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Abstract

This paper proposes a hypothesis testing procedure for nonparametric regression models based
on least squares splines. We assume that the sample is a part of stationary sequence which satisfy
a mild mixing property. The approach yields tests of monotonicity and convexity.

Résumé

Nous proposons une procédure de test pour la fonction de regression basée sur les splines de
régression. Nous supposons que 1’échantillon est une partie d’une suite stationnaire qui satisfait
des conditions mélangeantes. Notre approche fournit un test de monotonie et de convexité.

Key words: Testing monotonicity, Convexity, Central limit theorem, B-splines, Mixing.

1 Introduction

In a variety of statistical models, a regression relationship can be assumed to be monotone or
convex. A natural question is whether the available data support these assumptions. Therefore,
testing monotonicity or convexity provides a way to prevent wrong conclusions. Some papers
in statistics literature deal with nonparametric hypothesis tests for convexity or monotonicity of
the regression function. Schlee (1982) proposes tests based on the greatest discrepancy between
kernel type estimates of the derivatives of the response variable and zero. However, this paper
lacks a discussion on comsistency and conservativeness. Yatchew (1992) develops tests (with a
semi-parametric model) based on comparing the nonparametric sum of squared residuals under
monotonicity constraints, with the nonparametric sum of squared residuals without contraints.
The Yatchew approach relies on sample splitting which results in a loss of efficiency. Yatchew and
Bos (1997) avoid this drawback, essentially by doing an unrestricted nonparametric regression using
the residuals from the restricted regression, then testing for significance. However, Yatchew and
Bos’ test does not have a good power asymptotically. Using a kernel type estimator, Bowman, Jones
and Gijbels (1998) developed a test (of monotonicity) based on the size of a critical bandwidth.
Bootstrapping is used to calculate the null distribution of the test statistics. The major drawback
with this test is that its actual level is not guaranteed and its power can be low when there are flat
parts in the regression function. Moreover, asymptotic theory is not provided. Besides, all these
tests assume that the random variables in their models are independent.
We consider the following regression model

Y;:g(l'.b)ﬂ-ZZ,Z:].,,n

The design points {z;};—, can be deterministic or random. Without loss of generality, we assume
that x; € [0,1]. We also assume that {Z;,k € Z} is a strictly stationary sequence of real random
variables with zero mean on a probability space (22,4, P). Let

Ve =BZ; Zigy,

be its covariance sequence. Let o (Z;,% < 0) and o (Z;,i > j) be the o-fields generated by {Z;,7 < 0}
and {Z;,i > j}, respectively. We assume that the sequence {Z;, k € Z} is a-mixing, that is:

aj = sup |P(AB) — P(A)P(B)| — 0 as j — +o0.
A€a(2;,i <0)
Beo(z;.i>75)

We also assume that their spectral density is bounded away from zero and infinity.
To estimate the function g, we use a least squares spline estimator. If the degree of the
polynomials is chosen properly, the first or second derivatives of these estimates are piecewise



linear and lead to simple tests for positivity of these derivatives. To get the distribution of the
test, we need to prove central limit theorems of the regression spline ¢ (z) and its derivatives. We
also provide results on the maximal deviation for some derivatives of g (). In fact, these results
are interesting in themselves and are formulated in Section 2. We discuss the construction and
consistency of tests in Section 3. We also examine their local properties.

2 Main Results

For any two sequences of positive real numbers {a,} and {b,}, we write a, ~ b, to mean that
an /by, stays bounded between two positive constants. Let np =0 <5, < .. <., =1bea
subdivision of the interval [0,1] by k distinct points. We define S(k,d) as the collection of all
polynomial splines of order d (degree < d — 1) having a sequence of knots n; < ... < n,. The
class S(k,d) of such splines is a linear space of functions with dimension (k + d). A basis for this
linear space is provided by the B-splines (see Schumaker 1981). Let {Ny,.., Nytq} denote the set
of normalized B-splines. The least squares spline estimator of g is defined by
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g(z) = 0pNp (z),
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We define 6 by 6r = maxo<i<r(n;41 —1;)- Let N (x) be the vector of N, (x),p=1,...,k+d and
1 '
F=(N oy N (x5, M, = — N (xz;) N (z;) .
(N (@1), 00, N () and My = =3 N () N (1)

Let AU) (2) be a the vector in R* defined by

. . . 1 1 .
A0 (z) = (af (2), 0 (1)) = TRFMIND (@), 0<j<d-2.
Basic least squares arguments prove that
A1
6 =—M,'FY (1)
n
where Y = (Y7, ...,Y,)". We can also write
4 . 1 .
g(J) (z) — Eg(a) (z) = ﬁA(ﬂ) (a:)' 7 2)

with Z = (21, ..., Z,)".
We need to specify some conditions. Here we assume that

8 ~ kL (3)

Such an assumption is valid when the knots are generated by a positive continuous density on
[0,1]. In the case where the design points {x;}._, are deterministic, we assume that

sup |H, (z) — H (z)] =0 (k") (4)
z€[0,1]

where H, (z) is the empirical distribution function of {z;}!_, and H () is the distribution limit
with positive density h (x). Notice that when z is random we obtain from the Glivenko-Cantelli
Theorem

sup |H, (x) = H (x)| = 0, (n™'/2).
z€[0,1]



For z € (n;,M;41] , we define the function b (.) by

@ (n) (0 — 1.0 .)" T —n.
bd (Z’) — _g (771) (Z"L 777,-|—1) Bd < 771 )
: N — Mit1

where By (.) is the dth Bernoulli polynomial (see Barrow and Smith 1978). We also set £V) (z) =
g0 (x) — g9 (2) = b (x). |
Theorem 1 provides the asymptotic normality of f(]) (z) for fixed and random design.

Theorem 1 Let g € C2[0,1]. Suppose that kT = o(n) when = is deterministic and k>t =
o (n1/2) when x is random, 0 < j < d— 2. Assume that (3) and (4) hold, then for all x € [0,1]

Ve (z) N(0,1)
VAV (2) TAV) ()

where T is the n x n matriz with (i,j)th element T'i; =, ;.

A confidence band for g\9) (z) is easily obtained from Theorem 1. The next result is on the
maximal deviation of §(¢—2) (z). It is worth noting that %2 is a linear function between any
pair of adjacent knots 7; and 7;,,, and it follows that

sup g2 () = m

€[0.1] 0 < 3 (n,) and inf 4= (z) = Iznin JD (). (5)

ax
< k+1 z€[0,1] 0< 1

Moreover §(*=2) is non-negative if and only if it is non-negative on the knots. This is essential for
our test procedure.

Theorem 2 Suppose that the assumptions of Theorem 1 hold. Then

fi(“’( )
,k+1\/A(d 2) FA(d 2)( ;)

P<u, ma.
l

o< —v, | <zp —exp(—exp(—z)) (6)

where u, = (2logn)1/2 and

)1/2

1 _
vy, = (2logn ~5 (2logn) 1/2 (loglogn + log 4m) .

3 Inference

In this section we provide tests of monotonicity and convexity.

Testing convexity:
We consider the problem of testing whether the regression function is convex or not. The null
hypothesis is H, : g is convex and the alternative is Hy : the null is false. The idea of our test
procedure is as follows: the function ¢ is twice differentiable and convex if and only if for all
z,g® (z) > 0, or, in other words:

sup { g (2)} <.

T

Therefore, for any consistent estimator § of g, we can expect that P (supx {—§(2)(a})} < 0) is
close to 1 when g is convex. Then, it is natural to reject the null hypothesis of the test (that is
the convexity of g) for large values of sup, {—§(®(z)} . We already mentioned that §(¢=2) is non-
negative if and only if it is non negative on the knots. So, the distribution of sup, {—g(d”)(x)}
is the same with the distribution of max {§(4=2) (), ..., §'* (9,4,) } . Therefore, using a cubic
spline estimator (d = 4), we can construct a test of convexity based on Theorem 2 as follows. We
reject the convexity of g at level a when

—vng? (n,) ; oo (1
0<z<k+1\/A(2) Y TA® () )+ n 21g< 710g(1—a)>' (7)
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Testing monotonicity:

More precisely we consider testing whether the regression function is monotonically increasing.
The testing procedure is an analogue of the convexity test. However we must use a quadratic spline
estimator for g (d = 3). The null hypothesis is rejected at level o when

—/néW (n.
max Vg™t (n;) +o | > log (_%) (8)
DSk A0 () TAD () tog(1 - e)

Un

where §1) is the first derivative of the quadratic spline estimator of g.

Obviously, these testing procedures can be generalized to testing the non-negativity of the
(d — 2) th derivative of g by using the spline of order d.
In applications, the covariance matrix I" is unknown. Therefore, we must estimate it. The estima-
tors which we shall use for I';; = 7;_; are

h
(Zi—Z) (Zi+h—Z) ,hZO,...,TL—].
1

n

Yn =

S

)

where Z is the sample mean. The estimators 4,,h = 0, ...,n — 1, have the desirable property that
for each n > 1, the matrix I' with elements f‘ij = 9};_j|, is non-negative definite (cf. Brockwell
and Davis 1991).

Asymptotic power:

To make a local power calculation for the tests described above, we need to consider the behavior
of different statistics (calculated under a fixed but unknown point gy € H,) for a sequence of
alternatives of the form

gn () = go (z) + Tnip (7),

where g, lies in the alternative hypothesis, ¢ (.) is a known function and 7, is a sequence of real
variables converging to zero.

Theorem 3 We suppose that the assumptions of Theorem 1 hold and that

7 (log n)l/2 nt/ 2722 L oo (9)

Then the test (convexity when d = 4 and monotonicity when d = 3) has a power equal to one under
the above local alternatives.

Our tests are asymptotically more powerful than the tests cited above. However, bootstrapping
may improve considerably the power of the tests. Besides, it would be desirable to study their
small sample behaviour through Monte Carlo simulations.
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4 Proofs

The proofs of the theorems when z is deterministic and when z is random use similar arguments

except for the fact that in the latter case, we must write for example var (f(j) (z) |x) instead of

var (f(j) (m)) . Hence we give the proofs for the deterministic case only.

Proof of Theorem 1: Reasoning as in proof of Theorem 1 in Barrow and Smith (1978), it is
easy to see that B¢V (z) = o (k=*7) . We can write ¢V (z) = ﬁ Dy agj) (x) Zi + o (k=*17).
According to Corollary 2.1 in Peligrad (1996), it suffices to prove

o (@)

nvar (f(j) (a:))

max —0asn — o0 (10)

and

sipm;{ay) (a:)}2 < 0. (11)

Straightforward calculations prove that var (f(j) (m)) = 140)()'TAY) (). This can be

rewritten is the following form
D) () = AN G) () M=
var (5 (a:)) = ﬁtr [FF M, NY (z) NV (z) M, F} .
Now, using the Lemma 6.5 in Zhou et al. (1998), we get

minF 1 i li — ] maxF 1 i ’ —
ATtr [N(]) () NO (&) M 1] < var (5(3) (a:)) < ATtr [N(]) () NO (&) M; 1] ,

where Aninl’ and A <[ are, respectively, the smallest and largest eigenvalues of I'. A classical
result on Toeplitz matrices (see Grenander and Szego 1984) proves that ApminI' and A\paxI converge,
respectively, to the minimum and the maximum of the spectral density of Z. Agarwal and Studden
(1980) prove that /\minM,jl ~ k and /\maan’1 ~ k. We can also prove that for each x there is

a p such that ‘N,gj) (m)‘ ~ k7. Therefore using again Lemma 6.5 in Zhou et al. (1998), we get
var (f(j) (m)) ~ k%*+1/n. Hence (10) and (11) follow easily.
Proof of Theorem 2: We define 3; and pj;_;| as
\/ﬁf(diz) (m,)
VA () TAG=2) ()

B; =



and
Pli—j| = |corr (B;,85)]

From Theorem 1 we know that g3, is asymptotically normally distributed. Therefore, according to
Theorem 6.2.1 in Leadbetter et al. (1983) it suffices to prove that p, logn — 0. We have

_ — I _
con {172 (), €47 ) f = LA () TAC) ().
Using again Lemma 6.5 in Zhou et al. (1998) we obtain

2
cov {f(d_g) (m:) 6% (773') }2 < (AmexT)

We can also write

{462 (g 402 ()}

n2

A () AU () =D g NS () N§T2) ()

p,q

where m,,, are the elements of the matrix M, !. One can easily see that N,gd_Q) (n;) =01 p<i
2 (n,)| = O (k*=2). On the other hand we have

[mpq| = O (kvlP=2') for some v € (0,1) (see Lemma 6.3 in Zhou et al.1998). Now we take j =i +n
to obtain

or p > i+ d, and otherwise we have ‘ng

AWd=2) (p V" A(d=2) (p V| = O (p2(d—2)+1 n—d+2)
462 () ()| =0( )

Therefore

p, < e

which proves Theorem 2.
Proof of Theorem 3: We define m; and g, by

m; =

Vi (9572 (0) + 7D () + 6570 () ( 1 )
) Qo = 108 | —7————=
VA@2 () 7A@ () tog (1~ a)

Then the power of the test under the local alternatives is given by
P |:un (max{—ﬁl - mi} + Un) > QQ] >P |:un (_ maxﬁl + maX(_mi) + vn) > QQ] .

Hence to get a power equal to one it is enough to prove that u,, max; (—m,;) — +o00. Because g, is
non convex and the 7, are dense in [0, 1] there is a postive real € such that

max (—géd_Q) (n;) — Tnep (m)) > e

Besides, we have

b ()| = 0 (b
xgl[gfg]\ i (@) =0k

and finally

/A VA
JATD () TAG2) () K]

Therefore the consistency under the local alternatives follows from te assumptions of Theorem 3.



