A Characterization of Multivariate Regular Variation

Bojan Basrak¹
EURANDOM

Richard A. Davis²
Colorado State University

Thomas Mikosch
University of Groningen

October 5, 2000

Short Title: Multivariate Regular Variation

Abstract. We establish the equivalence between the multivariate regular variation of a random vector and the univariate regular variation of all linear combinations of the components of such a vector. According to a classical result of Kesten (1973), this result implies that stationary solutions to multivariate linear stochastic recurrence equations are regularly varying. Since GARCH processes can be embedded in such recurrence equations their finite-dimensional distributions are regularly varying.

¹This research supported by an NWO PhD grant.
²This research supported in part by NSF DMS Grant No. DMS-9972015.
AMS 1991 Subject Classification: Primary: 60E05 Secondary: 60G10 60G55 60G70 62M10 62P05
Key Words and Phrases. Point process, vague convergence, multivariate regular variation, heavy tailed distribution, stochastic recurrence equation, GARCH process
1 Introduction

Much of the early development of regular variation in the multivariate setting had its genesis in extreme value theory. There is a natural connection between limit theory of component maxima of iid random vectors and multivariate regular variation: a random vector is in the maximum domain of attraction of a multivariate extreme value distribution with Fréchet marginals if and only if the vector has a distribution which is regularly varying; for details see for example Resnick [17] and [16], Chapter 5. Early on, multivariate regular variation has been used in the theory of summation of iid random vectors to characterize the domains of attraction of stable distributions; see Rvačeva [18]. More recently, multivariate regular variation has been found to be a key concept in problems that go beyond extreme value theory. In particular, it has been used to describe the weak limits of point processes constructed from stationary sequences of random vectors; see Davis and Hsing [6] and Davis and Mikosch [7]. These weak convergence results provided the key ingredients for deriving the weak limiting behavior of sample autocovariances and sample autocorrelations of stationary sequences of random variables with regularly varying tails. In fact, one can apply a continuous mapping argument to obtain the weak convergence of these and other sum-type functionals of a stationary sequence from the weak convergence of appropriately chosen point processes where the points satisfy a multivariate regular variation condition.

In the literature one can find various equivalent formulations of regular variation for tail probabilities associated with a random vector. Basrak [1] has documented several of these equivalences. The most commonly used condition is the following: The d-dimensional random vector $X = (X_1, \ldots, X_d)'$ and its distribution are said to be regularly varying with index $\alpha \geq 0$ if there exists a random vector Θ with values in S^{d-1}, where S^{d-1} denotes the unit sphere in \mathbb{R}^d with respect to the norm $| \cdot |$, such that for all $t > 0$,

$$
P(|X| > tu, X/|X| \in \cdot) \overset{v}{\rightarrow} t^{-\alpha} P(\Theta \in \cdot), \quad \text{as } u \to \infty.
$$

The symbol $\overset{v}{\rightarrow}$ stands for vague convergence on S^{d-1}; vague convergence of measures is treated in detail in Kallenberg [12]. See de Haan and Resnick [10] and Resnick [16], Chapter 5, for background on multivariate regular variation.

The aim of this note is to establish another characterization of multivariate regular variation that not only further illuminates the notion of regular variation, but has useful applications in its own right. In its simplest terms, this characterization states that the vector X is regularly varying if and only if every linear combination, (t, X), $t \in \mathbb{R}^d$, is regularly varying, where (\cdot, \cdot) denotes the usual inner product in \mathbb{R}^d. This result is in the spirit of the analogous characterization of a multivariate normal random vector and the use of the Cramér-Wold device for establishing weak convergence for a sequence of random vectors. This characterization of multivariate regular
variation is known in some special cases, such as \mathbf{X} has non-negative components with right tail of power law type and $\alpha \in (0, 2)$ (see Kesten [13], Corollary on p. 236). It is noteworthy that such a general characterization for regular variation is conspicuously absent from the literature.

The precise formulation of the condition that every linear combination of the random vector is regularly varying is given by:

$$\text{For all } \mathbf{x} \neq \mathbf{0}, \quad \lim_{u \to \infty} \frac{P((\mathbf{x}, \mathbf{X}) > u)}{P((1, \mathbf{X}) > u)} = w(\mathbf{x}) \quad \text{exists},$$

where $1 = (1, \ldots, 1)'$ is a vector of ones and w is a finite-valued function, $w(\mathbf{x}) = 0$ being possible for certain choices of $\mathbf{x} \neq \mathbf{0}$. If such a limit exists, then a routine argument, see Resnick [16], p. 277, for example, shows that the limit function w is homogeneous and has the form

$$w(t\mathbf{x}) = t^\alpha w(\mathbf{x}),$$

for all $t > 0$, $\mathbf{x} \neq \mathbf{0}$ for some $\alpha \geq 0$. That is, for all $\mathbf{x} \neq \mathbf{0}$, the random variable (\mathbf{x}, \mathbf{X}) is regularly varying with index α.

Our basic motivation for studying the equivalence between (1.1) and (1.2) comes from a classical result of Kesten [13]; see also Goldie [11] for an alternate derivation of Kesten's result. They considered the tail behavior of solutions to stochastic recurrence equations of type $\mathbf{X}_t = \mathbf{A}_t \mathbf{X}_{t-1} + \mathbf{B}_t$, where $((\mathbf{A}_t, \mathbf{B}_t))$ is an iid sequence, \mathbf{A}_t are random $d \times d$ matrices and \mathbf{B}_t are d-dimensional random vectors. Stationary GARCH processes can be embedded in this type of stochastic recurrence equations. It turns out that under mild (but rather technical) conditions on the distribution of $(\mathbf{A}_1, \mathbf{B}_1)$, the random vector \mathbf{X}_1 satisfies condition (1.2). However, for the purposes of time series analysis (analysis of the sample autocovariances and sample autocorrelations) and extreme value theory it is crucial that \mathbf{X}_1 is regularly varying in the sense of (1.1); see Davis and Hsing [6], Davis and Mikosch [7], Basrak, Davis and Mikosch [2], Mikosch and Stărică [14] for various analyzes of GARCH and bilinear processes.

Several equivalences between (1.1) and (1.2) for various choices of α are given in the following theorem.

Theorem 1.1 Let \mathbf{X} be a random vector in \mathbb{R}^d.

1. If the random vector \mathbf{X} is regularly varying with index $\alpha > 0$ in the sense of condition (1.1), then (1.2) holds and (1.3) is satisfied with the same α.

2. If \mathbf{X} satisfies the condition (1.2), where the α in (1.3) is positive and non-integer, then \mathbf{X} is regularly varying with index α.

3. If \mathbf{X} assumes values in $[0, \infty)^d$ and satisfies (1.2) for $\mathbf{x} \in [0, \infty)^d \setminus \{\mathbf{0}\}$, where $\alpha > 0$ is a non-integer, then (1.1) holds.
4. If \(\mathbf{X} \) assumes values in \([0, \infty)^d\) and satisfies (1.2), where \(\alpha \) in (1.3) is an odd integer, then (1.1) holds.

There are a few caveats to this theorem. First, the result only holds provided the \(\alpha \) in (1.3) is not an even integer. We believe the result also holds in this case, but to date, an argument has not been provided. Second, it is critical that for integer values of \(\alpha \), the linear combination of \(\mathbf{X} \) involves both positive and negative coefficients even if the components of \(\mathbf{X} \) are assumed to be non-negative. Without this restriction counter-examples to this theorem are easy to construct; see Section 2. Moreover, for the case \(\alpha = 1 \), Kesten [13], Remark 4, indicates that for general \(\mathbb{R}^d \)-valued random vectors, condition (1.2) need not imply (1.1).

2 Proof of theorem

(1) Define the family of sets \(\{W_X, x \in \mathbb{R}^d\} \) by

\[
W_x = \{y \in \mathbb{R}^d : (x, y) > 1\}.
\]

The quotient in (1.2) may be written as \(P(X \in uW_X)/P(X \in uW_1) \) which has a limit by the vague convergence in (1.1).

(2) Define the family of measures

\[
m_t = \frac{P(X \in t \cdot)}{P(X \in t W_1)}, \quad t \geq 1,
\]

on the space \(\mathbb{R}^d \setminus \{0\} \), where \(\mathbb{R} = \mathbb{R} \cup \{\infty, -\infty\} \). On this space bounded sets are those that are bounded away from 0. We first note that this family of measures is tight. That is, for all bounded Borel sets \(B \) on \(\mathbb{R}^d \setminus \{0\} \),

\[
\sup_{t \geq 1} m_t(B) < \infty.
\]

To see this, for any bounded \(B \), there exists an \(x_0 \) such that \(B \subset W_{x_0} \) and hence

\[
\sup_{t \geq 1} m_t(B) \leq \sup_{t \geq 1} \frac{P(X \in t W_{x_0})}{P(X \in t W_1)} < \infty
\]

by (1.2).

Lemma 2.1 If \(\mu \) is any subsequential vague limit of \((m_t) \), then for any \(x \neq 0 \),

(2.1) \[
\mu(uW_X) = w(x)u^{-\alpha} \quad \text{for all } u > 0.
\]

Moreover, for any \(\epsilon > 0 \) and any non-zero vector \(x \),

\[
\int_{|\langle x, y \rangle| > \epsilon} |\langle x, y \rangle|^{\gamma} \mu(dy) < \infty \quad \text{for all } \gamma < \alpha
\]

and

\[
\int_{|\langle x, y \rangle| < \epsilon} |\langle x, y \rangle|^{\gamma} \mu(dy) < \infty \quad \text{for all } \gamma > \alpha.
\]
Proof: The identity (2.1) follows directly from (1.2) and (1.3). To show the first bound, we have
\[
\int_{|(x, y)| > \epsilon} |(x, y)|^\gamma \mu(dy) = \int_{|(x, y)| > \epsilon} \int_0^{|(x, y)|} \gamma v^{\gamma - 1} dv \mu(dy)
\]
which by Fubini and (2.1) is
\[
= \int_0^\infty \mu(|(x, y)| > \epsilon) \gamma v^{\gamma - 1} dv + \int_\epsilon^\infty \mu(|(x, y)| > \epsilon) \gamma v^{\gamma - 1} dv
\leq \text{const} \epsilon^\gamma + \int_\epsilon^\infty \text{const} \gamma v^{-\alpha + \gamma - 1} dv < \infty
\]
for \(\gamma < \alpha\). The proof of the second bound is similar. \(\square\)

By tightness there exists a subsequential vague limit of the family \((m_t)\); see Kallenberg [12]. To complete the proof of part (2) of the theorem, it then suffices to show that any two such limits, \(\mu_1\) and \(\mu_2\), are the same. So now suppose \(\alpha\) is between the two integers, \(2n - 2\) and \(2n\) for some \(n \geq 1\). Define the two measures \(\nu_1\) and \(\nu_2\) by
\[
\nu_i(A) = 2^n \int_A (1 - \cos (2(1, y)))^n \mu_i(dy)
\]
Since the integrand is bounded and of order \(|(1, y)|^n\) for \(y\) near the origin, it follows from Lemma 2.1 that these measures are finite. Also, \(\nu_1(\mathbb{R}^d \setminus \{0\}) = \nu_2(\mathbb{R}^d \setminus \{0\})\), which follows from the fact that \(\mu_1\) and \(\mu_2\) agree on all sets of the form \(W_x\).

We now show that the characteristic functions of \(\nu_1\) and \(\nu_2\) agree from which we conclude that the two measures are the same. To this end, for an arbitrary \(x \in \mathbb{R}^d\), consider
\[
\int_{\mathbb{R}^d} e^{i(x, y)} \nu_i(dy) = (-1)^n \int_{\mathbb{R}^d} e^{i(x, y)} \sum_{k=0}^{2n} (-1)^k \binom{2n}{k} e^{i(k1, y)} e^{-i(2n-k)1, y} \mu_i(dy)
\]
Using the following identity for binomial coefficients (see Riordan [19], Section 1.2):
\[
\sum_{k=0}^\ell (-1)^k \binom{\ell}{k} k^m = 0, \quad \text{for any} \ 1 \leq m < \ell \ \text{and} \ \ell \geq 2,
\]
and setting
\[
e_m(z) = e^{iz} - 1 - iz - \cdots - \frac{i^m}{m!} z^m,
\]
the above integral for \(\alpha \in (2n - 1, 2n)\) can be written as
\[
\int_{\mathbb{R}^d} e^{i(x, y)} \nu_i(dy) = (-1)^n \int_{\mathbb{R}^d} \sum_{k=0}^{2n} (-1)^k \binom{2n}{k} e_{2n-1}(x - 2n1 + 2k1, y) \mu_i(dy)
\]
\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \int_{\mathbb{R}^d} e_{2n-1}((x-2n\mathbf{1}+2k\mathbf{1},y)) \mu_i(dy).
\]

Since \(e_{2n-1}((x-2n\mathbf{1}+2k\mathbf{1},y))\) is of order \(|(x-2n\mathbf{1}+2k\mathbf{1},y)|^{2n-1}\) at \(\infty\) and \(|(x-2n\mathbf{1}+2k\mathbf{1},y)|^{2n}\) at the origin, the integrals on the right hand side are finite by Lemma 2.1 which also justifies the interchange of summation and integration. By virtue of the integrands’ dependence only on the inner-product \((x-2n\mathbf{1}+2k\mathbf{1},y)\), the integrals must be equal for \(i = 1, 2\). For the case \(\alpha \in (2n - 2, 2n - 1)\) the function \(e_{2n-1}\) is replaced by \(e_{2n-2}\) and the same calculations as above apply. This shows \(\nu_1 = \nu_2\). An elementary argument shows that \(\mu_i(\{y : (1,y) = c\}) = 0\) for all \(c \neq 0\) and hence \(\mu_i\) has zero measure on the zeros of the function \(1 - \cos(2(1,y))\). It follows that the measures \(\mu_1\) and \(\mu_2\) are equal.

(3) The proof of this part is nearly the same as above, only using Laplace transforms instead of characteristic functions. In this case, the measure \(\nu_i\) is defined by

\[
\nu_i(A) = \int_A \left(1 - e^{-(1,y)}\right)^{2n} \mu_i(dy).
\]

(4) Before embarking on the proof of this part, we first establish two lemmas, the first of which may be of independent interest. It is a partial converse to Breiman’s lemma which states that if \(Y > 0\) is a regularly varying random variable with index \(\alpha\) and \(Z > 0\) is independent of \(Y\) with \(EZ^\gamma < \infty\) for some \(\gamma > \alpha\), then \(ZY\) is regularly varying with index \(\alpha\). Specifically,

\[
P(ZY > x) / P(Y > x) \to EZ^\alpha \text{ as } x \to \infty.
\]

Lemma 2.2 Let \(N\) be a standard normal random variable which is independent of the non-negative random variable \(Y\). If \((NY)_+\) is regularly varying with index \(\alpha > 0\), then \(Y\) is regularly varying with the same index.

Proof. By the regular variation assumption, there exists a slowly varying function \(L(x)\) such that for \(x > 0\),

\[
L(x)x^{-\alpha} = P(NY > x) = \int_0^\infty P(Y > x/z) \varphi(z) dz
\]

\[
= x \int_0^\infty \frac{P(Y > 1/\sqrt{2s}) e^{-x^2/2s}}{\sqrt{2\pi}} ds,
\]

where \(\varphi(z)\) is the standard normal density function. This implies that

\[
\hat{U}(x) = \int_0^\infty e^{-xs} U(ds) \sim \sqrt{2\pi x}^{-\alpha+1/2}L(\sqrt{x}) \text{ as } x \to \infty,
\]

where

\[
U(z) = \int_0^z \frac{P(Y > 1/\sqrt{2s})}{\sqrt{2s}} ds.
\]
An application of Karamata’s Tauberian Theorem (see Feller [9], XIII, §5) yields that
\[U(s) \sim \sqrt{2\pi L(1/\sqrt{s})s^{(\alpha+1)/2}}/\Gamma \left(1 + \frac{\alpha+1}{2} \right) \] as \(s \downarrow 0. \)

Since
\[U(y) = \int_{0}^{\sqrt{2y}} P(Y > 1/z)dz \]
and the integrand is monotone in \(z \), an application of the Monotone Density Theorem (see Theorem 1.7.2.b in Bingham et al. [4]), yields that
\[P(Y > x) \sim 2^{-\alpha/2} \sqrt{\pi L(x)x^{-\alpha}}/\Gamma \left(\frac{\alpha+1}{2} \right) \] as \(x \to \infty. \)

\[\square \]

If the random vector \(\mathbf{X} \) is regularly varying with index \(\alpha > 0 \) in the sense of (1.1), then it is not difficult to show that for any \(p > 0 \), the vector
\[\mathbf{X}^p = (|X_1|^p, \ldots, |X_d|^p)' \]
is regularly varying with index \(\alpha/p \), and by virtue of part (1) of the theorem, \(\mathbf{X}^p \) satisfies (1.2) with index \(\alpha/p \) in (1.3). The following lemma establishes a similar result under the assumption that (1.2) holds.

Lemma 2.3 If \(\mathbf{X} \) is a non-negative-valued vector satisfying (1.2) for all \(\mathbf{x} \neq 0 \), then the vector \(\mathbf{X}^2 \) satisfies (1.2) for all non-negative values \(\mathbf{x} \neq 0 \).

Proof. Let \(\mathbf{N} = (N_1, \ldots, N_d)' \) be a vector of iid standard normal random variables independent of \(\mathbf{X} \). Since \(N_1^2(x^2, \mathbf{X}^2) \) and \((N_1x_1X_1 + \cdots + N_d x_dX_d)^2 \) are equal in distribution, we have for any \(\mathbf{x} \neq 0 \) and \(x > 0 \),
\[P(N_1^2(x^2, \mathbf{X}^2) > x^2) = 2 P(N_1x_1X_1 + \cdots + N_d x_dX_d > x), \]
where \(\mathbf{x}^2 = (x_1^2, \ldots, x_d^2) \). Then, by (1.2),
\[f_x = \frac{P(N_1x_1X_1 + \cdots + N_d x_dX_d > x \mid \mathbf{N})}{P((\mathbf{1}, \mathbf{X}) > x)} \xrightarrow{a.s.} f = w(x_1N_1, \ldots, x_dN_d). \]

Let \(g_x \) and \(g \) be the dominating functions for \(f_x \) and \(f \), respectively, given by
\[g_x = \frac{P(|N_1x_1| + \cdots + |N_d x_d|)(\mathbf{1}, \mathbf{X}) > x \mid \mathbf{N})}{P((\mathbf{1}, \mathbf{X}) > x)} \xrightarrow{a.s.} g = (|x_1N_1| + \cdots + |x_dN_d|)^\alpha, \]
where the limit follows from (1.2). An application of (2.2) yields
\[Eg_x \to Eg \quad \text{as} \quad x \to \infty. \]
An appeal to Pratt’s Lemma (see Pratt [15], cf. Resnick [16], p. 289) gives
\[E f_x = \frac{P(N_1 x_1 X_1 + \cdots + N_d x_d X_d > x)}{P(1, X) > x} \rightarrow E f = E w(x_1 N_1, \ldots, x_d N_d), \]
whence
\[\lim_{x \to \infty} \frac{P(N_1 x_1^2, X_1^2) > x^2}{P(1, X) > x} = 2 E w(x_1 N_1, \ldots, x_d N_d). \]

The right hand expectation is positive for all \(x \neq 0 \) with all nonzero components. To see this, it suffices to show that \(w(x) > 0 \) for all \(x \) with positive coefficients. For the ease of argument, assume \(d = 2 \). Then for any positive \(x_1 \) and \(x_2 \),
\[
w(2x_1,0) + w(0, 2x_2) = \lim_{x \to \infty} \frac{P(x_1 X_1 > x/2) + P(x_2 X_2 > x/2)}{P(X_1 + X_2 > x)} \\
\geq \lim_{x \to \infty} \frac{P(x_1 X_1 + x_2 X_2 > x)}{P(X_1 + X_2 > x)} = w(x_1, x_2) \\
\geq \lim_{x \to \infty} \frac{P(x_2 X_2 > x)}{P(X_1 + X_2 > x)} = w(0, x_2).
\]

If \(w(0, 1) > 0 \), \(w(x_1, x_2) > 0 \) for all positive \(x_1, x_2 \). If \(w(0, 1) = 0 \), we must have \(w(1, 0) > 0 \), and the same argument as above (interchanging the roles of \(X_1 \) and \(X_2 \)) gives that \(w(x_1, x_2) > 0 \) for positive \(x_1, x_2 \).

Hence the right hand expression in (2.3) is positive for all choices of \(x \neq 0 \). Since \((1, X)\) is regularly varying with index \(\alpha > 0 \), \(N_1^2(X_1^2, X_2^2) \) is regularly varying with index \(\alpha/2 \), and Lemma 2.2 implies that \((X_1^2, X_2^2)\) is regularly varying with index \(\alpha/2 \), and so (1.2) holds for \(X^2 \) for any \(x \neq 0 \) with non-negative components.

Now we are ready to proceed with the proof of part (4) of the theorem. Assume (1.2) holds for the non-negative-valued random vector \(X \) with \(\alpha = 2n + 1 \) for some integer \(n \geq 0 \). By Lemma 2.3, \(X^2 \) satisfies (1.2) for any \(x \neq 0 \) with non-negative components. Moreover, the corresponding index in (1.3) is \(\alpha/2 = n + 0.5 \) which is non-integer. Applying part (3) of the theorem, we conclude that \(X^2 \) is regularly varying with index \(\alpha/2 \), and an easy argument shows that \(X \) is regularly varying with index \(\alpha \). This concludes the proof of part (4).

\[\square \]

Counter-example. Here we give an example of two positive-valued random vectors that have different limits in (1.1) with \(\alpha = 2 \), yet have the same limits in (1.2) for all non-negative \(x \). To construct the example, let \(\Theta_1 \) and \(\Theta_2 \) be two random variables defined on \((0, \pi/2)\) with unequal distribution functions such that
\[E \sin^2(\Theta_1) = E \sin^2(\Theta_2) \quad \text{and} \quad E \sin(2\Theta_1) = E \sin(2\Theta_2). \]
The existence of two such random variables satisfying (2.4) is easy to verify. Now define the measure \(\mu_i \) on \((0, \infty) \times [0, 2\pi)\) by
\[
\mu_i(dr, d\theta) = (2r^{-3} dr) \times P(\Theta \in d\theta).
\]
For \(i = 1, 2 \), let \(X_i = (R \cos \Theta_i, R \sin \Theta_i)' \), where \((R, \Theta_i)\) has distribution given by \(\mu_i \) restricted to the set \((1, \infty) \times (0, \pi/2)\). For \(x = (x_1, x_2)' \in [0, \infty)^2 \), we have
\[
x^2 P((x, X_i) > x) = x^2 P(x_1 R \cos \Theta_i + x_2 R \sin \Theta_i > x)
\]
\[
= x^2 \int_1^\infty P(x_1 \cos \Theta_i + x_2 \sin \Theta_i > x/r) \, 2r^{-3} \, dr
\]
\[
= \int_0^{x^2} P((x_1 \cos \Theta_i + x_2 \sin \Theta_i)^2 > v) \, dv
\]
\[
\to x_1^2 E \cos^2 \Theta_i + x_1 x_2 E \sin(2\Theta_i) + x_2^2 E \sin^2(\Theta_i),
\]
as \(x \to \infty \). By (2.4), the right hand side is the same for \(i = 1, 2 \) and all \(x_1, x_2 \geq 0 \). It follows that \(X_1 \) and \(X_2 \) have the same limit in (1.2) for all \(x_1, x_2 \geq 0 \). On the other hand, a routine calculation shows that
\[
\frac{P(|X_i| > tu, X_i/X_i \in \cdot)}{P(|X_i| > u)} \overset{v}{\to} t^{-2} P((\cos(\Theta_i), \sin(\Theta_i))' \in \cdot), \quad \text{as } u \to \infty.
\]
which have distinct limits for \(i = 1, 2 \).

3 Applications

3.1 Stochastic recurrence equations

We mentioned in the introduction that linear stochastic recurrence equations
\begin{equation}
X_n = A_nX_{n-1} + B_n, \quad n \in \mathbb{Z},
\end{equation}
where \(((A_n, B_n))\) is an iid sequence of \(d \times d \) random matrices \(A_n \) and \(d \)-dimensional random vectors \(B_n \), were the motivating examples to consider different characterizations of multivariate regular variation. Stationary causal solutions to (3.1) satisfy a general regular variation condition in the sense of (1.2). This follows from a fundamental result of Kesten [13] which we present here in a modified form (a combination of his Theorems 3 and 4). In these results, \(\| \cdot \| \) denotes the operator norm defined in terms of the Euclidean norm \(| \cdot | \).

Theorem 3.1 Let \((A_n)\) be an iid sequence of \(d \times d \) matrices with non-negative entries and \((B_n)\) be non-negative-valued \(d \)-dimensional vectors. Assume that the following conditions hold:

- For some \(\epsilon > 0 \), \(E\|A_1\|^{\epsilon} < 1 \).
• A_1 has no zero rows a.s.

• The set

$$\{ \ln \rho(a_n \cdots a_1) : n \geq 1, a_n \cdots a_1 > 0 \text{ and } a_n \cdots a_1 \in \text{the support of } P_{A_1} \}$$

generates a dense group, where $\rho(C)$ is the spectral radius of the matrix C and $C > 0$ means that all entries of this matrix are positive.

• There exists a $\kappa_0 > 0$ such that

$$E \left(\min_{i=1, \ldots, d} \sum_{j=1}^d A_{ij} \right)^{\kappa_0} \geq d^{\kappa_0/2}$$

and

$$E(\|A_1\|^\kappa_0 \ln^+ \|A_1\|) < \infty.$$

Then the following statements hold:

1. There exists a unique solution $\kappa_1 \in (0, \kappa_0]$ to the equation

$$0 = \lim_{n \to \infty} \frac{1}{n} E \ln \|A_n \cdots A_1\|^{\kappa_1}.$$

2. There exists a unique strictly stationary causal solution (X_n) to the stochastic recurrence equation (3.1).

3. If $E|B_1|^{\kappa_1} < \infty$, then X_1 satisfies the following regular variation condition:

$$\text{For all } x \in \mathbb{R}^d \setminus \{0\}, \quad \lim_{u \to \infty} u^{\kappa_1} P((x, X_1) > u) = w(x) \quad \text{exists}$$

and is positive for all non-negative-valued vectors $x \neq 0$.

Clearly, (3.2) is a special case of (1.2). An appeal to Theorem 1.1 immediately gives the following result.

Corollary 3.2 Under the assumptions of Theorem 3.1, the marginal distribution of the unique strictly stationary causal solution (X_n) of the stochastic recurrence equation (3.1) is regularly varying in the following sense. If the value κ_1 in (3.1) is not an even integer, then there exist a positive constant c and a random vector Θ with values in the unit sphere S^{d-1} such that

$$u^{\kappa_1} P(\|X_1\| > tu, \ X_1/\|X_1\| \in \cdot) \overset{\text{i}}{\to} c t^{-\kappa_1} P(\Theta \in \cdot), \quad \text{as } u \to \infty.$$
This result is crucial for the understanding of the finite-dimensional distributions of GARCH processes which are used for modeling stock returns in the econometrics literature. The above corollary is directly applicable to GARCH processes since they can be embedded in multivariate stochastic recurrence equations of type (3.1); see Section 8.4 in Embrechts et al. [8], Davis and Mikosch [7], Mikosch and Stàricà [14] for some special cases and Basrak et al. [3] for the case of general GARCH processes.

3.2 Point process convergence and maximum domains of attraction of multivariate extreme value distributions

Regular variation conditions of type (1.1) are used for the characterization of maximum domains of attraction of extreme value distributions; see Resnick [16], Chapter 5, and are crucial assumptions for the weak convergence of point processes. In what follows, we mention a few results which follow from the characterization of multivariate regular variation given in Theorem 1.1.

Let \((X_n)\) be an iid sequence of \(d\)-dimensional random vectors satisfying the regular variation condition (1.1) for some \(\alpha > 0\). Define the sequence of positive numbers \(a_n\) by

\[P(|X_1| > a_n) \sim n^{-1} \quad \text{as} \quad n \to \infty. \]

Let \(\mu\) be the measure on \(\mathbb{R}^d \setminus \{0\}\) which is determined by the vague limit in (1.1), i.e., for any measurable set of the form \((t, \infty) \times S\) in the product space \((0, \infty) \times \mathbb{S}^{d-1}\),

\[\mu(x : (|x|, x/|x|) \in (t, \infty) \times S) = t^{-\alpha} P(\Theta \in S). \]

It is well known (see Resnick [17]) that the sequence of point processes

\[\sum_{t=1}^{n} \delta_{X_t/a_n} \xrightarrow{d} N = \sum_{j=1}^{\infty} \delta_{\Gamma_j}, \]

where \(\xrightarrow{d}\) denotes convergence in distribution in the space of point measures on \(\mathbb{R}^d \setminus \{0\}\) endowed with the vague topology and \(N\) is a Poisson Random Measure (PRM) on \(\mathbb{R}^d \setminus \{0\}\) with mean measure \(\mu\). Moreover, multivariate regular variation of \(X_1\) is also necessary for (3.3); see Resnick [17], Corollary 3.2. If the multivariate points \(X_t/a_n\) in (3.3) are replaced by linear combinations \((x, X_t)/a_n\) for some \(x \neq 0\), then \(\lim_{n \to \infty} nP((x, X_1)/a_n > u) = u(x)\) exists. The same argument as for (3.3) gives that

\[\sum_{t=1}^{n} \delta_{(x, X_t)/a_n} \xrightarrow{d} \sum_{j=1}^{\infty} \delta_{(x, \Gamma_j)}, \]

and the limit is again PRM with corresponding mean measure. The converse, as recorded in the corollary below, is also true by Theorem 1.1.
Corollary 3.3 Assume that X_1 satisfies one of the following conditions:

- X_1 satisfies (1.2) for some positive non-integer α.
- X_1 assumes values in $[0, \infty)^d \setminus \{0\}$ and satisfies (1.2) for some odd integer α.

Then for every $x \neq 0$,

$$
(3.4) \quad \sum_{t=1}^{n} \varepsilon_{[x, x_1]/a_n} \xrightarrow{d} N_x,
$$

where N_x is PRM whose mean measure depends on x. Moreover, (3.4) implies that there exists a PRM with mean measure determined by the vague limit of $nP(a_n^{-1}X_1)$.

This result can be applied to the limit behavior of extreme order statistics. For example, $a_n^{-1} \max_{t=1,\ldots,n} X_t$ has a non-degenerate limit distribution if and only if $a_n^{-1} \max_{t=1,\ldots,n} (x, X_t)$ has a limit for all $x \neq 0$ which is non-degenerate for some x.

Acknowledgment. This research has been conducted during mutual visits of each of the authors at the other’s home institution. The authors would like to thank Colorado State University and the University of Groningen for their hospitality. We would like to thank Laurens de Haan, Sid Resnick, Holger Rootzén and Gennady Samorodnitsky for discussions on multivariate regular variation. It was Gennady’s idea to use a Tauberian argument in the proof of Lemma 2.2.

References

Bojan Basrak
EURANDOM
P.O. Box 513
NL-5600 MB Eindhoven
THE NETHERLANDS

Richard A. Davis
Department of Statistics
Colorado State University
Fort Collins, Colorado 80523–1877

Thomas Mikosch
Department of Mathematics
P.O. Box 800
University of Groningen
NL-9700 AV Groningen
THE NETHERLANDS