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Abstract

In this paper we �nd a nonexponential Lundberg approximation of the ruin prob	
ability in a Cox model� in which a governing process has a regenerative structure
and the claims are light	tailed or have an intermediate regularly varying distribution�
Examples include an intensity process being re�ected Brownian motion� square func	
tions of the Ornstein	Uhlenbeck process and splitting re�ected Brownian bridges� In
particular� we consider a non	Markovian intensity process�
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� Introduction

This paper is concerned with a risk theory subject to a combination of two features which
repeatedly have been argued to be relevant in practical applications� namely stochastic
modulation and regular varying claim size distributions� We consider a canonical surplus
process fS�t�� t � �g given by�

S�t� �

N�t�X
i��

Ui � t �

where fN�t�� t � �g is a Cox process with an underlying c	adl	ag process fX�t�� t � �g�
That is� if a realization of the process fX�t�� t � �g is x�t� � D
������ then for a non�
negative function � � IR� IR� � f�g the process fN�t�� t � �g has the same law as a non�
homogeneous Poisson process

�
N �x��t�� t � �� with an intensity function ��t� � ��x�t���

The process f��X�t��� t � �g is called an intensity process� Thus stochastic modulation
means that the surplus process is not time�homogeneous� but evolves in some random
environment� A detailed discussion of Cox processes and their impact on risk theory is
to be found in Grandell ���� and Rolski et al� ���� The claim sizes U�� U�� � � � are
i�i�d� r�v��s independent of the process fN�t�� t � �g with a common distribution function
FU �x�� Let u be an initial reserve and assume that S�t� � �� a�e� as t � ��� An
in�nite horizon ruin probability is then

��u� � IP�sup
t��

S�t� � u� � �����

The model� in which fN�t�� t � �g is Coxian� is called the Bj�ork�Grandell model which
goes to the pioneering paper Bj�ork and Grandell ������ In that paper one derives by
a martingale approach an exponential upper bound of ��u� when an intensity process
has piecewise realizations and claim sizes are light�tailed� Further generalizations can be
found in Embrechts ���� ��nite time non�Markovian intensities� and Grigolionis �����
Grandell and Schmidli ������ and Palmowski ������ �nd a Lundberg upper bound and a
Lundberg approximation of ��u� when the intensity process is governed by a di�usion pro�
cess and claim sizes are light�tailed� These papers fail to capture the second main feature
considered in this paper� namely� that of regularly varying tails� Relevance of heavy�tail
conditions can be found e�g� in Embrechts and Veraverbeke ����� and Kl�uppelberg �����
Asmussen et al� ���� �nd the nonexponential asymptotics in the Bj�ork�Grandell model
when the governing process is a �nite�state Markov process and the claim size has a heavy
tailed distribution� Asmussen et al� ��� generalize it to the case when fS�t�� t � �g
has a regenerative structure� In this paper we apply this result to get the asymptotics of
��u� when a rate of income of the claim at time t is a function ��x� of the regenerative
process fX�t�� t � �g� in particular when fX�t�� t � �g is a reccurent di�usion process�
Denote by � � T� � T� � T� � T� � � � � the regenerative epochs of the regen�

erative process fX�t�� t � �g� Let T be the generic time Tn�� � Tn� De�ne the r�v�

Z �
R Tn��
Tn

��X�t�� dt� Denote by F �x� the �heavier� distribution from distributions
of variables Z and U � Let F �x� have a regularly varying distribution� We will write
f�x� 	 g�x� as x � �� if limx��� f�x��g�x� � �� Similarly� f�x� 	 g�x� as x � �
means that limx�� f�x��g�x� � �� If IET � ��� then under some mild assumptions

��u� 	 CF s�u� as u� ���

where F s is a residual distribution of F and constant C is given explicit� Thus even in the
case of light�tailed claims one can get the nonexponential asymptotics� The asymptotics
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of ��u� in this case depends on the distribution of the interarrival time T only via its mean
IET � ��� If IET � ��� then its tail also has an impact on the rate of the asymptotics
of the ruin probability �see Theorem ��� �iv� and Section ����� The method of the proof of
the main Theorem ��� is based on the Karamata Tauberian Theorem� the Kingman�Taylor
expansion of the Laplace transform �see Stam ������ Cohen ����� and Asmussen et al�

���� Cor� ���������
To apply this result for the speci�c governing process fX�t�� t � �g one has to deter�

mine the asymptotic tails of r�v��s Z �
R Tn��
Tn

��X�t�� dt and T and its means� We refer
to Asmussen et al� ��� for similar functionals� In the second part of this paper we
calculate some examples presenting there main techniques useful in solving this problem�
The random variable Z is light�tailed if there exists 	 � � such that IEe�Z � ��� To
prove it we generalize Wentzell ������ p� ���� in the following way� Consider a family
of di�usion processes fXw�t�� t � �g parametrized by w � � starting at Xw��� � xw� Let

w be an exiting time from a compact set D� If there exists w� � � such that IE

Xw
xw 
w is

uniformly bounded for all � � w � w�� then IE
Xw
xw e

w�w is also uniformly bounded� The
asymptotics of the tail of the distribution of Z and its mean we calculate using the Laplace
transform� In most cases we take the square function ��x�� Then the method of comput�
ing m�g�f� and Laplace transform consists in changing probability so that the quadratic
functional disappears and the remaining problem is to calculate m�g�f� and Laplace trans�
form of some hitting or exiting time� In other words� we linearize the original problem by
transferring the computional problem for a variable belonging to a second Wiener chaos
to computations for a variable in a �rst chaos� One can calculate the Laplace transform
of hitting and exiting time using the Feynman�Kac formula �see Ito and McKean ������
Wentzell ����� and Borodin and Salminen ������
The rest of the paper is organized as follows� In Section � we recall the Karamata�

Tauberian theorem� The main Theorem ��� is stated in Section �� We consider the
following examples of the governing process fX�t�� t � �g and the function ��x�� semi�
Markov process and ��x� � x �Section ��� re�ected Brownian motion at � and � and
��x� � x �Section ����� Brownian motion and ��x� � e��jxj �Section ����� Ornstein�
Uhlenbeck process and ��x� � x� � k �Section ���� and ��x� � �x � p�� �Section �����
�nally splitting Brownian bridges and ��x� � jxj �Section �����

� Preliminaries

The main technique useful in �nding the asymptotics of ��u� is the Karamata Tauberian
Theorem� which we recall now� The critical index is de�ned in extended real numbers by

�K � inffv � IEjKjv � ��g �

That is� if there exists 	 � � such that IEe�K � ��� then �K � ��� Moreover� we say
that r�v� K has a regularly varying distribution if IP�K � x� 	 x��K lK�x� as x � ��
for a slowly varying function lK�x�� Denote

mi�K � IEjKji �

The Karamata Tauberian Theorem relates the tail behaviour of a distribution function to
the asymptotic behaviour of its Laplace transform at the origin �see Goldie et al� ������
p� ����� For variable K let �K � �� and de�ne n � 
�K �� Then by Kingman and Taylor
����� the Laplace transform �FK�s� of r�v� K may be expanded in a Taylor series as far
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as the sn term�

�FK�s� �

nX
k��

mk�K��s�k�k� � o�sn�� as s� � �

Let

fKn �s� � ����n
�
�FK�s��

nX
k��

mk�K��s�k�k�
�

�

Theorem ���� Let lK�x� be a slowly varying function� The following are equivalent�

fKn �s� 	 s�K lK���s�� as s� � �����

IP�K � x� 	 ����n
���� �K�

x��K lK�x�� as x� ��� �����

From Feller ������ Th� �� p� ��� we have the following theorem�

Theorem ���� Consider some function L�x� and � � �� For the slowly varying function

lL�x� the following are equivalent�

�FL�s� 	 s��lL�
�

s
�� as s� � �����

L�x� 	 �

��� � ��
x�lL�x�� as x� ��� �����

� Main Theorem

Assume that f��X�t��� t � �g is the intensity process for the regenerative process fX�t�� t � �g
and nonnegative function ��x�� Then the surplus process fS�t�� t � �g also has a regen�
erative structure� We let S be the increment of fS�t�� t � �g during the generic cycle
Tn�� � Tn� that is

S �

N�Tn���X
i�N�Tn���

Ui � �Tn�� � Tn� �

Let

S� �

N�Tn���X
i�N�Tn���

Ui

and

Z �

Z T�

�
��X�s�� ds �

Condition A�
We assume that

IP�S� � x� 	 IP�S � x� 	 x��S lS�x� � �A�

where �S � � and lS�x� is a slowly varying function�
By Asmussen et al� ������� Lem� ��� we have the following lemma�
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Lemma ���� If

Condition B�


	 � � � IEe�Z � �� � �B�

then condition �A� holds�

Note that�

S�Tn� �

N�Tn���X
i�N�Tn���

Ui � �Tn�� � Tn� � sup
Tn�t�Tn��

S�t� � S�Tn� �

N�Tn���X
i�N�Tn���

Ui �

Thus under �A� following Asmussen and Kl�uppelberg ���� and Asmussen et al� ����
Th� ��� we have�

��u� 	 IP�max
n��
�Y� � Y� � � � �� Yn� � u� �

where Yn are i�i�d� random variables such that Yn
D
� S�

Theorem ���� Assume that �A� holds�

�i� If � � jIESj � �� and IES � �� then

��u� 	 �

�� �S

�

�
lS�u�u

��S�� � �����

�ii� If � � ��� lS�x� � c� and

IP�T � x� 	 c�x
�� �����

for � �  � � and  � �S� then

��u� 	 sin���
�

c�
c�

u���S
Z ��

�
y����� � y���S dy � �����

Proof� Part �i� is the corollary from Asmussen et al� ���� Cor� ���� We now prove
�ii�� Denote by G��x� and G��x� the ascending and descending weak ladder height dis�
tributions of random walk Y� � Y� � � � � � Yn� Thus G

��x� and G��x� are concentrated
on 
����� and ���� �� respectively� From the Wiener�Hopf factorization � see Borovkov
������ ����� p� ���� we have

G���x� 	 c�
�� p

x�� as x� ��� �����

where p � ����� Let

H��t� �
��X
k��

�G���k��t�� t � �

and �FG�

�s� �
R ��
� e�sx dG���x�� Then the Laplace transform of H� is equal

�FH�

�s� �
�

�� �FG��s�
�

From the Karamata Tauberian Theorem ��� the following holds�

lim
s��

�FH�

�s�

s��
� lim

s��

s�

�� �FG��s�
�

�� p

���� �c�
�
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Thus by the Karamata Tauberian Theorem ���

H��t� 	 �� p

���� ���� � �c�
t� �

��� p� sin���

�c�
t� �

which completes the proof of �ii� in view of Borovkov ������ p� ��� and Lemma �� p�
����

Note that the Laplace transform of S� is equal

�F S��s� � IEe�sS
�
� IEX�IEUe�sU �N�Tn����N�Tn� � IEXe

� log��IEUe�sU ����
R T�
T�

	�X�t�� dt
�

where IEX and IEU are expectations with respect to the law of process fX�t�� t � �g and
r�v� U � That is�

�F S��s� � �FZ�log �FU �s���� � �����

Moreover� if � � ��� then � � IET � IEZIEU � m��T �m��Zm��U � Thus if
Condition S�

� � �� and m��T � m��Um��Z � �S�

then a stability condition S�t� � �� a�e� as t � �� holds� We assume that at least
one of the variables U and Z has a regularly varying distribution� Thus

�Z�U � minf�U � �Zg � �� �

In particular� if U or Z has a regularly varying distribution� then
Condition U�

IP�U � x� 	 lU �x�x
��U �U�

or
Condition Z�

IP�Z � x� 	 lZ�x�x
��Z �Z�

for slowly varying functions lU �x� and lZ�x� respectively� De�ne

lZ�U�x� �

�
lZ�x� if Z is reg� var� and �Z � �U
lU �x� if U is reg� var� and �U � �Z �

�����

Using the Karamata Tauberian Theorem we can prove the following theorem �see also
Asmussen et al� ���� Schmidli ���� Stam ����� and Grandell ������

Theorem ���� Assume that condition �A� and �Z� or �U� hold�

�i� If � � �Z � �U and �S� holds� then

��u� 	 C�lZ�u�u
��Z�� � �����

where

C� �
�

�Z � �m
�Z
��U

�

m��T �m��Um��Z
� �����

�



�ii� If � � �U � �Z and �S� holds� then

��u� 	 C�lU �u�u
��U�� � ����

where

C� �
�

�U � �m��Z
�

m��T �m��Um��Z
� ������

�iii� If �Z � �U and �S� holds� then

��u� 	 C�lU �u�u
��U�� � ������

where C� � C� � C��

�iv� Assume that T ful�ls ���	� for � �  � �� Then

��u� 	 C	u
���Z�U � ������

where

C	 �
sin���

�

m�Z
��Uc�

c�

Z ��

�
y����� � y���Z dy � ������

when lZ�x� � c��  � �Z � �U 
 and

C	 �
sin���

�

m��Zc�
c�

Z ��

�
y����� � y���U dy � ������

when lU �x� � c��  � �U � �Z �

Proof� We prove �i�� The points �ii���iv� can be proved in a very similar way� To prove
�i� by Theorem ��� it su�ces to prove that

IP�S� � x� 	 m�Z
��U lZ�x�x

��Z � ������

Let k � 
�Z � and l � 
�U �� We will write g�s� � O��f�s�� if lims��
g�s�
f�s� � �� By the

Karamata Tauberian Theorem ����

�FZ�s� � ��m��Zs�
�

�
m��Zs

� � � � � �
����k
k�

mk�Zs
k �O������k���� �Z�s

�
Z lZ���s��

������

and

�FU �s� � ��m��Us�
�

�
m��Us

� � � � ��
����l
l�

ml�Us
l �O������l���� �U �s

�
U lU ���s�� �

������

Hence by ����� we have�

�F S��s� � ��m��Z log� �F
U �s�����

�

�
m��Z

�
log� �FU �s����

��
�� � ������

k

k�

�
log� �FU �s����

�k
�

�O�

h
����k���� �Z�

�
log� �FU �s����

��Z
lZ

�
�� log� �FU �s����

�i
� ������

�



Note that for x � � such that jx� �j � �

log���x� �

��X
k��

����k
k
�x� ��k �

Hence

log� �FU �s���� �
��X
k��

����k
k
� �FU �s�� ��k �

From above� ������ � ������ under assumption �Z � �U we have k � l and

�F S��s� � ��m��Zm��Us�
�

�
�m��Zm

�
��U �m��Zm��U �s

� � � � � �mk�S�s
k�

�O�
����k���� �Z�� �F
U �s�� ���Z lZ���� �FU �s�� ����

� ��m��Zm��Us� � � ��mk�S�s
k �O�
����k���� �Z�m

�Z
��Us

�Z lZ���m��Us��

� ��m��Zm��Us� � � ��mk�S�s
k �O�
����k���� �Z�m

�Z
��Us

�Z lZ���s�� �

Thus
fS

�

k �s� 	 ����k���� �Z�m
�Z
��Us

�Z lZ���s�

as s � �� which completes the proof in view of ������ and the Karamata Tauberian
Theorem ����

Remark ���� Similar results can be also obtained in a so�called delayed case� when

T� � �� Denote S
�
� �

PN�T��
i�� Ui and Z� �

R T�
� ��X�t��dt� If IP�S�

� � x� � o�lS�x�x
��S����

then the ruin probability ���u� in the delayed case is asymtotically equivalent to the ruin
probability ��u� in the so�called zero�delayed case �when T� � ��� That is�

���u� 	 ��u�� as u� ���

This is the case when claim size U has the regularly varying distribution given in condition
�U� and there exists a 	 � � such that IEe�Z� � ��� See Asmussen et al� ������� Cor�
���� for other relations between ��u� and ���u��

Corollary ���� If conditions �B���U� and �S� are ful�lled� then

��u� 	 C�lU �u�u
��U�� � �����

where C� is given in �������

� Semi�Markov model

Let fTng��n�� be the zero�delayed renewal process� That is� Tn�� � Tn are i�i�d� r�v��s� On
time interval 
Tn� Tn��� the process fX�t�� t � �g is equal to a positive r�v�  n� Moreover�
let ��x� � x� Thus Z � T � We can change the distributions of T and  in such a
way that we can get all possible cases �i� ��iv� in the main Theorem ��� �see Grandell
����� Schmidli ����� In particular� we can consider the Ammeter ����� model when
T � �� Then obviously condition �A� holds� From Theorem ��� �i� we obtain the following
theorem�

�



Theorem ���� Assume that there exists a 	 � � such that IE expf	Ug � �� and

IP� � x� 	 x���l
�x�� as x� ��
for the slowly varying function l
�x� and �
 � �� If m��Um��
 � �� then we have the

following asymptotics�

��u� 	 �

�
 � �m
��
��U

�

��m��Um��

l
�u�u

����� �

Hence you can get the regularly varying asymptotics of the ruin probability ��u� even
when the claim sizes U are light�tailed�

� Di�usion processes

On a probability space �C
������F � fFX
t gt��� IPX� consider a canonical di�usion process

fX�t�� t � �g� where fFX
t gt�� is a natural �ltration and F �

W
t�� FX

t � Let the process
fX�t�� t � �g have the following in�nitesimal generator

�Af��x� �
�

�
a�x�

d�

dx�
f�x� � b�x�

d

dx
f�x�

for f � C��IR�� Assume that there exists a constant L so that
a��x� � jb�x�j � L�� � jxj� ������

and that there exists� for each constant C � �� a constant LC so that

ja��x�� a��y�j� jb�x�� b�y�j � LC jx� yj for jxj � C and jyj � C� ������

Assume also that the di�usion process fX�t�� t � �g is recurrent in a sense that any possible
state is reached from any other state with probability �� Let X��� � � and T� � �� In
this paper we consider two kinds of regeneration moments� Tn � n �n � N� and

Tn�� � infft � Sn � X�t� � �g � ������

where
Sn � infft � Tn � jX�t�j � �g n � �� �� �� � � � �

In this case Z �
R T�
� ��X�s�� ds�

��� Re�ected Brownian motion and ��x� � x

Assume that the claim size U has the regularly varying distribution given in condition
�U�� Let fB�t�� t � �g be a Brownian motion starting at B��� � �� Set s�y� � �����y� and

S�x� �

Z x

�
s�y� dy �

Thus S�x� is a �saw�tooth� function with S�x� � jxj for �� � x � � and with a period ��
Assume that ��x� � x� Then the intensity process fX�t� � S�B�t��� t � �g is a re�ected
Brownian motion with boundaries � and �� The regeneration moments are de�ned by
������� Note that

IEX� e
�T � IEB� e

�T
�

IEB� e
�S� �

�
IEB� e

�S�
��

� ������





where
T
�

� infft � � � jB�t�� �j � �g
and IEBx is the expectation with respect to IP

B when the Brownian motion fB�t�� t � �g
starts at x� By Wentzell ������ p� ��� we have

IEB� S� � � � ������

Thus

m��T � �IE
B
� S� � � � ������

Moreover� by Wentzell ������ p� ���� we have the following lemma�

Lemma ���� If 
 is an exiting time by a diusion process from a compact set D and

IE
 �M � ��� then IEe�� � � � �
���M IE
 � � � �M

���M for � � 	 � M���

Thus from Lemma ���� ������������� there exists a 	 � � such that

IEX� e
�T � �� � ������

Note also that � � X�t� � �� hence condition �B� is ful�lled�

IEX� e
�Z � IEX� e

�
R T�
� X�t� dt � IEX� e�T � �� � ������

If �S�� �U� hold� then from Corollary ��� we have that

��u� 	 C�lU �u�u
��U�� �

where C� is given in ������� To calculate C� explicit we �nd by the Markov property and
the symmetry of the Brownian motion that

m��Z � IE
X
�

Z T�

�
X�s� ds � IEB�

Z S�

�
jB�t�j dt� IEB�

Z T
�

�
��� j��B�t�j� dt �

� IEB�

Z S�

�
jB�t�j dt� IEB� T

� � IEB�
Z S�

�
jB�t�j dt � � �

Summarizing we have the following theorem�

Theorem ���� Assume that the claim size U has the regularly varying distribution �U�

with �U � � and IEU � �� Moreover� let the intensity process fX�t�� t � �g be the re�ecting
Brownian motion re�ecting at barriers � and �� Then

��u� 	 �

�U � �
�

��m��U
lU �u�u

��U�� �

��� Brownian Motion and ��x� � e��jxj

Assume that the claim size has the regularly varying distribution �U� with the index
�U � �

� and lU �x� � c� for some constant c�� Let the governing process

fX�t� � B�t�� t � �g be the Brownian motion starting at B��� � � and ��x� � e��jxj�
That is� fexp���jB�t�j�� t � �g is the intensity Markov process� The regeneration mo�
ments are de�ned by ������� Then by the symmetry and the Markov property of the
Brownian motion we have�

T
D
� S� � !T �

��



where
!T � infft � � � B�t� � �� B��� � �g �

Note that IEB� S� � � and IE
B
�
!T � ��� Hence

IEB� T � �� � ������

Moreover� by Karatzas and Shreve ������ p� ��

IP�T � t� 	 �p
�
t�

�
� � �����

Thus �T �
�
� � Note that

IEB� e
�Z � IEB� e

�Z�IEB� e
�Z� �

where Z� �
R T
� e��jB�t�j dt and Z� �

R S�
� e��jB�t�j dt� Moreover� by ������ and Lemma ����

IEB� e
�Z� � IEB� e�S� � �� ������

for some 	 � �� Let T �R� � infft � � � B�t� � R�B��� � �g� Then by the Monotone
Convergence Theorem�

IEB� e
�Z� � lim

R���
IEB� expf	

Z T�T �R�

�
e��jB�t�j dtg �

Thus from the Feynman�Kac formula �see also Chung and Zhao ����� Th� ���� we get
that for su�cently small 	 � � the following holds�

IEB� e
�Z� �

J���
p
��

�
p

expf�g �

J���
p
��
� �

� �� � ������

where J
�x� is the Bessel function of the �rst kind� Then condition �B� follows from
������ � ������� From Theorem ��� �iv� and Lemma ��� we have the following theorem�

Theorem ���� Assume that the claim size has the regularly varying distribution �U� with

index �U � �
� and lU �x� � c� for some constant c�� Then

��u� 	 �c�

�����
u
�
�
��U

Z ��

�
y������ � y���U dy �

��	 Ornstein
Uhlenbeck process and ��x� � x� � k

Let fX�t�� t � �g be a one�parameter Ornstein�Uhlenbeck process with a parameter b
such that X��� � �� That is� fX�t�� t � �g is the di�usion process with the in�nitesimal
generator

�Af��x� �
�

�

d�

dx�
f�x�� bx

d

dx
f�x� � ������

where f � C��IR�� Let the regeneration moments be de�ned via ������� We take ��x� �
x��k� for k � �� Hence the intensity process fX��t��k� t � �g is still the Markov process

��



�see the discussion in Lawrance ������ p� ��� � ����� We prove that condition �B� holds�
that is that

IEX� e
�Z � IEX� expf	

Z T�

�
�X��t� � k� dtg � �� ������

for some 	 � �� Then under �U� and �S� by Corollary ��� we have�

��u� 	 C�lU �u�u
��U�� � ������

where C� is given in �������
The method of calculating functional ������ consists in changing probability so that

the quadratic functional disappears and the remaining problem is to compute m�g�f��s of
some hitting and exiting time� We introduce the following exponential change of measure

dQjFX
t

dIPXjFX
t

�M�t� � ������

where

M�t� � expf��
� � b�

�

Z t

�
X��s� ds� ��� b�

Z t

�
X�s� dX�s�g � ������

� expf��
� � b�

�

Z t

�
X��s� ds� �� b

�
�X��t��X���� � t�g ������

is an exponential martingale �see Stroock ������ Th� ��� and Rogers and Williams ������
Th� ������ The second equality follows by integration�by�parts for semimartingales� By
Stroock ������ Th� ��� and Parthasarathy ������ Th� ���� there exists a unique prob�
ability measure Q on �C
������F � fFX

t gt��� ful�lling ������� Moreover� by Yor �����
Leblanc et al� ������ and Palmowski and Rolski ������ on a new probability space pro�
cess fX�t�� t � �g is the Ornstein�Uhlenbeck process with parameter �� Denote by IEQ�
the expectation with respect to the measure Q� Let � �

p
b� � �	 for 	 � b���� Then by

the Optional Sampling Theorem we have

IEX� e
�Z � IEX� e

�
R T�
� X��t� dt��kT� � IEQ� e

�
R T�
� X��t� dt��kT�M�T��

�� �

� IEQ� expf
�� b

�
�X��T���X����� T�� � 	kT�g � IEQ� e

b�����k
�

T� � ������

Let !	 � b�����k
� � Note that the following monotone convergence holds�

!	 � �� as 	 � ��� �����

Thus it su�ces to �nd !	 � � such that

IEQ� e
�T� � �� �

From the Markov property and the symmetry of the Ornstein�Uhlenbeck process we have

IEQ� e
�T� � IEQ� e

�S�IEQ� e
� T � ������

where !T � infft � � � X�t� � � and X��� � �g� Note that now� the parameters of
the process fX�t�� t � �g under the new probability measure Q depend on 	 and hence
also on !	� For this case we prepare some lemmas� Firstly� we generalize Lemma ��� in the
following way�

��



Lemma ���� Consider a family of diusion processes fXw�t�� t � �g parametrized by

w � � starting at X��� � xw� If 
w is an exiting time by a diusion fXw�t�� t � �g from a

compact set D and IEXw
xw 
w �M for all � � w � w� � M��� then IEXw

xw e
w�w � � � w�M

��w�M
for � � w � w��

Remark ���� Assume that fXw�t�� t � �g has the following in�nitesimal generator

�Awf��x� �
�

�
aw�x�

d�

dx�
f�x� � bw�x�

d

dx
f�x�

for f � C��IR�� where functions aw�x� and bw�x� ful�l ������ and ������� If there exists
w� � � such that

inf
w�w�

inf
x�D

aw�x� � � and sup
w�w�

sup
x�D

jb�x�j � B � ��

for some constant B� then by Lemma ��� and Wentzell ������ p� ���� IEXw
xw e

w�w is
uniformly bounded for � � w � w��

Lemma ���� Let fXw�t�� t � �g be the family of diusion processes parametrized by w
starting at X��� � xw and

Hw
z � infft � � � Xw�t� � zg

be a hitting time� If there exists w� � � such that IE
Xw
xw H

w
z �M for all � � w � w� � M��

and some M � then IEXw
xw e

wHw
z is also uniformly bounded for � � w � w��

Proof� Without loss of generality we can assume that xw � z for � � w � w�� By the
Monotone Convergence Theorem

IEXw
xw e

wHw
z � lim

R���
IEXw
xw e

wHw
z �Tw�R� �

where
Tw�R� � infft � � � Xw�t� � Rg �

Note that IEXw
xw H

w
z � Tw�R� � IEXw

xw H
w
z �M for all � � w � w�� Thus by Lemma ���

IEXw
xw e

wHw
z � lim

R���
IEXw
xw e

wHw
z �Tw�R� � � � Mw�

�� w�M
� �� �

By Remark ��� and ����� there exists 	� � � such that for all � � 	 � 	�

IEQ� e
�S� � �� � ������

Moreover� if
IEQ�

!T � M

for given M and � � 	 � 	�� then by Lemma ��� and ����� for � � 	 � 	� we have�

IEQ� e
� T � �� � ������

��



We calculate IEQ�
!T using the Laplace transform method� Denote by D��x� a parabolic

cylinder function given by

D��x� � e�x
��	����

p
�

	
�

����� �����

�
� �

��X
k��

���� �� � � � ��� �k � ��
� � � � � � ��k � ��k�



x�

�

�k�

� x
p
�

������

�
� �

��X
k��

��� ����� �� � � � ��� �k � ��
� � � � � � ��k � ��k�



x�

�

�k��
� ������

Moreover� let

s��x� �

��X
k��

� � � � ��k � ��
� � � � � � ��k � ��k�



x�

�

�k
�
x�

�
������

and

s��x� �

��X
k��

�

��k � ��k�



x�

�

�k
� ������

From Borodin and Salminen ����� p� ��� we have the following lemma�

Lemma ���� Let fX�t�� t � �g be the Ornstein�Uhlenbeck process with in�nitesimal gen�

erator ����	� and

Hz � infft � � � X�t� � zg �
Then

LHz�s� � IEXx e
�sHz �

����
����

e�x
�b���D

�s�b��
p
�bx�

e�z�b���D
�s�b��

p
�bz�

� for x � z

e�x
�b���D

�s�b�
p
�bx�

e�z
�b���D

�s�b�
p
�bz�

� for z � x

and

IEXx Hz �

���
���

�
b

h
�s��z

p
�b�� s��x

p
�b�� �

p
b��z � x� �

p
b��zs��z

p
�b�� xs��x

p
�b��

i
� for x � z

�
b

hp
b��xs��x

p
�b�� zs��z

p
�b��� �s��x

p
�b�� s��z

p
�b�� �

p
b��x� z�

i
� for x � z�

From Lemma ���

IEQ�
!T � � d

ds
L

T �s�js��� �
�

�

hp
��s��

p
���� s��

p
��� �

p
��
i
� �p

b
�s��

p
�b� � ��

������

for 	 � �b�

� �then � � b���� Thus by ������� ������� ������ � ������ the condition ������ is
ful�lled and hence the asymptotics ������ holds�
To calculate constant C� in ������ explicit we have to compute m��T and m��Z � Note

that

m��T � IE
X
� T � IE

X
� S� � IE

X
�
!T � ������

By Lemma ����

IEX� !T �
�

b

hp
b�s��

p
�b�� s��

p
�b� �

p
b�
i
� ������

��



We calculate IEX� S� using the Laplace transform method� Denote�

S��� x� y� �
����

�
e�x

��y���	 �D���x�D��y��D��x�D���y�� �

By Borodin and Salminen ����� p� ���� we have the following lemma�

Lemma ���� Let fX�t�� t � �g be the Ornstein�Uhlenbeck process with the in�nitesimal

generator ����	� and

Ha�z � infft � � � X�t� � �a� z�g �
Then for a � x � z

LHa�z�s� � IEXx e
�sHa�z �

S� sb � z
p
�b� x

p
�b� � S� sb � x

p
�b� a

p
�b�

S� sb � z
p
�b� a

p
�b�

and

IEXx Ha�z �
A�x� a� z�

b�z�� � s��z
p
�b��� a�� � s��a

p
�b���

�

where

A�x� a� z� � z�� � s��z
p
�b���s��a

p
�b�� s��x

p
�b���

�a�� � s��a
p
�b���s��x

p
�b�� s��z

p
�b�� �

�x�� � s��x
p
�b���s��z

p
�b�� s��a

p
�b�� �

Lemma ��� gives�

m��S� � IE
X
� S� �

�

b
s��
p
�b� � �����

By ������ � ����� we have�

m��T �

p
�p
b

h
s��
p
�b� � �

i
� ������

We change the measure by ������ using the martingale

M�t� � expf���
� � b�

�

Z t

�
X��s� ds� ��� b

�
�X��t��X����� t�g ������

for �� �
p
b� � �s� Then we get

LZ�s� � IEX� e
�s R T� �X��t��k� dt � IEQ� e

�sT � IEQ� e
�sS�IEQ� e

�s T �

where !s � ��b��sk
� and under the probability measure Q process fX�t�� t � �g is the

Ornstein�Uhlenbeck process with the parameter ��� From Lemmas ��� and ����

IEQ� e
�sS� �

S�!s����
p
���� �� � S�!s���� ���p����

S�!s����
p
�����p���� �

and

IEQ� e
�s T �

e����D� �s
	�
�
p
����

D� �s
	�
���

�

Thus

m��Z � � d

ds
LZ�s�js��� �

p
�p
b
�s��

p
�b� � ��



�

�b
� k

�
� ������

Summarizing� from ������ we have the following theorem�

��



Theorem ���� Assume that fX��t� � k� t � �g is the intensity process for k � � and for

the Ornstein�Uhlenbeck process fX�t�� t � �g with the parameter b starting at X��� � ��
If the claim size has the regularly varying distribution �U� and m��U � �b

���bk � then

��u� 	 �

�U � �
����b � k�

��m��U ����b� k�
lU �u�u

��U�� �

��� Ornstein
Uhlenbeck process and ��x� � �x� p��

Let fX�t�� t � �g be the Ornstein�Uhlenbeck process with the parameter b starting at
X��� � �� Let the regeneration moments be de�ned by ������� We take ��x� � �x � p���
Hence the intensity process f�X�t� � p��� t � �g is non�Markovian� We prove condition
�B� similarly like in the previous section� Then by Corollary ��� under conditions �U� and
�S� the asymptotics ����� holds� We introduce the exponential change of measure �������
where

M�t� � expfb
�

�

Z t

�
X��w� dw �

b

�
�X��t��X����� t�g � ������

By the Cameron�Martin�Girsanov Theorem the process fX�t�� t � �g is the Brownian
motion� Hence

IEX� e
�Z � IEQ� M

���T �e�
R T
� �X�t��p�� dt

� IEQ� e
���

�

R T
� �X�t���p�� dt���

�

�
�p���p�� b

�
�T �

where � �
p
b� � �	 and �p � �p�

��
� Let

�S� � infft � � � jX�t� � �pj � �g� �T � infft � �S� � X�t� � ��pg �

Then

IEX� e
�Z � IEQ��pe

��

�

R 	T
� X��t� dt���

�

�
�p���p�� b

�
� �T �

We change again the measure in the following way�

d �QjFX
t

dQX
jFX

t

� �M�t� �

where

�M�t� � expf��
�

�

Z t

�
X��w� dw � �

�
�X��t��X����� t�g �

Then under the probability measure �Q the process fX�t�� t � �g is the Ornstein�Uhlenbeck
process with the parameter �� We have

IEX� e
�Z � IE

�Q
��p expf��

�

�
�
��

�
�p� � 	p� �

b

�
� �Tg � IE �Q

��pe
�� �T � ������

where
�	 �

b

�
� �

�
� p	�p� 	p� � � �

Note that monotonically

�	 � �� as 	 � ��� ������

��



Denote
�T� � infft � � � X�t� � ��pg �

By the Markov property

IE
�Q
��pe

�� �T � IE
�Q
��pe

�� �S�
h
IE

�Q
��p��e

�� �T� � �Q�X� �S�� � ��p� ���

�IE
�Q
��p��e

�� �T� � �Q�X� �S�� � ��p� ��
i
� IE �Q

��pe
�� �S�
�
IE

�Q
��p��e

�� �T� � IE
�Q
��p��e

�� �T�
�
�

From Remark ��� and ������ there exists 	� � � such that IE
�Q
��pe

�� �S� is uniformly bounded
for all � � 	 � 	�� Thus to prove �B� it su�ces by Lemma ��� and ������ to �nd 	� � �

such that IE
�Q
��p�� �T� and IE

�Q
��p��

�T� are uniformly bounded for all � � 	 � 	�� Lemma ���
gives�

IE
�Q
��p�� �T� �

�

�

s���p

p
��� �

p
�� �

p
����p� ��s��

p
����p� ���� �

� �
b

h
s��
p
�b� �

p
b� � �

p
b�s���

p
�b�
i
�

IE
�Q
��p��

�T� � �
b

h
s��
p
�b� �

p
b� � �

p
b�s��

p
�b�
i

for all 	 � �b�

� � b�

�jpj �then j�pj � � and b � � � b
��� We now calculate m��Z needed for

obtaining constant C� in ����� explicit� Constant m��T is given in ������� Note that the
Laplace transform of Z equals�

LZ�s� � IEX� e
�sZ � IE

�Q
��p�

e��s �T �

� IE
�Q
��p�

e��s �S�
�
IE

�Q
��p���e

��s �T� � �Q�X� �S�� � ��p� � �� � IE �Q
��p���e

��s �T� � �Q�X� �S�� � ��p� � ��
�
�

where under the measure �Q the process fX�t�� t � �g is the Ornstein�Uhlenbeck process
with the parameter �� �

p
b� � �s� Moreover� �p� � ��ps

���
and

�s �
��

�
� b

�
� ps�p� � sp� � �

for su�ciently small s� From Lemmas ��� and ��� we have

IE
�Q
��p���e

��s �T� �
e�p

�
�����D� 	s

	�
���p�

p
����

e��p���������D� 	s
	�
����p� � ��

p
����

�

IE
�Q
��p���e

��s �T� �
e�p

�
�����D� 	s

	�
��p�
p
����

e����p�������D� 	s
	�
����� �p��

p
����

�

IE
�Q
��p�

e��s �S� �
S� �s�� � �� � �p��

p
������p�

p
���� � S� �s�� ���p�

p
�������p� � ��

p
����

S� �s�� � ��� �p��
p
�������p� � ��

p
����

�

Denote�

Er��x� �
�p
�

Z x

�
ev

�
dv� Er�d�x� y� � Er��

xp
�
�� Er�� yp

�
�

and

C��� x� y� �
��� � ��

�
e�x

��y���	�D�
����x�D�
�y� �D�
���x�D�
��y�� �

��



By Borodin and Salminen ���� the following holds�

�Q�X� �S�� � ��p� � �� � �� �Q�X� �S�� � ��p� � �� � Er�d���� �p��
p
������p�

p
����

Er�d��� � �p��
p
�������p� � ��

p
����

�

Note that�

d

dx
D�
�x� � �x

�
D�
�x���D�
���x��

d

ds
D�s�x� � e�x

��	

�
s��x�� xp

��
�� � s��x��

�

and
�

�x
S��� x� y� � C��� x� y��

�

�y
S��� x� y� � �C��� x� y� �

Hence

m��Z � � d

ds
�IEX� e

�sZ�js��� � � d

ds
�IE

�Q
��p�

e��s �S��js���� ������

��
�



d

ds
�IE

�Q
��p���e

��s �T��js��� �
d

ds
�IE

�Q
��p���e

��s �T��js���

�
�

�

p
�

�
p
�Er��

p
b��

�
�eb � ��

�
�s��

p
�b�Er��

p
b��

�

�b�
�
p�

b
� �

�p
�

�

b���
eb
�
�

� �
p
�

b���
ebEr��

p
b�

�
�
�

b
� �

�

�b�
�
p�

b
�

�
s��
p
�b� �

p
bp
�
�� � s��

p
�b��

�
�

Summarizing we have the following theorem�

Theorem ���� Assume that f�X�t��p��� t � �g is the intensity process for p � IR and for

the Ornstein�Uhlenbeck process fX�t�� t � �g with the parameter b starting at X��� � ��
If the claim size has the regularly varying distribution �U� and �S� holds� then

��u� 	 �

�U � �m��Z
�

m��T �m��Um��Z
lU �u�u

��U�� �

where m��T and m��Z are given in ������ and ������ respectively�

��� Splitting Brownian bridges and ��x� � jxj

We construct the governing process fX�t�� t � �g by splitting independent Brownian bridges
de�ned on interval 
n� n � �� �n � IN�� That is� X�t� � Zn�t� if t � 
n� n � ��� where
fZn�t�� t � 
n� n � ��g is a Brownian bridge �see Karatzas and Shreve ������ p� ����
for construction of the Brownian bridge�� We assume that processes fZn�t�� t � �g are
independent� Hence Tn � n are moments of regeneration and T � �� Let ��x� � jxj�
Thus on each interval 
n� n��� the intensity process is the re�ecting Brownian bridge� By
Karatzas and Shreve ������ p� ����

Z��t�
D
� B�t�� tB��� � ������

Thus

Z �

Z �

�
jX�t�j dt �

Z �

�
jZ��t�j dt D�

Z �

�
jB�t�� tB���j dt � ������

��



Note that

Z �
Z �

�
� sup
��t��

jB�t�j� tjB���j� dt � � sup
��t��

jB�t�j � �����

Hence

IP�Z � x� � IP� sup
��t��

jB�t�j � x

�
� � �IP� sup

t������
B�t� �

x

�
� � �

�p
��

Z ��

x��
e�

y�

� dy

by Adler ��� and Karatzas and Shreve ������ p� �� Thus condition �B� is ful�lled�
Moreover� by the Fubbini Theorem�

m��Z �

Z �

�

�
IEB� jB�t�� tB���j� dt �

�

Z �

�

�

��
p
�� t

Z ��

��
e�x

���

Z ��

��
jx� tyje�

�x�y��

����t� dy dx dt

�

p
�p
�

Z �

�

�p
t� � t� �

�t� � t
p
�� t� dt �

�

p
�p
�

�
�

�
� �
�
log��� �

Z �

�

t
p
�� tp

t� � t� �
dt

�
�

Taking substitution y� �� �� t we get�

m��Z �

p
�p
�

�
�

�
� �
�
log���� �

Z �

�

p
y	 � y� � � dy � �
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�
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where

EllipticF�z� k� �

Z z

�

�p
�� y�

p
�� k�y�

dy

is the incomplete integral of the �rst kind and EllipticK�k� � EllipticF��� k� is the complete
elliptic integral of the �rst kind �see Abramowitz and Stegun ������ Chapter ���� By
Corollary ��� we have the following theorem�

Theorem ���� Assume that the intensity process is constructed by splitting re�ecting

Brownian bridges� If the claim size has the regularly varying distribution �U� with �U � �
and m��Zm��U � �� then

��u� 	 �

�U � �m��Z
�

��m��Um��Z
lU �u�u

��U�� �

where m��Z is given in �������
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