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Abstract

In this paper we find a nonexponential Lundberg approximation of the ruin prob-
ability in a Cox model, in which a governing process has a regenerative structure
and the claims are light-tailed or have an intermediate regularly varying distribution.
Examples include an intensity process being reflected Brownian motion, square func-
tions of the Ornstein-Uhlenbeck process and splitting reflected Brownian bridges. In
particular, we consider a non-Markovian intensity process.
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1 Introduction

This paper is concerned with a risk theory subject to a combination of two features which
repeatedly have been argued to be relevant in practical applications, namely stochastic
modulation and regular varying claim size distributions. We consider a canonical surplus
process {S(t),t > 0} given by:

N(t)

Sit)y=>Y Ui—t,
=1

where {N(t),t >0} is a Cox process with an underlying cadldg process {X(t),t > 0}.
That is, if a realization of the process {X(¢),t > 0} is x(t) € D[0,+0o0), then for a non-
negative function A : R — R4 U {0} the process {N(¢),t > 0} has the same law as a non-
homogeneous Poisson process { N(*)(¢),t > 0} with an intensity function A(t) = A(z(t)).
The process {A(X(¢)),t > 0} is called an intensity process. Thus stochastic modulation
means that the surplus process is not time-homogeneous, but evolves in some random
environment. A detailed discussion of Cox processes and their impact on risk theory is
to be found in Grandell (1991) and Rolski et al. (1999). The claim sizes Uy, Us, ... are
i.i.d. r.v.’s independent of the process {N(t),t > 0} with a common distribution function
Fy(x). Let u be an initial reserve and assume that S(t) — —oo a.e. as t — 4+00. An
infinite horizon ruin probability is then

P(u) =P(sup S(t) > u) . (1.1)
>0
The model, in which {N(¢),¢ > 0} is Coxian, is called the Bjérk-Grandell model which
goes to the pioneering paper Bjérk and Grandell (1988). In that paper one derives by
a martingale approach an exponential upper bound of ¥(u) when an intensity process
has piecewise realizations and claim sizes are light-tailed. Further generalizations can be
found in Embrechts (1993) (finite time non-Markovian intensities) and Grigolionis (1992).
Grandell and Schmidli (2000) and Palmowski (2000) find a Lundberg upper bound and a
Lundberg approximation of ¢)(u) when the intensity process is governed by a diffusion pro-
cess and claim sizes are light-tailed. These papers fail to capture the second main feature
considered in this paper, namely, that of regularly varying tails. Relevance of heavy-tail
conditions can be found e.g. in Embrechts and Veraverbeke (1982) and Kliippelberg (1989).
Asmussen et al. (1994) find the nonexponential asymptotics in the Bjérk-Grandell model
when the governing process is a finite-state Markov process and the claim size has a heavy
tailed distribution. Asmussen et al. (1999) generalize it to the case when {S(¢),t > 0}
has a regenerative structure. In this paper we apply this result to get the asymptotics of
Y (u) when a rate of income of the claim at time ¢ is a function A(z) of the regenerative
process { X (t),t > 0}, in particular when {X(¢),t > 0} is a reccurent diffusion process.
Denote by 0 = Ty < T1 < Tp, < T3 < ... the regenerative epochs of the regen-
erative process {X(t),t > 0}. Let T be the generic time T},11 — T),. Define the r.v.
Z = fT:’;”“ A(X(t)) dt. Denote by F(x) the "heavier” distribution from distributions
of variables Z and U. Let F(x) have a regularly varying distribution. We will write
f(z) ~ g(x) as * — 400 if limy .40 f(x)/g(x) = 1. Similarly, f(z) ~ g(z) as x — 0
means that lim, .o f(z)/g(z) = 1. If ET < 400, then under some mild assumptions

P(u) ~ CF*(u) as u — 400,

where F? is a residual distribution of F' and constant C' is given explicit. Thus even in the
case of light-tailed claims one can get the nonexponential asymptotics. The asymptotics



of ¢(w) in this case depends on the distribution of the interarrival time 7" only via its mean
ET < 4o0. If ET = 400, then its tail also has an impact on the rate of the asymptotics
of the ruin probability (see Theorem 3.2 (iv) and Section 5.2). The method of the proof of
the main Theorem 3.2 is based on the Karamata Tauberian Theorem, the Kingman-Taylor
expansion of the Laplace transform (see Stam (1973), Cohen (1973) and Asmussen et al.
(1999), Cor. 3.1-3.2).

To apply this result for the specific governing process { X (t),¢ > 0} one has to deter-
mine the asymptotic tails of r.v.’s Z = f:,?:“ A(X(t)) dt and T and its means. We refer
to Asmussen et al. (1999) for similar functionals. In the second part of this paper we
calculate some examples presenting there main techniques useful in solving this problem.
The random variable Z is light-tailed if there exists § > 0 such that Ee®? < 4+o00. To
prove it we generalize Wentzell (1975), p. 265, in the following way. Consider a family
of diffusion processes { X, (t),t > 0} parametrized by w > 0 starting at X,,(0) = x,,. Let
Tw be an exiting time from a compact set D. If there exists wg > 0 such that Ei(;”Tw is
uniformly bounded for all 0 < w < wy, then ]Ei,i;“e’”w is also uniformly bounded. The
asymptotics of the tail of the distribution of Z and its mean we calculate using the Laplace
transform. In most cases we take the square function A(x). Then the method of comput-
ing m.g.f. and Laplace transform consists in changing probability so that the quadratic
functional disappears and the remaining problem is to calculate m.g.f. and Laplace trans-
form of some hitting or exiting time. In other words, we linearize the original problem by
transferring the computional problem for a variable belonging to a second Wiener chaos
to computations for a variable in a first chaos. One can calculate the Laplace transform
of hitting and exiting time using the Feynman-Kac formula (see Ito and McKean (1974),
Wentzell (1975) and Borodin and Salminen (1996)).

The rest of the paper is organized as follows. In Section 2 we recall the Karamata-
Tauberian theorem. The main Theorem 3.2 is stated in Section 3. We consider the
following examples of the governing process {X(t),# > 0} and the function A(z): semi-
Markov process and A(x) = x (Section 4), reflected Brownian motion at 0 and 1 and
Ax) = x (Section 5.1), Brownian motion and A(z) = e~7l*| (Section 5.2), Ornstein-
Uhlenbeck process and A(x) = 22 + k (Section 5.3) and A(x) = (x + p)? (Section 5.4),
finally splitting Brownian bridges and A(x) = |z| (Section 5.5).

2 Preliminaries

The main technique useful in finding the asymptotics of ¢)(u) is the Karamata Tauberian
Theorem, which we recall now. The critical index is defined in extended real numbers by

ag =inf{v: E|K|" = +oc0} .

That is, if there exists § > 0 such that Ee’®X < 400, then ay = 4+00. Moreover, we say
that r.v. K has a regularly varying distribution if IP(K > z) ~ 27Kk (x) as © — +o0
for a slowly varying function [k (x). Denote

2

K

m; = E

The Karamata Tauberian Theorem relates the tail behaviour of a distribution function to
the asymptotic behaviour of its Laplace transform at the origin (see Goldie et al. (1987),
p. 333). For variable K let a < +00 and define n = [ax|. Then by Kingman and Taylor
(1966) the Laplace transform F*(s) of r.v. K may be expanded in a Taylor series as far



as the s™ term:

FK kah k'+0( "), as s — 0.

Let

fa(s) = (-1 <FK me /kv>.

Theorem 2.1. Let I (x) be a slowly varying function. The following are equivalent:

fE(s) ~ s 15 (1) s), as s — 0 (2.2)
- (_l)n —ai
P(K > x) ~ maz I (), as x — +00. (2.3)

From Feller (1971), Th. 2, p. 445 we have the following theorem.

Theorem 2.2. Consider some function L(x) and o > 0. For the slowly varying function
lp(x) the following are equivalent:

FE(s) ~ sfalL(é), as s — 0 (2.4)
! *l 2.5
()NF(I—i— ) o(x), as v — +00. (2.5)

3 Main Theorem

Assume that {\(X(t)),t > 0} is the intensity process for the regenerative process { X (t),t > 0}
and nonnegative function A(x). Then the surplus process {S(¢),¢ > 0} also has a regen-
erative structure. We let S be the increment of {S(t),# > 0} during the generic cycle
Ty41 — T, that is

n+1

S = Z U ( n+1 — ) .
t=N(Tn)+1
Let
N(Tn+1)
st= Y U
i=N(Tn)+1
and

T
Z:/o MX () ds .

Condition A.
We assume that

P(ST > ) ~P(S > ) ~ 27 g(2) , (A)

where ag > 0 and [g(x) is a slowly varying function.
By Asmussen et al. (2000), Lem. 5.1 we have the following lemma.
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Lemma 3.1. If
Condition B.

36> 0: Ee’? < 400 , (B)
then condition (A) holds.
Note that:
N(Tn+1) N(Tnt1)
ST+ > Ui=(Twp—To) < sup SH<ST)+ >, Ui
i=N(Tn)+1 Tnst<Tn41 i=N(Tn)+1

Thus under (A) following Asmussen and Kliippelberg (1996) and Asmussen et al. (1999),
Th. 3.3 we have:
Y(u) ~ ]P(mgic(Yl +Yo+...4+Y,) >u),

where Y,, are i.i.d. random variables such that Y, 2 S.

Theorem 3.1. Assume that (A) holds.
(i) If v = |ES| < 400 and IES < 0, then

¥(u) ~ 5 _1% %lg(u)u_as'i'l . (3.1)

(i) If v = 400, ls(z) = ¢ and
P(T > z) ~ coz " (3.2)

for 0 < <1 and B8 < ag, then
o)~ I e [Tt yyos gy (3:3)

Proof. Part (i) is the corollary from Asmussen et al. (1999), Cor. 3.1. We now prove
(ii). Denote by Gt (x) and G~ (x) the ascending and descending weak ladder height dis-
tributions of random walk Y1 + Y5 + ... +Y,,. Thus G*(x) and G (x) are concentrated
on [0, 4+00) and (—o0, 0] respectively. From the Wiener-Hopf factorization ( see Borovkov
(1976), (33), p. 165) we have

G (—x)~ D B as x — 400, (3.4)
l—-p
where p = 1(0). Let
+o00o
H ()= (G )*(=t), t>0
k=0

and F& (s) = f0+°° e™*" dG~(—x). Then the Laplace transform of H~ is equal

1

.
F7 ) = 1—FG (s)

From the Karamata Tauberian Theorem 2.1 the following holds:

FU™(s) 5P 1—p
= lim ~ = .
s—0 s B s—01 — FG~ (8) F(]_ — ﬁ)62




Thus by the Karamata Tauberian Theorem 2.2

1-p 0 — (1-p) Sin(ﬁﬂ)tﬁ
[(1=B)I(1+ B)es fBre ’

which completes the proof of (ii) in view of Borovkov (1976), p. 180 and Lemma 2, p.
173.

H (1) ~

O
Note that the Laplace transform of ST is equal

5 (5) = Be *5* = BX(EV e U )NTat)-N(T) _ ]Exe—log((EUe*SU)*l)qu(} A(X (1)) dt

)

where IEX and IEV are expectations with respect to the law of process {X(t),t > 0} and
r.v. U. That is,

F(s) = FZ(log FU(s)7 1) . (3.5)

Moreover, if v < 400, then v = ET — EZIEU = my 7 — mj zm; . Thus if
Condition S.

v < 400 and miT > miumiz , (S)

then a stability condition S(t) — —oo a.e. as t — 400 holds. We assume that at least
one of the variables U and Z has a regularly varying distribution. Thus

azy =min{ay,az} < +oo .

In particular, if U or Z has a regularly varying distribution, then
Condition U.

PU > z) ~ly(x)e U (U)

or
Condition Z.

P(Z > z) ~lg(x)s %2 (Z)
for slowly varying functions l;7(x) and [z (x) respectively. Define

Lpo(e) = { lz(x) if Z isreg. var. and ay < ay (3.6)

ly(x) if U is reg. var. and ay < ay.

Using the Karamata Tauberian Theorem we can prove the following theorem (see also
Asmussen et al. (1999), Schmidli (1999), Stam (1973) and Grandell (1997)).

Theorem 3.2. Assume that condition (A) and (Z) or (U) hold.
(i) If 1 < az < oy and (S) holds, then

P(u) ~ C’llz(u)lfc“zJrl , (3.7)
where
1 1
ci = &z . 3.8
YT ag - T myr — miyumiz (3:8)



() If 1 < ay < az and (S) holds, then
Y(u) ~ Colyr(u)u v H (3.9)

where

1 1

1.7 : (3.10)

C2 = my,
ay —1 mir — miumiz

(iii) If ay = ay and (S) holds, then
Y(u) ~ Caly(u)u=v 1 (3.11)

where C3 = Cy + Cs.
(iv) Assume that T fulfils (3.2) for 0 < 3 < 1. Then

’(/)(U) ~ C4uﬁ—az,U , (312)
where
. maZ c +oo
Cs = sin(fm) My el / VP11 4+ )07 dy (3.13)
B C2 0

when lz(x) = c1, f < az < ay; and

. +0o0
€y = TIIMAA [75 iy gy e gy (3.14)
pr C2 0

when ly(x) =c1, B < ay < ag.

Proof. We prove (i). The points (ii)-(iv) can be proved in a very similar way. To prove
(i) by Theorem 3.1 it suffices to prove that

P(St > ) ~ miGlz(x)e™ % . (3.15)

Let k£ = [agz] and | = [ag]. We will write g(s) = O1(f(s)) if limsag% = 1. By the
Karamata Tauberian Theorem 2.1:

- 1 —1)*
FZ(S) =1- mLZS + §m2,232 — ...+ ( k') mk,Zsk + 01((—1)kF(1 — az)s%lz(l/s))
(3.16)
and
RUCN 1 1 2 (—1) ! N a
F%(s)=1—-miys+ 52U R s +O01((-1)'T(1 — av)siilu(1/s)) .
(3.17)

Hence by (3.5) we have:

1)k
F5+(s) =1-myz log(FU(s)_l)—F%mz,Z (log(FU(s)_l))Q—. . .—i—( D

O [(=1)FT(1 = ay) (1og(FU(s)*1))aZ ly (1/1og(FU(s)*1))] : (3.18)



Note that for = > 0 such that |z — 1| <1

+oo o kK
log(1/z) = S~ ¢ k” (x— 1)k .
k=1
Hence N
. X 1Yk |
los(FV ()7 = 3 E (V) - 1)t
k=1

From above, (3.16) - (3.18) under assumption az < ap we have k£ <[ and

A 1 2 2 k
F? (s) =1—-myzmiys+ §(m2,2m1,U —myzmau)sT — ...+ my oS+

+O1[(=1)'T(1 = az)(FY(s) = 1)*717(1/(FY (s) = 1))]
=1l—-mizmiys+...+ mk,5+sk +O1[(-1)*r(1 - az)mi%s*21z(1/mius)]

=1—myzmius+...+myg+s’ +O1[(=1)"T(1 — az)mi%s*71z(1/s)] .

Thus .
() ~ (FDFT( = az)mt s 217(1/5)

as s — 0, which completes the proof in view of (3.15) and the Karamata Tauberian
Theorem 2.1.
]

Remark 3.1. Similar results can be also obtained in a so-called delayed case, when
Ty > 0. Denote S;” = Z?:(ITO) U; and Zy = OTO MX (t)dt. HP(Sy > ) = o(lg(x)a2sTL),
then the ruin probability ¢y(«) in the delayed case is asymtotically equivalent to the ruin
probability ¢)(u) in the so-called zero-delayed case (when Ty = 0). That is,

do(u) ~P(u),  asu— +oo.

This is the case when claim size U has the regularly varying distribution given in condition
(U) and there exists a § > 0 such that IEe’?0 < +o0o. See Asmussen et al. (2000), Cor.
3.2, for other relations between ¢ (u) and ().

Corollary 3.1. If conditions (B),(U) and (S) are fulfilled, then
Y(u) ~ Coly(u)u 20+t (3.19)

where Cy is given in (3.10).

4 Semi-Markov model

Let {T, ;';i'i be the zero-delayed renewal process. That is, 7,41 — T, are i.i.d. r.v.’s. On
time interval [T},, Ty, +1) the process {X(¢),t > 0} is equal to a positive r.v. A,,. Moreover,
let A(z) = x. Thus Z = TA. We can change the distributions of 7" and A in such a
way that we can get all possible cases (i) -(iv) in the main Theorem 3.2 (see Grandell
(1997), Schmidli (1999)). In particular, we can consider the Ammeter (1948) model when
T = 1. Then obviously condition (A) holds. From Theorem 3.2 (i) we obtain the following
theorem.



Theorem 4.1. Assume that there exists a 6 > 0 such that IE exp{éU} < +o0 and
P(A > x) ~ " a(2), as v — +00

for the slowly varying function Ia(x) and an > 1. If mypymia < 1, then we have the
following asymptotics:

() ~ —

ap — 1

1
mye Ia(w)u
LUT —my ymya alw)

—aa—+1

Hence you can get the regularly varying asymptotics of the ruin probability ¥ (u) even
when the claim sizes U are light-tailed.

5 Diffusion processes

On a probability space (C[0,+00), F, {Fi* }i>0, IPX) consider a canonical diffusion process
{X(t),t >0}, where {F};>0 is a natural filtration and F = \/,o, F7*. Let the process
{X(t),t > 0} have the following infinitesimal generator -

1 d?

(AD)(w) = gale) s 1) + ba) - f(2)

for f € C2(R). Assume that there exists a constant L so that
0(2) + b(@)| < L(1 + [z (5.20)
and that there exists, for each constant C' > 0, a constant L so that
02(@) = a2(y)] + @) — b < Lelw =yl for o] < Cand [y < €. (5.21)

Assume also that the diffusion process { X (¢),¢ > 0} is recurrent in a sense that any possible
state is reached from any other state with probability 1. Let X(0) = 0 and 7y = 0. In
this paper we consider two kinds of regeneration moments: 7,, = n (n € N) and

Tpir = inf{t > S, : X(t) = 0}, (5.22)

where
Sp=inf{t > T, : | X(t)] =1} n=0,1,2,... .

In this case Z = fOTl A(X (s)) ds.

5.1 Reflected Brownian motion and A(z) = «

Assume that the claim size U has the regularly varying distribution given in condition
(U). Let {B(t),t > 0} be a Brownian motion starting at B(0) = 0. Set s(y) = (=1) and

Thus S(x) is a "saw-tooth” function with S(z) = |z| for —1 < x <1 and with a period 2.
Assume that A(z) = x. Then the intensity process {X(¢) = S(B(t)),t > 0} is a reflected

Brownian motion with boundaries 0 and 1. The regeneration moments are defined by
(5.22). Note that

' 2
B ' = BP T Bt — (Bfe™0) (5.23)



where
T =inf{t>0:|B(t)—1] =1}

and TEZ is the expectation with respect to P? when the Brownian motion {B(t),t > 0}
starts at . By Wentzell (1975), p. 259, we have

EFSy=1. (5.24)
Thus
mir =2EFSy =2 (5.25)
Moreover, by Wentzell (1975), p. 265, we have the following lemma.

Lemma 5.1. If 7 is an exiting time by a diffusion process from a compact set D and

Er <M < +c0, then]Ee‘STgl—I—ﬁETgl—i-lfyM for0<6§< M'.

Thus from Lemma 5.1, (5.23)-(5.24) there exists a ¢ > 0 such that
Ef e’T < 400 (5.26)
Note also that 0 < X(¢) <1, hence condition (B) is fulfilled:
E{ e’? = Ef e Jot X(0) de <Ef e’ < 400 (5.27)
If (S), (U) hold, then from Corollary 3.1 we have that
Y(u) ~ Coly (w)u™

where C is given in (3.10). To calculate Cy explicit we find by the Markov property and
the symmetry of the Brownian motion that

!

T So T
my gz = By X(s) ds:]E{?/ |B(t)|dt+]E'1'3/ (1—1[1—B@)|) dt =
0 0 0
So . So
:ng/ |B(t)| dt + EPT —]ng/ |B(t)| dt =1 .
0 0

Summarizing we have the following theorem.

Theorem 5.1. Assume that the claim size U has the regularly varying distribution (U)
with ay > 1 and IEU < 2. Moreover, let the intensity process { X (t),t > 0} be the reflecting
Brownian motion reflecting at barriers 0 and 1. Then

1 1
~ [ —evth
vl ~ 5 o v(u)u

5.2 Brownian Motion and A(z) = e~ 7l

Assume that the claim size has the regularly varying distribution (U) with the index
ay > % and ly(x) = ¢ for some constant c;. Let the governing process
{X(t) = B(t),t > 0} be the Brownian motion starting at B(0) = 0 and \(x) = ¢ 7,
That is, {exp(—~|B(t)|),t > 0} is the intensity Markov process. The regeneration mo-
ments are defined by (5.22). Then by the symmetry and the Markov property of the
Brownian motion we have:

T2s,+7),

10



where R
T =inf{t >0: B(t)=0,B(0) =1} .

Note that IEFSy = 1 and EPT = +c0. Hence
EFT = +00 . (5.28)

Moreover, by Karatzas and Shreve (1988), p. 96,

P(T > t) ~ %t‘é . (5.29)

Thus ar = % Note that
EBe’? = Bf AR |

where Z; = fOT e~ 71BOI dt and Z, = fOSO e~ 1B dt. Moreover, by (5.24) and Lemma 5.1:

EPe*? < EFe’™ < 400 (5.30)
for some § > 0. Let T(R) = inf{t > 0: B(t) = R,B(0) = 1}. Then by the Monotone
Convergence Theorem:

TAT(R)
EPe’? = lim EP exp{é/ e Bl gy
R*F}*OO 0

Thus from the Feynman-Kac formula (see also Chung and Zhao (1995), Th. 9.22) we get

that for sufficently small 6 > 0 the following holds:

0 27\/;/?{7}
EBet? = VU o400, (5.31)
To(2¥28)

where J,(z) is the Bessel function of the first kind. Then condition (B) follows from
(5.30) - (5.31). From Theorem 3.2 (iv) and Lemma 3.1 we have the following theorem.

Theorem 5.2. Assume that the claim size has the reqularly varying distribution (U) with
index ay > 3 and ly(x) = 1 for some constant ci. Then

4 oo
C1 uéiaU / y71/2(1 _'_y)*OLU dy
0

Y(u) ~ 7_‘_3/27

5.3 Ornstein-Uhlenbeck process and A(z) = z? + k

Let {X(t),t > 0} be a one-parameter Ornstein-Uhlenbeck process with a parameter b
such that X (0) = 0. That is, {X(¢),t > 0} is the diffusion process with the infinitesimal
generator

1 d?

d
(Af)(z) = iﬁf(x) - bx@f(x) ; (5.32)

where f € C?(IR). Let the regeneration moments be defined via (5.22). We take \(x) =
22 +k, for k > 0. Hence the intensity process {X2(t) +k,t > 0} is still the Markov process

11



(see the discussion in Lawrance (1972), p. 225 - 228). We prove that condition (B) holds,
that is that

T1
EX e — BX exp {6 /0 (X2(t) + k) dt} < 400 (5.33)

for some ¢ > 0. Then under (U) and (S) by Corollary 3.1 we have:
Y(u) ~ Coly (u)u v+t (5.34)

where C5 is given in (3.10).

The method of calculating functional (5.33) consists in changing probability so that
the quadratic functional disappears and the remaining problem is to compute m.g.f.’s of
some hitting and exiting time. We introduce the following exponential change of measure

dQ rx
L= M@, (5.35)

AP

where
W2 p2 [t t
M(t) = exp{— 5 b /0 X%(s)ds — (k — b)/o X(s)dX(s)} = (5.36)
k2 —p2 [t K—20

= exp{— 5 /0 X?%(s) ds — 5 (X2(t) — X2(0) — 1)} (5.37)

is an exponential martingale (see Stroock (1987), Th. 4.6 and Rogers and Williams (1987),
Th. 27.1). The second equality follows by integration-by-parts for semimartingales. By
Stroock (1987), Th. 4.4 and Parthasarathy (1967), Th. 4.2, there exists a unique prob-
ability measure @ on (C[0,+00), F, {F/ }+>0) fulfilling (5.35). Moreover, by Yor (1992),
Leblanc et al. (2000) and Palmowski and Rolski (2000) on a new probability space pro-
cess {X(t),t > 0} is the Ornstein-Uhlenbeck process with parameter x. Denote by IEOQ
the expectation with respect to the measure Q. Let k = /b2 — 26 for § < b?/2. Then by
the Optional Sampling Theorem we have

EY 7 = EY ¢ St X2(t) di-6kTy _ ]E(?e‘s [ X2(¢) detokTy M(T) =

—b e
= EY exp{“T(X2(T1) —X2(0)—Ty) + kT } = EQe 5Tt (5.38)
Let 6 = %. Note that the following monotone convergence holds:
§—0t  ass— o0t (5.39)

Thus it suffices to find § > 0 such that
]E(?e‘gT1 < +oo .
From the Markov property and the symmetry of the Ornstein-Uhlenbeck process we have
EYeTt = ELeSOEReAT (5.40)

where T = inf{t > 0 : X(¢t) =0 and X(0) = 1}. Note that now, the parameters of
the process {X(t),t > 0} under the new probability measure @ depend on ¢ and hence
also on 4. For this case we prepare some lemmas. Firstly, we generalize Lemma 5.1 in the
following way.
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Lemma 5.2. Consider a family of diffusion processes {Xy(t),t > 0} parametrized by
w > 0 starting at X (0) = xy. If 7 is an exiting time by a diffusion {X,,(t),t > 0} from a
compact set D and Ei{z"Tw <M forall0 < w < wy < M~ then ]Eiz“e’”w <1+ 1103,]:[1\/1
for 0 < w < wyp.

Remark 5.1. Assume that {X,,(¢),¢ > 0} has the following infinitesimal generator

2
(Auf)(w) = Jau(w) 25 F(2) + o)1= ()

for f € C*(IR), where functions a, () and b,(x) fulfil (5.20) and (5.21). If there exists
wo > 0 such that

inf inf a,(z) >0 and sup sup |b(z)| < B < 400
w<lwo x€D w<wo €D

for some constant B, then by Lemma 5.2 and Wentzell (1975), p. 258, ]Ei,i;“e’”w is
uniformly bounded for 0 < w < wy.

Lemma 5.3. Let {X,(t),t > 0} be the family of diffusion processes parametrized by w
starting at X(0) =z, and

HY =inf{t > 0: X, (t) =z}

be a hitting time. If there exists wg > 0 such that ]Ein;" <M forall0 < w < wy < M™!
and some M, then ]Eii;“ eVH2 s also uniformly bounded for 0 < w < wy.

Proof. Without loss of generality we can assume that x,, > z for 0 < w < wg. By the
Monotone Convergence Theorem

EXe e Y — i |XwewHEAT(R)
Tw R—+o00 Tw

?

where
TY(R) =inf{t > 0: X,,(t) = R} .

Note that EX*HY ATY(R) < EX*HY < M for all 0 < w < wp. Thus by Lemma 5.2

w . w w ng
]Ei(:,esz — RLHJI:OO ]Ei:;,esz AT*(R) <1+ m < 400 .
O

By Remark 5.1 and (5.39) there exists 6y > 0 such that for all 0 < § < ¢

EZe?0 < 400 . (5.41)
Moreover, if

EYT < M

for given M and 0 < 6 < ép, then by Lemma 5.3 and (5.39) for 0 < 6 < 6y we have:

EPeT < 400 . (5.42)
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We calculate ]E?T using the Laplace transform method. Denote by D_,(x) a parabolic
cylinder function given by

g u,u+2 42k —2) k
Do) = e /12 W\/—{F( (t+1)/2) ( +Z k= DH (7) )
)

zV2 (p+1D(p+3).. (p+2k=1) ’
T T(n/2) <1+; 3.5 (2k + 1)k! <7> )} ‘ (5.43)

Moreover, let

X 2..@2k-2) [22\F 2?
si(r) = kZQ 352k — K (7) Ty (5.44)
and
400 1 22 k
so(x) = ; ey <7> . (5.45)

From Borodin and Salminen (1996), p. 429, we have the following lemma.

Lemma 5.4. Let {X(t),t > 0} be the Ornstein-Uhlenbeck process with infinitesimal gen-
erator (5.32) and
H,=inf{t>0: X(t)==z}.

Then ,
e@™/2D_, 4y (—V2bx)
e(z?b)/2Dis/b(7\/%z) , Jorx <z

L= (5) = EXe5H= =

B(E%)/QD—s/b(\/%l‘)
B(ZQb)/2D_S/b(\/%Z), fOT’ z S T

and

: [(sl(z\/Q_b) — 51(2V/2b)) + V(2 — ) + Vo (252(2V2D) — wso(x 2b))] , forax <z
EXH, =

S

[\/ﬁ(asz(x\/%) — 259(2V/2b)) — (s1(2V/2b) — 51(2V/2D)) + Vbr(z — z)] , forax >z

From Lemma 5.4

A d _+
]E?T = —_LT(S)\s:OJr =

2 [VATsa(VER) = 51(VER) + VFT| < —(s2(VE) + 1)

Vb
(5.46)

e

for 6 < % (then x < b/2). Thus by (5.38), (5.40), (5.41) - (5.42) the condition (5.33) is
fulfilled and hence the asymptotics (5.34) holds.

To calculate constant Cy in (5.34) explicit we have to compute m; 7 and m1,z. Note
that

mip =Ky T =E{Sy+ELT . (5.47)
By Lemma 5.4:
L1
EXT = 3 Vbrsy(V2b) — 51(V2b) + Vir| . (5.48)
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We calculate IE{ Sy using the Laplace transform method. Denote:
D) (p24,2
S ,y) = T (D ()DL (9) ~ D_y(2)D ()

By Borodin and Salminen (1996), p. 434, we have the following lemma.

Lemma 5.5. Let {X(t),t > 0} be the Ornstein-Uhlenbeck process with the infinitesimal
generator (5.32) and
H,.=inf{t>0:X(¢t) & (a,2)} .

Then fora < x <z
S(3,2V2b,2V2b) + S(,2v/2b, av/2b)
S(3,2 20, a/2b)

LHaz(5) = BY ¢ 5o =

and
. B A(z,a,z)
B e = L (v2h) — a1 + 52(aV2D))
where

Az, a,2) = 2(1 + 59(2V2D))(s1(aV2b) — s1(2V2b))+

+a(1 + s2(aV/2b))(s1(2V2b) — 51(2V2b)) +
+2(1 4 s2(zV2b))(51(2V2b) — s1(aV/2D)) .
Lemma 5.5 gives:
mi s, = ES(SO = %81(\/%) . (5.49)
By (5.47) - (5.49) we have:
&S
mr =2 [32(\/%) n 1] : (5.50)
We change the measure by (5.35) using the martingale
RE—b% [P, F—b, o 2
M (1) = exp{~"— /0 X2(s)ds = 20 - X0~ 1)) (551)

for # = /b2 + 2s. Then we get
LZ(S) = ]Eg(efs foT(X2(t)+k) dt _ ]EOQef§T _ ]EOQefgkgO]E?e,gT ’

where 5§ = % and under the probability measure @ process {X(¢),t > 0} is the
Ornstein-Uhlenbeck process with the parameter #. From Lemmas 5.5 and 5.4:

S(5/k,V2k,0) + S(5/k,0, —/2F)

Efe % =
0 S(3/f,\ 28, —V/2R) ’
al’ld ~/2 =
EQeféT — © Di%( 21%)
' D_:(0)
Thus
d JT 1
= ——LZ — = — 2 1 . . . 2
iz == Gemor = L 6a(VED 4 1) (5 + £ (5.52)

Summarizing, from (5.34) we have the following theorem.
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Theorem 5.3. Assume that {X2(t) + k,t > 0} is the intensity process for k > 0 and for
the Ornstein-Uhlenbeck process {X (t),t > 0} with the parameter b starting at X(0) = 0.
If the claim size has the regularly varying distribution (U) and mipy < 14—2%’ then

1 (1/2b+ k)
ap —11—my(1/2b+ k)

—apg+1

Y(u) ~ Iy (u)u

5.4 Ornstein-Uhlenbeck process and A(z) = (z + p)?

Let {X(¢),t > 0} be the Ornstein-Uhlenbeck process with the parameter b starting at
X(0) = 0. Let the regeneration moments be defined by (5.22). We take \(x) = (x + p)>.
Hence the intensity process {(X(t) + p)%,¢ > 0} is non-Markovian. We prove condition
(B) similarly like in the previous section. Then by Corollary 3.1 under conditions (U) and
(S) the asymptotics (3.19) holds. We introduce the exponential change of measure (5.35),
where

2 t
M(t) = exp{% /0 X2(w) dw + g(XQ(t) ~X20) - 1)} . (5.53)

By the Cameron-Martin-Girsanov Theorem the process {X(¢),¢ > 0} is the Brownian
motion. Hence
Ef 7 = B M~ (T)e? Jo X0+

= ]EOQB_TNZ fOT(X(t)_p')Q dt+(§}52+5p2+%)T 7
where = V37— 28 and = 2. Let
So=inf{t>0:|X (1) +p| =1}, T =inf{t > Sy: X(t) = —p} .

Then - ,
B o7 B I X0 st

We change again the measure in the following way:

dQrx
o~ = M)
Qlrx

where

~ /4;2 t K
M(t):exp{—7/0 X2 (w) dw = S(X(1) = X(0) =)} -

Then under the probability measure Q the process { X (t),t > 0} is the Ornstein-Uhlenbeck
process with the parameter k. We have

~ 2 b - ~ e
Ef e’ = B2, exp{(—5 + 59° + 6" + )T} = B2’ (5.54)
where )
5:§—g+p6ﬁ+6p2>0.

Note that monotonically

6—0t  as6— 0t (5.55)
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Denote
=inf{t >0: X(¢t) = —p} .

By the Markov property
EQ~65T — E?~€5§0 E?ﬁ_legfo X Q(X(S’O) _ —]3 _ 1)+
+]EQP+166T Q(X(Sy) = —p + 1)] < ]EQ~6550 (]EQ o g lEQp+1e5T0> ‘

From Remark 5.1 and (5.55) there exists §p > 0 such that ]chﬁegg0 is uniformly bounded
for all 0 < ¢ < ép. Thus to prove (B) it suffices by Lemma 5.3 and (5.55) to find 6y > 0
such that ]E?ﬁflfo and ]E%HTO are uniformly bounded for all 0 < § < §p. Lemma 5.4
gives:

EC. _1

Oy = Lsr(5W3R) + v+ VERG + Dsa (VARG + D)) <
< % [51(V2D) + Vo7 + 2By (2VED)]

p+1T0 < % [81(\/%) + Vb + 2\/%52(\/%)]

=

E~.

for all 6 < 3b2 8|P| (then |p| < 1 and b > k > ) We now calculate m z needed for

obtaining constant Cy in (3.19) explicit. Constant mj 7 is given in (5.50). Note that the
Laplace transform of Z equals:

LZ(s) = EXe 5% = IEQ~ 5T _
Po

= ]E?[;Oe*sso (EQPO e T QX (So) = —po — 1) + ]EonJrle*sTo - Q(X(So) = —po + 1)) ;

where under the measure Q the process {X(t),t > 0} is the Ornstein-Uhlenbeck process
with the parameter & = v/b? + 2s. Moreover, py = —% and

5= — pspo + sp®> > 0

Do | I
N | oS

for sufficiently small s. From Lemmas 5.5 and 5.4 we have

; - eP55/2D s (—pov/27)
]EQ~ lefsTo —_ _ = R — — ,
et R/2D_: (—(po + 1)V2R)

K

ePoRI2D_ 5 (pog\/2F)

—po+1° N e(lfﬁo)Qﬁ/2D7§(—(1 — po)V2k)
EQ_ o~ S(£,(1 = po)V2k, —poV2k) + S(£, —po V28, —(Po + 1)V/2k)
_p‘o - 5 ~ = ~
S(£,(1 = po)V28&, — (o + 1)V2F)
Denote:
Erfi(z \/_/ dv, Erfid(z,y) = Erﬁ(%) Erﬁ(%)

and

Cl,y) = 2 ID_, 4 (<0)Doy ) + Doya (D)

17



By Borodin and Salminen (1996) the following holds:

O(X (S0) = o — 1) =1 — G(X(S0) = —fo+1) = Efdéf(flp;%@fiﬁ/)m '

Note that:
LD @)= -2D @) =vD o ale), =D () = e [sy(0) = —m(1 4 51())
dx - v—1 ds —s 2 p 1
and
3S’(l/x )=C(v,z,y) 3S(l/yc ) C(v,z,y)
83:’ ) 7y - ) 7y 9 8y 9 7y - y
Hence
= LB ) g = (B ) (5.56)
miz = =72\ € s=0+t = T W50 |s=0+— .
1 d Q —5T, d Q — 5T
Ty <d8 (E*ﬁO*le 0)\310"" + g(E*ﬁoJrl 0 |5 0+>
V2 b p 2 1

z\f 1 1 p?
S bEﬁ(\/E)}+b+(2b2+?)

s2(V/2D) + \/ig(l + 31(\/%))] .

Summarizing we have the following theorem.

Theorem 5.4. Assume that {(X(t)+p)%,t > 0} is the intensity process for p € R and for
the Ornstein-Uhlenbeck process {X (t),t > 0} with the parameter b starting at X (0) = 0.
If the claim size has the reqularly varying distribution (U) and (S) holds, then

1 1
—ap+1
mi.z ly(u)u U™
ay — 1 miT — My umiz

U(u) ~
where my p and my z are given in (5.50) and (5.56) respectively.

5.5 Splitting Brownian bridges and A(z) = |z|

We construct the governing process { X (¢),t > 0} by splitting independent Brownian bridges
defined on interval [n,n + 1] (n € IN). That is, X(¢t) = Z,(¢t) if t € [n,n + 1], where
{Z,(t),t € [n,n + 1]} is a Brownian bridge (see Karatzas and Shreve (1988), p. 358,
for construction of the Brownian bridge). We assume that processes {Z,(t),t > 0} are
independent. Hence T,, = n are moments of regeneration and 7' = 1. Let A(z) = |z|.
Thus on each interval [n,n + 1] the intensity process is the reflecting Brownian bridge. By
Karatzas and Shreve (1988), p. 360,

Zy(t) z

1 1 1
_ _ D _
_/0 |X(t)|dt_/0 |Zl(t)|dt_/0 IB(t) — tB(1)] dt . (5.58)
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B(t) — tB(1) . (5.57)
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Note that

1
A g/ (sup |B(t)|+t|BQ)|) dt < 2 sup |B(¢)] . (5.59)
0 0<t<l 0<t<1

Hence

T 1 +o0 2
P(Z >x) <IP(sup |B(t > —)= 4—/ 2
( ) (Ogtgl 0> 3 Sup 5) 2 Lo

by Adler (1999) and Karatzas and Shreve (1988), p. 96. Thus condition (B) is fulfilled.
Moreover, by the Fubbini Theorem:

1
mLZ:/O (E¥|B(t) —tB(1)|) dt =

1 +oo +oo (2=y)?
1 —?/2 =)
= | o= e |z — tyle” 20-0 dy da dt
0 vVi— —00 —o00

~ Jy v A e
Taking substitution 32 := 1 — t we get:
mLZ—% log —2/ mdy—i-Q/ \/# (5.60)
= % Elhpth(\/g) - iElhme( V2, i\/ﬁ) —~ % —~ élog(S)] ~ 0.79788 ,

where
EllipticF(z, k)

/ V1 —yQ\/l—k2 v

is the incomplete integral of the first kind and EllipticK (k) = EllipticF(1, k) is the complete
elliptic integral of the first kind (see Abramowitz and Stegun (1972), Chapter 17). By
Corollary 3.1 we have the following theorem.

Theorem 5.5. Assume that the intensity process is constructed by splitting reflecting
Brownian bridges. If the claim size has the reqularly varying distribution (U) with ay > 1
and my zm1y <1, then

1 1

Y(u) ~ mi,z ly(u)u v Ft
ag—1 ""1-—miymiz

where my z is given in (5.60).
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