X(t)>u

, max X() > u,
€{0,u—2/2T) te(u=2/etg,u=2/%(tg4+T))

max  X(t) >u, max
te[r,T+u—2/oT) te[r+u=2/oty r4u—2/(t) +7))

Atrtm)? 1 _ 4

= e T
2m/1 = r2(t,) u?

s [0 e [t wra])

e ([0 Gt [t wrtge]) 0+ o)

X(t) > u)

as u — 00.

3 Proofs

3.1 Proof of Theorem 1

We denote IT = [T}, T3] x [T3, Ty, § = 6(u) = Cy/logu/u, the value of the positive C we specify
later on. D = {(t,8) €I: |t — s ~ t,y| < 6}. We have,

P(ter[g‘?::éh]X(t)>u, max]X(t)>u) =P( U {X(t)>u}ﬂ{X(s)>u})

t€[T3,Ty (s)eTl

(s,t)eD (s,t)eI\D

=P({ U {X(t)>u}ﬂ{X(s)>u}}U{ U {X(t)>u}ﬂ{X(s)>u}})

<P ( U {(X® >u}n{X(s) > u}) +P ( U {X® >u}n{x(s) > u}) (14)

(s.)eD (s,t)EM\D

10



From the other hand,

[Ty, T2) te[Ts,Ty) (s,

P(tmax X(t) >u, max X(t)>u)=P( U {X(t)>u}ﬂ{X(s)>u})

:P({ U {X(t)>u}ﬂ{X(s)>u}}U{ U {X(t)>u}ﬂ{X(s)>u}})

(st)eD {s,t)cI\D

>P ( U {x® >u}n{X(s) >'u.}) . (15)

(s,£)eD
The second term in the right-hand part of (14) we estimate as following,
P X)) >utn{X(s) > <P|( max Xt+Xs>2). 16
((S’tgw{ ) > w}n (X(s) u}) (p, XO+X@>n).  (9)

Making use of Theorem 8.1, [2], we get that the last probability does not ecceed

2
=142/ _ e
const - u exp ( Qv p——— 3)) . (17)

Further, for e = 1/6 and all sufficiently large u,

1 1" 2 1 2.4
—_ < - = - .
(t,zﬁraﬁgwr(t 8) < r(tm) + (2 ' (tm)6° = r{t,) + 36‘ ™ (tm) logu/u

Hence,

2

P ( U {X@) >urn{X(s) > u}) < const - u " exp (—ﬁym) wC,  (18)

(s,t)eII\D
where
_ _2021,.:: (tm)
T3+ r(tm))?
Now we deal with the first probability in the right-hand part of (14). It is equal to the probability
in right-hand part of (15). We are hence in a position to bound the probability from above and

from below getting equal orders for the bounds. Denote A = Tw=2/* T > 0, and define the
intervals

G

Ak = [Tl +kA,T1 + (k+ I)A]r 0< k < Nk’ Nk = [(T2 _Tl)/A] »
A =[G +IAT+(1+1)A], 0<I <N, Ny = [(Ty — T3)/4],

11



where [] stands for the integer part of a number. In virtue of Lemma 1,

P ( U (X&) >u}n{X(s) >u})

{s,t)eD

SP( U U {X(t)>u}ﬂ{X(s)>u})

(k,l): ApnD#D, AND#£D tEA sEA

<

max X (t) > u, max X (¢) > u)
teAk tGA[

P (
(k,l): ApND#Q, AND#£D

(1 +y(w)) 2 T exo [ — _u
= 2mul /1 —72(tm) ((1 +T(tm))2/a) (k.): Akn%,AmD#O ’ ( 1 +T(Tk"))’ 1)

where y(u) | 0 as u — o0 and 74y = T3 — T} + (I — k)A. For the last sum we get,

B ()

(k,l): AknD#ﬂ, AmD#@

= exp (——1'4_—1:.2(;,:)) Z exp (—u2 (1 +r£z:i¢;)€1(:f’2(tm)) .

(k,0): ANDs£0, AN D40
Define 8 by t,m = T3 — T) + A8, we obtain,

%""”(tm) (Tt — tm)
(L+7(tm))?

= —A((k —~ DA — 0A)(1 + (=) 71 (w)),

where 1(u) | 0 as u — co. In the last sum, index k variates between (Tyin + O(6(u)))/A
and (Tmax + O(6(1)))/A, as u — 0o, where Tnin = T1 V (T3 = tm) and Tyax = T3 A (Ty — tm).
Indeed, for the co-ordinate z of the left end of a segment of length #,, which variates having
left end inside [T}, T3] and right end inside [T3,T4], we have the restrictions T} < z < T, and
T3 <z +tym < Ty, so that € (Tinin, Thnax). The index m = k — [ — @ variates thus between
—6(u)/A + O(A) and 8(u)/A + O(A) as u — co. Note that uA — 0 as u — co. Using this, we
continue,

T(tm) — 7(Tt)
(1 + 'I"(Tk,())(l + T‘(tm

_ 2
) < (>) (1+ (—)m(u))

&{u)/ A+O(A)

u? Tmax — Tmin 2
S={(1+0(1))exp (— pn r(tm)) x m=_6(gf;+om) exp (—A(mud)?)

ub(w)+0(uA2)

u2 T - Tmin
= (1 +o(1)) exp (— ) T uA? > exp (—A(mud)’) uA
1+ ’r(tm) uA muA=—ub(u)+0O(ul?)

u2 Tmax - Tmin b —Ax2
=(1+o0(1))exp (—1 +’r(tm)) e /_m e dz.

12




Compute the integral and substitute this in right-hand part of (19), we get,

P ( U {X () >u}n{X(s) > u}) (20)
(s,t)eD
1+ T(tm))2(1 + 72(“))(Tmax - Tmin)u_3+4/a 1 T u?
= 2V AT (1 — 2 (tm) 7atla ((1 + r(tm))”"‘) =P (_1 + r(tm)) ’

where y2(u) | 0 as u — oo,
Now we bound from below the probability in the right-hand part of (15). We have

P ( U {X () >u}n{X(s) >u})

(s,t)eb

ZP( U U {X(t)>u}ﬂ{X(s)>u})

(k,l): Ag cD.ACD tEAL ,SEA;

> Z P(ma.xX(t) > u, max X (t) >u)
(k) ApCD,ACD te€l €A

- ZZP (ma.xX(t) > u, max X (t) > u, max X(¢) > u, max X(t) > u) , (21)
teA,; teN; LEA,, teAy

where the double-surn is taken over the set
{(k,l,k’,l’) : (k”t’) 71'_ (kal)a Ak nD # 05 Al nD 75 ms Ak’ nbD 71'- @s Al’ nD 75 @}

The first sum in the right-hand part of (21) can be bounded from below exactly by the same
way as the previous sum, thus we have,

P (maxX(t) > u, max X(t) > 'u.) (22)
(kD) ApcD,AcD  NEAE teA,

(1 + T(tm))z(l - Y2 (u))(Tma.x - min)u—3+4/a 1 2 T _ u?
= 2 /AT(L — r2(t) 72 ((1 ¥ r'(_tm))ﬂfa) =P ( 1+ r(t_m)) ’

where ya(u) | 0 as 4 — co. We are now able to select the constant C'. We take it as large as
G > 2 —2/a to get that left-hand part of (18) is infinitely smaller then left-hand part of (22) as
U — 00 .

Consider the second sum (the double-sum) in the right-hand part of (21). For sakes of
simplicity we denote

1+ T(Tm))?/"‘} ’ [(1 + ?%i))?/“’ (1 (ZE:B;/“D

HO) = Ho 0ty )

13

H(m) = H, ([O

and notice that



In virtue of Lemma 9 we have for the double-sum in (21), taking into account only different
(k,1) and (K',0'),

3= P
2 ZZ (ggg::X(t) > u, ixég;fX(t) > u, trgg:s X(t) > u, glelg.?’[X(t) >u)

(14 7(t)?(1 + T(w)) , , .2
sl ZZH(1k~kI)H(u—l|)exp(———~——1+r(Tk,l))

_ 201+ () (1 + T(w) o
T omud /1123 ;H(“) (H(O)+2£H(m))

y > exp (’ﬂ%m)

(k.1): AgnD#£, AND£D

where T'(u) | 0 as u — co. The last sum is already bounded from above, therefore by (19) and
(20) we have,

Dy < -,1?—2 > H(n) (H(O) + 2mz=1 H(m))

Lt r(tm)2(1 4 Ty () (Timax — ThninJu=***/= exp ( . ) '

2/An(L — 72(tm) 1 r(tm)

By Lemmas 6.8, (2], 7 and 8 we get that H(0) < const - T, H(1) < const - VT and for m > 1,

—lmaf2pal?
H(m) < const- e~ s™ " T

hence . -
ZH(n) (H(O) +2 Z H(m)) < const . T3/2,
n=1 m=1
Thus
1/2, —3+4/ u?
Ty < const - T2y~ 8+4/a gy (_m) i (23)

Now since by (1),

i ! T —2/a
= —— | = t
Th—rgo TH"‘ ((1 + T(tm))Z/a) (L+7(tm)) He,

we get that the double sum can be made infinitely smaller by choosing large 7. Thus Theorem
1 follows.

3.2 Proof of Theorem 2.

We prove the theorem for the case ¢, = T3 — T3, another case can be considered similarly.
First, as in the proof of Theorem 1 put D = {(t,s) € Il : |t — 5 — t| < 6}, but with

14



6 = 6(u) = CVlogu/u?, for sufficiently large C. The evaluations (14), (16) and (17) still hold
true. Further we have for € = 1/6 and all sufficiently large u,

_ 1\ _ 1 s, 2
(t’;?ea.r}lc\Dr(t 8) < r(tm) + (2 &' (tm)d = r(tym) + 30 ' (tm) logu/u®.

Hence, (18} holds true with
G- =2C%r (t,)
31 +7(tm))?
Let now a > 1. For any positive arbitrarily small ¢ we have for all sufficiently large u that,
eu™2/% > §(u), hence for such values of u,

P ( U {X() >uln{X(s) >u})

(s,8)eD

<P ( max X(t) > u, max X(t) > u) . (24)
tE[Te—eu—2/% T3] te{Ta, Ta+eu—2/a)

We wish to apply Lemma 1 to the last probability for the intervals [—¢,0] and [tm, tm + €]. To
this end we turn to (5). Since for a sufficiently small ¢, (t,,) < 0, we have that

— 2y
rir —u”7%) ~ r(r) < 0for all t e [—¢,0)

14+ 7(1)
e (r +uYo) —r(r)
(T +u"“%%) —r(r
T+7(7) <0forall t€ [tm,tm+€,
h
ence ]

lmsup B(6u(8)] X(0) = u 2/, X(r) = u = y/u) < ~presll®

for all t € [—¢, 0], and
_ 1
14+ 7(tm)

for all ¢ € [tm,tm + €]. All other arguments in the proof of Lemma 1 still hold true, therefore,
using time-symmetry of the fractional Brownian motion, we have,

limsup E (m,(8)) X(0) = u ~ 2/u, X(r) = u ~ y/u) < ]2,

u2
lim sup u2e T Gm) P ( max X(t) > u, max X(t) > u)
r——Y te[Ty—eu=2/o 1] te[Ty, Ta+eu—2/2}
2
(1 +T(tm)) Hg ( [0, E] 5 ) (25)
2m+/1 — (1, ) (L +r{tm))¥e

Using Fatou monotone convergence we have lim, g Hy(e) = 1, therefore
wl
lim sup u2e T {em) P ( max X(t) > u, max X(t) > u)
©—00 te[Tp—eu—2/a Ty} te|Te, Taten—2/=]
(L+ ""(tm))Z (26)

2m/1 = r2(ty)

15



But

P [T, T, 113, T) 2 P (X(T3) > u, X(T3) > w) = — CF 70 oty 0

2rnu? /1 —ri(t,y,)

as u — 00. Thus (i} follows.
Let now & = 1. From now on, we redefine Ay and Ay, by

B =[To = (k+1)A, T - kA], 0< k < Ny, Ny = (T3 —-11)/4],
Ar=[T3+IA T3 + I+ ].)A], 0<I< N, N, = [(Ty — T3)/4],

for the case of A, k = 0, we denote Ag = A_y, indicating difference with Ag for the case A,
I =0. Recall that now A = Tu 2/ — Ty ~2, We have for sufficiently large u,

P ((SED{X(” >u}N{X(s) > u}) 2P (g X() > mex() > ), ()

and

P( U {X(t)>u}ﬂ{X(s)>u}) SP(tg}fﬁX(t)>u’ {IEl%}le(t)>u)+

(s,t}eD
[logu/T)+1
+ ) P ({gg’:x(*) >, max X(t) > u) . (28)
k=0,1=0, k+{>0

First probability in right-hand parts of the inequalities is already considered by Lemma 3. We
set T =ty =T3-T3, 71 = [-T,0], T2 = [0,7T], by time-symmetry of Brownian motion, we have
that

Hy O([-T,0)) = HT ([0, T)). (29)

In order to estimate the sum, we observe, that for all sufficiently large » and all ¢ € (T3, T3+
6(“)]: s & [T2 - 6(”):1-'2])

r(t — 8) < r(tm) + %r’(tm)(t —5—tm) and r(t—s) > r{tm) + gr’(tm)(t —s—tm).  (30)

Hence
—u? —u?
<
L4 7(tm + (B +DA) = 14 7(tm) + 37/ (tm) (k + ) Tu—2
—u? rtm)k+0)T  —u?

: L+7r{tm)  6(1+7(tm))? ~ L47(tm) a(k + )T,

where @ > 0. Now, in Lemma 3 let 7 = t,, + (k+DA, Ty = [-T,0), Tr = {0, 7], using the above
mentioned property of the constants H{(T"), we get, that for all sufficiently large u and T,

< - —a(k+DT
P (i?i’,fx(t) > u, ?é%)fX(t) > 'u,) < Cpolu,r(mm))e :

16



From here we get,

[log w/T]+1
Z P (max X(t} > u, max X (t) > u) < Cpalu, r(Tm))edE+0T
k=010 k>0 €Ak teh

Applying now Lemma 3 to first summands in right-part hands of (27, 28) and letting T — oo,
we get the assertion (ii) of Theorem.

Let now o < 1. Proof of the Theorem in this case is similar to the proof of Theorem 1. We
have to consider a sum of small almost equal probabilities and a double sum. Using the more
recent definition of Ay and Ay, we have by Lemma 2,

P ( U {X({#) >u}n{X(s) >u})

(s,t)eD

(k1) ApND#£D, AjnD#B tEA L, 3EA,

SP( U U {X(t)>u}ﬂ{X(s)>u})

<
< > P ({23;: X(t) >u, ‘Eéi’fx(t) > 'u.)
(k,0): AeND#D, A NDFD

< A+rEm)* (A + (W)

2 a ( T 2/,1) Z eXp (_ = ): (31)
2mul\/1 - r¥(tm) (1 +r(tm)) (k,1): AND#D, AN DAD L+ r(mey)

where y(u) | 0 as u — oo and now 7,y = T3 — Ty + (! + k)A. For the last sum we get,

2

S ( u? )
= exp | —————
(k,0): ApND#B, AND#ED 1+ T(Tk,l)
u? ) ( 2 'r'(tm) - T(Tk l) )
= exXp (—-— exp | —u ' .
L+ 7(tm) (k.1): AgND#0, AND#D (1 +7(m2))(1 +r(tm)

Next,
T(tm) - 'I‘(Tk'[)
(1+ T(Tk']_))(l + r{tm))

)= g 4+ I

= —B(k+D)AQ + (—)m(w),

where y;(u) | 0 as u — co. Remind that now u?A — 0 as u — co. Using this, and denoting
m = k + [, we continue,

AN

S(u)/A+O(A)

ul
S = (1 + O(]_)) exp (—mﬁ) Z mexp (—Bu2mA)
LKs m=0
w2 1 &(u)/A+O(A) ) ) )
= (1+o(1))exp (—1 +'r(tm)> ) mz_:o mAu® exp (—BmAu?) (Au?)
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u? L e u?
= (1+0(1)) exp (—1 +r(tm)) —IA? -/0 ze”P%dz = (1 + o(1)) exp (—1 +r(tm)) Bzul‘*AT

Substitute this in right-hand part of (31), we get,

P( U {X(t)>u}n{X(s)>u}) (32)
(s,t)eD

(14 r(tm))2 (1 + vo(u))u—8+4/e 1 7P u2
SR =T-E0 e o B 3‘((1+r(tm))2/a)e"‘p ('1+r(tm))’

where y2(u) | 0 as u — co.
Estimation the probability from below repeats the corresponding steps in the proof of The-
orem 1, see (21} and followed. Thus Theorem 2 follows.
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