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Abstract

In this paper we show the existence and uniqueness of a solution

for backward stochastic di�erential equations driven by a L�evy pro�

cess with moments of all orders� An application to Clark�Ocone and

Feynman�Kac formulas for L�evy processes is presented�

� Introduction

The �rst paper concerned with Backward Stochastic Di�erential Equations
�BSDE�s� is the paper Bismut ���	
�� where he introduced a non�linear
Ricatti BSDE and showed existence and uniqueness of bounded solutions

Pardoux and Peng ������ considered general BSDE�s and this paper was the
starting point for the development of the study of these equations
 On the
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other hand� BSDE�s have important applications in the theory of mathe�
matical �nance� especially� they play a major role in hedging and non�linear
pricing theory for imperfect markets �see El Karoui and Quenez ����	��


One can consider a BSDE driven by a Brownian motion as a nonlinear
generalization of the integral representation theorem for square integrable
random martingales
 Then it is natural to extend these kind of equations to
the case of L�evy process� that is� processes with independent and stationary
increments
 We recall that a L�evy process consists of three stochastically in�
dependent parts� a purely deterministic linear part� a Brownian motion and
a pure�jump process
 In Situ ����	� BSDE�s driven by a Brownian motion
and a Poisson point process are studied
 Ouknine ������ considers BSDE�s
driven by a Poisson random measure
 In both papers the main ingredient
is the integral representation of square integrable random variables in terms
of a Poisson random measure �see Jacod ���	���


In Nualart and Schoutens ������ a martingale representation theorem for
L�evy processes satisfying some exponential moment condition was proved

The purpose of this paper is to use this martingale representation result to
establish the existence and uniqueness of solutions for BSDE�s driven by a
L�evy process of the kind considered in Nualart and Schoutens ������


The paper is organized as follows
 Section � contains some preliminaries
on L�evy processes
 Section 
 contains the main result on BSDE�s driven by
L�evy processes
 Finally in Section � we have included some applications of
BSDE�s driven by L�evy processes to the Clark�Ocone and the Feynman�Kac
formulas for L�evy processes


� Preliminaries

Let X � fXt� t � �g be a L�evy process de�ned on a complete probability
space ���F � P �
 That is� X is a real�valued process starting from � with
stationary and independent increments and with c�adl�ag trajectories
 It is
known that Xt has a characteristic function of the form

E
�
ei�Xt

�
� exp

�
ia�t� �

�
����t� t

Z
R

�
ei�x � �� i�x�fjxj��g

�
��dx�

�
�

where a � R� � � �� and � is a measure on R with
R
R
�� � x����dx� � �


We will assume that the L�evy measure � satis�es for some � � �Z
������c

e�jxj��dx� ���

�



for every 	 � �
 This implies that the random variables Xt have moments of
all orders
 We refer to Sato ������ or Bertoin ������ for a detailed account
on L�evy processes


For t � �� let Ft denote the ��algebra generated by the family of random
variables fXs� � � s � tg augmented with the P �null sets of F 
 Fix a
time interval ��� T � and set L�

T � L����FT � P �
 We will denote by P the
predictable sub����eld of FT � B���T �
 First we introduce some notation�

	 Let H�
T denote the space of square integrable and Ft�progressively

measurable processes 
 � f
t� t � ��� T �gsuch that

jj
jj� � E

�Z T

�
j
tj�dt

�
���

	 M�
T will denote the subspace of H�

T formed by predictable processes


	 H�
T �l

�� andM�
T �l

�� are the corresponding spaces of l��valued processes
equipped with the norm

jj
jj� � E

�Z T

�

�X
i��

j
�i�
t j�dt

�
�

	 Set H�
T � H�

T 
M�
T �l

��


Following Nualart and Schoutens ������ we de�ne for every i � �� �� ���

the so�called power�jump processesfX�i�
t � t � �g and their compensated ver�

sion fY �i�
t � X

�i�
t � E�X

�i�
t �� t � �g� also called the Teugels martingales� as

follows

X
���
t � Xt and X

�i�
t �

X
��s�t

��Xs�
i for i � �� 
� ���

Y
�i�
t � X

�i�
t � E�X

�i�
t � � X

�i�
t � t E�X

�i�
� � for i � ��

An orthonormalization procedure can be applied to the martingales Y �i� in
order to obtain a set of pairwise strongly orthonormal martingales fH�i�g�i��

such that each H�i� is a linear combination of the Y �j�� j � �� ���� i�

H�i� � ci�iY
�i� � ci�i��Y

�i��� � ���� ci��Y
����






It was shown in Nualart and Schoutens ������ that the coe�cients ci�k corre�
spond to the orthonormalization of the polynomials �� x� x�� ��� with respect
to the measure ��dx� � x�v�dx� � ��
��dx��

qi���x� � ci�ix
i�� � ci�i��x

i�� � ���� ci���

Set

pi�x� � xqi���x� � ci�ix
i � ci�i��x

i�� � ���� ci��x

�pi�x� � x�qi���x�� qi������ � ci�ix
i � ci�i��x

i�� � ���� ci��x
��

Then

H
�i�
t �

X
��s�t

�
ci�i ��Xs�

i � ���� ci�� ��Xs�
�
�
� ci��Xt

�tE
h
ci�iX

�i�
� � ���� ci��X

���
�

i
� tci��E �X��

� qi�����Xt �
X

��s�t
�pi��Xs�� tE

�
� X
��s��

�pi��Xs�

	

� tqi�����E �X�� �

As a consequence� �H
�i�
t � pi��Xt� for each i � �
 In the particular case

i � � we obtain

H
���
t � c����Xt � tE�X����

where

c��� �

�Z
R

y���dy� � ��

�����

and

E�X�� � a�

Z
fjxj��g

z��dz��

In the case
R
R
jzjv�dz� � �� assuming a �

R
fjxj��g z��dz�� we obtain

E�X�� �
R
R
z��dz� 


The main results in Nualart and Schoutens ������ is the Predictable
Representation Property� Every square integrable random variable F � L�

T

has a representation of the form

F � E�F � �

�X
i��

Z T

�
Z�i�
s dH�i�

s �

where Zt is a predictable process in the space M�
T �l

��


�



� BSDE for L�evy Processes

Taking into account the results and notation presented in the previous sec�
tion� it seems natural to consider the BSDE

�dYt � f�t� Yt�� Zt�dt�
�X
i��

Z
�i�
t dH

�i�
t � YT � �� ���

where�

	 H
�i�
t is the orthonormalized Teugels martingale of order i associated

with the L�evy process X


	 f � � 
 ��� T � 
 R
M�
T �l

�� � R is a measurable function such that
f��� �� �� � H�

T �

	 f is uniformly Lipschitz in the �rst two components� i
e
� there exists
C � � such that dt� dP a
s
� for all �y�� z�� and �y�� z�� in R
l�

jf�t� y�� z��� f�t� y�� z��j � C �jy� � y�j� kz� � z�kl�� �

	 � � L�
T 


If �f� �� satis�es the above assumptions� the pair �f� �� is said to be
standard data for the BSDE
 A solution of the BSDE is a pair of processes�
f�Yt� Zt�� � � t � Tg � H�

T 
M�
T �l

�� such that the following relation holds
for all t � ��� T ��

Yt � � �

Z T

t
f�s� Ys�� Zs�ds�

�X
i��

Z T

t
Z�i�
s dH�i�

s � ���

Note that the progressive measurability of f�Yt� Zt�� � � t � Tg implies that
�Y�� Z�� is deterministic


Theorem � Given standard data �f� ��� there exists a unique solution �Y�Z�
which solves the BSDE ����

Proof� We de�ne a mapping � from H�
T into itself such that �Y�Z� � H�

T is
a solution of the BSDE if and only if it is a �xed point of �
 Given �U� V � �
H�

T � we de�ne �Y�Z� � ��U� V � as follows�

Yt � E

�
� �

Z T

t
f�s� Us�� Vs�dsjFt

�
� � � t � T�

�



and fZt� � � t � Tg is given by the martingale representation of Nualart
and Schoutens ������ applied to the square integrable random variable

� �

Z T

�
f�s� Us�� Vs�ds�

i
e
�

� �

Z T

�
f�s� Us�� Vs�ds � E

�
� �

Z T

�
f�s� Us�� Vs�ds

�

�
�X
i��

Z T

�
Z�i�
s dH�i�

s �

Taking the conditional expectation with respect to Ft in the last identity
yields

Yt �

Z t

�
f�s� Us�� Vs�ds � Y� �

�X
i��

Z t

�
Z�i�
s dH�i�

s �

from which we deduce that

Yt � � �

Z T

t
f�s� Us�� Vs�ds�

�X
i��

Z T

t
Z�i�
s dH�i�

s

and we have shown that �Y�Z� � H�
T solves our BSDE if and only if it is a

�xed point of �

Next we prove that � is a strict contraction on H�

T equipped with the
norm

k�Y�Z�k� �

�
E

�Z T

�
e�s

�
jYs�j� �

�X
i��

jZ�i�
s j�

�
ds

�����

�

for a suitable � � �
 Let �U� V � and �U �� V �� be two elements of H�
T and set

��U� V � � �Y�Z� and ��U �� V �� � �Y �� Z �� 
 Denote �U� V � � �U �U �� V �
V �� and �Y �Z� � �Y � Y �� Z � Z �� 


�



Applying It o�s formula from s � t to s � T � to e�s �Ys � Y �
s�

�� it follows
that

e�t


Yt � Y �

t

��
� ��

Z T

t
e�s



Ys� � Y �

s�
��
ds

��
Z T

t
e�s



Ys� � Y �

s�
�
d�Ys � Y �

s �

�
Z T

t
e�sd�Y � Y �� Y � Y ��s� �
�

We have

�d�Yt � Y �
t � � �f�t� Ut�� Vt�� f�t� U �

t�� V
�
t ��dt

�
�X
i��

�
Z

�i�
t � Z

��i�
t

�
dH

�i�
t �

d
�
Y � Y �� Y � Y ��

t
�

�X
i��

�X
j��

�
Z

�i�
t � Z

��i�
t

��
Z

�j�
t � Z

��j�
t

�
d�H�i��H�j��t�

D
H�i��H�j�

E
t

� 
ijt�

Hence� taking expectations in �
�� we have

E
h
e�t



Yt � Y �

t

��i
�

�X
i��

E

�Z T

t
e�s

�
Z�i�
s � Z ��i�

s

��
ds

�

� ��E
�Z T

t
e�s



Ys� � Y �

s�
��
ds

�

��E

�Z T

t
e�s



Ys� � Y �

s�
� 

f�s� Us�� Vs�� f�s� U �

s�� V
�
s �
�
ds

�
�

Using the fact that f is Lipschitz with constant C yields

E
h
e�t



Yt � Y �

t

��i
�

�X
i��

E

�Z T

t
e�s�

�
Z�i�
s � Z ��i�

s

��
ds

�

� ��E
�Z T

t
e�s�Ys� � Y �

s��
�ds

�

��CE

�
�Z T

t
e�s

��Ys� � Y �
s�
��
�
�jUs� � U �

s�j�
vuut �X

i��

jV �i�
s � V

��i�
s j�

�
A ds

	

 �

	



If we now use the fact that for every c � � and a� b � R we have that
�ab � ca� � �

c b
� and �a� b�� � �a� � �b�� we obtain

E
h
e�t

��Yt � Y �
t

���i� �X
i��

E

�Z T

t
e�s

�
Z�i�
s � Z ��i�

s

��
ds

�

� ��C� � ��E

�Z T

t
e�s

��Ys � Y �
s

��� ds�

�
�

�
E

�Z T

t
e�s

�
jUs� � U �

s�j� �
�X
i��

jV �i�
s � V ��i�

s j�
�
ds

�
�

Taking now � � �C� � �� and noting that e�tE��Yt � Y �
t �

�� � �� we �nally
derive

E

�Z T

t
e�s

��Ys � Y �
s

��� ds�� �X
i��

E

�Z T

t
e�s�Z�i�

s � Z ��i�
s ��ds

�

� �

�
E

�Z T

t
e�s

�
jUs� � U �

s�j� �
�X
i��

jV �i�
s � V ��i�

s j�
�
ds

�
�

that is�

k�Y�Z�k�� �
�

�
k�U� V �k�� �

from which it follows that � is a strict contraction on H�
T equipped with the

norm k�k� if � � �C���
 Then � has a unique �xed point and the theorem
is proved



We now prove the continuous dependence of the solution on the �nal
data � and the function f 


Theorem � Given standard data �f� �� and �f �� ���� let �Y�Z� and �Y �Z ��
be the unique adapted solutions of the BSDE ��� corresponding to �f� �� and
�f �� ���� Then

E

�Z T

�

�
jYs� � Y �

s�j� �
�X
i��

jZ�i�
s � Z ��i�

s j�
�
ds

�

� C

�
E�j� � ��j�� �E

�Z T

�
jf�s� Ys�� Zs�� f ��s� Ys�� Zsj�ds

��
�

�



Proof� Applying It o�s formula from s � t to s � T � to �Ys � Y �
s�

�� it follows
that



YT � Y �

T

�� � 
Yt � Y �
t

��
� �

Z T

t



Ys� � Y �

s�
�
d�Ys � Y �

s�

�

Z T

t
d�Y � Y �� Y � Y ��s�

Taking expectations and using the relations

�d�Yt � Y �
t � � f�t� Yt�� Zt�� f ��t� Y �

t�� Z
�
t�dt

�
�X
i��

�
Z

�i�
t � Z

��i�
t

�
dH

�i�
t

d�Y � Y �� Y � Y ��t �

�X
i��

�X
j��

�
Z

�i�
t � Z

��i�
t

��
Z

�j�
t � Z

��j�
t

�
d�H�i��H�j��t�

D
H�i��H�j�

E
t

� 
ijt�

we have

E�


Yt � Y �

t

��
� �

�X
i��

E

�Z T

t

���Z�i�
s � Z ��i�

s

���� ds�

� E�


� � ��

��
�

��E

�Z T

t



Ys� � Y �

s�
� 

f�s� Ys�� Zs�� f ��s� Y �

s�� Z
�
s�
�
ds

�
�

Using the Lipschitz property of f �� and computations similar to those of
the proof of Theorem � we obtain

E�
��Yt � Y �

t

���� � �

�
E

�Z T

t

�X
i��

jZ�i�
s � Z ��i�

s j�ds
�

� E�j� � ��j�� � �� � �C � � �C ���E
�Z T

t
jYs� � Y �

s�j�ds
�

�E

�Z T

t
jf�s� Ys��Zs�� f ��s� Ys��Zsj�ds

�
�

Then by Gronwall�s inequality the result follows
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� Applications

Suppose our L�evy process Xt has no Brownian part� i
e
 Xt � at � Lt�
where Lt is pure jump process with L�evy measure ��dx�


��� Clark�Ocone Formula and Feynman�Kac Formula

We �rst prove a technical lemma which will be needed later on


Lemma � Let h � �
 ��� T �
R � R be a random function measurable with

respect to P � BR such that

jh�s� y�j � as�y
� � jyj� a�s�� ���

where fas� � � s � Tg is a nonnegative predictable process such that E�
R T
� asds� �

�� Then for each t � ��� T � we have

X
t�s�T

h�s��Xs� �

�X
i��

Z T

t
hh�s� ��� piiL��	� dH

�i�
s �

Z T

t

Z
R

h�s� y���dy�ds�

Proof� Because ��� implies that E�
R t
�

R
R
jh�s� y�j���dy�ds� � �� we have

that

Mt �
X

��s�t
h�s��Xs��

Z t

�

Z
R

h�s� y���dy�ds�

is a square integrable martingale
 By the Predictable Representation Theo�
rem� there exists a process 
 in the space M�

T �l
�� such that

Mt �

�X
i��

Z t

�

�i�
s dH�i�

s �

Taking into account that
�
H�i��H�j�

�
t
� t
ji� we have

D
M�H�i�

E
t
�

Z t

�

�i�
s ds� ���

On the other hand� using that �Ms�H
�i�
s � h�s��Xs�pi��Xs� we obtain

D
M�H�i�

E
t
�

Z t

�

Z
R

h�s� y�pi�y���dy�ds� ���

��



Consequently� ��� and ��� imply


�i�
s �

Z
R

h�s� y�pi�y���dy��

and the result follows
 �
Let us consider the simple case of a BSDE where f � �� and the terminal

random variable � is a function of XT � that is�

�dYt � �
�X
i��

Z
�i�
t dH

�i�
t ! YT � g�XT �

or equivalently

Yt � g�XT ��
�X
i��

Z T

t
Z�i�
s dH�i�

s � �	�

where E�g�XT �
�� ��� Let � � ��t� x� be the solution of the following PDIE

�Partial Di�erential Integral Equation� with terminal value g�

��

�t
�t� x� �

Z
R

���t� x� y�� ��t� x�� ��

�x
�s� x�y� ��dy� � a�

��

�x
�t� x� � ��

��T� x� � g�x�� ���

where a� � a�
R
fjyj��g y��dy�
 Set

�����t� x� y� � ��t� x� y�� ��t� x�� ��

�x
�s� x�y� ���

Suppose that � is a C��� function such that 
�

x and 
��


x�
is bounded by a

polynomial function of x
 Under these hypotheses the function �����t� x� y�
satisfy the hypotheses in Lemma 
 imposed on h due to the mean value
theorem� when we take x � Xt� 


The following result is a version of the Clark�Ocone formula for functions
of a L�evy process


Proposition � Under the above assumptions� the unique adapted solution

of ��� is given by

Yt � ��t�Xt�

Z
�i�
t �

Z
R

�����t�Xt�� y�pi�y���dy� for i � ��

Z
���
t �

Z
R

�����t�Xt�� y�p��y���dy� �
��

�x
�t�Xt���

Z
R

y���dy������

��



Proof� Indeed by It o�s lemma applied to ��s�Xs� from s � t to s � T we
have

��T�XT �� ��t�Xt� �

Z T

t

��

�t
�s�Xs��ds�

Z T

t

��

�x
�s�Xs��dXs ����

�
X

t�s�T

�
��s�Xs�� ��s�Xs��� ��

�x
�s�Xs���Xs

�
�

If we apply Lemma 
 to h�s� y� � ��s�Xs� � y� � ��s�Xs�� � 
�

x�s�Xs��y�

we obtain

X
t�s�T

�
��s�Xs�� ��s�Xs��� ��

�x
�s�Xs���Xs

�

�

�X
i��

Z T

t

�Z
R

�����s�Xs�� y�pi�y���dy�
�
dH�i�

s

�

Z T

t

Z
R

�����s�Xs�� y� ��dy�ds� ����

Hence� substituting ���� into ���� yields

g�XT �� ��t�Xt�

�

Z T

t

��

�t
�s�Xs��ds�

Z T

t

��

�x
�s�Xs��dXs

�

�X
i��

Z T

t

�Z
R

�����s�Xs�� y�pi�y���dy�
�
dH�i�

s

�

Z T

t

Z
R

�����s�Xs�� y� ��dy�ds� ����

Notice that

Xt � Y
���
t � tE�X�� � �

Z
R

y���dy�����H
���
t � tE�X���

and

E�X�� � a�

Z
fjxj��g

y���dy��

��



We also have Y� � E�Y�� � E�g�XT �� so we can rewrite ���� as

g�XT � � E�g�XT �� �

Z T

t

��

�x
�s�Xs���

Z
R

y���dy������dH���
s

�

�X
i��

Z T

t

�Z
R

�����s�Xs�� y�pi�y���dy�
�
dH�i�

s �

which completes the proof of the Proposition
 �
If
R
R
jyj��dy� � �� and we take a �

R
fjyj��g y��dy�� then the equation

��� reduces to

��

�t
�t� x� �

Z
R

���t� x� y�� ��t� x����dy� � ��

��T� x� � g�x��

and taking into account that p��y� � y�
R
R
y���dy������ in Proposition � we

have

Z
�i�
t �

Z
R

���t�Xt� � y�� ��t�Xt�� � pi�y���dy��

Now by taking expectations we derive that the solution ��t� x� to our
PDIE equation has the stochastic representation

��t� x� � E�g�XT �jXt � x��

This is an extension of the classical Feynman�Kac Formula

Remark�

Consider the very special case where we have a compensated Poisson
process Xt � Nt � �t� Then

H
���
t �

�p
�
�Nt � �t� �

Xtp
�

and H
�i�
t � � for i � �� 
� ����

Note that p��x� � xp
�
and pi�x� � �� i � �� 
� ���
 Moreover the PDIE ���

reduces to

���s� x� ��� ��s� x��� �
��

�x
�s� x� �

��

�t
�t� x� � ��

��T� x� � g�x��

The Clark�Ocone Formula is now given by

g�XT � � E�g�XT �� �

Z T

t
��s�Xs� � ��� ��s�Xs��dXs�

�




��� Nonlinear Clark�Haussman�Ocone Formula and Feynman�

Kac Formula

Let us consider the BSDE

�dYt � f�t� Yt�Zt�dt�
�X
i��

Z
�i�
t dH

�i�
t ! YT � g�XT � ��
�

or equivalently

Yt � g�XT � �

Z T

t
f�s� Ys�� Zs�ds�

�X
i��

Z T

t
Z�i�
s dH�i�

s �

Suppose that � � ��t� x� satis�es the following PDIE�

��

�t
�t� x� �

Z
R

�����t� x� y���dy� � a�
��

�x
�t� x� ����

�f
�
t� ��t� x� �

n
��i��t� x�

o�
i��

�
� ��

��T� x� � g�x��

where as in the previous section� we de�ne �����t� x� y� by ����

�����t� x� �

Z
R

�����t� x� y�p��y���dy� �
��

�x
�t� x��

Z
R

y���dy������

and for i � �

��i��t� x� �

Z
R

�����t� x� y�pi�y���dy��

Assume that � is a C��� function such that 
�

x and 
��


x�
is bounded by a

polynomial function of x
 Then the �unique� adapted solution of ��
� is
given by

Yt � ��t�Xt�

Z
�i�
t �

Z
R

�����t�Xt�� y�pi�y���dy� for i � ��

Z
���
t �

Z
R

�����t�Xt�� y�p��y���dy� �
��

�x
�t�Xt���

Z
R

y���dy������

Indeed� applying It o�s lemma to ��s�Xs� from s � t to s � T and using
Lemma 
 we obtain the equality ����
 Now� using ���� we get

��



g�XT �� ��t�Xt� � �
Z T

t
f
�
s� ��s�Xs�� �

n
��k��s�Xs��

o�
k��

�
ds

�

Z T

t

�Z
R

�����s�Xs�� y�p��y���dy� �
��

�x
�s�Xs���

Z
R

y���dy�����
�
dH���

s

�

�X
i��

Z T

t

�Z
R

�����s�Xs�� y�pi�y���dy�
�
dH�i�

s �

which completes the proof of the proposition
�
Notice that taking expectations we get

��t� x� � E�g�XT �jXt � x� �

E

�Z T

t
f
�
s� ��s�Xs�� �

n
��i��s�Xs��

o�
i��

�
dsjXt � x

�
�

Remark�

Consider again the very special case where we have a Poisson process Nt

with E�Nt� � �t
 Set Xt � Nt� �t� Then the PDIE ���� reduces to

���t� x� ��� ��t� x��� �
��

�x
�t� x� �

��

�t
�t� x� �

f �t� ��t� x� � ��t� x� ��� ��t� x�� � �� ����

��T� x� � g�x��

And we derive the nonlinear Feynman�Kac Formula�

��t� x� � E�g�XT �jXt � x�

�E

�Z T

t
f �s� ��s�Xs��� ��s�Xs� � ��� ��s�Xs��� dsjXt � x

�
�
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