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We study the local and global behaviors of regression splines under ��mixing�

The asymptotic normality for the regression splines is established� We also prove a
central limit theorem for integrated square error of least squares splines estimators�
We investigate the limit distribution of the same functional when we substitute a
constrained estimator for the regression function� In addition� results on the maxi�
mal deviation for some derivatives of the estimators are provided� which leads to the
construction of goodness�of�
t�tests and testing the monotonicity or the convexity
of the regression function� We prove that the tests are consistent and have power
against some local alternatives�

Key words� G�O�F tests� Testing monotonicity� Convexity� Central limit theorem� B�

splines� Mixing�
����������������������������������

� Introduction

For i�i�d� observations� the local and global properties of commonly used nonpara�
metric estimators are well known so they allow good methods of statistical inference�
However� much less is done in the case of dependent observations� Futhermore� in
nonparametric curve estimation under mixing� usually only local properties are es�
tablished�

We consider the problem of estimating a regression function when the design
points are either deterministic or random and the errors are dependent� While it
appears di�cult to impose properties such as convexity or monotonicity on non�
parametric local averaging estimators �for example kernel type estimators�� this
restriction is readily introduced by using spline estimators� The rate of convergence
for such estimators are derived by Burman ������ under mixing� More recently�
Zhou et al������� established asymptotic normality for regression splines when the
errors in the model are uncorrelated� Our objective is to obtain local and global
measures for the least squares spline as an estimate of the regression function� In
particular� we generalize the result of Zhou et al������� by establishing asymptotic
normality for least squares spline with dependent errors� We also derive the central
limit theorem for the integrated square error of the least squares spline estimator�
In addition� we study the asymptotic distribution for the L� distance of the regres�
sion splines under convexity or monotonicity constraints� We also derive results
on the maximal deviation for the 
rst and second derivatives of the least squares
spline estimator� We apply these results to validate an asymptotic goodness�of�
t
test� We also propose tests of convexity and monotonicity of the regression function�
The literature on nonparametric tests is extensive
 speci
cation tests are proposed
by Hausman ������� Bierens ������ ���	�� Lee ������� Eubank and Spiegelman
����	�� Wooldridge ������� Yatchew ������� H�ardle and Mammen ������� Hong
and White������ and Yatchew and Bos ������� Bickel and Rosenblatt ������ and
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Stoker ������ ����� propose tests of signi
cance� Surveys in testing monotonicity
and convexity include Schlee ����	�� Yatchew ������� Yatchew and Bos ������� Di�
ack and Thomas ������� Bowman and al� ������� Diack ������ �			� and Doveh
and al�������� In contrast to our setting� all these authors assume that the random
variables in their models are independent� whereas we assume this only when testing
the shape of a regression function�

We consider the following regression model

Yi � g �xi� � Zi� i � �� � � � � n� ���

The design points fxigni�� can be deterministic or random� Without loss of generality�
we assume that xi � �	� ��� We also assume that fZk� k � Zg is a strictly stationary
sequence of real random variables with zero mean on a probability space ���A� P ��
Let

�k � EZiZi�k ���

be its covariance sequence� Let � �Zi� i � 	� and � �Zi� i � j� be the ��
elds gen�
erated by fZi� i � 	g and fZi� i � jg � respectively� We assume that the sequence
fZk� k � Zg is ��mixing� that is


�j � sup
A���Zi�i � ��
B���Zi�i�j�

jP �AB�� P �A�P �B�j � 	 as j � ���

We also introduce the maximal coe�cient of correlation

��j � sup
A�L����Zi�i � ���
B�L����Zi�i�j��

jcorr �A�B�j � 	 as j � ���

This paper is organised as follows
 in Section � we de
ne the constrained �e�g�
monotone and convex� and unconstrained regression spline estimators� Section �
presents results for asymptotic normality and limit theorems for the L� norms of
the deviation of the estimate �constrained or unconstrained� from its expected value�
We also derive asymptotic distributions for the maximum deviation of the 
rst and
second derivatives of the estimate� Section � discusses construction and consistency
of tests� We also examine their local properties� Technical proofs are given in Section
��

� Estimators

To estimate the function g� we use a least squares spline estimator� Let �� � 	 �
�� � ��� � �k�� � � be a subdivision of the interval �	� �� by k distinct points� We
de
ne S�k� d� as the collection of all polynomial splines of order d �i�e�� degree �
d� �� having a sequence of knots �� � ��� � �k� The class S�k� d� of such splines is
a linear space of functions with dimension �k � d�� A basis for this linear space is
provided by the B�splines �see Schumaker� ������ Let fN�� ��� Nk�dg denote the set
of normalized B�splines� The least squares spline estimator of g is de
ned by

�g �x� �
k�dX
p��

�	pNp �x� �

�



where

�	 �
�
�	�� � � � � �	k�d

��
� arg min

��Rk�d

nX
i��

�
Yi �

k�dX
p��

	pNp �xi�

��

� ���

Cubic spline functions are good for estimating the regression function under local
convexity constraints� Indeed� beyond their common use in approximation problems�
they allow a simple characterization of convexity as follows
 if f is cubic spline� then
its second derivative is a linear function between any pair of adjacent knots �i and
�i�� and it follows that f is a convex function in the interval

�
�i� �i��

�
if and only if

f �
�

��i� and f �
� �
�i��

	
are both non�negative �this property is used by Dierckx ���	

to de
ne a convex estimator��
For a function f in the class S�k� �� of cubic splines� we can write


f�x� �
k��X
p��

	pNp�x� with 	 � �	�� ���� 	k���
� � R

k�� �

Then�

f ����l� �
k��X
p��

	pN
��
p��l� �

k��X
p��

	pdp�l�

where the coe�cients dp�l are easily calculated from the knots �see Dierckx ���	�



���
��


dp�l � 	 if p�l or p � l � �
dl���l �

	
�tl���tl����tl���tl���

dl�
�l �
	

�tl���tl����tl���tl���

dl���l � ��dl�
�l � dl���l��

for l � 	� ���� k � �

Let cl � �	� 	� ���� 	��dl���l��dl���l��dl�
�l� 	� ���� 	�
� � R

k�� and 	 � �	�� ���� 	k���
��

then

f ����l� � �c�l	�

Hence� the cubic spline f is a convex function if and only if c�l	 � 	 for all l �
	� ���� k � �� Therefore a convex estimator of the regression function can be de
ned
by

�g �x� �
k��X
p��

�	pNp �x� �

where

�	 �
�
�	�� � � � � �	k��

��
� arg min

��Rk��

C�� � �

nX
i��

�
Yi �

k��X
p��

	pNp �xi�

��

���

and C � �c�j���jck��� � a �k � ��� �k � �� matrix�
We apply the same reasonning as above and use the quadratic splines to build
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a monotone estimator of the regression function� Obviously� this method can be
adapted to estimate the regression function when the additional constraints are the
non�negativity of the �d� ��th derivatives� We again denote this estimator by �g
and the corresponding vector of parameters by �	� In this case the matrix C is a
�k � d�� �k � d� �� matrix�
Notice that the set of constraints�

�
x � R

k�� 
 C �x � 	
�
� is a polyhedral cone and

so it is closed and convex� Hence� for a given Y ��Y�� ���� Yn�
� � the above nonlin�

ear programming problem ��� has an unique solution� Let N �x� be the vector of
Np �x� � p � �� ���� k � d �d � � for convexity and d � � for monotonicity� and

F � �N �x�� � ���� N �xn�� and Mn �
�

n

nX
i��

N �xi�N �xi�
� �

It is easy to see that

�	 � arg min
��Rk�d

C�� � �

����	 � 	
����
Mn

���

where for all x � R
k�d � kxk�Mn

� x�Mnx�

� Limit Theorems

In this section we study some local and global properties of our estimates� The
asymptotic distribution of the functionalZ

f�g �x�� g �x�g� dx

is evaluated under appropriate conditions as the sample size n���We also provide
the limit distribution of the same functional when we substitute �gc for g� We start
with the asymptotic normality of the unconstrained estimator�

For any two sequences of positive real numbers fang and fbng� we write an � bn
to mean that an
bn stays bounded between two positive constants�

Let A�j� �x� be the vector in Rn de
ned by

A�j� �x� �
�
a
�j�
� �x� � ���� a�j�n �x�

��
�

�p
n
F �M��

n N �j� �x� � 	 � j � d� ��

Basic least squares arguments prove that

�	 �
�

n
M��

n FY� ���

Besides� we can write

�g�j� �x�� E �g�j� �x� �
�p
n
A�j� �x�� Z ���

with Z ��Z�� ���� Zn�
� �

We need to specify some conditions� We assume that the sequence of knots is
generated by p �x� � a positive continuous density on �	� �� such thatZ �i

�

p �x� dx �
i

k � �
� i � 	� ���� k � ��
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We set �k � max� � i � k

�
�i�� � �i

	
� then it is easy to see that

�k � k��� ���

When the design points fxigni�� are deterministic� we assume that

sup
x������

jHn �x��H �x�j � o
�
k��

	
���

where Hn �x� is the empirical distribution function of fxigni�� and H �x� is the limit
distribution with positive density h �x� � Notice that when the sequence fxigni�� is
sampled from a distribution H �x� � we obtain from the Glivenko�Cantelli Theorem

sup
x������

jHn �x��H �x�j � Op

�
n����

	
�

We denote the n� n matrices with �i� j�th element �ij � �ji�jj and �
�
ij � �i�j by �

and �� respectively� We assume that the spectral density of fZk� k � Zg is bounded
away from zero and in
nity� A classical result on Toeplitz matrices �see Grenander
and Szeg�o� ����� proves that ��
min� and ��
max� �where 
min� and 
max� are the
smallest and the largest eigenvalues of � respectively� converge� respectively� to the
minimum and the maximum of the spectral density of Z� Hence� the assumption on
the spectral density of fZk� k � Zg guarantees that the eigenvalues of � are bounded
away from zero and in
nity�

For x � ��i� �i��

�
� we de
ne the function bd by

bd �x� � �g�d� ��i�
�
�i � �i��

	d
d�

Bd

�
x� �i

�i � �i��

�

where Bd ��� is the dth Bernoulli polynomial �see Barrow and Smith ������ We also

set ��j� �x� � �g�j� �x�� g�j� �x�� b
�j�
d �x� �

We 
rst deal with the unconstrained estimator� Theorem � provides the asymp�
totic normality of ��j� �x� for 
xed and random design�

Theorem � Let g� Cd �	� �� � Suppose that k�j�� � o �n� when x is deterministic

and k�j�� � o
�
n���

	
when x random� 	 � j � d� �� Assume that ��� and ��� hold

and limn�� ��n � �� then for all x � �	� ��
p
n��j� �x�p

A�j� �x�� �A�j� �x�
� N �	� �� �

Zhou et al������� give a similar result for the case of uncorrelated errors and
j � 	� Therefore Theorem � generalizes their result� A con
dence band for g�j� �x�
is easily obtained from Theorem ��

Next� we give a result on the maximal deviation of �g�d��� �x� � Recall that �g�d���

is a linear function between any pair of adjacent knots �i and �i��� and it follows
that

sup
x������

�g�d��� �x� � max
� � i � k��

�g�d��� ��i� and inf
x������

�g�d��� �x� � min
� � i � k��

�g�d��� ��i� �

�



Theorem � Suppose that the assumptions of Theorem � hold� Then

P

�
un

�
max

� � i � k��

p
n��d��� ��i�p

A�d��� ��i�
� �A�d��� ��i�

� vn

�
� x

�
� exp �� exp ��x��

��	�

where un � �� logn���� and

vn � �� logn���� � �

�
�� logn����� �log log n� log ��� �

A uniform con
dence bound for g�d��� �x� can be constructed from Theorem ��
Now� we turn our attention to the L� distance of the constrained and uncon�

strained estimators from their expected values� We set

T �

Z
f�g �x�� g �x�g� h �x� dx ����

and

�T �

Z
f�g �x�� �g �x�g� h �x� dx� ����

Recall that h �x� is the positive density of the limit distribution H �x� � It is conve�
nient to introduce the following notations� We de
ne the �k � d�� �k � d� matrix
Mh by

Mh �

Z
N �x�N �x�� h �x� dx� ����

Let �pq be the �p� q� th element of the n� n matrix F �M��
n MhM

��
n F and

�� �
�

n
tr
�
F �M��

n MhM
��
n F

	
� for jpj � �� ���� n� � 
 �p � �
n

n�jpjX
q��

�jpj�q�q� ����

We set  � ���� ���� �n���
� �

Theorem � Assume that
P�

p �
�����
p � � and E jZ�j�� � � for some � � �� We

also assume that fZtg is the two�sided moving average

Zt �
��X

j���

�jXt�j�

where Xt � IID �	� ��� and
P��

j���

��j�j

�� � ��� Then� under the assumptions of

Theorem �� if EX�
� � ��� ���

nT � �
n
tr �F �M��

n MhM
��
n F��� nB�d

��d�
k�d

R �
g�d� �x� 
pd �x�

��
h �x� dxr

��� 
� �� � ���  � ����

�
� � �� � �������

P�
p�� �p �

�P
jpj�n �p�p

�� � N �	� �� �

�



The above theorem says that

IMSE 	 �

n�
tr
�
F �M��

n MhM
��
n F�

	
�

B�d

��d��k�d

Z n
g�d� �x� 
p �x�d

o�

h �x� dx� ����

When the errors in the models are uncorrelated� � � ��I �with I the identity
matrix� and �

n
tr �F �M��

n MhM
��
n F�� � k��� Therefore� ���� agrees with the results

of Agarwal and Studden ����	��
In fact� Theorem � can be rewritten in terms of the parameter �	� Let !	 be the

vector de
ned by

!	 � �	 � E�	�

Theorem � Under the assumptions of Theorem �� we have

n
��!	��

Mh
� �

n
tr �F �M��

n MhM
��
n F��r

��� 
� �� � ���  � ����

�
� � �� � �������

P�
p�� �p �

�P
jpj�n �p�p

�� � N �	� �� �

Actually� we believe that Theorem � and � are new even for the case of uncorre�
lated errors when the variance is

����

n��X
p��

��p � �� � ���������

Next� we deal with the distribution of the functional de
ned by ����� However� we
need stronger assumptions than those in Theorem �� More precisely� we assume
that the sequence fZtg is a Gaussian white noise� Moreover� we only give the
distribution of �T for the case in which the regression function is g 
 	� We denote
the corresponding statistic by �T�� The question concerning the determination of
the distribution of �T for any function g is very hard and is unsolved� We will
approximate the distribution of �T� with a mixture of chi�squared distributions� For
that purpose� we shall measure the distance between these distributions by the
following modi
cation of the Mallows distance

d ��� �� � inf
X�Y

�
E kX � Y k� � � 
 L �X� � ��L �Y � � �

�
�

Convergence in this metric is equivalent to weak convergence �cf H�ardle and Mam�
men ������

Recall that the set of constraints is the polyhedral cone C�C� �thus closed and
convex� determined by the �k � d�� �k � d� �� matrix C � �c�j���jck�d�
� by

C �C� � �x � R
k�d 
 C �x � 	

�
�

Let J be a subset �possibly empty� of f	� ���� k � d� �g and let J be its complement�
CJ will be the matrix consisting of those columns of C indexed by the elements of
J� The matrix CJ is de
ned analogously� We denote the cardinality of J by "J�

�



Theorem � Assume that fZtg is a Gaussian white noise� Then� under the assump�

tions of Theorem ��

d

�
L
�
n �T�
���

�
�L �!��

	�� 	

where the random variable !�� is distributed as a mixture of chi�squared distributions�

namely�

P
�
!�� � s�

	
� ��P

�
��
� � s�

	
�

X
��j�k�d��

�jP
�
��
k�d�j � s�

	
����

with �� � P

�
�	 � C �C�

�
� P

�
C ��	 � 	

�
�

�j �
X

q��J�j

P

h
C �
J
�	 � �C �

J
#CJ

	
�C �

J#CJ�
��C �

J
�	�	

i
P

h
�C �

J#CJ�
��C �

J
�	 � 	

i

and where

# �
n

���
Mn� ����

Moreover� �� �
P

��j�k�d��

�j � ��

To calculate the probabilities in the right�hand side of ����� the values of �j are
needed� However� even for moderate k �k�d � ��� closed form expressions for these
level probabilities have not been found� Thus approximations are of interest� For
this� one may use Monte Carlo method�

� Inference

Theorems � and � provide convenient ways to obtain con
dence bands for the es�
timates� However� it would be hard to obtain an explicit con
dence band from
Theorems � or �� Nevertheless� we can use them to construct nonparametric tests�
In this section� we present consistent nonparametric tests� We prove that the tests
have asymptotic powers for some local alternatives�

��� Hypotheses and test statistics

Goodness�of��t Tests	 The null hypothesis is that H� 
 g � g�� Against an unre�
stricted alternative� it is natural to use the L� distance between the estimator �g and
g�� Therefore� the statistic of the test is given by

T �

Z
f�g �x�� g� �x�g� h �x� dx�

Using Theorem �� we see that the null hypothsesis can be rejected at asymptotic
level � if

nT � q�
p
V �

�

n
tr
�
F �M��

n MhM
��
n F�

	
�

nB�d

��d��k�d

Z n
g
�d�
� �x�

o�

h �x� dx ����

�



where

V � ��� 
�
�
� � ��

	
 � ����

�
� � �� � �� �����

�X
p��

�p �

�
�X
jpj�n

�p�p

�
A

�

����

and q� is the upper �		� percentile of the standard normal distribution�
Speci�cation test	Under some assumptions� the same cuto$ point for the goodness�
of�
t test may be used for testing composite hypotheses of the form H� 
 g � g� ��� ��
where � � %� is an unknown parameter� However� we must use the statistic T by
substituting an estimate �� for the unknown parameter �� We need the following
assumption


sup
t������

���g �t� ���m
�
t� ��
���� � �p

��
n��k

�����
�

Under some mild regularity conditions� estimators such as the least squares� gener�
alized method for moments or the adaptive e�cient weighted estimators satisfy the
required assumption� Hence� the speci
cation test has the same properties with the
goodness�of�
t test�
Testing the shape	 Our objective is to test the non�negativity of the �d� ��th
derivative of the regression function� This corresponds to testing the convexity
when d � � �with cubic spline functions�� Testing whether the regression function is
monotone� speci
cally non�decreasing� corresponds to d � �� The test statistic can
be based on the largest discrepancy between the estimate of the �d� ��th derivative
of the regression function and zero� Thus� the null hypothesis can be rejected at
asymptotic level � when

un

�
max

� � i � k��

�pn�g�d��� ��i�p
A�d��� ��i�

� �A�d��� ��i�
� vn

�
� log

�
� �

log ��� ��

�
� ��	�

We denote this test by TM �
Naturally� a testing procedure can also be based on the L� distance between the

constrained and the unconstrained estimator of the regression function� When prov�

ing Theorem �� we will see � that �T has the same limit distribution than
����	 � �	����

Mn

�

This latter statistic was used in Diack ������ to test convexity� It can be shown �see
the second corollary to Theorem ��� on page ���� of Raubertas et al� ����� that
�T is asymptotically stochastically largest among all g in the null hypothesis when
g 
 	� that is� when �T � �T�� Therefore� following Diack ������� we reject the null
hypothesis at level � when

n �T� � ���s
�
��k ����

where s���k is de
ned by X
� � j � k�d��

�jP
�
��
k�d�j � s���p

	
� �� ����

The test statistic requires computing �	 de
ned in ��� � This is unsolved� Hence�
this problem requires extensive numerical work to obtain a solution� We propose an

�



algorithm based on successive projections� which has been introduced by Dykstra
������ �see also Boyle and Dykstra� ������ This algorithm determines the projec�
tion of a point X of any real Hilbert space onto the intersection K of convex sets
Kj �j � �� ���� p� and it is meant for applications where projections onto the Kj&s
can be calculated relatively easily� Let K be the polyhedral cone de
ned by C� We
see that K can be written as

Tk�d��
j�� Kj where Kj is also a convex cone� For all

X � R
k�d � we denote the Mn� projection onto K by XMn

K � The algorithm consists
of repeated cycles and every cycle contains k � d� � stages� Let XMn

mi be the app�
proximation of XMn

K given by Dykstra&s algorithm at the ith stage of mth cycle�
The following result �see Boyle and Dykstra� ����� proves that the algorithm con�
verges correctly�

Theorem 
 For any �� � i � k � d� �� � the sequence �XMn

mi

�
converges to XMn

K

in the following sense�
��XMn

mi �XMn

K

��
�
�� 	 as m �� ���

Therefore� in practice� instead of using �T� we use �T��m de
ned by

�T��m �

Z
f�gm �x�� �g �x�g� h �x� dx ����

where �gm is the spline function de
ned by the parameter �	m� which is the approxi�
mation of �	 given by the last stage of the mth cycle of Dykstra&s algorithm�

��� Asymptotic power

To make a local power calculation for the tests described above� we need to consider
the behavior of di$erent statistics �calculated under a 
xed but unknown point
g� � Ho� for a sequence of alternatives of the form

gn �x� � g� �x� � �n� �x� � ����

where gn lies in the alternative hypothesis� � ��� is a known function and �n is
a sequence of real variables converging to zero� We can see that �T is consistent
against the local alternatives� approaching the null at rates slower than n����k����
The reader is referred to Diack ������ for a discussion about these results�

Theorem � We suppose that the assumptions of Theorem � hold and that

nk��� �n � ��� ����

Then T has a power equal to one under the local alternatives� Besides� under the

assumptions of Theorem �� if

�n �log n�
��� n���k���d�
��� � �� ����

then TM has also a power equal to one under ���� �

Discussion	 Using regression splines is advantageous when we want to impose
properties such as monotonicity or convexity on nonparametric local averaging es�
timators� On this base� we have proposed goodness�of�
t test� monotonicity and

�	



convexity tests� The tests are consistent and have power against some local alter�
natives� It appears that the tests using the L� distance are asymptotically more
powerful than those using the maximal deviation� However� the latter� may well
be preferred for moderate sample sizes and some alternatives� Besides� the major
drawback of the test �T is that the computation is not straightforward� On the other
hand� an extensive study is necessary in order to relax the assumption of normality
on the sequence fZtg �

In applications� the covariance matrix � is unknown� Therefore� we must esti�
mate it� The estimators which we shall use for �r� r � 	 is

��r �
�

n

n�hX
i��

�
Yi � !Y

	 �
Yi�r � !Y

	
� r � 	� ���� n� ��

where !Y is the sample mean� The estimators ��r� r � 	� ���� n� �� have the desirable
property that for each n � �� the matrix �� with elements ��ij � ��ji�jj� is non�negative

de
nite �cf� Brockwell and Davis ������ However� plug�in �� in order to estimate the
variance does not guarantee that we have a consistent estimator� This is an open
problem which is under study�

� Proofs

The proofs of the theorems when x is deterministic and when x is random use
similar arguments except for the fact that in the latter case� we must write for

example var
�
��j� �x� jx

�
instead of var

�
��j� �x�

�
� Hence we give the proofs for the

deterministic case only�
Proof of Theorem �
 Reasoning as in the proof of Theorem � in Barrow and

Smith ������� it is easy to see that E� �j� �x� � o
�
k�d�j

	
� We can write

��j� �x� �
�p
n

nX
i��

a
�j�
i �x�Zi � o

�
k�d�j

	
�

According to Corollary ��� in Peligrad ������� it enough to show

max
i

���a�j�i �x�
���r

nvar
�
��j� �x�

� � 	 as n�� ����

and

sup
n

�

nvar
�
��j� �x�

� nX
i��

n
a
�j�
i �x�

o�

��� ����

Straightforward calculations prove that var
�
��j� �x�

�
� �

n
A�j� �x�� �A�j� �x� � This

can be rewritten in the following form

var
�
��j� �x�

�
�

�

n�
tr
�
�F �M��

n N �j� �x�N �j� �x��M��
n F

�
�

��



Now� using the Lemma ��� in Zhou et al� ������� we get


min�

n
tr
�
N �j� �x�N �j� �x��M��

n

�
� var

�
��j� �x�

�
�


max�

n
tr
�
N �j� �x�N �j� �x��M��

n

�
�

Agarwal and Studden ����	� prove that 
minM
��
n � k and 
maxM

��
n � k� We can

also prove that for each x there is a p such that
���N �j�

p �x�
��� � kj� Therefore using

again Lemma ��� in Zhou et al� ������� we have var
�
��j� �x�

�
� k�j��
n� Hence ����

and ���� follow easily� �
Proof of Theorem �
 We de
ne �i and �ji�jj as

�i �

p
n��d��� ��i�p

A�d��� ��i�
� �A�d��� ��i�

�

and

�ji�jj �
��corr ��i� �j	�� �

From Theorem � we know that �i is asymptotically normally distributed� Therefore�
according to Theorem ����� in Leadbetter et al� ������ it su�ces to prove that
�n log n� 	� We have

cov
n
��d��� ��i� � �

�d���
�
�j
	o

�
�

n
A�d��� ��i�

� �A�d���
�
�j
	
�

Using again Lemma ��� in Zhou et al� ������ we obtain

cov
n
��d��� ��i� � �

�d���
�
�j
	o�

�
�
max��

�

n�
�
A�d��� ��i�

�A�d���
�
�j
	��

�

On the other hand� we can write

A�d��� ��i�
�A�d���

�
�j
	
�
X
p�q

mpqN
�d���
p ��i�N

�d���
q

�
�j
	
�

where mpq are the elements of the matrixM
��
n � One can easily see that N

�d���
p ��i� �

	 if p � i or p � i � d� and otherwise we have
���N �d���

p ��i�
��� � O �kd��	 � Moreover�

we have jmpqj � O �k� jp�qj	 for some � � �	� �� �see Lemma ��� in Zhou et al�������
Now we take j � i� n to obtain��A�d��� ��i�

�A�d���
�
�j
	�� � O

�
k��d������n�d��

	
�

Therefore

�n � c��
n�d���

which proves Theorem �� �
Proof of Theorem �
 We can write T � T� � T� � T
 where

T� �

Z
f�g �x�� E �g �x�g� h �x� dx�

��



T� �

Z
fg �x�� E �g �x�g� h �x� dx

and

T
 �

Z
f�g �x�� E �g �x�g fE �g �x�� g �x�gh �x� dx�

From Theorem ��� in Agarwal and Studden ����	�� we have

T� 	
B�d

��d��k�d

Z n
g��� �x� 
p �x�d

o�

h �x� dx� ����

On the other hand� ET
 � 	 and var�T
� � o �var �T �� � Therefore� to prove Theorem
�� it is enough to prove that

T� � N �U� V � � ��	�

where U � �
n�
tr
�
F �M��

n M
�j�
h M��

n F�
�
and

V � �
n�

�
���� � �� � ��	 � ����

�
� � �� � �������

�X
p��

�p �

�
�X
jpj�n

�p�p

�
A

��
A �

We have

T� �
�

n�
�FZ��M��

n MhM
��
n �FZ� �

It follows easily that ET� � U� Now� since fZk� k � Zg is a strictly stationary se�
quence� straightforward calculations prove that

var
�
T
�j�
�

�
� var

�
� �
n

X
jpj�n

�pZ�Zp

�
� �

where the �p are de
ned by ���� � Hence�

var �T�� �
�

n�

X
jpj�n

X
jqj�n

�p�qcov �Z�Zp� Z�Zq� �

This can be rewritten in the following form

var �T�� �
�

n�

X
jpj�n

X
jqj�n

�p�q
�
EZ�

�ZpZq � �p�q
�
�

Now Zt �
P�

j��� �jXt�j� fXtg � IID �	� ��� with EX�
t � ���� Hence� straigtfor�

ward calculations show that

EZ�
�ZpZq � �� � �� ��

�X
i���

��
i�i�p�i�q � ���p�q � ��p�q�

��



It follows that

var �nT�� �
X
jpj�n

X
jqj�n

�p�q

�
�� � ����

�X
i���

��
i�i�p�i�q � ���p�q � �p�q

�
� ����

One can show easily the following equalityX
jpj�n

X
jqj�n

�p�q���p�q � ��� 
�
�
� � ��

	
 � ����

�
��

The last term of ���� is equal to
�P

jpj�n �p�p

��
�

On the other hand�

j�p � ��j �
�
n

���Pn�p
q��

P
r�sNr �xq� �Ns �xq��Ns �xp�q��m

�
rs

���
� �

n

���Pn�p
q��

P
r�sNr �xq�Ns �xq�m

�
rs

��� ����

where m�
rs is the �r� s�th element of the matrix M

��
n MhM

��
n � Using equation ������

in Agarwal and Studden ����	� and Lemma ��� in Zhou et al�������� we see that
jm�

rsj � O �k� jr�sj	 with � � �	� �� � Therefore� it is easy to see that the second term
of the right hand side of ���� is O �kp
n� � Besides�

jNs �xq��Ns �xp�q�j � jxp�q � xqj sup
x
jN � �x�j �

A classical result on B�splines proves that supx jN � �x�j � O �k� � Moreover� using
��� � we see that jxp�q � xqj � � �k��p� � Finaly� we obtain

j�p � ��j � O
�
kp

n
f� � n�ng

�
����

with �n � 	� It is worth noting that �� � k� Using this� we can write

X
jpj�n

X
jqj�n

�p�q

�X
i���

��
i�i�p�i�q � ���

X
jpj�n

X
jqj�n

�X
i���

��
i�i�p�i�q ����

���
X
jpj�n

X
jqj�n

�X
i���

��q � �� � �p � ����
�
i�i�p�i�q

�
X
jpj�n

X
jqj�n

�X
i���

��q � ��� ��p � ����
�
i�i�p�i�q�

Interchanging the order of summation we 
nd that

lim
n��

����
�
X
jpj�n

X
jqj�n

�X
i���

��
i�i�p�i�q � �����

�X
p��

�p � k��

We will show that the two other terms of ���� are � �k�� � In what follows� we will
denote the generic constants by c�� c�� ��� Using the absolute summability of

�
j�j

�

��



we have

��

������
X
jpj�n

X
jqj�n

�X
i���

��q � �� � �p � ����
�
i�i�p�i�q

������
� c���

k

n
f� � n�ng

X
jpj�n

X
jqj�n

�X
i���

�jpj� jqj� ����
i�i�p�i�q

��
� c���

k

n
f� � n�ng

X
jpj�n

�X
i���

jpj ����
i�i�p

�� �X
q���

���i�q

��
� c
��

k

n
f� � n�ng

�X
p���

�X
i���

�jp� ij� jij� ����
i�i�p

��
� c���

k

n
f� � n�ng

�X
p���

�X
i���

�jp� ij� jij� ���i�i�p

��
� �c���

k

n
f� � n�ng

�
�X

i���

jij j�ij
�

�X
p���

���p

��
� o

�
k�
	
�

Reasoning as above� we see that������
X
jpj�n

X
jqj�n

�X
i���

��q � ��� ��p � ����
�
i�i�p�i�q

������
� c�

k�

n�
f� � n�ng�

X
jpj�n

X
jqj�n

�X
i���

jpj jqj ����
i�i�p�i�q

��

� c�
k�

n�
f� � n�ng�

�X
i���

�
�X

p���

jpj ���i�i�p

����

� c	
k�

n�
f� � n�ng�

�X
i���

��
i

�
�X

p���

�jp � ij� jij� ���i�p

����

� c�
k�

n�
f� � n�ng�

�X
i���

��
i

�
� � i�

	
� o

�
k�
	
�

Hence we have

var �nT�� � ��� 
�
�
� � ��

	
 � ����

�
� � �� � �������

�X
p��

�p �

�
�X
jpj�n

�p�p

�
A

�

� o
�
k�
	
�

����

Next� we show that T� is gaussian� But we 
rst show that var �nT�� � k�� Using
Lemma ��� in Zhou et al�������� we see that we just need to show that k k� � k��
We have

k k� �
n��X
p��

��p�

��



and

j�pj �
�

n

�����
n�pX
q��

X
r�s

Nr �xq�Ns �xp�q�m
�
rs

�����
�

c�k

n

n�pX
q��

X
r�s

Nr �xq�Ns �xp�q� �
jr�sj

Noting that Nr �xq� � 	 when xq 
� �tr� tr�d� and since jxp�q � xqj � �nk
��p� we

have

j�pj � c�k

n
�n� p�

�
�	nk

��
�p

�

Hence k k� � k�� Using the de
nition of �pq in ���� � we can write

T� �
�

n�

nX
p��

nX
q��

�pqZpZq � T��� � T����

with

T��� �
�

n�

nX
p��

�ppZ
�
p �

X
p��q

�pqEZpZq

and

T��� �
�

n�

X
p ��q

�pq �ZpZq � EZpZq� �

We have ET��� � ET� � Besides�

var �T���� �
�

n�

X
p�q

�pp�qqcov
�
Z�
p � Z

�
q

	
�

Using Lemma ��� in Burman ������ and since j�ppj � k� we have for some � � �

var �T���� �
c��k

�

n�

X
p�q

�
�����
jp�qj �

c��k
�

n


X
p

������
p � � �k�	 �

Therefore it is enough to prove that T��� is Gaussian� We have var�T���� 	var�T��
According to Corollary ��� in Peligrad ������� it is enough to prove

max
p�q

j�pqj
n�
p
var �T��

� 	 as n��� ����

sup
n

�

n�var �T��

X
p�q

��pq ��� ����

and for every � � 	

�

��
n

X
p��q

E �ZpZq � EZpZq�
�
I�jZpZq � EZpZqj � ��n�� 	 as n��� ����
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where ��n � var
�P

p ��q ZpZq � EZpZq

�
� ���� and ���� are trivial� Reasoning as

above one can show that ��n � n
 hence� ���� follows easily and Theorem � is
proven� �
Proof of Theorem �	 We skip the proof of Theorem � since it is an immediate
consequence of Theorem ��
Proof of Theorem �	 We have

�T� �
�
�	 � �	

��
Mh

�
�	 � �	

�
�

Recall that the regression function is assumed to be null� Now using relation ������
in Agarwal and Studden ����	�� it is easily seen that �T� has the same asymptotic
distribution with the random variable�

�	 � �	
��
Mn

�
�	 � �	

�
�

Therefore� Theorem � is a straightforward consequence of the following variant of
Theorem ��� in Shapiro ������ � cf� also Diack� �����


Let X be a random vector distributed as Nq �	� Iq� � then�

P

�
inf

x�C�C�
kX � xk� � s�

�
� ��P

�
��
� � s�

	
�

X
� � j � k�d��

�jP
�
��
q�j � s�

	
����

with �� � P �X � C �C�� �
�j �

P
k�d��J�j

P �PJ �X� � 'J�P �CJ�C
�
JCJ�

��C �
Jx � C� �C�� �

where

'J � fx � R
k�d 
 C �

Jx � 	� C �
J
x � 	g�

C� �C� being the polar cone of C �C� � Moreover� �� �
P

� � j � k�d��

�j � �� �

Proof of Theorem �
 ���� follows quite readily from Theorem �� It remains
to prove ���� � We de
ne mi and q� by

mi �

p
n
�
g
�d���
� ��i� � �n�

�d��� ��i� � b
�d���
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�
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�
�

Then the power of the test under the local alternatives is given by

P

h
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i
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h
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�
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i
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i
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�
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Hence to get a power equal to one it is enough to prove that unmaxi ��mi�� ���
Because gn is non�convex and the �i are dense in �	� �� � there is a positive real � such
that
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i

�
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�
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Besides� we have
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Therefore the consistency under the local alternatives follows� �
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