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Abstract

This paper proposes a hypothesis testing procedure for nonparametric regression models based
on least squares splines� We assume that the sample is a part of stationary sequence which satisfy
a mild mixing property� The approach yields tests of monotonicity and convexity�

R�esum�e

Nous proposons une procedure de test pour la fonction de regression basee sur les splines de
regression� Nous supposons que l�echantillon est une partie d�une suite stationnaire qui satisfait
des conditions melangeantes� Notre approche fournit un test de monotonie et de convexite�
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� Introduction

In a variety of statistical models� a regression relationship can be assumed to be monotone or
convex� A natural question is whether the available data support these assumptions� Therefore�
testing monotonicity or convexity provides a way to prevent wrong conclusions� Some papers
in statistics literature deal with nonparametric hypothesis tests for convexity or monotonicity of
the regression function� Schlee ������ proposes tests based on the greatest discrepancy between
kernel type estimates of the derivatives of the response variable and zero� However� this paper
lacks a discussion on consistency and conservativeness� Yatchew ������ develops tests �with a
semi	parametric model� based on comparing the nonparametric sum of squared residuals under
monotonicity constraints� with the nonparametric sum of squared residuals without contraints�
The Yatchew approach relies on sample splitting which results in a loss of e�ciency� Yatchew and
Bos ������ avoid this drawback� essentially by doing an unrestricted nonparametric regression using
the residuals from the restricted regression� then testing for signi�cance� However� Yatchew and
Bos� test does not have a good power asymptotically� Using a kernel type estimator� Bowman� Jones
and Gijbels ������ developed a test �of monotonicity� based on the size of a critical bandwidth�
Bootstrapping is used to calculate the null distribution of the test statistics� The major drawback
with this test is that its actual level is not guaranteed and its power can be low when there are �at
parts in the regression function� Moreover� asymptotic theory is not provided� Besides� all these
tests assume that the random variables in their models are independent�

We consider the following regression model

Yi � g �xi� � Zi� i � �� � � � � n�
The design points fxigni�� can be deterministic or random� Without loss of generality� we assume
that xi � ��� ��� We also assume that fZk� k � Zg is a strictly stationary sequence of real random
variables with zero mean on a probability space ���A� P �� Let

�k � EZiZi�k

be its covariance sequence� Let � �Zi� i � �� and � �Zi� i � j� be the �	�elds generated by fZi� i � �g
and fZi� i � jg � respectively� We assume that the sequence fZk� k � Zg is �	mixing� that is


�j � sup
A���Zi�i � ��
B���Zi�i�j�

jP �AB�� P �A�P �B�j � � as j � ���

We also assume that their spectral density is bounded away from zero and in�nity�
To estimate the function g� we use a least squares spline estimator� If the degree of the

polynomials is chosen properly� the �rst or second derivatives of these estimates are piecewise

�



linear and lead to simple tests for positivity of these derivatives� To get the distribution of the
test� we need to prove central limit theorems of the regression spline �g �x� and its derivatives� We
also provide results on the maximal deviation for some derivatives of �g �x�� In fact� these results
are interesting in themselves and are formulated in Section �� We discuss the construction and
consistency of tests in Section �� We also examine their local properties�

� Main Results

For any two sequences of positive real numbers fang and fbng� we write an � bn to mean that
an�bn stays bounded between two positive constants� Let 	� � � � 	� � ��� � 	k�� � � be a
subdivision of the interval ��� �� by k distinct points� We de�ne S�k� d� as the collection of all
polynomial splines of order d �degree � d � �� having a sequence of knots 	� � ��� � 	k� The
class S�k� d� of such splines is a linear space of functions with dimension �k � d�� A basis for this
linear space is provided by the B	splines �see Schumaker ������ Let fN�� ��� Nk�dg denote the set
of normalized B	splines� The least squares spline estimator of g is de�ned by

�g �x� �

k�dX
p��

�
pNp �x� �

where

�
 �
�
�
�� � � � � �
k�d

��
� arg min

��Rk�d

nX
i��

�
Yi �

k�dX
p��


pNp �xi�

��

�

We de�ne �k by �k � max��i�k�	i�� � 	i�� Let N �x� be the vector of Np �x� � p � �� ���� k� d and

F � �N �x�� � ���� N �xn�� and Mn �
�

n

nX
i��

N �xi�N �xi�
�
�

Let A�j� �x� be a the vector in Rn de�ned by

A�j� �x� �
�
a
�j�
� �x� � ���� a�j�n �x�

��
�

�p
n
F �M��

n N �j� �x� � � � j � d� ��

Basic least squares arguments prove that

�
 �
�

n
M��

n FY ���

where Y ��Y�� ���� Yn�
�
� We can also write

�g�j� �x� � E�g�j� �x� �
�p
n
A�j� �x�

�
Z ���

with Z��Z�� ���� Zn�
� �

We need to specify some conditions� Here we assume that

�k � k��� ���

Such an assumption is valid when the knots are generated by a positive continuous density on
��� �� � In the case where the design points fxigni�� are deterministic� we assume that

sup
x�����	

jHn �x��H �x�j � � �k��
�

���

where Hn �x� is the empirical distribution function of fxigni�� and H �x� is the distribution limit
with positive density h �x� � Notice that when x is random we obtain from the Glivenko	Cantelli
Theorem

sup
x�����	

jHn �x��H �x�j � Op

�
n����

�
�

�



For x � �	i� 	i��

�
� we de�ne the function bd ��� by

bd �x� � �g�d� �	i�
�
	i � 	i��

�d
d�

Bd

	
x� 	i

	i � 	i��




where Bd ��� is the dth Bernoulli polynomial �see Barrow and Smith ������ We also set ��j� �x� �

�g�j� �x�� g�j� �x�� b
�j�
d �x� �

Theorem � provides the asymptotic normality of ��j� �x� for �xed and random design�

Theorem � Let g � Cd ��� �� � Suppose that k�j�� � � �n� when x is deterministic and k�j�� �
� �n���� when x is random� � � j � d� �� Assume that ��� and ��� hold� then for all x � ��� ��

p
n��j� �x�q

A�j� �x�
�
 A�j� �x�

� N ��� ��

where  is the n	 n matrix with �i� j� th element  ij � �i�j �

A con�dence band for g�j� �x� is easily obtained from Theorem �� The next result is on the
maximal deviation of �g�d��� �x� � It is worth noting that �g�d��� is a linear function between any
pair of adjacent knots 	i and 	i��� and it follows that

sup
x�����	

�g�d��� �x� � max
� � i � k��

�g�d��� �	i� and inf
x�����	

�g�d��� �x� � min
� � i � k��

�g�d��� �	i� � ���

Moreover �g�d��� is non	negative if and only if it is non	negative on the knots� This is essential for
our test procedure�

Theorem � Suppose that the assumptions of Theorem � hold� Then

P

��
un

�
� max

� � i � k��

p
n��d��� �	i�q

A�d��� �	i�
�
 A�d��� �	i�

� vn

�
A � x

��
�� exp �� exp ��x�� ���

where un � �� logn�
���

and

vn � �� logn�
��� � �

�
�� logn�

����
�log logn� log �� �

� Inference

In this section we provide tests of monotonicity and convexity�

Testing convexity�

We consider the problem of testing whether the regression function is convex or not� The null
hypothesis is H� 
 g is convex and the alternative is H� 
 the null is false� The idea of our test
procedure is as follows
 the function g is twice di!erentiable and convex if and only if for all
x� g��� �x� � �� or� in other words


sup
x

n
�g����x�

o
� ��

Therefore� for any consistent estimator �g of g� we can expect that P
�
supx

���g����x�� � �
�
is

close to � when g is convex� Then� it is natural to reject the null hypothesis of the test �that is
the convexity of g� for large values of supx

���g����x�� � We already mentioned that �g�d��� is non	

negative if and only if it is non negative on the knots� So� the distribution of supx
���g�d����x�

�
is the same with the distribution of max

�
�g�d��� �	�� � ���� �g

�d���
�
	k��

��
� Therefore� using a cubic

spline estimator �d � ��� we can construct a test of convexity based on Theorem � as follows� We
reject the convexity of g at level � when

un

�
� max

� � i � k��

�pn�g��� �	i�q
A��� �	i�

�
 A��� �	i�

� vn

�
A � log

	
� �

log ��� ��



� ���

�



Testing monotonicity�

More precisely we consider testing whether the regression function is monotonically increasing�
The testing procedure is an analogue of the convexity test� However we must use a quadratic spline
estimator for g �d � ��� The null hypothesis is rejected at level � when

un

�
� max

� � i � k��

�pn�g��� �	i�q
A��� �	i�

�
 A��� �	i�

� vn

�
A � log

	
� �

log ��� ��



���

where �g��� is the �rst derivative of the quadratic spline estimator of g�
Obviously� these testing procedures can be generalized to testing the non	negativity of the

�d� �� th derivative of g by using the spline of order d�
In applications� the covariance matrix  is unknown� Therefore� we must estimate it� The estima	
tors which we shall use for  ij � �ji�jj are

��h �
�

n

n�hX
i��

�
Zi � "Z

� �
Zi�h � "Z

�
� h � �� ���� n� �

where "Z is the sample mean� The estimators ��h� h � �� ���� n� �� have the desirable property that
for each n � �� the matrix � with elements � ij � ��ji�jj� is non	negative de�nite �cf� Brockwell
and Davis ������
Asymptotic power�

To make a local power calculation for the tests described above� we need to consider the behavior
of di!erent statistics �calculated under a �xed but unknown point g� � H�� for a sequence of
alternatives of the form

gn �x� � g� �x� � �n� �x� �

where gn lies in the alternative hypothesis� � ��� is a known function and �n is a sequence of real
variables converging to zero�

Theorem � We suppose that the assumptions of Theorem � hold and that

�n �logn�
���

n���k���d�
��� � ��� ���

Then the test �convexity when d � � and monotonicity when d � �� has a power equal to one under
the above local alternatives�

Our tests are asymptotically more powerful than the tests cited above� However� bootstrapping
may improve considerably the power of the tests� Besides� it would be desirable to study their
small sample behaviour through Monte Carlo simulations�
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� Proofs

The proofs of the theorems when x is deterministic and when x is random use similar arguments

except for the fact that in the latter case� we must write for example var
�
��j� �x� jx

�
instead of

var
�
��j� �x�

�
� Hence we give the proofs for the deterministic case only�

Proof of Theorem �
 Reasoning as in proof of Theorem � in Barrow and Smith ������� it is

easy to see that E� �j� �x� � � �k�d�j� � We can write ��j� �x� � �p
n

Pn
i�� a

�j�
i �x�Zi � � �k�d�j� �

According to Corollary ��� in Peligrad ������� it su�ces to prove

max
i

���a�j�i �x�
���r

nvar
�
��j� �x�

� � � as n�� ����

and

sup
n

�

nvar
�
��j� �x�

� nX
i��

n
a
�j�
i �x�

o�
��� ����

Straightforward calculations prove that var
�
��j� �x�

�
� �

nA
�j� �x�

�
 A�j� �x� � This can be

rewritten is the following form

var
�
��j� �x�

�
�

�

n�
tr
h
 F �M��

n N �j� �x�N �j� �x�
�
M��

n F
i
�

Now� using the Lemma ��� in Zhou et al� ������� we get

�min 

n
tr
h
N �j� �x�N �j� �x��M��

n

i
� var

�
��j� �x�

�
�

�max 

n
tr
h
N �j� �x�N �j� �x��M��

n

i
�

where �min and �max are� respectively� the smallest and largest eigenvalues of  � A classical
result on Toeplitz matrices �see Grenander and Szego ����� proves that �min and �max converge�
respectively� to the minimum and the maximum of the spectral density of Z� Agarwal and Studden
������ prove that �minM

��
n � k and �maxM

��
n � k� We can also prove that for each x there is

a p such that
���N �j�

p �x�
��� � kj � Therefore using again Lemma ��� in Zhou et al� ������� we get

var
�
��j� �x�

�
� k�j���n� Hence ���� and ���� follow easily�

Proof of Theorem �
 We de�ne �i and �ji�jj as

�i �

p
n��d��� �	i�q

A�d��� �	i�
�
 A�d��� �	i�

�

�



and

�ji�jj �
��corr ��i� �j���

From Theorem � we know that �i is asymptotically normally distributed� Therefore� according to
Theorem ����� in Leadbetter et al� ������ it su�ces to prove that �n logn� �� We have

cov
n
��d��� �	i� � �

�d���
�
	j
�o

�
�

n
A�d��� �	i�

�  A�d���
�
	j
�
�

Using again Lemma ��� in Zhou et al� ������ we obtain

cov
n
��d��� �	i� � �

�d���
�
	j
�o�

�
��max �

�

n�

n
A�d��� �	i�

�A�d���
�
	j
�o�

�

We can also write

A�d��� �	i�
�
A�d���

�
	j
�
�
X
p�q

mpqN
�d���
p �	i�N

�d���
q

�
	j
�

where mpq are the elements of the matrix M��
n � One can easily see that N

�d���
p �	i� � � if p � i

or p � i � d� and otherwise we have
���N �d���

p �	i�
��� � O �kd��

�
� On the other hand we have

jmpqj � O �k�jp�qj� for some � � ��� �� �see Lemma ��� in Zhou et al������� Now we take j � i�n
to obtain ���A�d��� �	i�

�
A�d���

�
	j
���� � O

�
k��d������n�d��

�
�

Therefore

�n � c��
n�d��

which proves Theorem ��
Proof of Theorem �
 We de�ne mi and q� by

mi �

p
n
�
g
�d���
� �	i� � �n�

�d��� �	i� � b
�d���
d �	i�

�
q
A�d��� �	i�

�
 A�d��� �	i�

� q� � log

	
� �

log ��� ��



�

Then the power of the test under the local alternatives is given by

P

h
un

�
max
i
f��i �mig� vn

�
� q�

i
� P

h
un

�
�max

i
�i �max

i
��mi� � vn

�
� q�

i
�

Hence to get a power equal to one it is enough to prove that unmaxi ��mi�� ��� Because gn is
non convex and the 	i are dense in ��� �� there is a postive real � such that

max
i

�
�g�d���

� �	i�� �n� �	i�
�
� ��

Besides� we have

max
x�����	

���b�d���
d �x�

��� � O �k�d�
and �nally

p
nq

A�d��� �	i�
�
 A�d��� �	i�

�
p
n

k���d�
���
�

Therefore the consistency under the local alternatives follows from te assumptions of Theorem ��

�


