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We study the local and global behaviors of regression splines under a-mixing.
The asymptotic normality for the regression splines is established. We also prove a
central limit theorem for integrated square error of least squares splines estimators.
We investigate the limit distribution of the same functional when we substitute a
constrained estimator for the regression function. In addition, results on the maxi-
mal deviation for some derivatives of the estimators are provided, which leads to the
construction of goodness-of-fit-tests and testing the monotonicity or the convexity
of the regression function. We prove that the tests are consistent and have power
against some local alternatives.
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1 Introduction

For i.i.d. observations, the local and global properties of commonly used nonpara-
metric estimators are well known so they allow good methods of statistical inference.
However, much less is done in the case of dependent observations. Futhermore, in
nonparametric curve estimation under mixing, usually only local properties are es-
tablished.

We consider the problem of estimating a regression function when the design
points are either deterministic or random and the errors are dependent. While it
appears difficult to impose properties such as convexity or monotonicity on non-
parametric local averaging estimators (for example kernel type estimators), this
restriction is readily introduced by using spline estimators. The rate of convergence
for such estimators are derived by Burman (1991) under mixing. More recently,
Zhou et al.(1998) established asymptotic normality for regression splines when the
errors in the model are uncorrelated. Our objective is to obtain local and global
measures for the least squares spline as an estimate of the regression function. In
particular, we generalize the result of Zhou et al.(1998) by establishing asymptotic
normality for least squares spline with dependent errors. We also derive the central
limit theorem for the integrated square error of the least squares spline estimator.
In addition, we study the asymptotic distribution for the Ly distance of the regres-
sion splines under convexity or monotonicity constraints. We also derive results
on the maximal deviation for the first and second derivatives of the least squares
spline estimator. We apply these results to validate an asymptotic goodness-of-fit
test. We also propose tests of convexity and monotonicity of the regression function.
The literature on nonparametric tests is extensive: specification tests are proposed
by Hausman (1978), Bierens (1982, 1990), Lee (1988), Eubank and Spiegelman
(1990), Wooldridge (1992), Yatchew (1992), Hérdle and Mammen (1993), Hong
and White(1995) and Yatchew and Bos (1997). Bickel and Rosenblatt (1973) and



Stoker (1989, 1991) propose tests of significance. Surveys in testing monotonicity
and convexity include Schlee (1980), Yatchew (1992), Yatchew and Bos (1997), Di-
ack and Thomas (1998), Bowman and al. (1998), Diack (1999, 2000) and Doveh
and al.(1999). In contrast to our setting, all these authors assume that the random
variables in their models are independent, whereas we assume this only when testing
the shape of a regression function.

We consider the following regression model

Yi=g(x)+ Zi=1,--- ,n. (1)

The design points {z;};_, can be deterministic or random. Without loss of generality,
we assume that z; € [0,1]. We also assume that {Z;, k € Z} is a strictly stationary
sequence of real random variables with zero mean on a probability space (2, A, P).
Let

Y =KZ; Zi i, (2)

be its covariance sequence. Let o (Z;,i < 0) and o (Z;,i > j) be the o-fields gen-
erated by {Z;,i < 0} and {Z;,i > j}, respectively. We assume that the sequence
{Zk,k € Z} is a-mixing, that is:

aj= sup |P(AB)—P(A)P(B)|—0asj— +oc.
A€o(Z;,i < 0)
Beo(Z;,i>j)

We also introduce the maximal coefficient of correlation

p; = sup |corr (A, B)| — 0 as j — 4.

A€Ly(o(2;,i < 0))

BELy(o(Zi27))
This paper is organised as follows: in Section 2 we define the constrained (e.g.
monotone and convex) and unconstrained regression spline estimators. Section 3
presents results for asymptotic normality and limit theorems for the L, norms of
the deviation of the estimate (constrained or unconstrained) from its expected value.
We also derive asymptotic distributions for the maximum deviation of the first and
second derivatives of the estimate. Section 4 discusses construction and consistency

of tests. We also examine their local properties. Technical proofs are given in Section
5.

2 Estimators

To estimate the function g, we use a least squares spline estimator. Let ny, =0 <
N < ... < Mgy = 1 be a subdivision of the interval [0, 1] by & distinct points. We
define S(k,d) as the collection of all polynomial splines of order d (i.e., degree <
d — 1) having a sequence of knots 7, < ... < n,. The class S(k,d) of such splines is
a linear space of functions with dimension (k + d). A basis for this linear space is
provided by the B-splines (see Schumaker, 1981). Let {Nj, .., Nx1q} denote the set
of normalized B-splines. The least squares spline estimator of ¢ is defined by



where

) k+d 2
0= (91,... 79k+d) —argoé%krid {Y ZQ N, (x; } . (3)

Cubic spline functions are good for estimating the regression function under local
convexity constraints. Indeed, beyond their common use in approximation problems,
they allow a simple characterization of convexity as follows: if f is cubic spline, then
its second derivative is a linear function between any pair of adjacent knots 7, and
;41 and it follows that f is a convex function in the interval [m, 7, +1] if and only if
£ (n,) and f" (77i+1) are both non-negative (this property is used by Dierckx 1980
to define a convex estimator).

For a function f in the class S(k,4) of cubic splines, we can write:

k+4

= 0,N,(x) with 0= (0y,....0k4) € R*.

Then,

k44 k44

Ze N, () Ze dp1,

where the coefficients d,; are easily calculated from the knots (see Dierckx 1980):

dyy=0 if p<l or p>1l+4
6

d —

S T e ) for =0, k1
1+3,0 (tire—tiys)(ti4s—ti43)

divoy = —(diysy + dig1y).

Let Cp = (0,0, ...,0, _dl-i-l,lv _dl+27l, _dl+3,la07 ...,O)I S Rk+4 and 6 = (91, ...,9k+4)l,
then

f'(m) = =cb.

Hence, the cubic spline f is a convex function if and only if ¢ < 0 for all [ =
.,k 4+ 1. Therefore a convex estimator of the regression function can be defined

by
ktd
g(z) = ZQ;DN;D (),
p=1
where

) ) ) . k4 2
f = (91,..- ,9k+4> = arg 921%}34 { 29 N (x;) } (4)

cle <o i=1

and C' = (¢cgl...|crs1), a (k+4) x (k4 2) matrix.
We apply the same reasonning as above and use the quadratic splines to build



a monotone estimator of the regression function. Obviously, this method can be
adapted to estimate the regression function when the additional constraints are the
non-negativity of the (d — 2)th derivatives. We again denote this estimator by §
and the corresponding vector of parameters by 0. In this case the matrix C is a
(k +d) x (k+ d — 2) matrix.

Notice that the set of constraints, {35 ERM Oz < 0} , is a polyhedral cone and
so it is closed and convex. Hence, for a given Y =(V1,...,Y,)", the above nonlin-
ear programming problem (4) has an unique solution. Let N (z) be the vector of

N, (xz),p=1,...k+d (d =4 for convexity and d = 3 for monotonicity) and

F=(N(21), N (2)) and M, = %ZN () N (z:)' .

It is easy to see that

2

f = arg min ||# —6
GERk-‘rd
clo <o

My

where for all @ € REF |23, = 2’ M,z

3 Limit Theorems

In this section we study some local and global properties of our estimates. The
asymptotic distribution of the functional

Jtiw-g@)a

is evaluated under appropriate conditions as the sample size n — oo. We also provide
the limit distribution of the same functional when we substitute g. for g. We start
with the asymptotic normality of the unconstrained estimator.

For any two sequences of positive real numbers {a,} and {b,}, we write a,, ~ b,
to mean that a,/b, stays bounded between two positive constants.

Let AY) (1) be the vector in R" defined by

. !
AD) () = (a&” (z),...,aY) (x)) = %F’MnlN(j) (z), 0<j<d—2.

Basic least squares arguments prove that
N 1
0 =—-M'FY. (6)
n
Besides, we can write
39 () — By (1) = =AY (1) 2 (7

with Z = (Zy, ..., Z,)" .
We need to specify some conditions. We assume that the sequence of knots is
generated by p (), a positive continuous density on [0, 1] such that
0

n;
dr = =0 . k+1.
/0 p(v)dw i = 0kt




We set 6, = maxg < ; < & (mJrl — ni) , then it is easy to see that
op ~ k71 (8)
When the design points {z;};_, are deterministic, we assume that

sup |H,(x)— H(x)|=0 (k_l) (9)

z€[0,1]

where H, (x) is the empirical distribution function of {z;};_, and H (z) is the limit
distribution with positive density h (x). Notice that when the sequence {x;}_, is
sampled from a distribution H (x), we obtain from the Glivenko-Cantelli Theorem

sup |H, (x) — H (z)] = O, (n_l/Q) .

z€[0,1]

We denote the n x n matrices with (4, j)th element I';; = v, ; and I'}; = 7,,; by T
and T'* respectively. We assume that the spectral density of {Z;, k € Z} is bounded
away from zero and infinity. A classical result on Toeplitz matrices (see Grenander
and Szegd, 1984) proves that 27 A\pin ' and 27 A pax (where ApinI' and ApaxI" are the
smallest and the largest eigenvalues of T" respectively) converge, respectively, to the
minimum and the maximum of the spectral density of Z. Hence, the assumption on
the spectral density of {Zy, k € Z} guarantees that the eigenvalues of I" are bounded
away from zero and infinity.
For x € (ni, 77i+1] , we define the function by by

d
g\ (n;) (m - 77i+1) B < T =y >
d
d! i — M1

where By (.) is the dth Bernoulli polynomial (see Barrow and Smith 1978). We also
set, €9 () = 99 (2) = g9 (2) b ().

We first deal with the unconstrained estimator. Theorem 1 provides the asymp-
totic normality of ¢ (x) for fixed and random design.

ba (v) = —

Theorem 1 Let ge C?[0,1]. Suppose that k* ™1 = o(n) when x is deterministic
and k¥ = o (n!'/?) when x random, 0 < j < d — 2. Assume that (8) and (9) hold
and lim,, ., p < 1, then for all x € [0,1]

Vg (x)
T ran O

Zhou et al.(1998) give a similar result for the case of uncorrelated errors and
j = 0. Therefore Theorem 1 generalizes their result. A confidence band for ¢\9) (z)
is easily obtained from Theorem 1.

Next, we give a result on the maximal deviation of §(*=2) (x). Recall that §(4=2)
is a linear function between any pair of adjacent knots n; and 7,,,, and it follows
that

~(d—2) _ ~(d=2) [, . ~(d—2) _ . ~(d=2) [,
Sup g (v) = max ¢ (m) and inf g% (x) = min g (n,).



Theorem 2 Suppose that the assumptions of Theorem 1 hold. Then

\/_f(diz) (n:)

P {u" ( snzli k+1 \/A(d 2) )'FA(d_2) (77@) B v”) = x} - exp(— P (—a:))
(10)

where u, = (2logn)** and
1
= (2logn)"* — 5 (2logn) "2 (loglog n + log 47) .

A uniform confidence bound for g(“=2) () can be constructed from Theorem 2.
Now, we turn our attention to the L, distance of the constrained and uncon-
strained estimators from their expected values. We set

~ [t5@ - 9@} b ) ds (1)
and

7= [Gi@-s@Ph i (12

Recall that h () is the positive density of the limit distribution H (x). It is conve-
nient to introduce the following notations. We define the (k + d) x (k + d) matrix
Mh by

M, = / N (2) N (2)' b (x) da. (13)
Let 7,, be the (p, ¢) th element of the n X n matrix F'M, ' M, M, 'F and
1 n—|pl
_ i1 -1 _ o
T = 51;1" (F'M,"MyM,'F) for [p|=1,..,n—1:m,=1/n Z Tipltqg  (14)
We set A = (7, ..., Tp_1)

Theorem 3 Assume that )~ ap M < o and E|Z|* < oo for some e > 2. We
also assume that {Z;} is the two sided moving average

+oo
= ) X,
j=—o0

where X; ~ IID(0,0%) and ],700 ‘jzb ‘ < 400. Then, under the assumptions of
Theorem 1, if EX} = not* < oo,

nT — Ler(F'M'MyM7VFT) — 2820 [ £ @ () /pt ()} b (2) da
Rt ( aana [ /v ()} h(x) — A1),

2
\/270/\’ (T+TH) A+ 7575+ (1= 3) 7570 2 peo Vp + (Z\pkn mp>



The above theorem says that

~ 1 rar—1 -1 Bsa d nk
IMSE ~ —tx (F'M, "M, M, FT) + (2d)!k2d/{g( ) (@) /p(2) } h(x)dz. (15)

When the errors in the models are uncorrelated, I' = ~,I (with I the identity
matrix) and Ltr (F'M, ' M, M, 'FT') ~ kv,. Therefore, (15) agrees with the results
of Agarwal and Studden (1980).

In fact, Theorem 3 can be rewritten in terms of the parameter 0. Let 6 be the
vector defined by

0 =0—TD.

Theorem 4 Under the assumptions of Theorem 3, we have

n |0, — wtr (F'M; M, M, FT)

- N(0,1).

2
20 (0T A xdod (= 8) w10 o7y + (Siten )

Actually, we believe that Theorem 3 and 4 are new even for the case of uncorre-
lated errors when the variance is

n—1

295 Y w4 (n— 1) T3
p=0

Next, we deal with the distribution of the functional defined by (12). However, we
need stronger assumptions than those in Theorem 3. More precisely, we assume
that the sequence {Z;} is a Gaussian white noise. Moreover, we only give the
distribution of T for the case in which the regression function is ¢ = 0. We denote
the corresponding statistic by Tj. The question concerning the determination of
the distribution of T for any function ¢ is very hard and is unsolved. We will
approximate the distribution of T, with a mixture of chi-squared distributions. For
that purpose, we shall measure the distance between these distributions by the
following modification of the Mallows distance

d(u,y)zg(r’l;{]E||X—Y||2/\l:[,(X) =, L(Y)=v}.

Convergence in this metric is equivalent to weak convergence (cf Hardle and Mam-
men 1993).

Recall that the set of constraints is the polyhedral cone C[C] (thus closed and
convex) determined by the (k + d) x (k + d — 2) matrix C' = (¢o|...|ckra—3) by

ClCl={zeR":C'z <0}.

Let .J be a subset (possibly empty) of {0, ...,k +d — 3} and let .J be its complement.
C; will be the matrix consisting of those columns of C' indexed by the elements of
J. The matrix C5 is defined analogously. We denote the cardinality of J by #.J.



Theorem 5 Assume that {Z;} is a Gaussian white noise. Then, under the assump-

tions of Theorem 1,
nT,
d{ﬁ (—f) ,5(22)} —0
70

where the random variable X* is distributed as a mizture of chi-squared distributions,
namely:

P ()‘(2 > 82) =woP (Xg > 82) + Z w; P (Xierfj > 32) (16)
2<j<ktd—1

wz’thwozlP’(@eC[C]) :]P’(C’égo),

wi= 3 P[4 - (C450)) ()50 Chh<0] P [(C)n0y) el > o]
q—#J=j

and where

S =—M,. (17)

Moreover, wy+ >, wj=1.
d<j<hd—1

To calculate the probabilities in the right-hand side of (16), the values of w; are
needed. However, even for moderate k (k+d > 3), closed form expressions for these
level probabilities have not been found. Thus approximations are of interest. For
this, one may use Monte Carlo method.

4 Inference

Theorems 1 and 2 provide convenient ways to obtain confidence bands for the es-
timates. However, it would be hard to obtain an explicit confidence band from
Theorems 3 or 5. Nevertheless, we can use them to construct nonparametric tests.
In this section, we present consistent nonparametric tests. We prove that the tests
have asymptotic powers for some local alternatives.

4.1 Hypotheses and test statistics

Goodness-of-fit Tests: The null hypothesis is that H, : ¢ = go. Against an unre-
stricted alternative, it is natural to use the L, distance between the estimator g and
go. Therefore, the statistic of the test is given by

T = / {9(2) - g0 (@)} h () di.

Using Theorem 3, we see that the null hypothsesis can be rejected at asymptotic
level « if

1 . . n.Baq (@ \1°
nT Z qa\/v + Etr (FIMn Mth FF) + W / {go (l’)} h (l’) dx (18)



where

2

V =27,/ (F+F+)A+7r373+(77—3)7r%7027p+ Zﬂp’}/p (19)
p=0

lp|<n

and ¢, is the upper 100« percentile of the standard normal distribution.
Specification test: Under some assumptions, the same cutoff point for the goodness-
of-fit test may be used for testing composite hypotheses of the form H, : g = go (., 3)
where # € O, is an unknown parameter. However, we must use the statistic T by
substituting an estimate B for the unknown parameter 3. We need the following
assumption:

sup] ‘g (t,5) —m (t, B)‘ = o, <{n_1k}1/2> .

telo,1

Under some mild regularity conditions, estimators such as the least squares, gener-
alized method for moments or the adaptive efficient weighted estimators satisfy the
required assumption. Hence, the specification test has the same properties with the
goodness-of-fit test.

Testing the shape: Our objective is to test the non-negativity of the (d — 2)th
derivative of the regression function. This corresponds to testing the convexity
when d = 4 (with cubic spline functions). Testing whether the regression function is
monotone, specifically non-decreasing, corresponds to d = 3. The test statistic can
be based on the largest discrepancy between the estimate of the (d — 2)th derivative
of the regression function and zero. Thus, the null hypothesis can be rejected at
asymptotic level o when

_ o(d=2) (. 1
Uy max Vg (n:) + v, | >log (—7> . (20)
0 <V ket /A (g, TAG 2 (1) log (1~ )

We denote this test by T),.
Naturally, a testing procedure can also be based on the L, distance between the

constrained and the unconstrained estimator of the regression function. When prov-
2

ing Theorem 5, we will see , that T has the same limit distribution than Hé —0
M

This latter statistic was used in Diack (1999) to test convexity. It can be shown (see
the second corollary to Theorem 3.6 on page 2822 of Raubertas et al. 1986) that
T is asymptotically stochastically largest among all ¢ in the null hypothesis when
g = 0, that is, when T = T,. Therefore, following Diack (1999), we reject the null
hypothesis at level & when

nTO > 7(2)33,1@ (21)

where 52 , is defined by

Z w; P (X%erfj > 83,,,) = Q. (22)
2 < j < htd—1

The test statistic requires computing 6 defined in (5). This is unsolved. Hence,
this problem requires extensive numerical work to obtain a solution. We propose an



algorithm based on successive projections, which has been introduced by Dykstra
(1983) (see also Boyle and Dykstra, 1985). This algorithm determines the projec-
tion of a point X of any real Hilbert space onto the intersection K of convex sets
K; (j=1,..,p) and it is meant for applications where projections onto the Kj’s
can be calculated relatively easily. Let K be the polyhedral cone defined by C. We
see that K can be written as ﬂHd * {; where K is also a convex cone. For all
X € R4 we denote the M,- projection onto K by XM" The algorlthm consists
of repeated Cycles and every cycle contains k + d — 2 stages. Let X " be the app-
proximation of XY " given by Dykstra’s algorithm at the ith stage of mth cycle.
The following result (see Boyle and Dykstra, 1985) proves that the algorithm con-
verges correctly.

Theorem 6 For any (1 < i < k+d—2), the sequence {X%"} converges to XM
in the following sense:HX%" — X,I%/I"HF — 0 as m — +o0.

Therefore, in practice, instead of using Ty we use Tﬂ,m defined by

o= [ @) = 5 @) b (o) d 2

where g, is the spline function defined by the parameter 9m, which is the approxi-
mation of # given by the last stage of the mth cycle of Dykstra’s algorithm.

4.2 Asymptotic power

To make a local power calculation for the tests described above, we need to consider
the behavior of different statistics (calculated under a fixed but unknown point
go € H,) for a sequence of alternatives of the form

9n () = g0 (¥) + Tnp (), (24)

where g, lies in the alternative hypothesis, ¢ (.) is a known function and 7, is
a sequence of real variables converging to zero. We can see that T is consistent
against the local alternatives, approaching the null at rates slower than n~='/2k'/2.
The reader is referred to Diack (1999) for a discussion about these results.

Theorem 7 We suppose that the assumptions of Theorem 3 hold and that
nk™'r2 — +oo. (25)

Then T has a power equal to one under the local alternatives. Besides, under the
assumptions of Theorem 1, if

7 (log n)2 n! (2432 4 oo (26)
then Ty has also a power equal to one under (24).

Discussion: Using regression splines is advantageous when we want to impose
properties such as monotonicity or convexity on nonparametric local averaging es-
timators. On this base, we have proposed goodness-of-fit test, monotonicity and

10



convexity tests. The tests are consistent and have power against some local alter-
natives. It appears that the tests using the L, distance are asymptotically more
powerful than those using the maximal deviation. However, the latter, may well
be preferred for moderate sample sizes and some alternatives. Besides, the major
drawback of the test 7" is that the computation is not straightforward. On the other
hand, an extensive study is necessary in order to relax the assumption of normality
on the sequence {Z,;}.

In applications, the covariance matrix I' is unknown. Therefore, we must esti-
mate it. The estimators which we shall use for v, > 0 is

1 n—h

%:—ZO/;—Y) (Yi+r—}7),r:0,...,n—1,

n <
=1

where Y is the sample mean. The estimators 4,,7 = 0,...,n — 1, have the desirable
property that for each n > 1, the matrix I' with elements I';; = /,_;, is non-negative

definite (cf. Brockwell and Davis 1991). However, plug-in T in order to estimate the
variance does not guarantee that we have a consistent estimator. This is an open
problem which is under study.

5 Proofs

The proofs of the theorems when x is deterministic and when z is random use
similar arguments except for the fact that in the latter case, we must write for

example var <§(j) (x) |x> instead of var <§(j) (x)) . Hence we give the proofs for the

deterministic case only.
Proof of Theorem 1: Reasoning as in the proof of Theorem 1 in Barrow and
Smith (1978), it is easy to see that EC¢Y) () = o (k~%7) . We can write

€0 (2) = % > ool (0) 2o (k747).

According to Corollary 2.1 in Peligrad (1996), it enough to show

o (@)
max

Cfoa (69 @)

—0asn— oo (27)

and

Rl o

Straightforward calculations prove that var (f(j) (x)) = 140 (2)'TAY) (). This

can be rewritten in the following form

. 1 . ,
var (5@ (g;)> — —tr [[F'M;'ND () NO) (2) M F]
n

11



Now, using the Lemma 6.5 in Zhou et al. (1998), we get
AminF

n

AmaXF ] y —
e [N(]) () N9 (2) M .

n

tr [N(j) (z) N9 () M,'] < var (f(j) ($)> <
Agarwal and Studden (1980) prove that Apin M ' ~ k and A\pax M, ' ~ k. We can

also prove that for each x there is a p such that ‘ngj) (x)‘ ~ k7. Therefore using

again Lemma 6.5 in Zhou et al. (1998), we have var (g(j) (x)) ~ k¥ +1/n. Hence (27)

and (28) follow easily. [J
Proof of Theorem 2: We define 3, and p);_; as

Vg (n,)
\/A(d_Q) (n;)' TAE=2) (1,) '

B =

and
Pli—j| = ‘corr (ﬁzv 5])‘ :

From Theorem 1 we know that /3, is asymptotically normally distributed. Therefore,
according to Theorem 6.2.1 in Leadbetter et al. (1983) it suffices to prove that
p,logn — 0. We have

_ _ L _
cov {472 (n,) €7 () } = =AU () TACD ().
Using again Lemma 6.5 in Zhou et al. (1998) we obtain

(Amaxr)2

n2

cov {472 (n,) 642 ()} < {AC 1) A ()}

On the other hand, we can write

Ald=2) (m)' Ald=2) (77]‘) - Z mqu;Ed_2) (1) Ncgd_Q) (77]') ’

p,q

where m,, are the elements of the matrix A, !. One can easily see that N,gd_2) (n;) =
0if p<iorp>i+d, and otherwise we have ‘ngdﬁ) (77@)‘ = O (k%) . Moreover,

we have |my,| = O (kvP~4!) for some v € (0,1) (see Lemma 6.3 in Zhou et al.1998).
Now we take j =7+ n to obtain

‘A(d—Q) (nl)l A(d—2) (77])‘ -0 (kQ(d—2)+1Vn—d+2) )
Therefore
n—d—+2

Pn < av 9

which proves Theorem 2. [J
Proof of Theorem 3: We can write T' = T} + T, + T, where

T = /{g (2) — Eg (@)} h (2) da,

12



7, = [ {9(0) B @)} h(a) ds

and

T, —/{g ()} {Eg () — g (2)} B (x) de

From Theorem 3.1 in Agarwal and Studden (1980), we have

Ty~ e [ {60 @ @)} e e (29)

On the other hand, ET; = 0 and var(73) = o (var (T")) . Therefore, to prove Theorem
3, it is enough to prove that

T, ~ N (UYV), (30)

where U = 4 (F'M,;IM,E”M;IFF) and

V=1/0? | 29A (C+TF) A mirg+ (0 =3) w0 Y7+ | D ™

[p|<n

We have

1
T, == (FZ) M,'M,M;" (FZ).
n

It follows easily that E7; = U. Now, since {Zy,k € Z} is a strictly stationary se-
quence, straightforward calculations prove that

Var<T )—var[ Zw YAV -| ,
[ lpl<n J
where the 7, are defined by (14). Hence,
var ( Z Z T, COV (Z0Zp, ZoZy) -
lpl<n [q|<n
This can be rewritten in the following form

1
var () =— > > 1 {BZ{ 2,2 = %7, } -

[p|<n |g|<n

Now Z, = 372 ¢; X j,{Xi} ~ IID(0,07%) with EX}} = no*. Hence, straigtfor-
ward calculations show that

EZ2Z Z = (77 3 Z dj djz«kpd}z«kq + 70773 q + 27737(}

i=—00
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It follows that
var (nT}) = Z Z TpTq { 3)o" Z ¢?¢i+p¢i+q T T 'vaq} - (31)
[pl<n [q|<n i=—00

One can show easily the following equality

Z Z TpTqVoVp—q = 270N (T +T%) A+ mg7s.

Ip|<n |g|<n

2
The last term of (31) is equal to <Z|p|<n 7Tp’7p> :
On the other hand,

1
n

ZZ;{) Zr,s N, (z4) (N5 (2g) — Ny (Tp1q)) m
o [ Doant s N () N () m,

Ty — 7ol < (32)

where m?, is the (7, s)th element of the matrix M, M, M. Using equation (6.22)
in Agarwal and Studden (1980) and Lemma 6.3 in Zhou et al.(1998), we see that
jm?,| = O (kvl"#l) with v € (0,1). Therefore, it is easy to see that the second term

T‘S|

of the right hand side of (32) is O (kp/n) . Besides,

[N, (Iq) — N; (xp+q)| < |xp+q - xq| sup |Nl ()]

A classical result on B-splines proves that sup, |[N' (z)| = O (k). Moreover, using
(9), we see that |z,,, — x,| = o (k7'p). Finaly, we obtain

7, — 70| = O (%p {1+ nen}> (33)

with ¢, — 0. It is worth noting that 7y ~ k. Using this, we can write

Z Z TpTq Z ¢?¢i+p¢i+q = W(% Z Z Z ¢?wi+p¢i+q (34)

[p|<n lg|<n i=—00 [p|<n |g|<n i=—o0

+mg Z Z Z (mq — T+ T — o) wgwi—l—pwi%—q

Ip|<n IIJ\<n i=—00

+y > Z g = 0) (1p = W0) Vii Uiy

lp|<n [g|<n i=—00
Interchanging the order of summation we find that
o0 o0
. 2 4 2 2 2
7}1330 Too Z Z Z ViitpVirq = To0 Z% ~ k”.
[p|<n |g|<n i=—o0 p=0

We will show that the two other terms of (34) are o (k*). In what follows, we will
denote the generic constants by ¢y, co, ... Using the absolute summability of { j@/Jj}

14



we have

™

o

Z Z Z (g — Mo + 7, — 7o) ¢?¢i+p¢i+q

[p|<n |g|<n i=—oc

k o0
< amo {1+ ne,} Z Z Z (Ipl + la) |07y 0iny|

Ip|<n |g|<n i=—oc

SCQWOS{HM}Z D

Ip|<n i=—00 q=—o0

k - L
< C37T05{1 +ne,} Z Z (Ip + ] + [2]) W?%ﬂo‘

P=—00 1=—00

k oo oo
< camo— {1+ ne,} Z Z (Ip + | + li]) Wﬂﬁﬁp‘

P=—00 1=—00

< 2047T0§ {1+ne,} ( Z /i |¢z|> Z ‘¢P‘

0 (/{:2) . o

wi—l—q ‘

t=—00

Reasoning as above, we see that

Hence we have

Z Z Z (mg — o) (mp — 7o) ¢?¢i+p¢i+q

p|<n |g|<ni=—oc0

2 o0
gcs%{wnen}? Y>> Inlldl

[p|<n |g|<ni=—o0

2
]{;2 o0 o0
< C5ﬁ {1 + ngn}2 Z ( Z |p| Wﬂﬂwp‘)

%2 wi+pwi+q ‘

i=—00 \p=—0o0
2
k2 - C -
< Gy {14 ne,}? Z 0} ( Z (Ip + il + [4]) W}Hrp‘)
1=—00 p=—00

k? = ,
< @p {1+ né‘n}2 _Z: ¢§ (1 + 22)
o ().

2

var (nT7) = 2o\ (T +TF) A+ 7578 + (n — 3) T, Z Vp + Z T, | 4o (k).
p=0

Ip|<n

(35)

Next, we show that 7} is gaussian. But we first show that var (nTy) ~ k*. Using
Lemma 6.5 in Zhou et al.(1998), we see that we just need to show that ||A]|* ~ k2.

We have

n—1
2
AP =D,
p=0

15



and

|7y ZZN Tq) Ns (Tptq) My
q=1 r;s
Csk s
ZZN Tq) Ns (Tp1q) v ylre!
q=1 r,5
Noting that N, (z,) = 0 when x, & (t,,t,+4) and since |, , — x| = e,k 'p, we

have
AN
ml < 2= (n—p) ()"

Hence ||A||* ~ k2. Using the definition of ,, in (14), we can write

= % Z Z TpqlpZyg =T11 + T2,

p=1 ¢=1
with
Tii=—= Y mpZe+ > mkZ,Z,
p=1 p#£q
and

We have ET; ; = ET'. Besides,

var (T1,) = E T ppT gqCOV Z2,Zq2).

Using Lemma 4.1 in Burman (1991) and since |7,,| < k* we have for some € > 2

cioh? 1—2/c _ C1ok? 1-2/e 2
var (Th,1) S?Z p—al = n3 Zap :O(k )
p,q p

Therefore it is enough to prove that T} 5 is Gaussian. We have var(T} 5) ~var(T})
According to Corollary 2.1 in Peligrad (1996), it is enough to prove

maX%HOasnﬁoo, (36)

pa n?y/var (1))

prq < 00, (37)

n n4var
and for every ¢ > 0

—ZE (2,2, —BZ,2,)’1(|Z,2, — BZ, Z,| > C0,) — 0 as n — o0, (38)
" p#q
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where 02 = var (Zp;éq Z,Z, —EZqu> . (36) and (37) are trivial. Reasoning as
above one can show that o2 > n® hence, (38) follows easily and Theorem 3 is
proven. [

Proof of Theorem 4: We skip the proof of Theorem 4 since it is an immediate

consequence of Theorem 3.
Proof of Theorem 5: We have

~ ~ ~\/ ~ ~
Ty = (0-0) M, (0-9).
Recall that the regression function is assumed to be null. Now using relation (6.22)

in Agarwal and Studden (1980), it is easily seen that Tj has the same asymptotic
distribution with the random variable

(0-) ar, (6-4).

Therefore, Theorem 5 is a straightforward consequence of the following variant of
Theorem 3.1 in Shapiro (1985) ( cf. also Diack, 1999):
Let X be a random vector distributed as N, (0,1,), then,

P ( inf || X — ac||2 > 52> = wyP (X(Q) > 32) + Z w; P (Xg_j > 32) (39)
reclc] 2< g <k+d-1
with wy = P (X € C[C]),
wj = Z P(PJ (X) - \I]J)P(CJ(C‘I]CJ)ilc‘I].T eC° [C]),
kt+d—J=j
where

Uy;={zeR" : Cla=0,C"2 <0}

C°[C] being the polar cone of C'[C|. Moreover, wy + > w;=1.0
2< 7 <k+d-1
Proof of Theorem 7: (25) follows quite readily from Theorem 3. It remains
to prove (26). We define m; and ¢, by

\/ﬁ(géd_Q) (0,) + T2 () + 047 (m)) | ( 1 >
VAT (3, TG () T g (1))

Then the power of the test under the local alternatives is given by

P [un (mlax{—ﬂi —m;} + Un> > qa] >P [un (— max B, + mlax(—mi) + vn) > qa] .

m; =

Hence to get a power equal to one it is enough to prove that w, max; (—m;) — +00.
Because ¢, is non-convex and the 7, are dense in [0, 1], there is a positive real € such
that

d—
max (—gé () = Tup (m)) > e
Besides, we have

max
z€[0,1]

b(d 2) ‘_

and finally
Vn Vn
\/A(d_Q) (m)' T Al=2) (n,) 2D [2

Therefore the consistency under the local alternatives follows. [J
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