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Abstract

Let {(X,,Sn) : n=0,1,...} be a Markov additive process, where {X,} is a Markov
chain on a general state space and S,, is an additive component on R?. We consider
P {S, € A/e, some n} as € — 0, where A C R? is open and the mean drift of {S,} is
away from A. Our main objective is to study the simulation of P {S,, € A/e, some n}
using the Monte Carlo technique of importance sampling. If the set A is convex, then we
establish: (i) the precise dependence (as € — 0) of the estimator variance on the choice
of the simulation distribution; (ii) the existence of a unique simulation distribution
which is efficient and optimal in the asymptotic sense of Siegmund (1976). We then
extend our techniques to the case where A is not convex. Our results lead to positive
conclusions which complement the multidimensional counterexamples of Glasserman
and Wang (1997).

1 Introduction

There has been much recent interest in simulation techniques for estimating rare event prob-
abilities, or more precisely, the numerical computation of P(C¢) for small e when P(C¢) — 0
as € — 0. Generally, such probabilities cannot be computed using direct Monte Carlo tech-

niques, because the relative error associated with samples averages of 1¢, is

Var(lcf)
E(1c,)

In this article, we will study rare event simulation in the context of the following multidi-

—o00 as €—0, where 1¢ = indicator function on C.

mensional boundary crossing problem: Let Si, So,... be a sequence of random variables in

R?, and consider the hitting probability of a region A C R? by {S,}, namely,

P{Sn c 2 some n} = P{T(A) <0} as e—0, (1.1)
€
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where
. A
T¢(A) = inf {n : Sy € —}. (1.2)
€

It will be assumed that the mean drift of {S,} is directed away from A, so that the prob-
abilities in (1.1) will tend to zero as e — 0. Our objective will be to develop a numerical
regime based on importance sampling which yields an efficient estimate for (1.1) for any
fixed €, and which has certain optimality properties as € — 0.

The first analytical work on problems of this type seems to have appeared in Lundberg
(1909), where a stochastic model was introduced for the capital fluctuations of an insurance
company, and the risk faced by a company under this model was studied. In Lundberg’s
model, an insurance company gains capital from a constant stream of premiums inflow, and
loses capital as a result of i.i.d. claims which arise at a Poisson rate. These assumptions
imply that the total capital gain by time ¢, denoted S, is a Lévy process, assumed to
have positive drift. The ruin problem then considers P {S; < —1/¢, some ¢ > 0}, i.e., the
probability that a company with an initial capital of 1/e will ever have negative total

capital, or incur ruin. A classical result due to Cramér (1930) states
1
P{S, < ——, some t >0} ~Ce € as € - 0 (1.3)
€

for certain constants C' and R.

Cramér’s result and techniques were later extended to more general processes, and
applied in queueing theory and, with some modification, in sequential analysis. An extension
to higher dimensions was given in Collamore (1996a, b). There it was shown that if A is
an arbitrary open subset of R? and S;, Ss,... are the sums of an i.i.d., Markov, or more
general sequence of r.v.’s, then

limelogP {T(A) < oo} = — inf Ip(v), (1.4)

e—0 vEA

where Ip is the support function of the d—dimensional surface {a: Ap(a) =0} and Ap
is the cumulant generating function of {5, /n}. Further distributional properties of T¢(A)
were explored in Collamore (1998). This multidimensional problem is of current applied
interest e.g. in risk theory, where it is of some concern to model the dependence of claims
along different lines of an insurance company. Also, (1.4) serves as a preliminary study for
queueing network problems which can be modelled as reflected random walk in R?, as in
Borovkov and Mogulskii (1996).

While (1.3), (1.4) provide useful asymptotic results, which (for (1.3)) may be quite ac-
curate when the limit is removed from the left—hand side, these estimates give no indication
about the rate at which the convergence to the limit actually takes place. To circumvent
this problem, numerical techniques were introduced for a closely related problem in sequen-
tial analysis by Siegmund (1976). Siegmund’s approach utilized the numerical technique of

importance sampling; namely, to estimate P(C), write

dP

P(C)=E (E(Z)IC(Z)> , where £(Z) = Q, 1¢ = indicator function on C.  (1.5)
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Then P(C) is numerically computed by simulating £ of % (Z)1¢(Z) under the distribution

Q, and averaging the empirical samples of £. In the context of the standard two—sided
boundary crossing problem in sequential analysis, Siegmund showed that a judicious choice
of Q leads to a much-reduced variance of £ as compared with direct simulation. Moreover,
he showed that there is a unique choice of Q which, in an appropriate asymptotic sense, is
optimal. Extensions of Siegmund’s algorithm to other large deviations problems in R' were
later given e.g. in Lehtonen and Nyrhinen (1992a, b), Bucklew, Ney and Sadowsky (1990).

The difficulty of extending Siegmund’s algorithm beyond the one-dimensional setting
has been documented in Glasserman and Wang (1997). They have shown by means of
certain counterexamples that there is no hope of obtaining results like Siegmund’s for the
multidimensional problem in (1.4), for certain sets A. Further counterexamples in a queue-
ing context are in Glasserman and Kou (1995). These counterexamples all show that the
much used technique of minimizing the variational formula in Mogulskii’s theorem [Dembo
and Zeitouni (1998), Theorem 5.1] does not lead to any sort of efficient simulation regime,
in general.

In this article, we establish an analogue of Siegmund’s result and some related estimates

for the multidimensional problem in (1.4), under the assumption that the set A in (1.4) is

convex and the process S1,S53,... consists of the sums of a Markov additive sequence of
r.v.’s.
To state these results more precisely, let X1, Xo,... be a Markov chain on a general state

space (S, S), let {F}, },ez, be an i.i.d. sequence of random functions mapping S xS — R?, and
let &, = F,(X5—1, Xp). (In the simplest setting, {£,,} is itselfi.i.d.) Let S, = X1 +---+ X,
n>1,and Sy =0. For A C R we consider

P{T(A) < oo} =P{S, € %, some n € Z,} as € — 0

for the Markov additive process {(X,,S,) : m» = 0,1,...}. This process has a transition
kernel P(z, E x T') < P{(X,11,6011) € E x [|X,, = z}.

The importance sampling technique suggests that we simulate P {T¢(A4) < oo} with
another Markov additive sequence {(X,,S,): n=0,1,...} having transition kernel Q =

P{(Xn+1,£n+1) €cExT|X, = z}. An adaptation of (1.5) then becomes
P {T(4) < oo} = Eg (£o,)

for some “estimator” £g . that is computed from the Q-distributed sequence of simulated
r.v.’s {Xo, ..., X7e(4); 80, - -+, S7¢(a)}- The main objective is to choose Q so that it mini-
mizes Varg(£g,) as € = 0, or equivalently EQ(Eé,E) as € — 0.
Under the assumption that A is convex, our first result provides a large deviations
estimate of the form
lim elog Eg (£5.) = - inf Ticg (v), (1.6)

for some subset 2l of A and some “rate function” Ix,. This establishes the precise corre-

spondence between Q and the decay (or growth) rate of E(E 2 7 6) as € — 0. The implication
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of this estimate is made clear in Example 3.1.4, where the level sets of E(é’é E) as a function
of Q are described by an explicit asymptotic formula.

Eq. (1.6) suggests that an efficient choice of Q should be one that maximizes J(Q) o
infyeq Ixco(v). In the case that A is convex, we show there exists a unique choice of Q
which maximizes J(Q); moreover, under this optimal distribution, simulation is efficient
and has “logarithmic efficiency” and very often “bounded relative error.” This optimality
is shown to be quite general and to extend to the case where the simulation distribution
is allowed to be time-dependent. In conjuction with (1.6) we then obtain, in addition, a
rather complete description of the robustness of the optimal distribution. This seems to be
of some practical relevance. For example, in complex problems results such as ours serve
only as guides; it is therefore necessary to ask how sensitive our simulation regime may be
to slight perturbations in the problem, including slight changes in Q. Also, in practical
problems simulation is very often blind (see Bucklew (1998) for some discussion on “blind”
simulation proceedures).

We conclude by observing that if A is a general set, then it is possible to partition A
into a finite subcollection, Ai,...,A;, and simulate independently along the elements of
this subpartition. We show that a useful partition can always be obtained. The basic idea
is to partition A along the level sets of the function Ip in (1.4). The resulting estimator
will generally be efficient and in some main cases will have “bounded relative error.”

The above results can be easily generalized to finite time-horizon problems of the form
P{T‘(A) < K/e}, K < 00, although the optimal simulation distribution may be different;
the required modifications follow along the lines of Collamore (1998).

We will establish our results in some generality, at the level of Markov additive processes
in general state space, as studied in a large deviations context by Ney and Nummelin
(1987a, b), de Acosta (1988), de Acosta and Ney (1998), and references therein, and the
seminal papers of Donsker and Varadhan (1975, 1976, 1983). Thus, our results differ from
known importance sampling results given e.g. in Siegmund (1976) or Lehtonen and Nyrhinen
(1992a, b), which focus on i.i.d. sums or the sums of a finite state space Markov chain, and
Bucklew, Ney and Sadowsky (1990), where sums of a general state space Markov chain are
considered, but under a strong uniform recurrence condition. The usefulness of this general
approach is illustrated in Example 3.1.5, where we apply our results to the stationary
ARMA(p,q) time series models. Further applications to other stationary, Markov, and
semi—Markov processes are likewise possible.

To prove our results we will rely on the theory of convex analysis, as summarized in the
classic book of Rockafellar (1970). This theory leads to separation properties for the rate
functions in (1.4), (1.6), from which the optimal simulation distribution is obtained. Also,
we will rely on the theory of non-negative operators, as described in Nummelin (1984).
These latter results have been previously applied in Ney and Nummelin (1987a,b). In
our setting, though, they will be used in a somewhat different way: We will make use of
abstract renewal properties, and—in contrast with Ney and Nummelin’s work—our renewal

structure will not generally coincide with the inherent renewal structure of the Markov
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additive process, or the simulated process.
In the next section, we introduce Markov additive processes in general state space and
provide some necessary background on these processes and non—negative kernels. The main

results are stated formally in Section 3 and proved in Section 4.

2 Background

2.1 MA-processes: definition and regenerative property

We now give a precise description of the processes we consider. Let {X,, : n =0,1,...} be
a Markov chain on a countably generated general measurable space (S,S). Assume {X,}
is aperiodic and irreducible with respect to a maximal irreducibility measure ¢.

To this Markov chain adjoin an additive sequence {&,} such that {(X,,&,) : n =
1,2,...} is a Markov chain on (S x R?, S x R%), where R? denotes the Borel o-algebra on
R Let S, =& +---+&,n=1,2,...,and Sy = 0. The sequence {(X,,,S,):n =0,1,...}
is a Markov additive process (abbr. “MA-process”). The transition kernel of this process is

P(2,E xT) € P{(Xnt1,€ns1) € E x T|X, = 2}, (2.1)

forallz € S,E € S,I' € R% Let §, denote the o-algebra generated by {Xo, ..., Xn, S0,
R

A p—irreducible Markov chain always has a minorization [Nummelin (1984), Theorem
2.1]. Following Ney and Nummelin (1987a, b), we will work with a hypothesis which extends

this minorization to M A—processes.
Minorization:

(901) For some family of measures {h(z,I') : I' € R?} on R? and some probability
measure {V(E xI): E€ S, [ € R} on S x RY,

h(z,")*v(E x-) <P(z,ExT), forallzeS, E€S, TeR"

[+ denotes convolution. We will often abbreviate the left-hand side by hev.] Asin Ney and
Nummelin (1987a, b), we will generally assume that either h or v is independent of s [more
precisely, h(z,ds) = g(z)no(ds), where no denotes point mass at the origin, or analogously
for v]. When this is the case, we will say that (9t') holds.

At certain times, we will strengthen this minorization to the following:

(R) av(ExT)<P(x,ExD)<b(ExT), forallzeS, E€S, T R,

where v is as in (901), and a, b are positive constants.

When (2R) holds, the MA—process is said to be “uniformly recurrent.”

Under (901), a regenerative structure can be deduced for the MA-process:

Lemma 2.1 Let {(X;,,Sn)}n>0 be a MA-process satisfying (I). Then there exist r.v.’s
0<To<Ti<--- and a decomposition &, = &y + &, @ = 0,1,..., with the following

properties:
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(i) {Tiy1 — T3 :i=0,1,...} are i.i.d. and finite a.e.;

(ii) the random blocks {XTi, v X1, 87 €t - - ,fTiH,l,f}iH} are independent;

(i) Py {(X1.&7,) € E XTI |§1,-1,8} } = v(AXT"), for all E€ S and I € R%.

For Harris recurrent Markov chains, this lemma was established by Athreya and Ney
(1978) and Nummelin (1978). The extension to MA-processes is in Ney and Nummelin
(1984).

Remark 2.1.1 (i) If the function A in (901) is independent of z, i.e. if the lower bound
of (R) holds, then P{T; = n, some i | §,_1} > a, where a is the positive constant in (R).
Thus, in particular, E (Tj11 — T;) < 00, @ > 0, and E (7)) < co.

(ii) If A is independent of s, then £,Ti =0, 7 > 0; and if v is independent of s, then
7. =0, >0. See Ney and Nummelin (1984).

Futher properties of Markov chains in general state space can be found in Nummelin
(1984), Revuz (1975), and Meyn and Tweedie (1993). Further properties of MA-processes
can be found in the large deviations papers of de Acosta (1988), de Acosta and Ney (1998),
and especially Ney and Nummelin (1987a, b).

2.2 Nonnegative kernels, eigenvalues and eigenvectors

We will also need certain facts about nonnegative kernels, which we now summarize and
apply in the context of MA-processes. For more complete explanations, see Nummelin
(1984).

Let {K(z,FE) : z € S, E € S} be a o—finite nonnegative yp—irreducible kernel on a
countably generated measurable space (S, S). For any function i : S — R and any measure
von (S,S),let

Kh(x) :/K(w,dy)h(y), vK(E) :/V(d:v)K(:B,E),

(h®v)(z,E) = h(z)v(E), vh(E)= /Ey(dx)h(x), vh = vh(S).
Assume
hev<K. (2.2)

Define

GV =3 p"K", Gl =Y MK —hev)",
n=0 n=0

o0

by =v(K —h® V)n_lha 8(:0) = anbn-

n=1
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We say that R is the convergence parameter of K if G is “finite” for p < R and
“Infinite” for p > R. [A precise definition can be found on pp. 27-8 of Nummelin (1984).]
The kernel K with convergence parameter R is said to be R-recurrent if GU®)(z, E) =
o for z € S, p(E) > 0, and R-transient if this is not true. It can be shown that
K is R-recurrent <= b(R) = 1.

A function r : S — [0, 00] (not = 00) is p—subinvariant if pKr < r, and invariant (with
unique eigenvalue A\ = p~!) if pKr = r. If R is the convergence parameter of K, then
the existence of invariant and subinvariant functions for K can be obtained under (2.2), as
follows. If p < R or if p = R and K is R—transient, then a p—subinvariant function exists
(given by r(z) = (G®Wh)(z)). If K is R-recurrent, then an R-invariant function exists
(given by r(z) = (RGELIBh)(:E)). [See Nummelin (1984), Proposition 5.2 and Theorem 5.1.]

Now specialize to the transformed Markov additive kernel P («r), where (for any kernel K)

K(oz) = K(x,E;a) d:ef/ e<a’s>K(:1:,E xds), aeRl zeS,EeS,
Rd

(Ax () ! = the convergence parameter of K (c), and A (o) = log Ax(c).

Let {T;}i>0 and {(&},&;') }i>0 be given as in Lemma 2.1, and let

d d
7 =Ty = Ti, Sr = (brpr 4+ €y 1) HET, 6,

b(a,¢) = E, [e<a’57>*<7] , allaeRY, CeR
U, = {a s (e, () =1, some ¢ < oo}.

Observe that (9) = h(a)®@(a) < P(a), where (for any function i and any measure /)
h(z; o) = / Iz, ds), D(B;0) = / (B x ds).
R? R4

Thus, under (9) the above theory for nonnegative kernels may be applied to 75(a). This
leads to certain representation formulas and other regularity properties for the relevant

eigenvectors and eigenvalues, which we now describe.

Lemma 2.2 Let {(X,,,S,): n=0,1,...} be a MA-process satisfying (IN).
(i) If @ € Uy, then P(a) is (Ap()) ' —recurrent. Moreover, the eigenvalue Ap(a) and

invariant function rp(a) satisfy the following representation formulas:
p(a, Ap(@)) =1, rp(z;0) =B, [e<a’sf>*AP<a>T : (2:3)

(ii) If dom v is open, then on dom Ap we have that o € U, and Ap(-) is analytic, and
also rp(x;-) is finite and analytic on a set F C 'S where p(F¢) = 0.

(iii) If (R) holds and o € domAp, then Ap(c) is an eigenvalue of P(a) and the associated
invariant function rp(a) is analytic and uniformly positive and bounded on dom Ap (in

particular, if U(a)rp(a) =1 then we have a < Ap(a)rp(x;a) < b).
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For the proofs, see Ney and Nummelin (1987a), Sections 3 and 4, and Iscoe, Ney and
Nummelin (1985), Lemmas 3.1 and 3.4.

Remark 2.2.1 Using the split—chain construction described on p. 7 of Ney and Num-
melin (1984), the quantities Ap(a) and rp(-; @) can be evaluated from (2.3) using direct

simulation.

Remark 2.2.2 If the lower bound of (RR) holds and rp(«) is a p—(sub)invariant function
for P(a), then rp(a) > pa (7(a)rp(e)), which implies rp () is uniformly positive.

Finally, let P(z,:) < Q(z,-) for all z, and define

2
Ko(z,dy x ds) = <%($,y X s)) Q(z,dy x ds). (2.4)

Lemma 2.3 Assume (MM). Then:

(i) (P(z,E xT))> < Kg(z,ExT), forallz €S, E€S, and T' € RY.

(ii) A%(a) < Ao (20), for all a € R?. Moreover, if a« € U,, then there is equality in this
inequality if and only if

_ {as)Ap(e) TP(Y3 @)
Q(z,dy x ds) = e o (@ 0) a)P(:L“, dy x ds) (2.5)

@-a.e. x, P-a.e. (y,s), where rp(a) is the (Ap(a)) ™' —invariant function for P(a).

(iii) If Q is defined as in (2.5) and Ap(a), Ap(8) < oo are eigenvalues of P(a), P(6),
resp., then A, (a + ) = Ap(a)Ap(B), and the associated invariant functions satisfy the
equation ric, (o + B) = rp(a)rp(B).

Proof (i) is established using Holder’s inequality.
For (ii), assume A, (2a) < oo, and let rx, be a (AK;Q(Zoz))_lf(sub)invariant function

for Ko(2cr). Apply Holder’s inequality to the integral

1 dP
(es) 1 200) 2 — X dy x d
[ e ncalusa)t Gy x 5)Qa.dy x
to obtain
Pa)rico (20)7 < Ak (20) 7ric, (20) . (2.6)

Thus T]CQ(QOJ)% is a ()\;CQ(2a))7%fsubinvariant function for P(a). Hence (Ap(a))® <
Ao (2a) [Nummelin (1984), Proposition 5.2].

Now suppose a € Uy and (Ap(a))? = Ak (2a). Then by (2.6), ricy (20) 2 is a (Ap(a)) "L~
subinvariant function for P(a). It follows that rp(a) = C (T]CQ(QOJ))% p-a.e., for some
C > 0 [Nummelin (1984), Theorem 5.1]. Hence there is equality in (2.6), namely equality
in Holder’s inequality, and—after normalizing so that Q is a probability measure—this
implies (2.5).

Conversely, note that (2.5) implies

Ko(z, ExT) = / Ap()e— (@ TPED) o ), forall €S, T e R, (27)
ExD rp(y; a)



IMPORTANCE SAMPLING TECHNIQUES 9

and hence

Ko (2a) (rp(a))® = (Ap(a)® (rp(@))*. (2.8)

It follows that (A\p(a))? = Ao (2a).
To establish (iii), repeat (2.7), (2.8) with “rp(a)rp(6)” in place of “r%(a).” O

3 Main results

3.1 Notation, hypotheses, and estimation

Given a MA—-process {(X,,S,) : n=0,1,...}, we would like to evaluate P {T°(4) < oo},
where T¢(A) is defined as in (1.2). Suppose that we simulate for this quantity using simu-
lated r.v.’s {(X¢,S¢): n=0,1,...} with transition kernel

Q" (z, E xT) =P {(X;H,E;H) € ExT|X¢ = x}

[Often it will be assumed that Q is independent of n,e.] If P(z,-) < Q™¢(z,-) for all
n € Zy, €>0,and z € S, then it follows from these definitions that

P{T‘(A) < 0} = Z/ ( d0me (i1, 5 X 3i)>
Q" (z0,dwy X dsy) -+ QU (wp—1, dzg X dsg),  (3.1)

where B¢, denotes all paths that first hit A/e at time k, that is,
l A
B = {(xo,... s Tk S0y -+ 5 Sk) E s; € — for [ = k but not for [ < k} (3.2)
€
j=1

It follows from (3.1) that

c def T4 dP e Xe s 1 3.3
Qe = H @( n—1s Xpn X &) {T(A)<oo} (3:3)

n=1

is an unbiased estimator for P {T(A) < oo}.
The efficiency of this estimator is measured by its variance, which we will study in an
asymptotic sense as € — 0. Since Var(€g ) = E(E% o)~ (E(Egyc))Q, and

E(€q.) = P{T"(4) < oo}

has the asymptotic characterization given in (1.4) [Collamore (1996a), Theorems 2.1 and

2.2], it is sufficient to study the asymptotic behavior of

EQ . Z “(wo,dzy X dsy) -+ Kgf(xk_l,dxk x dsy,), (3.4)
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where for all n, e,

. £ dP
K& (xn—1,dzy X dsp) u (W

2
(Tp—1,Zn X sn)> Q" (xp—1,dry X dsp). (3.5)

Our objective will be to give estimation results for E(Séye) as € — 0, and optimality
results describing which transition kernels Q for the simulated r.v.’s minimize E(é’é,f) as
e —0.

To state these results in a more formal way, we will first need to introduce some ad-
ditional notation and hypotheses, as follows. Let v and 7 be given as in Section 2, and
let

cone (C) = {Cv: (>0,veC}, for any C C R%;

cone 5(C) = {Cv: (>0, |lv—w| <d|w|, some we C}, for any 6 > 0;
& = cone <Suppy (%)) ;
Cct = {v: (av) <0, alla e C}, for any C C R?;
H(a,a) = {v:{(a,v) >a}, forany @ € R and a € R;

Lof = {v: f(v)<a}, forany f:R? - R and a € R

For any nonnegative p—irreducible kernel K, let

Ala) = limsupn'log K™(Xo,S;);
n— o0
AN (@) = supn~'log K"(Xo,S;a);
n>N
Ix(v) = sup{{e,v): a € LoAk}; Dx = domain of Ig;
I}?)(v) = sup{(a,v): a € LAK}; @([? = domain of I}?);
Ix(v) = sup{{a,v): a € LoAk}; resp. fﬁ(c)(-);

where, as before, (Ax () ! is the convergence parameter of K () and Ag () = log Mg (cv).
In the definitions of Ik, I}g), and I, we follow the convention that the supremum over an
empty set = —oo.

For any set C, let 1¢(+), riC, OC denote the indicator function on C, the relative interior
of C, and the relative boundary of C, respectively. For any function f, let f* denote the
convex conjugate of f. [For definitions, see Rockafellar (1970).]

Hypotheses:

(H1) A,(Cl)g(a) < 00, for all @ € LoAg,.
(H2) cl AN cones (LoAs) =0, for some § > 0.
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For example, if 51, 59, ... are the sums of an i.i.d. sequence of random variables, or the addi-
tive sums of a MA-process and (R) is satisfied under both P and Q € Cp, then A%\g (o) < o0
for all @ € dom Ax, and N € Z4; and so (H1) is then always satisfied. For (H2), observe

that if (:R) holds and 0 € dom Ap, or if (M) holds and dom ) is an open set, then
Ap(v) =0 <= E (51) =,

where 7 is the stationary measure of the Markov chain {X,}. [Cf. Ney and Nummelin
(1987a), Lemma 3.3 and Lemma 5.2.] Thus, hypothesis (H2) holds as long as the set A
avoids an arbitrarily thin é—cone about the mean ray {(E.(S1): ( > 0}.

Definition We say that a simulation kernel Q™€ belongs to the class Cy if Q™ = Q,
independent of n and €, and P(z,-) < Q(z,-), for all z € S.

Definition If A C R?, then we say that v € 0A is an exposed point of A if the ray
{Cv: v >1} Cint A, that is, the ray generated by v is an interior ray of A.

Theorem 3.1 Let A be a convex open set intersecting ri &. Let 2 denote the exposed points
of A. Assume that the MA-process {(X,,Sp): n=0,1,...} satisfies (M') and has initial
state Xog = xg. Suppose that simulation is performed with a kernel Q € Cy. Then:

(i) LOWER BOUND.

lim inf € log E(£3,) > — ;g{ I o (v). (3.6)
(ii) UPPER BOUND. Further assume that hypothesis (HI1) is satisfied, and: (a) cl AN
cone 4 (EOA;CQ)J' =0, for some & > 0; (b) infy Axy (@) < 0. Then for ¢ a.e. x,

lir?_félpelog E(Séye) < - 3ng([_]<@(1)). (3.7)
Remark 3.1.1 (i) If the lower bound of (fR) is satisfied, then it follows from the definitions
of Ak, AKQ, and of the convergence parameter that I, (v) = f;CQ for all v. Thus the upper
and lower bounds are the same in this case. There are also other examples where the upper
and lower bounds are the same, as shown below in Example 3.1.5. More generally, it is well
known in the context of large deviations for MA—processes that these bounds need not be
the same; see Section 4 of de Acosta and Ney (1998).

(ii) The condition (a) in the statement of the upper bound can be viewed as a strength-
ening of (H2): It follows from the definitions that (L',UI_X,CQ)L = Lol Ko- Since by Holder’s
inequality 2 (LoAp) D Eof\;cg [as in Lemma 2.3 (ii)], it can be shown that Lgf;cg D Lolp =
{Cv: (>0,ve LoA}}.

If the lower bound of (2R) holds, then it is sufficient to assume the weaker condition
inf{Ix, : v € A} > 0; see the comments following the proof of the upper bound. Further
weakening of this assumption (to the case where E(Sé,f) exhibits exponential growth as

e — 0) is not possible in general.
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Remark 3.1.2 If the lower bound of (fR) holds, then as an upper bound we actually

obtain

E(gé,e) < const. - exp{ - ;Ielgl I]CQ(Q))/E}. (3.8)

Remark 3.1.3 If S, = & + -+ + &, where {{,},cz, is an ii.d. sequence of random
variables, then the quantities Ap and Ax, which determine the rate functions on the right
of (3.6), (3.7) can be simplified. In this setting, Ap = Ap may be identified as the cumulant

generating function of &,, namely,

Ap(e) = [ el p(as),

where P is the probability law of §,,, and similarly for Ax,. Furthermore, any discussion of
eigenvectors or subinvariant functions may be dropped, i.e., we may always take rp(-;a) = 1

and i, (o) = 1.

Example 3.1.4 Let S, = & + -+ + &, where {{,}necz, C R? is an ii.d. sequence of
Normal r.v.’s with mean m = (u, ) and covariance S = (({_‘;), where p >0 and 0 <o < 1.
Let A = {(v1,v2) : v1 < —1 and vy < —1}. We consider the simulation of P {T¢(A4) < oo}

using an exponentially tilted distribution of the form
Qp(ds) = P12 D) p(gs). (3.9)

By Lemma 2.3 (iii), @ € LoAx, <= Ap(f) + Ap(a — ) < 0. Since the cumulant
generating function for a Normal(m, S) r.v. is Ap(@) = (o, m) + 3 (a, Sa), it follows from
a straightforward computation that

2 _\2 _\2
LoAky. = {a t (1+0) (071 + Vo 1) +(1-o0) (072 - 52) < b} ; (3.10)
B 140
where b = —(1 4+ 0)3? — 2v/2uB1 — (1 — 0)f2 + 2u%/(1 + o), and @,  denote the values of
«, [ in a coordinate system which has been rotated by angle 7/4.
Our objective is to apply Theorem 3.1 to analyze the dependence of E(S,%Qf) on f.
g
Thus we would like to study

T(B) =~ inf Trq, (v), (3.11)

i.e. the rate function on the right of (3.6) and (3.7), as a function of 8. [If J > 0, the
right-hand side of (3.7) must be taken to be infinity rather than as in (3.11).]

Suppose for simplicity that g = 1/v/2 and o = 1/2. Let F} = {B : 3(Bl+7/6)2 + (Bz -
3/2)? < 29/3} and Fy = {B: 3(B1 +7/6)" + (B> +3/2)" < 29/3}.

By (3.10) and a straightforward computation, the level sets where J(3) = —r < 0 are

= r \? 1= V2 or
(514-2—\/5) +gﬁ§=r(?—§>, (3.12)

given by
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-0.5 0 0.5 1

Figure 1: Let a = inf{J(B) : B € R?}, where J is defined as in (3.11). The figure illustrates the
level lines r = a4+ 0.25, a + 0.5, a + 0.75, ..., with 3; on the horizontal axis, and (> on the vertical
axis. J is seen to increase rapidly to the left of its minimum at (—4/3,0). The black area indicates
the region where J = co.

provided 3 € F; N F,. On (Fy U Fy)¢, we have J(8) = co. The behavior of J on (F} U
F»)¢ — (F1 N Fy) is somewhat more complicated but analytically tractable. In particular,
J < 0 or = oo; J is smaller than what would be predicted by (3.12), but larger than
sup {J(B) : B € Fi N F»}. A graph of the the level sets of J is given in Figure 1.

The minimum value of J occurs at the maximum r for which the right-hand side of
(3.12) > 0, i.e. r = 8v/2/3, and for this r we obtain by (3.12) that 3 = (—4/3,0). The
points where J = oo are all contained in the complement of the zero—set LoAp = {EM :
3(641 + %)2 +ai < %} This illustrates the fact that J(3) tends to be smaller on LoAp as
compared with (LoAp)©.

Example 3.1.5 Let {Y, } ez, be an ARMA(p, q) process in R?, namely,
Y,=— (¢1Yn—1 + -+ ¢pYn—p) +Wy +0Wp_1 4+ Han—q

for constants ¢1,...,¢p,01,... ,0, satisfying appropriate regularity conditions [see Brock-
well and Davis (1991), Chapter 3]. For simplicity, take {W, }ncz, to be i.i.d. Normal(0, S).
As on p. 28 of Meyn and Tweedie (1993), we may then write Y,, = F(X,,), where {X,,} is
a Markov chain taking values in R'Y, where | = max{p,q}, and this Markov chain can be
shown to satisfy (9') (by taking h(z) = const. - 1o, (x), where O, is an e-neighborhood of
the origin).

Assume that the past history of the process is known, or equivalently, the initial state
of the Markov chain is Xy = z¢ for some x5 € RI¢. Let m € RY — {0} and &, = Y, + m;
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and let S, =& + -+ &, n>1,and Sy =0. Then {(X,,S,): n=0,1,...} is a Markov
additive process.

A simple computation gives

oo
Ap(a) = (a,m) + > T, (o, Sav) (3.13)
j=0
for certain constants {V;} [as given in Brockwell and Davis (1991), Theorem 3.1.1], and
the upper bound of Theorem 3.1 is determined by (3.13). To see that the lower bound is
likewise determined by (3.13), note

1
Ap(a) = limsup—logE [e<o"5”>1(9E (Xn)}
n—oo T
1
= limsup —logE [€<°"S”>1Azm (X(pn)) 1o, (Xn)] : (3.14)
n—oo T
where b € (0,1), Ay, = [-Vka,Vka]?, and «a is a suitably large positive constant; the last

step was obtained by an application of Holder’s inequality which separates the expectation
over “el®5")14 (X,,)” and “1%, (X|pn)).” Finally, it can be shown that

lim sup — log B [e<°"5”75“"i>lof (Xn) | X|pn) € Acn] = (1L —b)Ap(a), (3.15)

n—oo M

with convergence uniform in ¢ < b. Substituting (3.15) into (3.14) and then letting b — 1
yields Ap(a) = Ap(a), for all a.
Using (3.13) in place of (3.9), we may now proceed as in the previous example to

determine the interdependence of E(Eé ) and Q.

For further applications to Markov and semi-Markov processes, see e.g. Iscoe, Ney and
Nummelin (1985), Ney and Nummelin (1987a), and Meyn and Tweedie (1993).

3.2 Optimality

Our next objective is to find an optimal @ € Cy which maximizes the decay rate on the
right of (3.6), (3.7).
Recall that Ip is the rate function describing the decay of P {T¢(A) < oo} as € — 0, as

n (1.4). Our results will depend in an essential way on the following.

Lemma 3.2 Let A C R? be a convex set intersecting ri &. Assume dom Ap is open and
(H2) and the lower bound of (R) are satisfied. Let a = inf,c 4 Ip(v). Then:

(i) There exists an element o € O(LoAp) that determines a hyperplane separating A and
LoIp, with A C {v: (ag,v) > a} and LoIp C {v: (o, v) < a}.
(ii) There exists a unique element vy € cl A such that Ip(vy) = a.

(iii) inerA Ip(v) = infveBA Ip(v) = <040,1)0>.
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(iv) The gradient of Ap at ap points in the same direction as vy, that is, vo = oV Ap(ap)
for some constant o > 0. If int & # (), then «g is the unique point of (LoAp) with

these properties.

For the proofs, see Collamore (1996a), Lemma 3.2, and Collamore (1998), Lemma 2.2.
The uniqueness in (iv) is obtained from the strict convexity of Ap [Collamore (1996b), p.
38, and Ney and Nummelin (1987a), Corollary 3.3].

We note that if dom 1) is open, where 9 is defined as in Section 2, then dom Ap is also
open; see Lemma 3.2 of Ney and Nummelin (1987a).

To see how Theorem 3.1 and Lemma 3.2 may be applied to obtain an optimal simulation
distribution which maximizes the decay rate on the right of (3.6), (3.7), we may reason as
follows. First note by Lemma 2.3 (ii) that LoAx, C 2(LoAp). Also, by Lemma 3.2 (iii),

(iv),
LoAp N{a: (a —ap,vg) >0} = {ap}.

Therefore I, (vo) < 2Ip(vg), with equality <= 2ag € LoAk,. It follows by Lemma 2.3 (ii)
that

I o (vo) < 2Ip(vp), with equality <= Q = Q* for ¢ x P a.e. (,y, s), (3.16)
where
d .
Q* (z,dy x ds) = e<a°’s>wp(x,dy X ds). (3.17)
rp (25 )

From (3.16) and Lemma 3.2 (ii) we then obtain:

Q# Q" = inf Iy (v) < 2Ip(vo) = 2 inf Ip(v).

Conversely, if @ = Q" then by Lemma 2.3 (iii): LoAx,. = {a+ap:a € LoAp}. Hence
Iy (v) = (ap,v) + Ip(v). It follows by Lemma 3.2 (i), (iii) that infyca Ix,.(v) =
2infyc 4 Ip(v). In summary, from Theorem 3.1, Lemmas 2.3 and 3.2, and Remark 3.1.1

(i), may conclude the following.

Proposition 3.3 Let A be a convex open set intersecting int &. Suppose dom 1) is open
and (H1), (H2), and the lower bound of (R) are satisfied. Let zo denote the initial state of
{Xn}n>0, and let Q* be the kernel defined in (3.17). Suppose simulation is performed using
a kernel Q@ € Cy. Then:

(i) For ¢ a.e. xy,
im i 2.)>1 2. :
hglglfelogE(SQ,E) > lg%elogE(EQ <) (3.18)

with equality if and only if @ = Q* for ¢ X P a.e. (x,y,s). Thus, Q" is the unique

kernel in Co which minimizes BE(E% o) ase—0.
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(ii) For ¢ a.e. xg,

. 2 _ o
lg%elog E(£5-.) = 2vlg£ Ip(v). (3.19)

Egs. (3.19) and (1.4) imply that simulation performed under the distribution Q* has
“logarithmic efficiency” [Asmussen (1999), p. 46]. Moreover, by Remark 3.1.2 and a sharp
form of (1.4)—available at least for the case that {&,} is i.i.d. and A is convex with smooth
boundary [Borovkov (1997)]—one obtains the stronger property of “bounded relative error,”

ie.,

lim sup M <
0 E(Eg,)?
It is natural to expect that this stronger property also holds under (2R). This property of
“bounded relative error” is the strongest known property for nontrivial rare event simulation
problems. [See Asmussen (1999).]
In the next theorem, we show that the optimality of @* € Cy is in fact more general,

and extends to time-dependent simulation regimes of a larger class C,, defined as follows.

Definitions (i) We say that a family of probability measures {Qn’e(az, ExT):Ee§,Te
Rd} belongs to a class C if Q™€ = 9™ for all n and €, for some family {Q(t) (z, E xT):
EecsS T'e Rd}, and

Pz,) < QW (z,), allz € S and ¢ > 0.

(ii) We say that a family {Q"“(z, E xT') : E € S, T € R} belongs to a class C, if it
belongs to C, and

QW =Qle"® allt > p— A,
where p is the constant given in Lemma 3.2 (iv) and A is some positive constant.

The significance of the constant ¢ is made clear in Theorem 2 of Collamore (1998), where
it is shown that asymptotically eT¢(A) — o in probability, conditioned on {T¢(A) < oo},
i.e. p/e is the “most likely” first passage time of the process {(X,,S,): n=0,1,...} into
the set A/e.

We note that the scaling of the form Q™€ = 0(7€) coincides with the standard large
deviations scaling appearing in Donsker and Varadhan (1975, 1976, 1983), Freidlin and
Wentzell (1984), and essentially all subsequent work; it appeared in the context of the
present problem in Collamore (1998).

For notational convenience, we will from now on write “Q € C” to mean that the family
{Qn’f(m, ExT): Ee€S,Te Rd} belongs to the class C, and likewise for members of C,.

Definition Let Q € C. Then we say that ty is a continuity point of Q if for any A > 0

there exists a positive constant v such that for all |t — ¢y| < 7,

oW (z,.) <« Q) (z,.), all z €S,
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and for any n € Z, € > 0 with ne =t:

i) E _ &(m)(x* X5 x &) _ < A; (3.20)
1 ™ dQ(tO) ny dnt1 €n+1 = 4y .

[ (ne)
(ii) E, (%(X;’;,X;H X 5;;4—1)) <K <oo, forallzeS§; (3.21)

where {(X},S}): n=0,1,...} is a MA-process having the transition kernel Q* in (3.17)

and 7* is the stationary measure of {X}}.

For example, if (9R) holds and Q € C has the form

QW (x,dy x ds) = e<at’s>_AP(at)MP(x, dy x ds), (3.22)
rp (@3 o)

where a; = f(t) for some continuous function f : [0,00) — int (dom Ap), then all points

t € [0,00) are continuity points of Q.

Definition We say that A C R? is a semi-cone if v € 0A = {Cv: ¢ > 1} Cint A, that

is, the ray generated by any point on its relative boundary is an interior ray of A.

Theorem 3.4 Let A be a convex open semi—cone intersecting int &. Assume that dom Ap
is open and (H2) and (R) are satisfied. Let xo denote the initial state of {Xy}n>0, and
let Q* € Cy be the kernel defined in (3.17). If simulation is performed using a family of

measures Q € C, then for p—a.e. xg,
.. 2 . 2
hlgrl)lglfelogE(SQ,E) > lgr(l)elogE(SQ*’e). (3.23)

Moreover, if we do not have Q) = Q*, for ¢ x P a.e. (z,y,s), at all continuity points
of Q in [0, 0], then there is strict inequality in (3.23). Thus, Q* is the essentially unique

element of C, which minimizes E(é’é,e) as € = 0.

If Q # O* at a continuity point ¢y which is outside of [0, g], then we do not necessarily
obtain strict inequality in (3.23); thus, the logarithmic-level optimality of @* in Theorem

3.4 cannot be extended from C, to C.

Remark 3.4.1 In fact what needs to be minimized in the above discussion is the number

of random wvariables that need to be generated, that is,
elog [Var(Sé,E)EQ(TE(A))] ase€—0 (3.24)

[cf. Siegmund (1976), p. 676, or Collamore (1996b), Lemma 5.2]. But if A is a semi-cone,
then

lim ¢ log Eo(T(4)) =0 (3.25)
€e—

[Collamore (1996b), Lemma 5.3]. Thus simulation under Q* is efficient and optimal.
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If A is not a semi—cone, then the situation is more complicated; in particular, we need
not have (3.25) in this case. It may then be preferable to simulate with Q@ € C, where
o) = Q* for t € [0, o], but Q1) £ Q* for t > tg, some ty > p. By a judicious choice of Q,
we may often obtain both (3.25) and (3.19).

3.3 General sets

Finally, suppose that A is an arbitrary open subset of R?. In this case, we will show that
we can partition A into subsets Aj,...,A; and apply the techniques of Theorem 3.1 to
efficiently simulate for P {Te(A), Ste(a) € Ai}, fori=1,... 1.
For any « € dom Ap, let
Qu(z,dy x ds) = e<a’s>_A7’(a)MP(x, dy x ds).

rp(z; )

Let B C A, and let 3}, denote the paths which first hit A/e at time %, as defined formally

in (3.2). If simulation is performed using a kernel Q € Cy, then

k
dpP
P {TG(A) < 00, GSTe(A) € B} = Z/E (H E(xi,l,xi X Sz)> lB(GSk)

'Q(xo,dflfl X d81) s Q(:Ekfl,dfl,‘k X dsk). (3.26)

Hence
gt 1 rap -
£0B)= ] E(Xn,l,anfn) 15(€Sre(a)) (3.27)
n=1

is an unbiased estimator for P {TG(A) < 00, eS’Te(A) € B}, where {X,,,S,: n=0,1,...}
is a MA-process having transition kernel Q, and we would like to minimize E(é’é, (B)) as
e — 0.

Proposition 3.5 Let A > 0 and A C RY, and suppose that dom Ap is open and (H1),
(H2), and the lower bound of (R) are satisfied. Then:

(i) For some finite subset {cu,... ,cq} of d(Lolp), the collection {H(ai,a —A) : i =
1,... ,l} is an open cover for A.

(ii) Let Ay = ANH(ay,a —A), Ay = (AF‘I’H(O@,(L — A)) — A1, and so on for As,... A
Then {Ay,... ,A;} is a partition of A, and for each i,

E(£3, (4;) < Cexp {—2(;22 I(y) — A)/e} (3.28)

for a certain positive constant C. In the event that A is a finite union of disjoint
convez sets {A],... , AL}, then we may instead take A; = Aj, and then (3.28) holds
with A = 0.



IMPORTANCE SAMPLING TECHNIQUES 19

4 Proofs

Some further notation from convexr analysis:

For any convex function f, let f* clf, f0*(:), 07 f, dom f, and 9f(-) denote the convex
conjugate of f, the closure of f, the recession function of f, the recession cone of f, the
domain of f, and the subgradient set of f, respectively.

For any convex set C, let C°, 07C, affC, riC, and dC denote the polar of C, the recession
cone of C, the affine hull of C, the relative interior of C', and the relative boundary of C,
respectively. [For definitions, see Rockafellar (1970).]

Also, we adopt the same terminology that was already introduced at the beginning of

Sections 2 and 3.

4.1 Proof of Theorem 3.1: Upper Bound

The proof of the upper bound is based on the following convexity lemma, which shows that

the separation property described in Lemma 3.2 (i) is in fact quite general.

Lemma 4.1 Let A C R? be a conver open set, and let A be a closed convex function. Let
I(v) = sup{ (a,v) : @ € LoA}, and let a = infyecq I(v). Assume 0 < a < co. Then there
exists 0 € LoA such that

Ac{v: (0,v) >a} and LI C{v: (6,v) <a}. (4.1)

Proof Since I is a positively homogeneous convex function and ¢ > 0, the sets A and
LyI are convex and have no common points in their relative interiors. Hence there exists a

separating hyperplane [Rockafellar (1970), Theorem 11.3], i.e., for some 3 € R — {0},
Ac{v: (Bv)>b} and L.IC {v: (B,v) <b}, (4.2)

where b € R; in fact, b > 0 because the definition of I implies 1(0) =0, so 0 € L,1.
Let ¢ > 0, and define f = I —¢. Then Lof = LI, and f* = 1,0 + ¢ [Rockafellar
(1970), Theorem 12.2]. An application of Theorems 13.5 and 9.7 of Rockafellar (1970) then

gives

17.7(8) = inf {(f*y)(B) |7 >00ory=0"}, (4.3)

where (f*y)(-) = vf*(-/v), for all v > 0, and f*07 is the recession function of f*.

Note that f*(-) € {¢,00} = f*0"(-) € {0,00} [Rockafellar (1970), Theorem 8.5]. But
we cannot have f*0%(8) = 0: Otherwise, (4.3) would imply 1} ;(8) = 0 for all ¢ > 0. Then
L C {U s (Bv) < 0}, all ¢ > 0. Since A is open, we would then obtain A Ndom I = (), by
(4.2), which is contrary to hypothesis. Therefore f*0%(3) = oo; thus the point y = 0 can
be removed from the infimum in (4.3).

Since f*(-) € {¢,0}, we now conclude from (4.3) that

17 ;(B) = ¢, where v = inf {7 : g € LoA}. (4.4)
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Setting ¢ = a yields £,I C {v : (B,v) < va}. Hence the constant b in (4.2) is > ~a.
Next suppose b > va/, where o’ > a. Then LI C {v: (B,v) <b}. By (4.2) it follows
that inf,c 4 I(v) > a', since A is open, and this contradicts the definition of a. We conclude
b = 7ya. Observe also that v > 0, because otherwise (4.2) and (4.4) would imply ANdom I =
(), contrary to hypothesis. The required result now follows from (4.2) and the previous

paragraph by setting 6 = 3/7. O

Proof of Theorem 3.1. Upper Bound. If Q =P, then the result follows trivially from
(1.4); we assume from now on that this is not true.
For any A > 0, let

K3(z,dy x ds) = Ko(z,dy x ds) + Ang, (dy)no(ds), (4.5)

where 7,, denotes a measure on S having point mass at xp, and 7o denotes a measure
on R? having point mass at the origin. For shorthand notation, let (Aa(cr))™" denote the
convergence parameter of ICS(a) and Aa(a) =log Aa ().

First we show

limsup Aa (@) < Agg (), for all a € LoAg,. (4.6)
A—0
To establish this fact, note
(l@é)k(xo,S;a) = Z / e<%> 700 (10, dy x -)
(il,...,ik)Ej (SXRd)k

sk O (dmy gy dag x2),  (47)

where J(©) = Kg and J) = An,,no, and J consists of all elements of the form (iy, ... , i)
where either i; =0 or i; = 1. Fix o € EOJ\;CQ and N € Z, and let

logby = A,(CI)Q(a) - A,(C]\;)(a)] < oo (by (H1)).

Observe that any product J @ % ... % J*) which has n “Ang,no” terms contains at most
n + 1 products of the form An, ne * IC(é) Kook IC(QH]) * Ang,no where 7 < N. It follows
that for a product of this form,

/ e<s> 700 (g dzy x ) % -+ % T (day_q, day x -
(S xRA)k

< O AT (N ()" (4.8)

Summing all terms in (4.7) gives Aa(a) < )\,(C]\;)(a) + by A, by the definition of the conver-

gence parameter. Letting A — 0 and then N — oo establishes (4.6).

We now apply Lemma 4.1 with A(a) = A, (@)—c where ¢ < 0. Note that the hypotheses
of the lemma are satisfied. First, Ax, is convex [Lemma 4.2 (ii) below]. Secondly, under
our assumptions, cl A N cones (EOI\KQ)J' = (0. Now Q # P — ]\;CQ(O) > 0 [as in Lemma
2.3], and then

cone 5 (Lokicg) ™ D (Lelxy) = EUI_}C%
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for sufficiently large ¢ < 0 [the last step was obtained from the definition of I ,(CC;] Conse-

quently inf {f,(cc; (v) : v € A} > 0. Finally, if ¢ < 0 is sufficiently large, then by Lemma 4.3
(i) below,

D) S1iDp =1i6.

[The last step follows from Theorem 13.5 of Rockafellar (1970), as noted in the “Remark”
following Theorem 2.1 of Collamore (1996a).] We conclude 0 < inf{I,(Cc; (v): v €A} < o0,
for all negative ¢ > some cg.

Let 6 be the element obtained in Lemma 4.1 when A(a) = Ag,(a) — ¢ and ¢ € [, 0).
By (4.6), there exists a A > 0 such that A,%Q (0) < 0. Moreover, there exists a ()\A(Q))_lf
(sub)invariant function, ra(6), for the resulting kernel I@S(Q) [Nummelin (1984), Proposi-

tion 5.2 and Theorem 5.1, or Section 2.2 above]. Define

e (dy; 0)
ra(z; )
Since 7 () is ()\A(H))flf(sub)invariant and Aa(0) < 0, Ry is itself a Markov additive

(sub)probability kernel.

Let P, denote the paths which first hit A/e at time T°(A) = k. Then by (3.4) and the
definition of K35,

Ro(x,dy x ds) = Ké((l), dy x ds). (4.9)

oo

E(Sé,e) < Z ICQ((IIO,d(IIl X d81) s Ké(xk,l, dxk X dsk)

—(0,s1++sk)
Z/

TA(Tre(a);0)

IN

-Rg((l)g, dxl X d81) s Rg(xk,h dxk X dsk). (4.10)

Note that ra(-;6) is uniformly positive [Remark 2.2.2, since (4.5) yields a minorization
Avgyp]. Also, ra(+;0) < 0o ¢ a.e. [Nummelin (1984), Proposition 5.1]. Thus the ratio
(ra(zo; 0)/ra(Xre(a); 0)) in (4.10) is deterministically bounded.

Next, observe by Lemma 4.1 that <9, S'TE(A)> > inf{f,(g; (v) : v € A}/e; and since I_,(CC; is

positively homogeneous,
inf{I{" (v) : v € A} = inf{[) (v) : v e A},

provided that the inﬁmum on the left is > 0. Therefore, the integrand in (4.10) is <
const. - exp{— mfveglf (v)/€}. Since Ry is a subprobability kernel, we obtain by letting
e \( 0 in (4.10) that

cof 70
lim sup e log E(EQ o) < ;g&[xg(v). (4.11)

e—0

It remains to show

inf{I_,(%(v) tveA} Minf{Ic,(v): veEA} asc— 0. (4.12)
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To this end, note that the assumption cl A N coneg (L',()/_XK;Q)L = () = the level sets of 1:,(%
are compact on the restricted set (cone 5(£0]\;¢Q)J-)c when ¢ < 0 is sufficiently large [cf.
Collamore (1996b), Lemma 3.1]. Let a denote the limit on the left—hand side of (4.12). The
sets clAN L1, ,(CC; are then compact and monotonically decreasing to cl AN L1 Ko asc 0,
implying (4.12). O

We remark that if the lower bound of (2R) holds, then the above proof can be simplified.
In that case, we may apply the measure transformation (4.9) directly to Ko, and Lemma 4.1
directly with ¢ = 0. This approach leads to some improvement in hypothesis, namely the
assumption “ANcone; (EOI\;CQ)J' = ()7 may then be weakened to “inf{Ix,(v): v € A} >0.”

4.2 Proof of Theorem 3.1: Lower Bound

We begin by introducing a splitting and truncation of g, as follows.

Let hev be the minorization in (91'), and note under (9 that either h(z, ds) or v(E,ds)
is independent of s. Thus (hev)? = geu, where g = h? and 1 = v2. Hence by Lemma 2.3 (i),
(g ) < Kg. This implies the minorization

§(a) ® fi(a) < Ko(e), for all o (4.13)

Define
© Ko(z,dy x ds) — (g ep)(z,dy x ds)

= >
Ko(z,dy x ds) l—g(x,Rd) (> 0),
and observe under this definition that
Ko(z,dy x ds) = (g ep)(z,dy x ds) + (1 — g(z,RY))Ko(z, dy x ds). (4.14)

Enlarge (S,S) to (S,S), where S =S x {0,1,2,...} and S is the natural extension of S
to S; and for M € Z, define truncated versions gy, har, I@g, ICg[ by:

our((@0,ds) = (577 Loan (1 agane($)o(e,ds),
pnr ((dy, §),ds) = Lo(§)0_nrane(s)p(dy x ds),
Kg((xal)a (dyaj) X ds) = [1i+1(j) 1(0,M} (.7) 1[—M,M}d(5) ICQ(xady X ds)] A M,
IC]\Q/[((va)’ (dyaj) X ds) = M]\f— 1 [QM *MM((xai)a (dyvj) X ds) +

(1= g, Y)Y ((2,), (dy, §) x ds)|.
Note that IC]‘Q/[ is strictly increasing,
KY¥((z xN),(ExN) xT) <Kg(r,E xT), allE€S, TI'eR? (4.15)
(where N denotes the set of natural numbers), and

KY¥((z xN),(E xN) xT) /Ko(z,ExT) as M — co. (4.16)
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It can be easily shown that ICg[ is irreducible with respect to a maximal irreducibility
measure @y @ as M — oo.
The kernel ICg has a minorization, namely gas epns < ICg[ , which implies

g (@) ® fins(@) < KY(a), for all o (4.17)

For shorthand notation, let (Ap/()) ' denote the convergence parameter of I@g (c),
Ay (a) =log A\pys(ar), and let Dy = @,ng and I](\? = ’(CC]%QJ

Our main reason for introducing the above truncation is because the transformed kernel
I@g (o) has eigenvectors which are bounded, and the following regularity properties also

hold.

Lemma 4.2 Let the kernels KM, Ko and functions Ay, Ayr, and A, be defined as above.
Then:
(i) Aas is convex and analytic, and Ayr(a) / Ay () as M — oo, for all c.

(
(

I@g(a). Moreover, the function ry;(-; «) is positive and bounded.

ii) Ak, is convex and lower semicontinuous.

iii) For any «, there ezists a (Ayr(a)) ' —invariant function, ryr(-; ), for the kernel

Proof (i) Following Iscoe, Ney and Nummelin (1985), Lemma 3.4, introduce the generating

function
Yu(e, () = Z/ _elosi=Cn (MM o (KY — gnr epnr)” *9M> (z,S x ds)
n=1 SERd,l'ES
© N n—1
= Y e () (KY (@) = gule) ® (@) gu(a). (4.18)
n=1

Then Ap(a) = inf {¢ : Yar(a, () < 1} [Nummelin (1984), Proposition 4.7 (i)]. Note by the
construction of ICg that the sum on the right of (4.18) is actually finite; consequently,

P (o A (@) = 1. (4.19)

The convexity of Aps follows from (4.19) and the convexity of 1s. Since s is analytic
on R4+ the analyticity of Ays follows from (4.19) and the implicit function theorem. The
convergence Ay A, is obtained as in Lemma 3.3 (i) of Ney and Nummelin (1987b).
(ii) Ak, is convex because (by (i)) it is a limit of convex functions, and lower semicon-
tinous since the analytic functions Aps 7 A as M — oo.
(iii) Since (4.19) holds, K is (Aps(cr)) ~'-recurrent [Nummelin (1984), Proposition 4.3].

Hence a (Apr(r)) ™ '—invariant function exists and is given by

o0
~ n
rarla) = 3 e D (/cgf (@) — gar(a) ® aM(a)) (@) (4.20)
n=0
[Nummelin (1984), Theorem 5.1]. By the construction of £, the sum and individual terms
on the right are finite, hence 75/ (-; @) is bounded. Finally, positivity of ra/(-; ) is obtained

from Nummelin (1984), Proposition 5.1. O
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Lemma 4.3 Let the kernels P, ng[ and Ko be defined as above. Then:

(i) For any b > infy Ap(a) and ¢ > infy Ag, (), @g) C @%)Q

(ii) For any cpr > infy Apr(a) and ¢ > inf, Ak, (), ’Dg\fl) N ’D,(é)g as M — oo.

(iii) For any c € R and v € ri’D,(CC)Q, I](VC[) (v) N\ I,(CC;(U) as M — oo.

(iv) For any c € R and v € ri@%c}, the supremum in the definition of I](Vc[) 15 achieved at
a point 6 € LAy Naff Dy Moreover, if ¢ > inf, Ajyr(ar), then for some positive constant
p = p(v,c), we have pVApr(0) = v.

Proof (i) Note
(O1))7 = 0% (Lshp) and (D)7 = 0 (Loico). (421)

[Rockafellar (1970), Theorem 14.2, applied to 17, and 17 Ak’ By Rockafellar (1970),
Theorem 8.7, 0% (12,7,), 0+(1£cA;cQ) may be identified with 07 (LyAp), 07 (L Ak, ), resp.]
Now set b = ¢/2. Since LAk, C 2(L./2Ap) [Lemma 2.3 (ii)], it follows from (4.21) that
(@gﬂ))o D (@,(g)g)o, hence ©$/2) C @,(g)g For a general b > inf, Ap(«), observe that

0+ (LyAp) = 0F (L, /2Ap) [Rockafellar (1970), Theorem 8.7], hence D = D%,

(ii) The proof is analogous to (i), once it is observed that

(0% Axo) =) (0% An) (4.22)
M

[Rockafellar (1970), Corollary 8.3.3 and Theorem 8.7].

(iii) First assume v € int Dx,. Let
Wy = {a € LAy (a,v) > 1}5}(0)} . W= {a € LoAxy : (a,v) > 1,%;(@)} .

Since LcAn N\ LeAx, monotonically as M — oo, (,;Wn = W = 8[,(%(1)) (where
the last step follows from Theorem 23.5 of Rockafellar (1970) and the definition of I ,(CC;)

Now v € int Dx, = 01 ,(Cc; (v) is compact [Rockafellar (1970), Theorem 23.4]. Hence the

convergence Wy \, W implies
Wuy C{z:||lz—w|| <A, weW}, M > some My(A), for any A > 0.

Thus 1) (v) < I (v) + Allv], all M > My(A). Conversely, LoAy D LoAx, = 117 (v) >
I,(CC; (v), all M. We conclude I](\/C[)(v) N I,(CC; (v).

Next assume v € 1i Dx,. Then v € aff Di,, hence (by (i)) v € aff D for sufficiently
large M. Thus (o, v) =0, all @ € (aff D, )+ and all @ € (aff Dpr)t, M > some My. Using
this fact, we may then proceed as in the previous paragraph, replacing I ,(CC;, I](VC[) with their
restrictions to aff Dy, .

(iv) Let v, IV\M, fM, and Dy, denote the restrictions of v, Ay, Ing, and Dy to aff Dy
Then ¥ € int ® 7. Hence 81 (v) # 0 [Rockafellar (1970), Theorem 23.4]. This implies

I % sup (8,5) = (6,5), some 0 € H(LA) (4.23)

ﬁe'CCAM
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[Rockafellar (1970), Theorem 23.5]. Since (o, v) = 0 for all a € (aff D7) ", (4.23) also holds
with I, in place of fM, etc., and @ in place of é, where 6 = § on aff ©; and 6y, = 0 on
(aff @M)L.

Finally, observe by (4.23) that 0 is normal to £.Ap7, hence 6 is normal to L.Aps. If
¢ > infy Aps(a), then it follows from Corollary 23.7.1 of Rockafellar (1970) that v = pVA(6),

for some positive constant p. O

Lemma 4.4 Let {(X,,S,) :n=0,1,...} be a MA-process on S x R satisfying (I'). Let
P denote the transition kernel, and assume the additive components {&,} and regeneration
times {1;} are bounded, and E,(S1) = 0, where 7 is the stationary distribution of {X,}.
Then for any A >0 and K > 0,

A
limelogP ¢ max_ |S' |>—7=— inf { inf tAL(- )} <0, (4.24)
e—=0 0<n<[ K te(0,5] Lv==A 3

where (Ap()) ! is the convergence parameter of P(c).

Proof See Collamore (1998), Theorem 1. Since A% (v) = 0 <= v = E;(S;) = 0, the
right—hand side of (4.24) is < 0.

We remark that hypothesis (H2) of Collamore (1998) is not needed when the time
interval (= [0, K] in this case) is bounded. Also, hypothesis (HO) of that paper is satisfied,
by the results of Ney and Nummelin (1987b). The “s—set” assumption in Theorem 2 of Ney
and Nummelin (1987b) is not needed, because {£,} and {r;} are bounded; hence rp(-; )
is bounded below for all «, by Lemma 2.2 (i), and inspection of the proof shows that the

“s—set” condition is unnecessary in that case. O

Proof of Theorem 3.1. Lower Bound. Case 1: LoAx, # 0.

Let v € ANriDg,. Then v € ri Dy for sufficiently large M [Lemma 4.3 (i)]. Assume M
has been chosen so that this is true. Then by Lemma 4.3 (iv), there exists 0 € 9(LoAnr)
and a positive constant p such that pVA,(0) = v.

Define

(9 S>TM (ya 0)

Ro(x,dy x ds) = (@)

Kg(x, dy x ds), (4.25)

and observe that Ap/(0) = 0 = Ry,, is itself a Markov additive probability kernel.
Let P, denote the paths which first hit A/e at time T°(A) = k, and let Zy = (x0,0).
Then (3.4) and (4.15) yield

o0

E(é’é,f) > Z ICQ (Zo,dzy X dsy) - Kg(wk_l,dxk X ds)

_ Z / o “’“”"M(%;O)

M ZEk, 0)

“Ro(Zo,dzy X dsy) - Ro(zk—1,dxr X dsi). (4.26)
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To analyze the quantity on the right, note Er,(£,) = VAp(0) = v/p, where 7 is the
stationary distribution under the measure Ry [Ney and Nummelin (1987a), Lemma 3.3].
Thus, the expected time for the Ry—process to reach the point v/e € (0A)/e is = p/e. Also,
since v € 2, the straight—line path [0, v] contains no points other than v in the convex set
cl A. Hence by Lemma, 4.4,

Pr, {T°(A) < (p—A)/e} - 0ase— 0, for any A > 0;

in words, the process stays near its central tendency and therefore does not enter A/e before

the expected time of p/e. By an analogous argument, we also obtain
Pr,{T(A) < p/e, Specay € B(v,A)/e} — 0 as e — 0.
Finally, by the central limit theorem for MA—processes,
ligiglfPRg {T(A) < p/e} > const. > 0.
Putting these together yields
ligl)iglfP {eT*(A) € (p— A, p), eSte(a) € B(v, A)} > const. > 0. (4.27)

Since rj/(+;0) is positive and bounded, by Lemma 4.2 (iii), it follows from (4.26) and
(4.27) that

limiglfelog E(£3.) > —(0,v) — Al|9]| = —In(v) — A6 (4.28)
€— ’
Now let A — 0 and then M — co. From Lemma 4.3 (iii) and (4.28), we then obtain

. 2

hglglfelog E(£5,) > —Ixgo(v)- (4.29)

The required lower bound follows by taking the supremum in (4.29) of left and right—hand
sides over v € ANriDk,, and observing by Lemma 4.3 (i) and the definition of  that AN
riDp # 0 = ANriDy, # 0. Hence inf {Ic,(v) : v € ANTi D, } = inf {Ix,(v) : v €A}
[cf. Collamore (1996a), the last paragraph in the proof of Theorem 2.1].

Case 2: LoAk, = 0.

Let My = min{M € Z : LoAy = 0} < 0o, and assume first that My < co.

For each M, let cpy = inf,cpa Apr(), and let ¢ = inf,cpa Axy (). Then ’Dg\i,M) Ny ’Dsg)g
as M — oo; hence ANTi®Dp #0 = ANri ’Dg\(j[M) # () for sufficiently large M [Lemma 4.3
(i)

Let M > Mj be chosen such that AN ri@S\ZM) # (), and let v € AN ri@S\ZM). Let d; =
cu+1/j,5=1,2,... . Then by Lemma 4.3 (iv), there exist elements 0; € 9(Lg, Anr)NatfD s
and positive constants p; such that p; VA (0;) = v.

For each j, introduce the Markov additive probability kernel

01— M ) ()

Ro; (z,dy x ds) = v (z:05)
» 7]

IC]\Q/[((II, dy x ds), (4.30)
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and reason as in (4.26) to obtain

Z / Ot R g (wo; 6;)

rar(zr; 05)

E(£3,)

-jo ((IIO, dxl X d81) s jo (:Ekfl, dxk X dsk). (4.31)
It follows from (4.27) and (4.31) that
lim inf ¢ log E(£3,) > —(0;,v) + piAn(0;). (4.32)
€— ’

We now distinguish two possible cases. First, suppose that {f;} converges (possibly
after passing to a subsequence) to some element 6 € R?. Then the infimum in the definition
of ¢y is achieved at 0; hence Ay (6) = cpy > 0 and VA () = 0. But then lim; 00 pj =
lim; 00 (v/VAp(65)) = 00. Letting j — oo in (4.32), we conclude

. 2 .
!gr[l]elog E(£5,) = oo. (4.33)

Next, suppose that {f;} does not converge along any subsequence. Let 8; = 6;/||0}]|,
and observe that (possibly after passing to a subsequence) §; — g e 8% ! and |0;]] — oo as
j — 00. Then § € 0" Ay [Rockafellar (1970), Theorems 8.2 and 8.7]. Hence /3 € (D CM))
(as in the proof of Lemma 4.3 (i)). Since the 6;’s were chosen in aff ©y, it follows that
B € D, Naff Dy Then v € 1iDy = (B,v) < 0. Hence (Bj,v) < b < 0, for all
j > some jg. But then

— (05, 0) = =101/ (Bj,v) = o0 as j — oco. (4.34)

Thus, letting j — oo in (4.32), we again obtain (4.33).
Finally suppose My = oco. In this case, the elements of {LoAy : M =1,2,...} are
nonempty and monotonically decreasing to (,; LoAr = LoAxy = 0. Then

inf {||v|| : v € LoAp} — 00 as M — oo. (4.35)

Since Ay is strictly increasing, which (with My = oo) implies infy, Apy(a) < 0, VM, we
may apply Lemma 4.3 (iv) to obtain elements 0y € (9(LoAr) N aff Dyr) and positive
constants pps such that ppr VA (6a7) = v. Then (4.35) implies ||@as]] — oo, and (possibly
after passing to a subsequence) (s aof O /10w — B €Ny 0T Ay = Di,, [Lemma 4.3 (ii)
and its proof]. Then (4.32), (4.34) (with “M” in place of “;”) give (4.33), as before. O

4.3 Proofs of Theorem 3.4 and Proposition 3.5

Next we turn to the proof of Theorem 3.4.
Let Q" be the kernel described in (3.17), and let Q € C. By the Radon-Nikodym
Theorem, we may write Q) = R 4 V() where R® <« @* and V¥ 1 Q*. Now define

€ dR en) * *
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where {(X},S}): n=0,1,...} denotes a MA-process with transition kernel Q*. Let
Wy=2i+---+2%;,, n=12,..., and W;=0.
The proof of Theorem 3.4 will rely on the following.

Lemma 4.5 (i) For any fized €, {W}},>0 is a submartingale.

(i) If Z5 = ZENVO0 —1, We = ZS + -+ ZE forn > 1, and W = 0, then {WS} is a
submartingale.

(iii) Suppose Q € Cqy, so that {ZE}, {(W<} are actually independent of €, and let ZM =
ZEN (—M) and WM = ZM ...+ ZM for n > 1, and WM = 0. Assume that the lower
bound of (R) is satisfied, and that we do not have Q@ = Q* for ¢ x P a.e. (z,y,s). Then,

for certain positive constants My and D,

1
limsup —Eo- (W) < —D, for all M > Mj. (4.37)

n—oo M

Proof (i) Jensen’s inequality implies that E (W<, ;| X = z) <0 for all z; hence {W}} is
a submartingale.
(ii) This follows by a similar argument and the inequality (log s) < s.
(iii) Let {X;;,g;;,Wn : n =0,1,...} be an independent copy of {X}, S W, : n =
0,1,...}, but assume that the initial measure of X;’; is
x

7" = the stationary measure of {X} under the transition kernel Q*.

Let {T;}ien and {Ti}ieN denote the respective regeneration times, as described in Lemma
2.1, and let

innf{n:Ti:nande:n, Somei,jEN}

denote the coupling time.

First note that if we do not have @ = Q* for ¢ x P a.e. (z,y,s), then by Jensen’s
inequality E;«(Z5) < 0. By the monotone convergence ZM N\, Z¢ as M — oo, it follows
that

E.(ZM)<-D' <0, forall M > some M. (4.38)
Consequently
E(WM) < —nD', all M > some M. (4.39)
Let €, = T A n, and observe

E(WM) =e(WM) + EW2 —w}). (4.40)
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Also, by a slight variant of (i), {W,}' — ne} is a submartingale for all M > log {1/(e€ — 1)},
and analogously for (ii). Hence, letting € = D’/2, we obtain by the optional sampling
theorem that

D/

E(Wi) = - "BE(§) =C<oo, allM> some My'; (4.41)

and since WM > —M we also have
~E(W¥) < ME(%) = (' < o0, (4.42)

where C, C" are < oo by Remark 2.1.1 (i). The required result is then obtained by substi-
tuting (4.41) and (4.42) into (4.40). O

Lemma 4.6 Let A C R? be a convex semi—cone intersecting ri&. Assume domAp is open,
and that (H2) and (R) are satisfied. Let o be given as in Lemma 3.2, and let T 4 Tis
where 7, = T;41 — T; are the interregeneration times described in Lemma 2.1. Define
Z¢(A) = inf{i : T; > T(A)}. Then for ¢ a.e. xy,

. . 0
lim eBo- (Z°(A)) = B) (4.43)

Proof Lower bound. First intoduce a truncation on the additive components; namely, let
M > 0 and define

M
EM —¢r if (ap, &) > -M, and €M =¢ —————— otherwise. (4.44)
{0, &)l

Let SM =¢M ... 4+ eM n=0,1,..., and let S} = 0. Also let B = H(a,a), where ay
and @ are given as in Lemma 3.2. Then by Lemma 3.2 (i), Z¢(A) > Z"¢(B) (where Z"<()
denotes the stopping time with respect to the truncated process {SM}, cn).

Note dom Ap open = 0 € int (dom Ag-) [Lemma 2.3 (iii)]. Hence by the optional

sampling theorem,
Eo- ((a0,57.,,.,,)) = Bo((a0, 7))
+Eo- ((a0, S1,, — SI))Bo- ((Z¥(B)) —1). (4.45)
Also, under the above truncation,

Eo- ({ao, 57, — Spine(p))) = —MEg- (Trme(py) — T"(B)) > —MC. (4.46)

M (B)

where by Remark 2.1.1 (i), the constant C' < oo. Since S’TI‘IIM,E(
(4.45) and (4.46) that

B) 2 a/e, it follows from

lim inf eBo- (Z"°(B)) > a/Eg- ({0, S7/,, — 511)), (4.47)

e—0

provided that

Eo- ((a0,S71)) > ~ME(Ty) < 0o for pa.e. zo. (4.48)
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Finally observe by Lemma 3.3 of Ney and Nummelin (1987a) and Lemma 3.2 (iv),

Eo- (S;Hl - ST> — VAp(aw) - E(7) = U—;E(T), i=0,1,.... (4.49)

Then (4.48) holds, and the required result follows from (4.47), (4.49), Lemma 3.2 (iii), and

the monotone convergence <a0, S%H — S%> ¢ <a0, St — S}) as M — oo.

Upper bound. First assume d > 1. Let £ > 0, and :blserve since A is a semi—cone that
(1 + t)vp is an interior point of A. Choose wM ... w® e A such that the convex hull of
{vo,w™, ..., w®} contains a neighborhood of (1 4 t)v. Let v*) = vy + wk); let FH) =
the hyperplane containing {vo,v(l), . ,v(d)} — {v(k)}; and let #(*) = the open halfspace
determined by J*) which contains the point (14 ¢)vg. It follows from this constuction and
the semi-cone property that 0 ¢ #(*) and ﬂzzl HE) C A.

Let Z¢ = inf{i : S, € H®), all j > i}. By (4.49), the expected time for {S}, }ien to

reach H*) is ¢ = o/E(7). Hence by a simple one-dimensional change of measure argument,

1 A
lim E o~ [I;-; 75 > - (g+ )] =0, forall A>0. (4.50)
e—0

e \ E(7)

Since Z¢(A4) < max {If, e ,Ig}, the upper bound is obtained from (4.50).
Finally, if d = 1 then the upper bound can be obtained directly from (4.50). O

Proof of Theorem 3.4. Following Asmussen and Rubenstein (1995), Theorem 17.6, first

observe
2 2 ¥
(en) def dP (en) _ dP dQ * 451
dKo <7dQ(f”) dQ 70" Tl dQ*. (4.51)
Also by the Radon—Nikodym Theorem and the definition of R("),
aQ: Ao [dar@\”

From (4.51) and (4.52) it follows that

2 . . .
E(gé 6) = EQ* M 6_2<a0’STE(A)>_WTE(A)
; TP(XTe(A);aO)
> exp{~2Bo- (a0, Sie(n))) — Bor W) +C'}. ws3)

by Jensen’s inequality, where C’ is a finite constant obtained from the uniform positivity
and boundedness of 7p () as described in Lemma 2.2 (iii).
Let Ty, T1, - .. denote the regeneration times in Lemma 2.1 generated by the MA—process

{(Xn,Sn)}; let {r;} denote the interregeneration times; and let
I(A) =inf{i : T; > T(A)}.

Introduce the truncation {(57]:/[,5'7]2/1) :n =0, 1,...} of {(5;,5’7’;) :n=0,1,.. } that
was described above in (4.44), and observe under this truncation that (4.46) holds with A
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in place of B and Z¢(-) in place of Z(.). It follows from (4.52), (4.53), and the definition
of {SM1} that

log E(£3,0) > —2Eo- (@0, 575, ,,)) — B+ (Wie(a) + C, (4.54)

where C' € (—o0, 00).

By the optional sampling theorem and Lemma 4.5 (i), (ii),
Eo- (Wie(4) < 0. (4.55)
Also, by the optional sampling theorem
Eo- ({0,575, .,,)) = Bo- ({0, 57)) + Eo- ({0, 57, — 57! ) Bo- ((Tre(a)) — 1) (4.56)

Then by (4.48), (4.49), Lemma 4.6, and the monotone convergence <a0,5'%+1 — S%) ¢

<Oé(), S’i_;,_l - S;:l>’
li_r)r(l) eEg- ((ap, S%/I[E(A)» N (o, v9) as M — oo. (4.57)
From (4.54), (4.55) and (4.57) we conclude
im i 2.)>— : :
hglglfelog E(&5,) > 2{ g, vo) (4.58)
In view of Lemma 3.2 (iii) and Proposition 3.3, this implies
liminfelog E(£3 ) > limelog E(£3- ). (4.59)
e—0 ’ e—0 ’

It remains to show that if Q(0) #£ Q* at some continuity point ¢y € [0, o], then there is
strict inequality in (4.59). Suppose now that to € [0, g] is a continuity point and Q(*0) # Q.
Then the continuity property (3.20) is satisfied in some interval [(1, (2] C [0, 0). Let D and
M be the constants obtained in Lemma 4.5 (iii) when Qg = Qo) Assume that the interval
[C1,C2] has been chosen sufficiently small so that (3.20) holds with A = D/2.

Decompose the r.v. Z;, into a sum of two terms, namely,

dR (1)
UTL = lOg ( (X:L?X:Inkl X 6;24»1) , = 07]-7"' )
€ dR(en) * % *
Vo = log (m(XnaXn-l—l x gn—l—l)) ;, n=0,1,....
For M >0, let UM = U, v (-M), V)" = VeV (=M),
RM —uyMy...4UuM — ZMe=UM ;v

and W' = Z)" 4. + Z)".
Now by Lemma 4.5 (iii),

li Eo-(RM — RM < _(S2=% D, all M > M,. 4.60
lTjélpEQ(L%J L%J)—(CZ)’a = (4.60)
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Hence from the continuity properties (3.20) and (3.21) and a straightforward variant of
Lemma 4.5 (iii), we obtain

lim sup ¢E o- (W Le _ WJ‘C“) <-D'<0, allM> M, (4.61)
e—0 L 2J L IJ

Moreover by the optional sampling theorem and Lemma 4.5 (i),

Bo (Whian i)

€

) <0, (4.62)
and

Eo- (Wie(a) — W[

T > [2]) <0 (4.63)

It follows from (4.61)—(4.63) and the definition of {W/LV[’E} that

1 € _ M,e M,e . e 9

llr?jélpeE(WTf(A)) <-D' hglonfeEQ* (WL%J WTE(A)/\L%J’ T(A) < ; ) (4.64)
Since (> < o, P{T(A) < |(2/€]} =P 0 [Collamore (1998), Theorem 1; cf. (4.49) and the
proof of Lemma 4.4]. Also, from the above definitions the last integrand in (4.64) is bounded
below by —2M [({2 — (1)/e + 1]. We conclude that the last term on the right of (4.64) can
actually be dropped.

Using (4.64) in place of (4.55) now gives strict inequality in (4.59), as desired. 0

Proof of Proposition 3.5 (i) By definition,

(LoIp)" = |J H(a,b), forallb>0.
a€LoAp

Hence {H(c,a — A)},cron, 1S an open cover for B o O(LqIp) Ncone 5(LoA%)".

The set B is compact, since Ip is positively homogeneous and strictly positive on the
compact set S¥! N cone 5(£0A1‘P)c [Collamore (1996b), Lemma 3.1]. Hence there exists a
finite subcover for 8. This subcover also covers (L',aIp)C N cone 5(£0A;‘,)C, and hence A.

(ii) This is established in the same way as the upper bound of Theorem 3.1, with «;
in place of 6. (See also the comments following the proof of this upper bound.) In the
case where A is a finite union of convex sets, choose the «;’s to be the elements obtained
in Lemma 3.2 when A = A, i = 1,... ,k, and then proceed as in the proof of the upper
bound of Theorem 3.1. O
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