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Abstract

Let f�Xn� Sn� � n � �� �� � � � g be a Markov additive process� where fXng is a Markov

chain on a general state space and Sn is an additive component on Rd 	 We consider

P fSn � A��� some ng as � � �� where A � R
d is open and the mean drift of fSng is

away from A	 Our main objective is to study the simulation of P fSn � A��� some ng

using the Monte Carlo technique of importance sampling	 If the set A is convex� then we

establish� �i� the precise dependence �as �� �� of the estimator variance on the choice

of the simulation distribution
 �ii� the existence of a unique simulation distribution

which is e�cient and optimal in the asymptotic sense of Siegmund �����	 We then

extend our techniques to the case where A is not convex	 Our results lead to positive

conclusions which complement the multidimensional counterexamples of Glasserman

and Wang �����	

� Introduction

There has been much recent interest in simulation techniques for estimating rare event prob�

abilities� or more precisely� the numerical computation of P�C�� for small � when P�C��� �

as �� �� Generally� such probabilities cannot be computed using direct Monte Carlo tech�

niques� because the relative error associated with samples averages of �C� isp
Var��C��

E��C��
�� as �� �� where �C� � indicator function on C��

In this article� we will study rare event simulation in the context of the following multidi�

mensional boundary crossing problem	 Let S�� S�� � � � be a sequence of random variables in

Rd � and consider the hitting probability of a region A � Rd by fSng� namely�

P
n
Sn � A

�
� some n

o
� P fT ��A� ��g as �� �� �
�
�
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where

T ��A� � inf
n
n 	 Sn � A

�

o
� �
���

It will be assumed that the mean drift of fSng is directed away from A� so that the prob�

abilities in �
�
� will tend to zero as � � �� Our objective will be to develop a numerical

regime based on importance sampling which yields an e�cient estimate for �
�
� for any

xed �� and which has certain optimality properties as �� ��

The rst analytical work on problems of this type seems to have appeared in Lundberg

�
����� where a stochastic model was introduced for the capital �uctuations of an insurance

company� and the risk faced by a company under this model was studied� In Lundberg�s

model� an insurance company gains capital from a constant stream of premiums in�ow� and

loses capital as a result of i�i�d� claims which arise at a Poisson rate� These assumptions

imply that the total capital gain by time t� denoted St� is a L�evy process� assumed to

have positive drift� The ruin problem then considers P fSt � �
��� some t � �g� i�e�� the
probability that a company with an initial capital of 
�� will ever have negative total

capital� or incur ruin� A classical result due to Cram�er �
���� states

P
�
St � �


�
� some t � �

� � Ce�R�� as �� � �
���

for certain constants C and R�

Cram�er�s result and techniques were later extended to more general processes� and

applied in queueing theory and� with some modication� in sequential analysis� An extension

to higher dimensions was given in Collamore �
���a� b�� There it was shown that if A is

an arbitrary open subset of Rd and S�� S�� � � � are the sums of an i�i�d�� Markov� or more

general sequence of r�v��s� then

lim
���

� logP fT ��A� ��g � � inf
v�A

IP�v�� �
���

where IP is the support function of the d�dimensional surface f� 	 �P��� � �g and �P

is the cumulant generating function of fSn�ng� Further distributional properties of T ��A�

were explored in Collamore �
����� This multidimensional problem is of current applied

interest e�g� in risk theory� where it is of some concern to model the dependence of claims

along di�erent lines of an insurance company� Also� �
��� serves as a preliminary study for

queueing network problems which can be modelled as re�ected random walk in Rd � as in

Borovkov and Mogulskii �
�����

While �
���� �
��� provide useful asymptotic results� which �for �
���� may be quite ac�

curate when the limit is removed from the left�hand side� these estimates give no indication

about the rate at which the convergence to the limit actually takes place� To circumvent

this problem� numerical techniques were introduced for a closely related problem in sequen�

tial analysis by Siegmund �
����� Siegmund�s approach utilized the numerical technique of

importance sampling� namely� to estimate P�C�� write

P�C� � E

�
dP

dQ
�Z��C�Z�

�
� where L�Z� � Q� �C � indicator function on C� �
���
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Then P�C� is numerically computed by simulating E def
� dP

dQ �Z��C�Z� under the distribution

Q� and averaging the empirical samples of E � In the context of the standard two�sided

boundary crossing problem in sequential analysis� Siegmund showed that a judicious choice

of Q leads to a much�reduced variance of E as compared with direct simulation� Moreover�

he showed that there is a unique choice of Q which� in an appropriate asymptotic sense� is

optimal� Extensions of Siegmund�s algorithm to other large deviations problems in R� were

later given e�g� in Lehtonen and Nyrhinen �
���a� b�� Bucklew� Ney and Sadowsky �
�����

The di�culty of extending Siegmund�s algorithm beyond the one�dimensional setting

has been documented in Glasserman and Wang �
����� They have shown by means of

certain counterexamples that there is no hope of obtaining results like Siegmund�s for the

multidimensional problem in �
���� for certain sets A� Further counterexamples in a queue�

ing context are in Glasserman and Kou �
����� These counterexamples all show that the

much used technique of minimizing the variational formula in Mogulskii�s theorem �Dembo

and Zeitouni �
����� Theorem ��
� does not lead to any sort of e�cient simulation regime�

in general�

In this article� we establish an analogue of Siegmund�s result and some related estimates

for the multidimensional problem in �
���� under the assumption that the set A in �
��� is

convex and the process S�� S�� � � � consists of the sums of a Markov additive sequence of

r�v��s�

To state these results more precisely� let X�� X�� � � � be a Markov chain on a general state

space �S�S�� let fFngn�Z� be an i�i�d� sequence of random functions mapping S�S� R
d � and

let �n � Fn�Xn���Xn�� �In the simplest setting� f�ng is itself i�i�d�� Let Sn � X�� 	 	 	�Xn�

n � 
� and S� � �� For A � Rd we consider

P
�
T ��A� ��� � P

�
Sn � A

�
� some n � Z�

�
as �� �

for the Markov additive process f�Xn� Sn� 	 n � �� 
� � � � g� This process has a transition

kernel P�x�E � ��
def
� P

�
�Xn��� �n��� � E � �jXn � x

�
�

The importance sampling technique suggests that we simulate P fT ��A� ��g with

another Markov additive sequence f�  Xn�  Sn� 	 n � �� 
� � � � g having transition kernel Q �

P
�
�  Xn���  �n��� � E � �j  Xn � x

�
� An adaptation of �
��� then becomes

P fT ��A� ��g � EQ �EQ���

for some !estimator" EQ�� that is computed from the Q�distributed sequence of simulated

r�v��s fX�� � � � �XT ��A��S�� � � � � ST ��A�g� The main objective is to choose Q so that it mini�

mizes VarQ�EQ��� as �� �� or equivalently EQ
�E�Q��� as �� ��

Under the assumption that A is convex� our rst result provides a large deviations

estimate of the form

lim
���

� logEQ
�E�Q��� � � inf

v�A
IKQ�v�� �
���

for some subset A of 	A and some !rate function" IKQ � This establishes the precise corre�

spondence between Q and the decay �or growth� rate of E
�E�Q��� as �� �� The implication
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of this estimate is made clear in Example ��
��� where the level sets of E
�E�Q��� as a function

of Q are described by an explicit asymptotic formula�

Eq� �
��� suggests that an e�cient choice of Q should be one that maximizes J�Q�
def
�

infv�A IKQ�v�� In the case that A is convex� we show there exists a unique choice of Q
which maximizes J�Q�� moreover� under this optimal distribution� simulation is e�cient

and has !logarithmic e�ciency" and very often !bounded relative error�" This optimality

is shown to be quite general and to extend to the case where the simulation distribution

is allowed to be time�dependent� In conjuction with �
��� we then obtain� in addition� a

rather complete description of the robustness of the optimal distribution� This seems to be

of some practical relevance� For example� in complex problems results such as ours serve

only as guides� it is therefore necessary to ask how sensitive our simulation regime may be

to slight perturbations in the problem� including slight changes in Q� Also� in practical

problems simulation is very often blind �see Bucklew �
���� for some discussion on !blind"

simulation proceedures��

We conclude by observing that if A is a general set� then it is possible to partition A

into a nite subcollection� A�� � � � � Al� and simulate independently along the elements of

this subpartition� We show that a useful partition can always be obtained� The basic idea

is to partition A along the level sets of the function IP in �
���� The resulting estimator

will generally be e�cient and in some main cases will have !bounded relative error�"

The above results can be easily generalized to nite time�horizon problems of the form

P fT ��A� � K��g � K ��� although the optimal simulation distribution may be di�erent�

the required modications follow along the lines of Collamore �
�����

We will establish our results in some generality� at the level of Markov additive processes

in general state space� as studied in a large deviations context by Ney and Nummelin

�
���a� b�� de Acosta �
����� de Acosta and Ney �
����� and references therein� and the

seminal papers of Donsker and Varadhan �
���� 
���� 
����� Thus� our results di�er from

known importance sampling results given e�g� in Siegmund �
���� or Lehtonen and Nyrhinen

�
���a� b�� which focus on i�i�d� sums or the sums of a nite state space Markov chain� and

Bucklew� Ney and Sadowsky �
����� where sums of a general state space Markov chain are

considered� but under a strong uniform recurrence condition� The usefulness of this general

approach is illustrated in Example ��
��� where we apply our results to the stationary

ARMA�p� q� time series models� Further applications to other stationary� Markov� and

semi�Markov processes are likewise possible�

To prove our results we will rely on the theory of convex analysis� as summarized in the

classic book of Rockafellar �
����� This theory leads to separation properties for the rate

functions in �
���� �
���� from which the optimal simulation distribution is obtained� Also�

we will rely on the theory of non�negative operators� as described in Nummelin �
�����

These latter results have been previously applied in Ney and Nummelin �
���a� b�� In

our setting� though� they will be used in a somewhat di�erent way	 We will make use of

abstract renewal properties� and#in contrast with Ney and Nummelin�s work#our renewal

structure will not generally coincide with the inherent renewal structure of the Markov
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additive process� or the simulated process�

In the next section� we introduce Markov additive processes in general state space and

provide some necessary background on these processes and non�negative kernels� The main

results are stated formally in Section � and proved in Section ��

� Background

��� MA�processes� de�nition and regenerative property

We now give a precise description of the processes we consider� Let fXn 	 n � �� 
� � � � g be

a Markov chain on a countably generated general measurable space �S�S�� Assume fXng
is aperiodic and irreducible with respect to a maximal irreducibility measure 
�

To this Markov chain adjoin an additive sequence f�ng such that f�Xn� �n� 	 n �


� �� � � � g is a Markov chain on �S� R
d �S �Rd�� where Rd denotes the Borel ��algebra on

Rd � Let Sn � ��� 	 	 	��n� n � 
� �� � � � � and S� � �� The sequence f�Xn� Sn� 	 n � �� 
� � � � g
is a Markov additive process �abbr� !MA�process"�� The transition kernel of this process is

P�x�E � ��
def
� P f�Xn��� �n��� � E � �jXn � xg � ���
�

for all x � S� E � S�� � Rd� Let Fn denote the ��algebra generated by fX�� � � � � Xn� S��

� � � � Sng�
A 
�irreducible Markov chain always has a minorization �Nummelin �
����� Theorem

��
�� Following Ney and Nummelin �
���a� b�� we will work with a hypothesis which extends

this minorization to MA�processes�

Minorization�

�M� For some family of measures
�
h�x��� 	 � � Rd

�
on Rd and some probability

measure
�
��E � �� 	 E � S� � � Rd

�
on S� Rd �

h�x� 	� 
 ��E � 	� � P�x�E � ��� for all x � S� E � S� � � Rd�

�
 denotes convolution� We will often abbreviate the left�hand side by h
���� As in Ney and

Nummelin �
���a� b�� we will generally assume that either h or � is independent of s �more

precisely� h�x� ds� � g�x�O�ds�� where O denotes point mass at the origin� or analogously

for ��� When this is the case� we will say that �M�� holds�

At certain times� we will strengthen this minorization to the following	

�R� a��E � �� � P�x�E � �� � b��E � ��� for all x � S� E � S� � � Rd�

where � is as in �M�� and a� b are positive constants�

When �R� holds� the MA�process is said to be !uniformly recurrent�"

Under �M�� a regenerative structure can be deduced for the MA�process	

Lemma ��� Let f�Xn� Sn�gn�� be a MA�process satisfying �M�� Then there exist r�v��s

� � T� � T� � 	 	 	 and a decomposition �Ti � ��Ti � ���Ti� i � �� 
� � � � � with the following

properties�
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�i� fTi�� � Ti 	 i � �� 
� � � � g are i�i�d� and �nite a�e��

�ii� the random blocks
n
XTi � � � � �XTi����� �

��
Ti
� �Ti��� � � � � �Ti����� �

�
Ti��

o
are independent�

�iii� Px

�
�XTi � �

��
Ti
� � E � ��� j FTi��� ��Ti

�
� ��A� ����� for all E � S and ��� � Rd�

For Harris recurrent Markov chains� this lemma was established by Athreya and Ney

�
���� and Nummelin �
����� The extension to MA�processes is in Ney and Nummelin

�
�����

Remark ����� �i� If the function h in �M� is independent of x� i�e� if the lower bound

of �R� holds� then P
�
Ti � n� some i j Fn��

� � a� where a is the positive constant in �R��

Thus� in particular� E �Ti�� � Ti� ��� i � �� and E �T�� ���

�ii� If h is independent of s� then ��Ti � �� i � �� and if � is independent of s� then

���Ti � �� i � �� See Ney and Nummelin �
�����

Futher properties of Markov chains in general state space can be found in Nummelin

�
����� Revuz �
����� and Meyn and Tweedie �
����� Further properties of MA�processes

can be found in the large deviations papers of de Acosta �
����� de Acosta and Ney �
�����

and especially Ney and Nummelin �
���a� b��

��� Nonnegative kernels� eigenvalues and eigenvectors

We will also need certain facts about nonnegative kernels� which we now summarize and

apply in the context of MA�processes� For more complete explanations� see Nummelin

�
�����

Let fK�x�E� 	 x � S� E � Sg be a ��nite nonnegative 
�irreducible kernel on a

countably generated measurable space �S�S�� For any function h 	 S� R and any measure

� on �S�S�� let

Kh�x� �

Z
K�x� dy�h�y�� �K�E� �

Z
��dx�K�x�E��

�h ���x�E� � h�x���E�� �h�E� �

Z
E
��dx�h�x�� �h � �h�S��

Assume

h � � K� �����

Dene

G��� �

�X
n��

�nKn� G
���
h�� �

�X
n��

�n�K � h ��n�

bn � ��K � h ��n��h� $b��� �

�X
n��

�nbn�
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We say that R is the convergence parameter of K if G��� is !nite" for � � R and

!innite" for � � R� �A precise denition can be found on pp� ���� of Nummelin �
������

The kernel K with convergence parameter R is said to be R�recurrent if G�R��x�E� �

� for x � S� 
�E� � �� and R�transient if this is not true� It can be shown that

K is R�recurrent�� $b�R� � 
�

A function r 	 S� ����� �not � �� is ��subinvariant if �Kr � r� and invariant �with

unique eigenvalue � � ���� if �Kr � r� If R is the convergence parameter of K� then

the existence of invariant and subinvariant functions for K can be obtained under ������ as

follows� If � � R or if � � R and K is R�transient� then a ��subinvariant function exists

�given by r�x� � �G���h��x��� If K is R�recurrent� then an R�invariant function exists

�given by r�x� � �RG
�R�
h�� h��x��� �See Nummelin �
����� Proposition ��� and Theorem ��
��

Now specialize to the transformedMarkov additive kernel $P���� where �for any kernel K�

$K��� � $K�x�E���
def
�

Z
Rd

eh��siK�x�E � ds�� � � Rd � x � S� E � S�

��K������ � the convergence parameter of $K���� and �K��� � log �K����

Let fTigi�� and f���i� ���i �gi�� be given as in Lemma ��
� and let

�
d
� Ti�� � Ti� S�

d
�
�
�Ti�� � 	 	 	� �Ti����

�
� ���Ti � ��Ti��

�

���� �� � E�

h
eh��S� i���

i
� all � � R

d � � � R�

Ur �
n
� 	 ���� �� � 
� some � ��

o
�

Observe that �M� �� $h���$���� � $P���� where �for any function h and any measure ��

$h�x��� �

Z
Rd

eh��sih�x� ds�� $��E��� �

Z
Rd

eh��si��E � ds��

Thus� under �M� the above theory for nonnegative kernels may be applied to $P���� This

leads to certain representation formulas and other regularity properties for the relevant

eigenvectors and eigenvalues� which we now describe�

Lemma ��� Let f�Xn� Sn� 	 n � �� 
� � � � g be a MA�process satisfying �M��

�i� If � � Ur� then $P��� is ��P����
���recurrent� Moreover� the eigenvalue �P ��� and

invariant function rP��� satisfy the following representation formulas�

�����P ���� � 
� rP�x��� � Ex

h
eh��S� i��P����

i
� �����

�ii� If dom � is open� then on dom �P we have that � � Ur and �P �	� is analytic� and

also rP�x� 	� is �nite and analytic on a set F � S where 
�Fc� � ��

�iii� If �R� holds and � � dom�P � then �P��� is an eigenvalue of $P��� and the associated

invariant function rP��� is analytic and uniformly positive and bounded on dom �P 	in

particular� if $����rP ��� � 
 then we have a � �P���rP �x��� � b
�
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For the proofs� see Ney and Nummelin �
���a�� Sections � and �� and Iscoe� Ney and

Nummelin �
����� Lemmas ��
 and ����

Remark ����� Using the split�chain construction described on p� � of Ney and Num�

melin �
����� the quantities �P��� and rP�	��� can be evaluated from ����� using direct

simulation�

Remark ����� If the lower bound of �R� holds and rP��� is a ���sub�invariant function

for $P���� then rP��� � �a �$����rP ����� which implies rP��� is uniformly positive�

Finally� let P�x� 	� � Q�x� 	� for all x� and dene

KQ�x� dy � ds� �

�
dP
dQ �x� y � s�

��

Q�x� dy � ds�� �����

Lemma ��� Assume �M�� Then�

�i�
�P�x�E � ��

�� � KQ�x�E � ��� for all x � S� E � S� and � � Rd�

�ii� ��P��� � �KQ����� for all � � R
d � Moreover� if � � Ur� then there is equality in this

inequality if and only if

Q�x� dy � ds� � eh��si��P���
rP�y���

rP�x���
P�x� dy � ds� �����


�a�e� x� P�a�e� �y� s�� where rP��� is the ��P����
���invariant function for $P����

�iii� If Q is de�ned as in ����� and �P���� �P��� � � are eigenvalues of $P���� $P����
resp�� then �KQ�� � �� � �P����P ���� and the associated invariant functions satisfy the

equation rKQ��� �� � rP���rP ����

Proof �i� is established using H%older�s inequality�

For �ii�� assume �KQ���� � �� and let rKQ be a
�
�KQ����

���
��sub�invariant function

for $KQ����� Apply H%older�s inequality to the integralZ
S�Rd

eh��sirKQ�y� ���
�
�
dP
dQ�x� y � s�Q�x� dy � ds�

to obtain

$P���rKQ����
�
� � �KQ����

�
� rKQ����

�
� � �����

Thus rKQ����
�
� is a

�
�KQ����

�� �
� �subinvariant function for $P���� Hence ��P����

� �
�KQ���� �Nummelin �
����� Proposition �����

Now suppose � � Ur and ��P ����
� � �KQ����� Then by ������ rKQ����

�
� is a ��P����

���

subinvariant function for $P���� It follows that rP��� � C
�
rKQ����

� �
� 
�a�e�� for some

C � � �Nummelin �
����� Theorem ��
�� Hence there is equality in ������ namely equality

in H%older�s inequality� and#after normalizing so that Q is a probability measure#this

implies ������

Conversely� note that ����� implies

KQ�x�E � �� �

Z
E�	

�P���e
�h��si rP�x���

rP�y���
P�x� dy � ds�� for all E � S� � � Rd� �����
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and hence

$KQ���� �rP����� � ��P����
� �rP ����

� � �����

It follows that ��P����
� � �KQ�����

To establish �iii�� repeat ������ ����� with !rP���rP ���" in place of !r�P ����" �

� Main results

��� Notation� hypotheses� and estimation

Given a MA�process f�Xn� Sn� 	 n � �� 
� � � � g� we would like to evaluate P fT ��A� ��g�
where T ��A� is dened as in �
���� Suppose that we simulate for this quantity using simu�

lated r�v��s f�  X�
n�

 S�n� 	 n � �� 
� � � � g with transition kernel

Qn���x�E � �� � P
n
�  X�

n���
 ��n��� � E � �j  X�

n � x
o
�

�Often it will be assumed that Q is independent of n� ��� If P�x� 	� � Qn���x� 	� for all

n � Z�� � � �� and x � S� then it follows from these denitions that

P fT ��A� ��g �
X
k

Z
P�
k

�
kY
i��

dP
dQn��

�xi��� xi � si�

	

	Qn���x�� dx� � ds�� 	 	 	 Qn���xk��� dxk � dsk�� ���
�

where P�
k denotes all paths that �rst hit A�� at time k� that is�

P�
k �

n
�x�� � � � � xk� s�� � � � � sk� 	

lX
j��

si � A

�
for l � k but not for l � k

o
� �����

It follows from ���
� that

EQ�� def
�



�T ��A�Y

n��

dP
dQn��

�  X�
n���  X

�
n �  ��n�

�
A �fT ��A�	�g �����

is an unbiased estimator for P fT ��A� ��g�
The e�ciency of this estimator is measured by its variance� which we will study in an

asymptotic sense as �� �� Since Var�EQ��� � E�E�Q����
�
E�EQ���

��
� and

E�EQ��� � P fT ��A� ��g

has the asymptotic characterization given in �
��� �Collamore �
���a�� Theorems ��
 and

����� it is su�cient to study the asymptotic behavior of

E�E�Q��� �
X
k

Z
P�
k

Kn��
Q �x�� dx� � ds�� 	 	 	 Kn��

Q �xk��� dxk � dsk�� �����



IMPORTANCE SAMPLING TECHNIQUES 
�

where for all n� ��

Kn��
Q �xn��� dxn � dsn�

def
�

�
dP
dQn��

�xn��� xn � sn�

��

Qn���xn��� dxn � dsn�� �����

Our objective will be to give estimation results for E�E�Q��� as � � �� and optimality

results describing which transition kernels Q for the simulated r�v��s minimize E�E�Q��� as

�� ��

To state these results in a more formal way� we will rst need to introduce some ad�

ditional notation and hypotheses� as follows� Let � and � be given as in Section �� and

let

cone �C� � f�v 	 � � �� v � Cg � for any C � R
d �

cone 
�C� � f�v 	 � � �� kv � wk � �kwk� some w � Cg � for any � � ��

S � cone

�
Supp�

�S�
�

��
�

C	 � fv 	 h�� vi � �� all � � Cg � for any C � R
d �

H��� a� � fv 	 h�� vi � ag � for any � � Rd and a � R�

Laf � fv 	 f�v� � ag � for any f 	 Rd � R and a � R�

For any nonnegative 
�irreducible kernel K� let

&���� � lim sup
n��

n�� log $Kn�X��S����

��N���� � sup
n�N

n�� log $Kn�X��S����

IK�v� � sup fh�� vi 	 � � L��Kg � DK � domain of IK �

I
�c�
K �v� � sup fh�� vi 	 � � Lc�Kg � D

�c�
K � domain of I

�c�
K �

&IK�v� � sup
�h�� vi 	 � � L�

&�K

�
� resp� &I

�c�
K �	��

where� as before� ��K������ is the convergence parameter of $K��� and �K��� � log �K����

In the denitions of IK � I
�c�
K � and &IK � we follow the convention that the supremum over an

empty set � ���

For any set C� let �C�	�� riC� 	C denote the indicator function on C� the relative interior

of C� and the relative boundary of C� respectively� For any function f � let f� denote the

convex conjugate of f � �For denitions� see Rockafellar �
������

Hypotheses�

�H�� �
���
KQ

��� ��� for all � � L�
&�KQ �

�H�� clA � cone 


�L��
�
P

�
� �� for some � � ��
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For example� if S�� S�� � � � are the sums of an i�i�d� sequence of random variables� or the addi�

tive sums of a MA�process and �R� is satised under both P and Q � C�� then �
�N�
KQ

��� ��
for all � � dom &�KQ and N � Z�� and so �H
� is then always satised� For �H��� observe

that if �R� holds and � � dom �P � or if �M
�� holds and dom � is an open set� then

��P�v� � ��� E��S�� � v�

where � is the stationary measure of the Markov chain fXng� �Cf� Ney and Nummelin

�
���a�� Lemma ��� and Lemma ����� Thus� hypothesis �H�� holds as long as the set A

avoids an arbitrarily thin ��cone about the mean ray f�E��S�� 	 � � �g�

De�nition We say that a simulation kernel Qn�� belongs to the class C� if Qn�� � Q�

independent of n and �� and P�x� 	�� Q�x� 	�� for all x � S�

De�nition If A � R
d � then we say that v � 	A is an exposed point of A if the ray

f�v 	 v � 
g � intA� that is� the ray generated by v is an interior ray of A�

Theorem ��� Let A be a convex open set intersecting riS� Let A denote the exposed points

of A� Assume that the MA�process f�Xn� Sn� 	 n � �� 
� � � � g satis�es �M�� and has initial

state X� � x�� Suppose that simulation is performed with a kernel Q � C�� Then�

�i� Lower bound�

lim inf
���

� logE�E�Q��� � � inf
v�A

IKQ�v�� �����

�ii� Upper bound� Further assume that hypothesis 	H�
 is satis�ed� and� �a� cl A �
cone 


�L��KQ
�	

� �� for some � � �� �b� inf� &�KQ��� � �� Then for 
 a�e� x��

lim sup
���

� logE�E�Q��� � � inf
v�A

&IKQ�v�� �����

Remark ����� �i� If the lower bound of �R� is satised� then it follows from the denitions

of �KQ �
&�KQ � and of the convergence parameter that IKQ�v� �

&IKQ for all v� Thus the upper

and lower bounds are the same in this case� There are also other examples where the upper

and lower bounds are the same� as shown below in Example ��
��� More generally� it is well

known in the context of large deviations for MA�processes that these bounds need not be

the same� see Section � of de Acosta and Ney �
�����

�ii� The condition �a� in the statement of the upper bound can be viewed as a strength�

ening of �H��	 It follows from the denitions that
�L�

&�KQ
�	

� L�
&IKQ � Since by H%older�s

inequality � �L��P� � L�
&�KQ �as in Lemma ��� �ii��� it can be shown that L�

&IKQ � L�IP �

f�v 	 � � �� v � L��
�
Pg�

If the lower bound of �R� holds� then it is su�cient to assume the weaker condition

inffIKQ 	 v � Ag � �� see the comments following the proof of the upper bound� Further

weakening of this assumption �to the case where E�E�Q��� exhibits exponential growth as

�� �� is not possible in general�
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Remark ����� If the lower bound of �R� holds� then as an upper bound we actually

obtain

E�E�Q��� � const� 	 exp
n
� inf

v�A
IKQ�v���

o
� �����

Remark ����� If Sn � �� � 	 	 	 � �n� where f�ngn�Z� is an i�i�d� sequence of random

variables� then the quantities �P and �KQ which determine the rate functions on the right

of ������ ����� can be simplied� In this setting� �P � &�P may be identied as the cumulant

generating function of �n� namely�

�P��� �

Z
Rd

eh��siP�ds��

where P is the probability law of �n� and similarly for �KQ � Furthermore� any discussion of

eigenvectors or subinvariant functions may be dropped� i�e�� we may always take rP�	��� � 


and rKQ�	��� � 
�

Example ����� Let Sn � �� � 	 	 	 � �n� where f�ngn�Z� � R� is an i�i�d� sequence of

Normal r�v��s with mean m � ��� �� and covariance S �
�� �
� �

�
� where � � � and � � � � 
�

Let A � f�v�� v�� 	 v� � �
 and v� � �
g� We consider the simulation of P fT ��A� ��g
using an exponentially tilted distribution of the form

Q�ds� � eh�si��P��P�ds�� �����

By Lemma ��� �iii�� � � L��KQ �� �P��� � �P�� � �� � �� Since the cumulant

generating function for a Normal�m�S� r�v� is �P��� � h��mi � �
� h�� S�i� it follows from

a straightforward computation that

L��KQ��
�


&� 	 �
 � ��

�
&�� �

p
��


 � �
� &��

��
� �
� ��

�
&�� � &��

�� � b

�
� ���
��

where b � ��
 � �� &��� � �
p
��&�� � �
� �� &��� � �����
 � ��� and &�� &� denote the values of

�� � in a coordinate system which has been rotated by angle ����

Our objective is to apply Theorem ��
 to analyze the dependence of E�E�KQ��

� on &��

Thus we would like to study

J� &�� � � inf
v��A

IKQ��
�v�� ���

�

i�e� the rate function on the right of ����� and ������ as a function of &�� �If J � �� the

right�hand side of ����� must be taken to be innity rather than as in ���

���

Suppose for simplicity that � � 
�
p
� and � � 
��� Let F� �

�
&� 	 �

�
&������

��
�
�
&�� �

���
�� � ����

�
and F� �

�
&� 	 �

�
&�� � ���

��
�
�
&�� � ���

�� � ����
�
�

By ���
�� and a straightforward computation� the level sets where J� &�� � �r � � are

given by �
&�� �

r

�
p
�

��

�



�
&��� � r

�p
�

�
� r

�

	
� ���
��



IMPORTANCE SAMPLING TECHNIQUES 
�

-2 -1.5 -1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 
	 Let a � inffJ� ��� � �� � R
�g� where J is de�ned as in ��	���	 The �gure illustrates the

level lines r � a� ����� a� ���� a� ���� � � � � with ��� on the horizontal axis� and ��� on the vertical

axis	 J is seen to increase rapidly to the left of its minimum at ������ ��	 The black area indicates

the region where J ��	

provided &� � F� � F�� On �F� � F��
c� we have J� &�� � �� The behavior of J on �F� �

F��
c � �F� � F�� is somewhat more complicated but analytically tractable� In particular�

J � � or � �� J is smaller than what would be predicted by ���
��� but larger than

sup
�
J� &�� 	 &� � F� � F�

�
� A graph of the the level sets of J is given in Figure 
�

The minimum value of J occurs at the maximum r for which the right�hand side of

���
�� � �� i�e� r � �
p
���� and for this r we obtain by ���
�� that &� � ������ ��� The

points where J � � are all contained in the complement of the zero�set L��P �
�
&� 	

�
�
&�� �

�



��
� &��� � �




�
� This illustrates the fact that J� &�� tends to be smaller on L��P as

compared with �L��P�
c�

Example ����	 Let fYngn�Z� be an ARMA�p� q� process in Rd � namely�

Yn � � ���Yn�� � 	 	 	� �pYn�p� �Wn � ��Wn�� � 	 	 	� �qWn�q

for constants ��� � � � � �p� ��� � � � � �q satisfying appropriate regularity conditions �see Brock�

well and Davis �
��
�� Chapter ��� For simplicity� take fWngn�Z� to be i�i�d� Normal��� S��

As on p� �� of Meyn and Tweedie �
����� we may then write Yn � F �Xn�� where fXng is

a Markov chain taking values in Rld � where l � maxfp� qg� and this Markov chain can be

shown to satisfy �M�� �by taking h�x� � const� 	 �O��x�� where O� is an ��neighborhood of

the origin��

Assume that the past history of the process is known� or equivalently� the initial state

of the Markov chain is X� � x� for some x� � Rld � Let m � Rd � f�g and �n � Yn �m�
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and let Sn � �� � 	 	 	� �n� n � 
� and S� � �� Then f�Xn� Sn� 	 n � �� 
� � � � g is a Markov

additive process�

A simple computation gives

&�P��� � h��mi�
�X
j��

'j h�� S�i ���
��

for certain constants f'jg �as given in Brockwell and Davis �
��
�� Theorem ��
�
�� and

the upper bound of Theorem ��
 is determined by ���
��� To see that the lower bound is

likewise determined by ���
��� note

�P��� � lim sup
n��




n
logE

h
eh��Sni�O��Xn�

i

� lim sup
n��




n
logE

h
eh��Sni�Abn

�Xbbnc��O��Xn�
i
� ���
��

where b � ��� 
�� Ak � ��pka�pka�p� and a is a suitably large positive constant� the last

step was obtained by an application of H%older�s inequality which separates the expectation

over !eh��Sni�O��Xn�" and !�cAbn
�Xbbnc��" Finally� it can be shown that

lim sup
n��




n
logE

h
eh��Sn�Sbbnci�O��Xn� jXbbnc � Acn

i
� �
� b��P���� ���
��

with convergence uniform in c � b� Substituting ���
�� into ���
�� and then letting b � 


yields �P��� � &�P���� for all ��

Using ���
�� in place of ������ we may now proceed as in the previous example to

determine the interdependence of E�E�Q��� and Q�

For further applications to Markov and semi�Markov processes� see e�g� Iscoe� Ney and

Nummelin �
����� Ney and Nummelin �
���a�� and Meyn and Tweedie �
�����

��� Optimality

Our next objective is to nd an optimal Q � C� which maximizes the decay rate on the

right of ������ ������

Recall that IP is the rate function describing the decay of P fT ��A� ��g as �� �� as

in �
���� Our results will depend in an essential way on the following�

Lemma ��� Let A � Rd be a convex set intersecting ri S� Assume dom �P is open and

	H�
 and the lower bound of �R� are satis�ed� Let a � infv�A IP�v�� Then�

�i� There exists an element � � 	�L��P� that determines a hyperplane separating A and

LaIP � with A � fv 	 h��� vi � ag and LaIP � fv 	 h��� vi � ag�
�ii� There exists a unique element v� � clA such that IP�v�� � a�

�iii� infv�A IP�v� � infv��A IP�v� � h��� v�i�
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�iv� The gradient of �P at �� points in the same direction as v�� that is� v� � �r�P����

for some constant � � �� If int S �� �� then �� is the unique point of 	�L��P� with

these properties�

For the proofs� see Collamore �
���a�� Lemma ���� and Collamore �
����� Lemma ����

The uniqueness in �iv� is obtained from the strict convexity of �P �Collamore �
���b�� p�

��� and Ney and Nummelin �
���a�� Corollary �����

We note that if dom � is open� where � is dened as in Section �� then dom �P is also

open� see Lemma ��� of Ney and Nummelin �
���a��

To see how Theorem ��
 and Lemma ��� may be applied to obtain an optimal simulation

distribution which maximizes the decay rate on the right of ������ ������ we may reason as

follows� First note by Lemma ��� �ii� that L��KQ � ��L��P�� Also� by Lemma ��� �iii��

�iv��

L��P � f� 	 h�� ��� v�i � �g � f��g�

Therefore IKQ�v�� � �IP �v��� with equality�� ��� � L��KQ � It follows by Lemma ��� �ii�

that

IKQ�v�� � �IP�v��� with equality�� Q � Q� for 
�P a�e� �x� y� s�� ���
��

where

Q��x� dy � ds� � eh���si
rP�dy����

rP�x����
P�x� dy � ds�� ���
��

From ���
�� and Lemma ��� �ii� we then obtain	

Q �� Q� �� inf
v�A

IKQ�v� � �IP �v�� � � inf
v�A

IP�v��

Conversely� if Q � Q� then by Lemma ��� �iii�	 L��KQ� � f�� �� 	 � � L��Pg� Hence

IKQ� �v� � h��� vi � IP�v�� It follows by Lemma ��� �i�� �iii� that infv�A IKQ� �v� �

� infv�A IP�v�� In summary� from Theorem ��
� Lemmas ��� and ���� and Remark ��
�


�i�� may conclude the following�

Proposition ��� Let A be a convex open set intersecting int S� Suppose dom � is open

and 	H�
� 	H�
� and the lower bound of �R� are satis�ed� Let x� denote the initial state of

fXngn��� and let Q� be the kernel de�ned in ���
��� Suppose simulation is performed using

a kernel Q � C�� Then�

�i� For 
 a�e� x��

lim inf
���

� logE
�E�Q��� � lim

���
� logE

�E�Q���

�
� ���
��

with equality if and only if Q � Q� for 
 � P a�e� �x� y� s�� Thus� Q� is the unique

kernel in C� which minimizes E�E�Q��� as �� ��
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�ii� For 
 a�e� x��

lim
���

� logE�E�Q���� � �� inf
v�A

IP�v�� ���
��

Eqs� ���
�� and �
��� imply that simulation performed under the distribution Q� has

!logarithmic e�ciency" �Asmussen �
����� p� ���� Moreover� by Remark ��
�� and a sharp

form of �
���#available at least for the case that f�ng is i�i�d� and A is convex with smooth

boundary �Borovkov �
�����#one obtains the stronger property of !bounded relative error�"

i�e��

lim sup
���

Var�EQ���
E�EQ���� ���

It is natural to expect that this stronger property also holds under �R�� This property of

!bounded relative error" is the strongest known property for nontrivial rare event simulation

problems� �See Asmussen �
������

In the next theorem� we show that the optimality of Q� � C� is in fact more general�

and extends to time�dependent simulation regimes of a larger class C�� dened as follows�

De�nitions �i� We say that a family of probability measures
�Qn���x�E��� 	 E � S� � �

Rd
�
belongs to a class C if Qn�� � Q�n�� for all n and �� for some family

�Q�t��x�E � �� 	

E � S� � � Rd
�
� and

P�x� 	� � Q�t��x� 	�� all x � S and t � ��

�ii� We say that a family
�Qn���x�E � �� 	 E � S� � � Rd

�
belongs to a class C� if it

belongs to C� and

Q�t� � Q������ all t � ��(�

where � is the constant given in Lemma ��� �iv� and ( is some positive constant�

The signicance of the constant � is made clear in Theorem � of Collamore �
����� where

it is shown that asymptotically �T ��A� � � in probability� conditioned on fT ��A� � �g�
i�e� ��� is the !most likely" rst passage time of the process f�Xn� Sn� 	 n � �� 
� � � � g into

the set A���

We note that the scaling of the form Qn�� � Q�n�� coincides with the standard large

deviations scaling appearing in Donsker and Varadhan �
���� 
���� 
����� Freidlin and

Wentzell �
����� and essentially all subsequent work� it appeared in the context of the

present problem in Collamore �
�����

For notational convenience� we will from now on write !Q � C" to mean that the family�Qn���x�E � �� 	 E � S� � � Rd
�
belongs to the class C� and likewise for members of C��

De�nition Let Q � C� Then we say that t� is a continuity point of Q if for any ( � �

there exists a positive constant � such that for all jt� t�j � ��

Q�t��x� 	�� Q�t���x� 	�� all x � S�
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and for any n � Z�� � � � with n� � t	

�i� E��

��
dQ�n��

dQ�t��
�X�

n� X
�
n�� � ��n���

	�
� (� ������

�ii� Ex

��
dQ�n��

dQ�t��
�X�

n� X
�
n�� � ��n���

	�
� K ��� for all x � S� ����
�

where f�X�
n� S

�
n� 	 n � �� 
� � � � g is a MA�process having the transition kernel Q� in ���
��

and �� is the stationary measure of fX�
ng�

For example� if �R� holds and Q � C has the form

Q�t��x� dy � ds� � eh�t�si��P��t�
rP �y��t�

rP�x��t�
P�x� dy � ds�� ������

where �t � f�t� for some continuous function f 	 ����� � int
�
dom �P

�
� then all points

t � ����� are continuity points of Q�

De�nition We say that A � Rd is a semi�cone if v � 	A �� f�v 	 � � 
g � intA� that

is� the ray generated by any point on its relative boundary is an interior ray of A�

Theorem ��� Let A be a convex open semi�cone intersecting int S� Assume that dom�P

is open and 	H�
 and �R� are satis�ed� Let x� denote the initial state of fXngn��� and

let Q� � C� be the kernel de�ned in ���
��� If simulation is performed using a family of

measures Q � C� then for 
�a�e� x��

lim inf
���

� logE
�E�Q��� � lim

���
� logE

�E�Q���

�
� ������

Moreover� if we do not have Q�t�� � Q�� for 
 � P a�e� �x� y� s�� at all continuity points

of Q in ��� ��� then there is strict inequality in ������� Thus� Q� is the essentially unique

element of C� which minimizes E�E�Q��� as �� ��

If Q �� Q� at a continuity point t� which is outside of ��� ��� then we do not necessarily

obtain strict inequality in ������� thus� the logarithmic�level optimality of Q� in Theorem

��� cannot be extended from C� to C�

Remark ����� In fact what needs to be minimized in the above discussion is the number

of random variables that need to be generated� that is�

� log
�
Var

�E�Q���EQ�T ��A�
��

as �� � ������

�cf� Siegmund �
����� p� ���� or Collamore �
���b�� Lemma ����� But if A is a semi�cone�

then

lim
���

� logEQ
�
T ��A�

�
� � ������

�Collamore �
���b�� Lemma ����� Thus simulation under Q� is e�cient and optimal�
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If A is not a semi�cone� then the situation is more complicated� in particular� we need

not have ������ in this case� It may then be preferable to simulate with Q � C� where
Q�t� � Q� for t � ��� ��� but Q�t� �� Q� for t � t�� some t� � �� By a judicious choice of Q�

we may often obtain both ������ and ���
���

��� General sets

Finally� suppose that A is an arbitrary open subset of Rd � In this case� we will show that

we can partition A into subsets A�� � � � � Al and apply the techniques of Theorem ��
 to

e�ciently simulate for P
�
T ��A�� ST ��A� � Ai

�
� for i � 
� � � � � l�

For any � � dom �P � let

Q��x� dy � ds� � eh��si��P���
rP�y���

rP�x���
P�x� dy � ds��

Let B � A� and let P�
k denote the paths which rst hit A�� at time k� as dened formally

in ������ If simulation is performed using a kernel Q � C�� then

P
�
T ��A� ��� �ST ��A� � B

�
�

X
k

Z
P�
k

�
kY
i��

dP
dQ �xi��� xi � si�

	
�B
�
�Sk

�

	Q�x�� dx� � ds�� 	 	 	 Q�xk��� dxk � dsk�� ������

Hence

EQ���B�
def
�

T ��A�Y
n��

�
dP
dQ�  Xn���  Xn �  �n�

�
�B
�
�ST ��A�

�
������

is an unbiased estimator for P
n
T ��A� ��� �  ST ��A� � B

o
� where f  Xn�  Sn 	 n � �� 
� � � � g

is a MA�process having transition kernel Q� and we would like to minimize E
�E�Q���B�

�
as

�� ��

Proposition ��	 Let ( � � and A � R
d � and suppose that dom �P is open and 	H�
�

	H�
� and the lower bound of �R� are satis�ed� Then�

�i� For some �nite subset f��� � � � � �lg of 	�L��P�� the collection
�H��i� a � (� 	 i �


� � � � � l
�
is an open cover for A�

�ii� Let A� � A�H���� a�(�� A� �
�
A�H���� a�(�

��A�� and so on for A
� � � � � Al�

Then fA�� � � � � Alg is a partition of A� and for each i�

E
�E�Q�i

� ��Ai�
� � C exp

�
��� inf

y�A
 I�y��(

�
��

�
������

for a certain positive constant C� In the event that A is a �nite union of disjoint

convex sets fA��� � � � � A�kg� then we may instead take Ai � A�i� and then ������ holds

with ( � ��
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� Proofs

Some further notation from convex analysis�

For any convex function f � let f�� clf � f���	�� ��f � domf � and 	f�	� denote the convex
conjugate of f � the closure of f � the recession function of f � the recession cone of f � the

domain of f � and the subgradient set of f � respectively�

For any convex set C� let C
� ��C� a�C� riC� and 	C denote the polar of C� the recession

cone of C� the a�ne hull of C� the relative interior of C� and the relative boundary of C�

respectively� �For denitions� see Rockafellar �
������

Also� we adopt the same terminology that was already introduced at the beginning of

Sections � and ��

	�� Proof of Theorem ���� Upper Bound

The proof of the upper bound is based on the following convexity lemma� which shows that

the separation property described in Lemma ��� �i� is in fact quite general�

Lemma ��� Let A � Rd be a convex open set� and let � be a closed convex function� Let

I�v� � sup
� h�� vi 	 � � L��

�
� and let a � infv�A I�v�� Assume � � a � �� Then there

exists � � L�� such that

A � �v 	 h�� vi � a
�

and LaI �
�
v 	 h�� vi � a

�
� ���
�

Proof Since I is a positively homogeneous convex function and a � �� the sets A and

LaI are convex and have no common points in their relative interiors� Hence there exists a

separating hyperplane �Rockafellar �
����� Theorem 

���� i�e�� for some � � Rd � f�g�

A � �v 	 h�� vi � b
�

and LaI �
�
v 	 h�� vi � b

�
� �����

where b � R� in fact� b � � because the denition of I implies I��� � �� so � � LaI�
Let c � �� and dene f � I � c� Then L�f � LcI� and f� � �L�� � c �Rockafellar

�
����� Theorem 
����� An application of Theorems 
��� and ��� of Rockafellar �
���� then

gives

��LcI��� � inf
�
�f������ j � � � or � � ��

�
� �����

where �f����	� � �f��	���� for all � � �� and f��� is the recession function of f��

Note that f��	� � fc��g �� f����	� � f���g �Rockafellar �
����� Theorem ����� But

we cannot have f������ � �	 Otherwise� ����� would imply ��LcI��� � � for all c � �� Then

LcI �
�
v 	 h�� vi � �

�
� all c � �� Since A is open� we would then obtain A�dom I � �� by

������ which is contrary to hypothesis� Therefore f������ ��� thus the point � � �� can

be removed from the inmum in ������

Since f��	� � fc��g� we now conclude from ����� that

��LcI��� � �c� where � � inf
�
 � 	

�

 �
� L��

�
� �����



IMPORTANCE SAMPLING TECHNIQUES ��

Setting c � a yields LaI �
�
v 	 h�� vi � �a

�
� Hence the constant b in ����� is � �a�

Next suppose b � �a�� where a� � a� Then La�I �
�
v 	 h�� vi � b

�
� By ����� it follows

that infv�A I�v� � a�� since A is open� and this contradicts the denition of a� We conclude

b � �a� Observe also that � � �� because otherwise ����� and ����� would imply A�domI �

�� contrary to hypothesis� The required result now follows from ����� and the previous

paragraph by setting � � ���� �

Proof of Theorem ���� Upper Bound� If Q � P� then the result follows trivially from

�
���� we assume from now on that this is not true�

For any ( � �� let

K�
Q�x� dy � ds� � KQ�x� dy � ds� � (x��dy�O�ds�� �����

where x� denotes a measure on S having point mass at x�� and O denotes a measure

on R
d having point mass at the origin� For shorthand notation� let �������

�� denote the

convergence parameter of K�
Q��� and ����� � log ������

First we show

lim sup
���

����� � &�KQ���� for all � � L�
&�KQ � �����

To establish this fact� note

�
$K�
Q

�k
�x��S��� �

X
�i����� �ik��I

Z
�S�Rd�k

e	��s�J �i���x�� dx� � 	� 


	 	 	 
 J �ik��dxk��� dxk � 	�� �����

where J ��� � KQ and J ��� � (x�O� and I consists of all elements of the form �i�� � � � � ik�

where either ij � � or ij � 
� Fix � � L�
&�KQ and N � Z�� and let

log bN �
h
�
���
KQ

��� � �
�N�
KQ

���
i
�� �by �H
���

Observe that any product J ��� 
 	 	 	 
 J �k� which has n !(x�O" terms contains at most

n � 
 products of the form (x�O 
 K�i�
Q 
 	 	 	 
 K�i�j�

Q 
 (x�O where j � N � It follows

that for a product of this form�Z
�S�Rd�k

e	��s�J �i���x�� dx� � 	� 
 	 	 	 
 J �ik��dxk��� dxk � 	�

� bn��
N (n

�
�
�N�
KQ

���
�k�n

� �����

Summing all terms in ����� gives ����� � �
�N�
KQ

��� � bN (� by the denition of the conver�

gence parameter� Letting (� � and then N �� establishes ������

We now apply Lemma ��
 with ���� � �KQ����c where c � �� Note that the hypotheses

of the lemma are satised� First� �KQ is convex �Lemma ��� �ii� below�� Secondly� under

our assumptions� cl A � cone

�L�

&�KQ
�	

� �� Now Q �� P �� &�KQ��� � � �as in Lemma

����� and then

cone 


�L�
&�KQ

�	 � �Lc&�KQ�	 � L�
&I
�c�
KQ
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for su�ciently large c � � �the last step was obtained from the denition of &I
�c�
KQ

�� Conse�

quently inf
�
&I
�c�
KQ

�v� 	 v � A
�
� �� Finally� if c � � is su�ciently large� then by Lemma ���

�i� below�

riD
�c�
KQ

� riDP � riS�

�The last step follows from Theorem 
��� of Rockafellar �
����� as noted in the !Remark"

following Theorem ��
 of Collamore �
���a��� We conclude � � inf
�
I
�c�
KQ

�v� 	 v � A
�
���

for all negative c � some c��

Let � be the element obtained in Lemma ��
 when ���� � �KQ��� � c and c � �c�� ���

By ������ there exists a ( � � such that ��
KQ

��� � �� Moreover� there exists a
�
�����

���
�

�sub�invariant function� r����� for the resulting kernel $K�
Q��� �Nummelin �
����� Proposi�

tion ��� and Theorem ��
� or Section ��� above�� Dene

R��x� dy � ds� �
eh��sir��dy� ��

r��x� ��
K�
Q�x� dy � ds�� �����

Since r���� is
�
�����

���
��sub�invariant and ����� � �� R� is itself a Markov additive

�sub�probability kernel�

Let P�
k denote the paths which rst hit A�� at time T ��A� � k� Then by ����� and the

denition of K�
Q�

E�E�Q��� �
�X
k��

Z
P�
k

K�
Q�x�� dx� � ds�� 	 	 	 K�

Q�xk��� dxk � dsk�

�
�X
k��

Z
P�
k

r��x�� ��e
�h��s������ski

r��xT ��A�� ��

	R��x�� dx� � ds�� 	 	 	 R��xk��� dxk � dsk�� ���
��

Note that r��	� �� is uniformly positive �Remark ������ since ����� yields a minorization

(�x����� Also� r��	� �� � � 
 a�e� �Nummelin �
����� Proposition ��
�� Thus the ratio�
r��x�� ���r��XT ��A�� ��

�
in ���
�� is deterministically bounded�

Next� observe by Lemma ��
 that
�
��  ST ��A�

� � inff&I�c�KQ�v� 	 v � Ag��� and since &I
�c�
KQ

is

positively homogeneous�

inff&I�c�KQ�v� 	 v � Ag � inff&I�c�KQ�v� 	 v � Ag�

provided that the inmum on the left is � �� Therefore� the integrand in ���
�� is �
const� 	 expf� infv�A &I

�c�
KQ

�v���g� Since R� is a subprobability kernel� we obtain by letting

�� � in ���
�� that

lim sup
���

� logE�E�Q��� � � inf
v�A

&I
�c�
KQ

�v�� ���

�

It remains to show

inf
�
&I
�c�
KQ

�v� 	 v � A�� inf
�
&IKQ�v� 	 v � A

�
as c� �� ���
��
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To this end� note that the assumption clA � cone

�L�

&�KQ
�	

� � �� the level sets of &I
�c�
KQ

are compact on the restricted set
�
cone 
�L�

&�KQ�
	
�c

when c � � is su�ciently large �cf�

Collamore �
���b�� Lemma ��
�� Let a denote the limit on the left�hand side of ���
��� The

sets clA�La &I�c�KQ are then compact and monotonically decreasing to clA�La &IKQ as c� ��

implying ���
��� �

We remark that if the lower bound of �R� holds� then the above proof can be simplied�

In that case� we may apply the measure transformation ����� directly to KQ� and Lemma ��


directly with c � �� This approach leads to some improvement in hypothesis� namely the

assumption !A�cone

�L�

&�KQ
�	

� �" may then be weakened to !inffIKQ�v� 	 v � Ag � ��"

	�� Proof of Theorem ���� Lower Bound

We begin by introducing a splitting and truncation of KQ� as follows�
Let h
�� be the minorization in �M��� and note under �M�� that either h�x� ds� or ��E� ds�

is independent of s� Thus �h
���� � g
��� where g � h� and � � ��� Hence by Lemma ��� �i��

�g 
��� � KQ� This implies the minorization

$g���  $���� � $KQ���� for all �� ���
��

Dene

&KQ�x� dy � ds� �
KQ�x� dy � ds�� �g 
����x� dy � ds�


� g�x�Rd�
�� ���

and observe under this denition that

KQ�x� dy � ds� � �g 
����x� dy � ds� �
�

� g�x�Rd�

�
&KQ�x� dy � ds�� ���
��

Enlarge �S�S� to � S�  S�� where  S� S�f�� 
� �� � � � g and  S is the natural extension of S
to  S� and for M � Z�� dene truncated versions gM � hM � &KM

Q � KM
Q by	

gM
�
�x� i�� ds

�
�

� M

M � 


�
���M��i���M�M �d�s�g�x� ds��

�M
�
�dy� j�� ds

�
� ���j���M�M �d�s��

�
dy � ds

�
�

&KM
Q

�
�x� i�� �dy� j� � ds

�
�

h
�i���j� ����M ��j� ��M�M �d�s� &KQ�x� dy � ds�

i
�M�

KM
Q

�
�x� i�� �dy� j� � ds

�
�

M

M � 


h
gM 
��M

�
�x� i�� �dy� j� � ds

�
��


� g�x�Rd �
�
&KM
Q

�
�x� i�� �dy� j� � ds

�i
�

Note that KM
Q is strictly increasing�

KM
Q

�
�x� N�� �E � N� � �

� � KQ�x�E � ��� all E � S� � � Rd ���
��

�where N denotes the set of natural numbers�� and

KM
Q

�
�x� N�� �E � N� � �

�� KQ�x�E � �� as M ��� ���
��
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It can be easily shown that KM
Q is irreducible with respect to a maximal irreducibility

measure 
M � 
 as M ���

The kernel KM
Q has a minorization� namely gM 
��M � KM

Q � which implies

$gM ���  $�M��� � $KM
Q ���� for all �� ���
��

For shorthand notation� let ��M ������ denote the convergence parameter of $KM
Q ����

�M ��� � log �M ���� and let DM � DKM
Q

and I
�c�
M � I

�c�

KM
Q

�

Our main reason for introducing the above truncation is because the transformed kernel
$KM
Q ��� has eigenvectors which are bounded� and the following regularity properties also

hold�

Lemma ��� Let the kernels KM
Q � KQ and functions �M � �M � and �KQ be de�ned as above�

Then�

�i� �M is convex and analytic� and �M ���� �KQ��� as M ��� for all ��

�ii� �KQ is convex and lower semicontinuous�

�iii� For any �� there exists a ��M �������invariant function� rM �	���� for the kernel
$KM
Q ���� Moreover� the function rM �	��� is positive and bounded�

Proof �i� Following Iscoe� Ney and Nummelin �
����� Lemma ���� introduce the generating

function

�M ��� �� �

�X
n��

Z
s�Rd� x��S

eh��si��n
�
�M 
� �KM

Q � gM 
��M
�n�� 
�gM��x�  S� ds�

�
�X
n��

e��n $�M���
�
$KM
Q ���� $gM ��� $�M ���

�n��
$gM ���� ���
��

Then �M ��� � inf f� 	 �M ��� �� � 
g �Nummelin �
����� Proposition ��� �i��� Note by the

construction of KM
Q that the sum on the right of ���
�� is actually nite� consequently�

�M
�
���M ���

�
� 
� ���
��

The convexity of �M follows from ���
�� and the convexity of �M � Since �M is analytic

on Rd�� � the analyticity of �M follows from ���
�� and the implicit function theorem� The

convergence �M � �KQ is obtained as in Lemma ��� �i� of Ney and Nummelin �
���b��

�ii� �KQ is convex because �by �i�� it is a limit of convex functions� and lower semicon�

tinous since the analytic functions �M � � as M ���

�iii� Since ���
�� holds� $KM
Q is ��M �������recurrent �Nummelin �
����� Proposition �����

Hence a ��M �������invariant function exists and is given by

rM ��� �

�X
n��

e���n���
�
$KM
Q ��� � $gM ��� $�M ���

�n
$gM ��� ������

�Nummelin �
����� Theorem ��
�� By the construction of KM
Q � the sum and individual terms

on the right are nite� hence rM �	��� is bounded� Finally� positivity of rM �	��� is obtained
from Nummelin �
����� Proposition ��
� �
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Lemma ��� Let the kernels P� KM
Q and KQ be de�ned as above� Then�

�i� For any b � inf� �P��� and c � inf� �KQ���� D
�b�
P � D�c�

KQ
�

�ii� For any cM � inf� �M ��� and c � inf� �KQ���� D
�c�
M � D

�c�
KQ

as M ���

�iii� For any c � R and v � riD
�c�
KQ

� I
�c�
M �v�� I

�c�
KQ

�v� as M ���

�iv� For any c � R and v � riD
�c�
M � the supremum in the de�nition of I

�c�
M is achieved at

a point � � Lc�M � a� DM � Moreover� if c � inf� �M ���� then for some positive constant

� � ��v� c�� we have �r�M ��� � v�

Proof �i� Note

�
D

�b�
P

�

� ��

�Lb�P� and �D�c�
KQ

�

� ��

�Lc�KQ�� ����
�

�Rockafellar �
����� Theorem 
���� applied to ��Lb�P and ��Lc�KQ
� By Rockafellar �
�����

Theorem ���� ����Lb�P �� �
���Lc�KQ � may be identied with ���Lb�P�� ���Lc�KQ�� resp��

Now set b � c��� Since Lc�KQ � ��Lc���P� �Lemma ��� �ii��� it follows from ����
� that�
D

�c���
P

�
 � �
D

�c�
KQ

�

� hence D

�c���
P � D

�c�
KQ

� For a general b � inf� �P���� observe that

��
�Lb�P� � ��

�Lc���P� �Rockafellar �
����� Theorem ����� hence D
�b�
P � D

�c���
P �

�ii� The proof is analogous to �i�� once it is observed that

�
���KQ

�
�
�
M

�
���M

�
������

�Rockafellar �
����� Corollary ����� and Theorem �����

�iii� First assume v � intDKQ � Let

WM �
n
� � Lc�M 	 h�� vi � I

�c�
M �v�

o
� W �

n
� � Lc�KQ 	 h�� vi � I

�c�
KQ

�v�
o
�

Since Lc�M � Lc�KQ monotonically as M � ��
T
M WM � W � 	I

�c�
KQ

�v� �where

the last step follows from Theorem ���� of Rockafellar �
���� and the denition of I
�c�
KQ

��

Now v � intDKQ �� 	I
�c�
KQ

�v� is compact �Rockafellar �
����� Theorem ������ Hence the

convergence WM �W implies

WM � fz 	 kz � wk � (� w � Wg � M � some M��(�� for any ( � ��

Thus I
�c�
M �v� � I

�c�
KQ

�v� �(kvk� all M �M��(�� Conversely� L��M � L��KQ �� I
�c�
M �v� �

I
�c�
KQ

�v�� all M � We conclude I
�c�
M �v�� I

�c�
KQ

�v��

Next assume v � riDKQ � Then v � a� DKQ � hence �by �i�� v � a� DM for su�ciently

large M � Thus h�� vi � �� all � � �a�DKQ�
	 and all � � �a�DM �	� M � some M�� Using

this fact� we may then proceed as in the previous paragraph� replacing I
�c�
KQ

� I
�c�
M with their

restrictions to a� DKQ �

�iv� Let )v� )�M � )IM � and )DM denote the restrictions of v� �M � IM � and DM to a� DM �

Then )v � int )DM � Hence 	 )IM �v� �� � �Rockafellar �
����� Theorem ������ This implies

)IM �)v�
def
� sup

�Lc��M

h�� )vi � �
)�� )v
�
� some )� � 	�Lc)�M � ������
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�Rockafellar �
����� Theorem ������ Since h�� vi � � for all � � �a�DM�	� ������ also holds

with IM in place of )IM � etc�� and � in place of )�� where � � )� on a� DM and �M � � on

�a� DM �	�

Finally� observe by ������ that )� is normal to Lc)�M � hence � is normal to Lc�M � If

c � inf� �M ���� then it follows from Corollary �����
 of Rockafellar �
���� that v � �r�����

for some positive constant �� �

Lemma ��� Let f�Xn� Sn� 	 n � �� 
� � � � g be a MA�process on S�R
� satisfying �M��� Let

P denote the transition kernel� and assume the additive components f�ng and regeneration

times f�ig are bounded� and E��S�� � �� where � is the stationary distribution of fXng�
Then for any ( � � and K � ��

lim
���

� logP


max

��n�bK
�
c
jSnj � (

�

�
� � inf

t����K
�
�

�
inf

v��
t��P�

v

t
�

�
� �� ������

where ��P����
�� is the convergence parameter of $P����

Proof See Collamore �
����� Theorem 
� Since ��P�v� � � �� v � E��S�� � �� the

right�hand side of ������ is � ��

We remark that hypothesis �H�� of Collamore �
���� is not needed when the time

interval �� ���K� in this case� is bounded� Also� hypothesis �H�� of that paper is satised�

by the results of Ney and Nummelin �
���b�� The !s�set" assumption in Theorem � of Ney

and Nummelin �
���b� is not needed� because f�ng and f�ig are bounded� hence rP�	���
is bounded below for all �� by Lemma ��� �i�� and inspection of the proof shows that the

!s�set" condition is unnecessary in that case� �

Proof of Theorem ���� Lower Bound� Case �� L��KQ �� ��
Let v � A � riDKQ � Then v � riDM for su�ciently large M �Lemma ��� �i��� Assume M

has been chosen so that this is true� Then by Lemma ��� �iv�� there exists � � 	�L��M �

and a positive constant � such that �r�M ��� � v�

Dene

R��x� dy � ds� �
eh��sirM �y� ��

rM �x� ��
KM
Q �x� dy � ds�� ������

and observe that �M ��� � � ��R�M is itself a Markov additive probability kernel�

Let P�
k denote the paths which rst hit A�� at time T ��A� � k� and let  x� � �x�� ���

Then ����� and ���
�� yield

E�E�Q��� �
�X
k��

Z
P�
k

KM
Q � x�� dx� � ds�� 	 	 	 KM

Q �xk��� dxk � dsk�

�

�X
k��

Z
P�
k

e�h��s������skirM � x�� ��

rM �xk� ��

	R�� x�� dx� � ds�� 	 	 	 R��xk��� dxk � dsk�� ������
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To analyze the quantity on the right� note E����n� � r�M ��� � v��� where �� is the

stationary distribution under the measure R� �Ney and Nummelin �
���a�� Lemma �����

Thus� the expected time for the R��process to reach the point v�� � �	A��� is � ���� Also�

since v � A� the straight�line path ��� v� contains no points other than v in the convex set

clA� Hence by Lemma ����

PR�
fT ��A� � ���(���g � � as �� �� for any ( � ��

in words� the process stays near its central tendency and therefore does not enter A�� before

the expected time of ���� By an analogous argument� we also obtain

PR�

�
T ��A� � ���� ST ��A� � B�v�(�c��

�� � as �� ��

Finally� by the central limit theorem for MA�processes�

lim inf
���

PR�
fT ��A� � ���g � const� � ��

Putting these together yields

lim inf
���

P
�
�T ��A� � ���(� ��� �ST ��A� � B�v�(�

� � const� � �� ������

Since rM �	� �� is positive and bounded� by Lemma ��� �iii�� it follows from ������ and

������ that

lim inf
���

� logE�E�Q��� � �h�� vi �(k�k � �IM �v��(k�k� ������

Now let (� � and then M ��� From Lemma ��� �iii� and ������� we then obtain

lim inf
���

� logE�E�Q��� � �IKQ�v�� ������

The required lower bound follows by taking the supremum in ������ of left and right�hand

sides over v � A� riDKQ � and observing by Lemma ��� �i� and the denition of A that A�
riDP �� � �� A�riDKQ �� �� Hence inf

�
IKQ�v� 	 v � A � riDKQ

�
� inf

�
IKQ�v� 	 v � A

�
�cf� Collamore �
���a�� the last paragraph in the proof of Theorem ��
��

Case �� L��KQ � ��
Let M� � minfM � Z� 	 L��M � �g � �� and assume rst that M� ���

For each M � let cM � inf��Rd �M ���� and let c � inf��Rd �KQ���� Then D
�cM �
M � D

�c�
KQ

as M ��� hence A � riDP �� � �� A � riD
�cM �
M �� � for su�ciently large M �Lemma ���

�ii���

Let M � M� be chosen such that A � riD
�cM �
M �� �� and let v � A � riD

�cM �
M � Let dj �

cM�
�j� j � 
� �� � � � � Then by Lemma ��� �iv�� there exist elements �j � 	�Ldj�M ��a�DM

and positive constants �j such that �jr�M ��j� � v�

For each j� introduce the Markov additive probability kernel

R�j �x� dy � ds� �
eh�j �si��M ��j�rM �y� �j�

rM �x� �j�
KM
Q �x� dy � ds�� ������
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and reason as in ������ to obtain

E�E�Q��� �
�X
k��

Z
P�
k

e�h�j �s������ski�k�M ��j�rM �x�� �j�

rM �xk� �j�

	R�j �x�� dx� � ds�� 	 	 	 R�j �xk��� dxk � dsk�� ����
�

It follows from ������ and ����
� that

lim inf
���

� logE�E�Q��� � �h�j� vi� �j�M ��j�� ������

We now distinguish two possible cases� First� suppose that f�jg converges �possibly

after passing to a subsequence� to some element $� � R
d � Then the inmum in the denition

of cM is achieved at $�� hence �M �$�� � cM � � and r�M �$�� � �� But then limj�� �j �

limj�� �v�r�M ��j�� ��� Letting j �� in ������� we conclude

lim
���

� logE�E�Q��� ��� ������

Next� suppose that f�jg does not converge along any subsequence� Let �j � �j�k�jk�
and observe that �possibly after passing to a subsequence� �j � $� � Sd�� and k�jk � � as

j ��� Then $� � ���M �Rockafellar �
����� Theorems ��� and ����� Hence $� � �D�cM �
M

�

�as in the proof of Lemma ��� �i��� Since the �j�s were chosen in a� DM � it follows that
$� � D


M � a� DM � Then v � ri DM �� �
$�� v
�
� �� Hence h�j � vi � b � �� for all

j � some j�� But then

�h�j � vi � �k�jk h�j � vi � � as j ��� ������

Thus� letting j �� in ������� we again obtain �������

Finally suppose M� � �� In this case� the elements of fL��M 	 M � 
� �� � � � g are

nonempty and monotonically decreasing to
T
M L��M � L��KQ � �� Then

inf fkvk 	 v � L��Mg � � as M ��� ������

Since �M is strictly increasing� which �with M� � �� implies inf� �M ��� � �� �M � we

may apply Lemma ��� �iv� to obtain elements �M � �
	�L��M � � a� DM

�
and positive

constants �M such that �Mr�M ��M � � v� Then ������ implies k�Mk � �� and �possibly

after passing to a subsequence� �M
def
� �M�k�Mk � $� � TM ���M � D


KQ
�Lemma ��� �ii�

and its proof�� Then ������� ������ �with !M" in place of !j"� give ������� as before� �

	�� Proofs of Theorem ��	 and Proposition ��


Next we turn to the proof of Theorem ����

Let Q� be the kernel described in ���
��� and let Q � C� By the Radon�Nikodym

Theorem� we may write Q�t� � R�t� � V�t�� where R�t� � Q� and V�t� � Q�� Now dene

Z�
n�� � log

�
dR��n�

dQ�
�X�

n� X
�
n�� � ��n���

	
� n � 
� �� � � � � ������



IMPORTANCE SAMPLING TECHNIQUES ��

where f�X�
n� S

�
n� 	 n � �� 
� � � � g denotes a MA�process with transition kernel Q�� Let

W �
n � Z�

� � 	 	 	� Z�
n� n � 
� �� � � � � and W �

� � ��

The proof of Theorem ��� will rely on the following�

Lemma ��	 �i� For any �xed �� fW �
ngn�� is a submartingale�

�ii� If &Z�
n � Z�

n � � � 
� &W �
n � &Z�

� � 	 	 	 � &Z�
n for n � 
� and &W �

n � �� then f &W �
ng is a

submartingale�

�iii� Suppose Q � C�� so that fZ�
ng� fW �

ng are actually independent of �� and let ZM
n �

Z�
n � ��M� and WM

n � ZM
� � 	 	 	 � ZM

n for n � 
� and WM
� � �� Assume that the lower

bound of �R� is satis�ed� and that we do not have Q � Q� for 
 � P a�e� �x� y� s�� Then�

for certain positive constants M� and D�

lim sup
n��




n
EQ�

�
WM

n

� � �D� for all M �M�� ������

Proof �i� Jensen�s inequality implies that E
�
W �

n��jX�
n � x

� � � for all x� hence fW �
ng is

a submartingale�

�ii� This follows by a similar argument and the inequality �log s� � s�

�iii� Let f  X�
n�  S

�
n�  Wn 	 n � �� 
� � � � g be an independent copy of fX�

n� S
�
n�Wn 	 n �

�� 
� � � � g� but assume that the initial measure of  X�
n is

�� � the stationary measure of fX�
ng under the transition kernel Q��

Let fTigi�N and f  Tigi�N denote the respective regeneration times� as described in Lemma

��
� and let

T � inf
�
n 	 Ti � n and  Tj � n� some i� j � N

�
denote the coupling time�

First note that if we do not have Q � Q� for 
 � P a�e� �x� y� s�� then by Jensen�s

inequality E���Z
�
n� � �� By the monotone convergence ZM

n � Z�
n as M � �� it follows

that

E���Z
M
n � � �D� � �� for all M � some M �

�� ������

Consequently

E�  WM
n � � �nD�� all M � some M �

�� ������

Let Tn � T � n� and observe

E
�
WM

n

�
� E

�
 WM
n

�
�E

�
WM
Tn
�  WM

Tn

�
� ������
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Also� by a slight variant of �i�� fWM
n �n�g is a submartingale for all M � log

�

��e�� 
�

�
�

and analogously for �ii�� Hence� letting � � D���� we obtain by the optional sampling

theorem that

E
�
WM
Tn

�
�

D�

�
	 E�T� � C ��� all M � some M ��

� � ����
�

and since  WM
n � �M we also have

�E�  WM
Tn

� �ME
�
T
�
� C � ��� ������

where C� C � are �� by Remark ��
�
 �i�� The required result is then obtained by substi�

tuting ����
� and ������ into ������� �

Lemma ��
 Let A � R
d be a convex semi�cone intersecting riS� Assume dom�P is open�

and that 	H�
 and �R� are satis�ed� Let � be given as in Lemma ��� and let �
d
� �i�

where �i � Ti�� � Ti are the interregeneration times described in Lemma ���� De�ne

I��A� � inffi 	 Ti � T ��A�g� Then for 
 a�e� x��

lim
���

�EQ�

�I��A�� � �

E���
� ������

Proof Lower bound� First intoduce a truncation on the additive components� namely� let

M � � and dene

�Mn � ��n if h��� ��ni � �M� and �Mn � ��n
M

k���� ��n�k otherwise� ������

Let SMn � �M� � 	 	 	 � �Mn � n � �� 
� � � � � and let SM� � �� Also let B � H���� a�� where ��

and a are given as in Lemma ���� Then by Lemma ��� �i�� I��A� � IM���B� �where IM���	�
denotes the stopping time with respect to the truncated process fSMn gn�N��

Note dom �P open �� � � int �dom �Q�� �Lemma ��� �iii��� Hence by the optional

sampling theorem�

EQ�

��
��� S

M
T
IM���B�

��
� EQ�

��
��� S

M
T�

��
� EQ�

��
��� S

M
Ti��

� SMTi
��
EQ�

��IM���B�
�� 


�
� ������

Also� under the above truncation�

EQ�

��
��� S

M
T
IM���B�

� SMTM���B�

�� � �MEQ�

�
TIM���B� � TM���B�

� � �MC� ������

where by Remark ��
�
 �i�� the constant C � �� Since SM
TM���B�

� a��� it follows from

������ and ������ that

lim inf
���

�EQ�

�IM���B�
� � a�EQ�

��
��� S

M
Ti��

� SMTi
��
� ������

provided that

EQ�

��
��� S

M
T�

�� � �ME
�
T�
�
�� for 
 a�e� x�� ������
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Finally observe by Lemma ��� of Ney and Nummelin �
���a� and Lemma ��� �iv��

EQ�

�
S�Ti��

� S�Ti

�
� r�P���� 	 E��� � v�

�
E���� i � �� 
� � � � � ������

Then ������ holds� and the required result follows from ������� ������� Lemma ��� �iii�� and

the monotone convergence
�
��� S

M
Ti��

� SMTi
�� �

��� S
�
Ti��

� S�Ti
�
as M ���

Upper bound� First assume d � 
� Let t � �� and observe since A is a semi�cone that

�
 � t�v� is an interior point of A� Choose w���� � � � � w�d� � A such that the convex hull of

fv�� w���� � � � � w�d�g contains a neighborhood of �
 � t�v�� Let v�k� � v� � w�k�� let J �k� �

the hyperplane containing fv�� v���� � � � � v�d�g � fv�k�g� and let H�k� � the open halfspace

determined by J �k� which contains the point �
� t�v�� It follows from this constuction and

the semi�cone property that � �� H�k� and
Td
k��H�k� � A�

Let I�j � inffi 	 S�Ti � H�k�� all j � ig� By ������� the expected time for fS�Tigi�N to

reach H�k� is i � ��E���� Hence by a simple one�dimensional change of measure argument�

lim
���

EQ�

�
I�j � I�j �




�

�
��(

E���

��
� �� for all ( � �� ������

Since I��A� � max
�I��� � � � �I�d�� the upper bound is obtained from �������

Finally� if d � 
 then the upper bound can be obtained directly from ������� �

Proof of Theorem ���� Following Asmussen and Rubenstein �
����� Theorem 
���� rst

observe

dKQ��n� def
�

�
dP

dQ��n�

��

dQ��n� �

�
dP
dQ�

��� dQ�

dQ��n�

�
dQ�� ����
�

Also by the Radon�Nikodym Theorem and the denition of R��n��

dQ�

dQ��n�
�

dQ�

dR��n�
�

�
dR��n�

dQ�

	��
Q� a�e� ������

From ����
� and ������ it follows that

E�E�Q��� � EQ�

�
r�P �x�����

r�P�XT ��A�����
e
��

D
���S�T��A�

E
�W �

T��A�

�

� exp
n
��EQ�

��
��� S

�
T ��A�

���EQ��W �
T ��A�� � C �

o
� ������

by Jensen�s inequality� where C � is a nite constant obtained from the uniform positivity

and boundedness of rP���� as described in Lemma ��� �iii��

Let T�� T�� � � � denote the regeneration times in Lemma ��
 generated by the MA�process

f�Xn� Sn�g� let f�ig denote the interregeneration times� and let

I��A� � inffi 	 Ti � T ��A�g�

Introduce the truncation
�
��Mn � SMn � 	 n � �� 
� � � �

�
of
�
���n� S

�
n� 	 n � �� 
� � � �

�
that

was described above in ������� and observe under this truncation that ������ holds with A
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in place of B and I��	� in place of IM���	�� It follows from ������� ������� and the denition

of fSMn g that

logE�E�Q��� � ��EQ�

��
��� S

M
TI��A�

���EQ��W �
T ��A�� � C� ������

where C � �������

By the optional sampling theorem and Lemma ��� �i�� �ii��

EQ��W �
T ��A�� � �� ������

Also� by the optional sampling theorem

EQ�

��
��� S

M
TI��A�

��
� EQ�

��
��� S

M
T�

��
�EQ�

��
��� S

M
Ti��

� SMTi
��
EQ�

��
TI��A�

�� 

�
� ������

Then by ������� ������� Lemma ���� and the monotone convergence
�
��� S

M
Ti��

� SMTi
� ��

��� S
�
Ti��

� S�Ti
�
�

lim
���

�EQ�

��
��� S

M
TI��A�

��� h��� v�i as M ��� ������

From ������� ������ and ������ we conclude

lim inf
���

� logE�E�Q��� � ������ v��� ������

In view of Lemma ��� �iii� and Proposition ���� this implies

lim inf
���

� logE�E�Q��� � lim
���

� logE�E�Q����� ������

It remains to show that if Q�t�� �� Q� at some continuity point t� � ��� ��� then there is

strict inequality in ������� Suppose now that t� � ��� �� is a continuity point and Q�t�� �� Q��

Then the continuity property ������ is satised in some interval ���� ��� � ��� ��� Let D and

M� be the constants obtained in Lemma ��� �iii� when Q� � Q�t��� Assume that the interval

���� ��� has been chosen su�ciently small so that ������ holds with ( � D���

Decompose the r�v� Z�
n into a sum of two terms� namely�

Un � log

�
dR�t��

dQ�
�X�

n� X
�
n�� � ��n���

	
� n � �� 
� � � � �

V �
n � log

�
dR��n�

dR�t��
�X�

n�X
�
n�� � ��n���

	
� n � �� 
� � � � �

For M � �� let UM
n � Un � ��M�� VM��

n � V �
n � ��M��

RM
n � UM

� � 	 	 	� UM
n � ZM��

n � UM
n � V �

n �

and WM��
n � ZM��

� � 	 	 	� ZM��
n �

Now by Lemma ��� �iii��

lim sup
���

�EQ�

�
RM

b
��
�
c
�RM

b
��
�
c

�
� �

��� � ��
��

�
D� all M �M�� ������
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Hence from the continuity properties ������ and ����
� and a straightforward variant of

Lemma ��� �iii�� we obtain

lim sup
���

�EQ�

�
WM��

b
��
�
c
�WM��

b
��
�
c

�
� �D� � �� all M �M�� ����
�

Moreover by the optional sampling theorem and Lemma ��� �i��

EQ�

�
W �

T ��A��b
��
�
c

� � �� ������

and

EQ�

�
W �

T ��A� �W �

b
��
�
c
� T ��A� � b��

�
c
�
� �� ������

It follows from ����
�������� and the denition of
�
WM��

n

�
that

lim sup
���

�E
�
W �

T ��A�

�
� �D� � lim inf

���
�EQ�

�
WM��

b
��
�
c
�WM��

T ��A��b
��
�
c
� T ��A� �

��
�

�
� ������

Since �� � �� P
�
T ��A� � b����c

� exp� � �Collamore �
����� Theorem 
� cf� ������ and the

proof of Lemma ����� Also� from the above denitions the last integrand in ������ is bounded

below by ��M ���� � ������ 
�� We conclude that the last term on the right of ������ can

actually be dropped�

Using ������ in place of ������ now gives strict inequality in ������� as desired� �

Proof of Proposition ��	 �i� By denition�

�LbIP�c � �
��L��P

H��� b�� for all b � ��

Hence fH��� a�(�g��L��P is an open cover for B
def
� 	�LaIP� � cone 


�L��
�
P

�c
�

The set B is compact� since IP is positively homogeneous and strictly positive on the

compact set Sd�� � cone 


�L��
�
P

�c
�Collamore �
���b�� Lemma ��
�� Hence there exists a

nite subcover for B� This subcover also covers
�LaIP�c � cone 


�L��
�
P

�c
� and hence A�

�ii� This is established in the same way as the upper bound of Theorem ��
� with �i

in place of �� �See also the comments following the proof of this upper bound�� In the

case where A is a nite union of convex sets� choose the �i�s to be the elements obtained

in Lemma ��� when A � A�i� i � 
� � � � � k� and then proceed as in the proof of the upper

bound of Theorem ��
� �
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