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Abstract

Consider a non-random function whose arguments are i.i.d. exponential random
variables. What will be a conditional distribution of this function given that the
arguments satisfy a certain linear inequality? In this paper we describe a method
which sometimes allows answering this question. We present two examples where
our method leads to unexpectedly simple answers. We give an interpretation of the
results via the travel time in carousel systems.

1 Introduction

We start with introducing some notations which are used throughout the paper. Let
Xy, Xo,... beii.d. exponential r.v.’s with mean 1. Denote

50:0; Si:ZXja 221
j=1

Further, let Uy, Us,, ..., U, be independent random variables uniformly distributed on the
interval [0,1). Let Ugqy, Uy, ..., Up) denote the order statistics of Uy, Us,...,U,. Put
Uy =0, Upg1y) = 1. We shall define uniform (n + 1)-spacings D1, Dy, ..., Dy as

Di =U4 — U4y, 1<i<n+1, (1)

and we shall denote

)

5’0:0; S’Z‘:ZDJ', 221
j=

The well-known property of spacings (cf. Pyke [8], [9]) is that they are distributed as
i.i.d. exponentials divided by their sum:

(D1, Do, ..., Dpyy) = (X1/Sni1, Xo/Sns1y -+ s Xog1 /Snr). (2)

Here and below we use a common notation
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to indicate that random variables X and Y have the same distribution.
In their paper [7] Litvak and Adan proved that

Zmln{S’,, Dip} 2 Z <1 - —) ;- (3)
In order to do it they elaborated an approach which was presented for the first time in

Litvak et al. [6].

Remark 1.1 As we shall see below from Remark 3.2 the equation

Zmln{Sz, X,+1} Z <1 — —> i (4)

can be proved along the same lines as (3). Note that (2) is not sufficient to prove that (3)
and (4) are equivalent, because in general none of the equalities

f(Xl, .. -;Xn+1) é g(Xl, . 7Xn+1)
and ;
f(Xla .. .,Xn+1)/5n+1 - 9(X1, S 7Xn+1)/Sn+1

implies the other. For example, let F'(z) be a distribution function of S, ;. Since a random
variable 1 — e™1 is uniformly distributed on [0, 1) we have

Fll—e ) L5,
However,

d
F71(1 - €7X1)/Sn+1 §£ Sn+1/5'n+1 =1.
Nevertheless, let us show that (3) and (4) are indeed equivalent. Denoting

Vn _ Z:l HIIH{SZ',XH_l}, Wn _ ; (1 . %) Xz

)
Sn+1 Sn+1

we can rewrite (4) as
Sn—l—lvn g n—l—an- (5)

Also, using (2) equation (3) can be rewritten as
Vi £ W, (6)

Note that V;, and W,, are functions of the normalized exponentials X;/S,1, Xo/Sn41, - -,
Xy+1/Sn+1, which are independent of S, 41 (cf. Pyke [8]). Hence, (5) follows from (6).
Furthermore, since all moments of S, .1, V,, and W, exist, it follows from (5) that

EV,)F =EW,)*, k>1.

Clearly, each of the random variables V,, and W,, has a distribution which is concentrated
on a closed interval. Such a distribution is uniquely defined by its moments, because
its Laplace transform is analytic on the whole complex plane (see also Section VII.3 and
Section XV.4 of Feller [4]). From the above we conclude that (5) and (6) are equivalent.
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In Section 2 of this paper we generalize the approach from Litvak et al. [6], Litvak
and Adan [7], and we point out its most important properties. In Section 3 we give two
examples where the generalized approach leads to nice results. The first example implies
(3) and (4) as special cases.

Section 4 concerns an application of the results to the travel time in carousel systems. A
carousel (or paternoster) is an automated warehousing system consisting of a large number
of shelves and drawers rotating in a closed loop in either direction. The locations of required
items are uniformly distributed on a circle. Thus, the distances between adjacent items
are uniform spacings.

Formula (3) was obtained in Litvak and Adan [7] while considering the travel time in
carousel systems under the Nearest Item (NI) heuristic, when the next item to be picked
is always the nearest to the picker’s current position. The second example from Section 3
allows obtaining a distribution of the shortest travel time when the picker may perform
not more than a given number of steps, say, counterclockwise, and after that he must pick
the rest of the items clockwise. We study this kind of routes in detail and compare the
best of them with the NI heuristic.

2 Conditioning on linear inequalities
In this section we explain our arguments for conditioning on linear inequalities. Denote
c=(c,co...), C1,62,...>0 (7)
and :
So(c) =0; Si(c) = zl:chj, i>1.
j=1
We consider random events
Eipe(c) = [Se-1(c) < Xip1 < Si(0)], 1<k <id; Eipiga(c) = [Si(e) < Xiga]-

Note that only the first i coordinates of vector ¢ play a role in E; 1 ;(c).

Litvak et al. [6] as wel as Litvak and Adan [7] only considered the case ¢; = ¢g = -+ - = 1.
However, their arguments can be generalized for arbitrary positive ¢;’s.
Given an event Eji,(c) for some k = 2,3,...,4, the random variable ¢;X; is the

minimum of ¢;X; and X;;;, and thus it is exponential with mean ¢;/(¢; + 1) (see also
Figure 1). Due to the memory-less property the overshoot of X;,; is again exponential
with mean 1. Hence, we can repeat the argument for ¢, X5 and so on. Eventually random
variable X; 11— Sk_1(c) is less than ¢; X, so it is exponential with mean ¢, /(¢x+1), and the
overshoot of ¢, Xy is exponential with mean ¢,. Since the event E; x(c) does not provide
any information on the other random variables, their distribution remains the same. Hence,
assuming F;, x(c) the random variables X, X, ... can be replaced by i.i.d. with mean 1
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Figure 1: Coupling of the random variables X, ..., X;;; under event E;; x(c)
exponential random variables Yi, Y5, ... in the following way:
1
Xi=—V, 1<j<k-1  X.= Yi + Yion;
IS+l =)= P F T
k
. . Cj
Xj=Yj, k+1<j<i;  Xjp=) ——V
j=1 Cj +1
X;=Y;, j=2it2 (8)
It is easy to check that (8) is also applicable when k& = 1. Similarly, given an event
Ei—l—l,i—l—l(c) we have
X L Y., 1<4<q
=Y i X 415
j G+ 1 s I i+1 = a i+1
Xj:Y'ja j2i+2' (9)
Thus, given an event E;(c) for some £ = 1,2,...,7+ 1 one can replace X,’s by Y;’s.

We summarize our arguments in the following theorem.

Theorem 2.1 Let f(x1,xa,...) be an arbitrary function defined for x1,xo,...> 0. Then
for any i > 1 and any c defined by (7) the conditional distribution of (X1, Xa,...) given
an event E; 1 k(c) for some k =1,2,...,i (or k =1+ 1) coincides with the unconditional
distribution of the same function, where the arguments are replaced according to (8) (or
according to (9)).

Now let us condition on Ej;;x(c), where k& = 1,2,...,, and see what happens to S
for some [ > i+ 1. From (8) we have

S, = X1 4+Xo+... +X;

k
1
= Y — Y+ Y+ 4 Y +§:
j:10j+1 J k+1 i+1 = ‘¢

= Yi+Yo+...+Y.

+1Y+Yz+2+ -+ Y

The same holds, if we condition on E;;;;1(c) and apply (9). It is convenient to formulate
this important property of (8), (9) in the following lemma.
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Lemma 2.2 For any i > 1; k = 1,2,...,i + 1 and any c defined by (7) appropriate
replacements (8) or (9) under event E;yy x(c) provide

SS=Yi+Yo+...+Y, [>i+1.

In other words, conditioning on linear inequalities does not affect the structure of a sum.
Lemma 2.2 has the following corollary, which is a counterintuitive property of exponential
random variables.

Corollary 2.3 For any t € R and any c defined by (7) holds
Pr(S; <t|Eij1x(c)) =Pr(Si<t), 1<k<i+1<I.
From Corollary 2.3 it follows for example that
Pr(X; + Xo + X3 < ¢|X3 > 1000X; + 1000X,) = Pr(X; + Xy + X35 < t).
Remark 2.4 Note that Corollary 2.3 itself has simpler proofs. For example,

Pr (S5 < t[X5 > 1000, + 1000X)
=Pr (53 < t|X3/53 > 1000 (Xl/Sg) + 1000 (XQ/Sg)) = PI"(Sg < t),

where the last equality holds since X;/S3, X5/S3 and X3/S3 are independent of Ss.

3 Two examples

In this section we give two examples, where conditioning on linear inequalities allows
obtaining a simple representation of quite complicated functions whose arguments are
either i.i.d. exponentials or uniform spacings.

Our first example is a generalization of (3) and (4).

Theorem 3.1 For any m =1,2,... and any ¢ > 1 holds
S min{(c — 1)S;, Xy} 23 (1 - —.> X,. (10)
i—1 i—1 ¢t

Uniform (n + 1)-spacings, where n > m, satisfy

Zf;min{(c )8, Dy} £ f} (1 _ %) D;. (11)



Proof. We prove (10) by subsequently expanding min{(¢—1)S;, X;,; fori =1,2,...,m,
and we perform the proof by induction with respect to .
Assume that after expanding the first 7 — 1 minima, where ¢ = 1,2, ...m, we have

m ‘ i—1 1 m -
S min{(c — 1)S, Xip} 2 3 (1 - cij> X;+ S min{(c— 1)S;, X1} (12)
i=1 j=1 =i

This trivially holds for i = 1. We are going to show that if (12) is valid for ¢, then it is also
valid for i + 1. Considering the ith minimum min{S;, X;;1} we use the arguments based
on Theorem 2.1. Put ¢ = (¢ —1,¢—1,...). Given an event

Ei-l-l,k(c) = [(C — I)Sk_l < Xi_|_1 < (C — 1)Sk]

for some k = 1,2,...i we have, according to (8):

1 1
X]:Eyj, 1<j<k-—1; Xk:EY;mLYkH;

k
. c—1
X;=Y, k+1<j<7 Xi+1:ETYj;
j=1
and
. Ee—1
min{(c — 1)S;, X;11} = X;41 = Z . Y.
j=1

For the right-hand side of (12) conditioning on event FE;,;;(c) means replacing the X,’s
by Y;’s. Straightforward calculations together with Lemma 2.2 give

i(l—ﬁ))fij i min{(c —1)(Y1 + Yo +...+Y)), Y} (13)

j=1 j=i+1

Expression (13) does not depend on k. Moreover, along the same lines, but using (9)
instead of (8), one can verify that given an event

Eip1,1(c) = [(c = 1)5; < Xip1]

the right-hand side of (12) again has the same distribution as (13). Now it immediately
follows from (12) and the law of total probability that
> min{(c—1)S;, X;1} & > (1 - W) X;+ Y. min{(c—1)S;, X1},

i=1 j=1 j=i+1

where the Y}’s in (13) are again replaced by X;’s.



Thus, by subsequently expanding all minima in the left-hand side of (10) we finally
obtain . . .
. d
z;mln{(c - 1)52',Xi+1} = Zl (1 - m) X]
1= 1=
which is exactly (10).
One can show (see Remark 1.1) that formula (10) is equivalent to (11). O

Remark 3.2 Note that (11) can also be proved along the same lines as (10). We have to
only consider normalized exponentials X;/S,11, Xo/Sni1, - -+, Xpy1/Sns1 instead of just
i.i.d. exponentials X7, X, ... and apply Lemma 2.2 to show that use of (8) or (9) in the
proof would always provide

Spp1=Y1+Yo 4+ -+ Y,
for n > m. Due to (2) it gives (11).

Remark 3.3 Putting ¢ = 2, m = n in (11) we again derive formula (3). This result
was proved earlier by Litvak and Adan [7], but it looked very exceptional, because it
was not clear which feature of the left side of (3) was the crucial one. The proof of
Theorem 3.1 nearly repeats the proof of (3) from Litvak and Adan [7], but now we see that
the result is to a considerable extent based on Lemma 2.2. Namely, it is important that
while expanding the ith minimum min{(c —1)S;, X;;1} we keep the structure of the terms
min{(c—1)S;, X; 11}, 7 > i+1 for any ¢ > 1. That is why (4) and (3) allow generalizations
(10) and (11).

The distribution F,,(¢) of the right side of (10) can be found through a fraction expan-
sion of its Laplace-Stieltjes transform o, (s) given by

i ¢ U ct ; m—1 " ol
#m(5) Z.:l—[l(cl—l)s—i—cZ ;(c’—l)s—i-c’(c ) j[[lcl—cﬂ
i
Inversion of ¢,,(s) gives
o m—1 N\ ¢
Fm(t):;(cl—l) (1—e “)1—[1(;@'—01' (14)
= Jri
The moments can be found by integrating (14):
k ; m—+k—1 i
m 1 m (CZ . 1) m i
(0] el

i



Further, we derive a distribution function Fy, ,(t) of the left side of (11) using Theorem 2
of Ali and Obaidullah [2], which actually has been proved in Ali [1]. For m = n it gives

n n i n n
Font) = (dt—c +1)1 1‘[ =1-> (dt—-c+1)" 1‘[ 0<t<1,
— o _ C7’ = - _ CZ
=0 i 0 i?ﬁf
where x, =z, if v > 0, and =, = 0 otherwise; z_ = z, if x < 0, and z_ = 0 otherwise.

Putting ¢ = 2 we retrieve a distribution of the left side of (3) from Litvak and Adan [7].
The last equality above is valid since for any ¢ holds

> (c't—c +1)" ﬁ _

_CZ

A simple proof for the case ¢ = 2 can be found in Litvak and Adan [7].

The distribution function F}, ,(t) for m < n will be more complicated since the spacings
in the right part of (11) are multiplied by coefficients which are no longer distinct. Namely,
the spacings D, 11, Dpia, ..., Dyy1 do not participate in the sum, i.e. they actually have
the same coefficient (zero). Nevertheless, there is still a relatively easy way to write F,, , (t):

m n—m-+1 m ]
Fm,n(t):1—2<1_10i> (c't — H ot 0<t<l.

=1 j=
j£i

[N
S

Now we find the moments of the right-hand side of (11):

E<i<1_l>D>k - 5 k! E(Dlek2 Dk)m)ﬁ<1_l>ki
i=1 Ci Z k1.k9,...skm >0 kl'k2 k " i=1 -
kqthote ko =k

_ [(n+ k) - < >’f
( k k1, k2§€m>0 7,1_[1 .
kq +hote -tk =k
Here the last equality is provided by (cf. Sec. 13.1 in Karlin and Taylor [5])

lﬁ!kg! e kn+1!n!
n+k1+k2+---+kn+1)!

E (D’leSZ...Dﬁgﬁl) =1 ki ko, kpyr > 0. (15)

Particularly, we find

E<§;<1_%>Di>:nil_(n—i—l)l(c—l) (1_%”)'

Putting ¢ = 2 we again obtain a result from Litvak et al. [6].
Our second example is the following.




Theorem 3.4 For any m = 2,3,... and any ¢ > 0 holds
i—1 m d m—1 c—1
j=1 Jj=i+1 =1
Uniform (n + 1)-spacings, where n+ 1 > m, satisfy
i D, D, S (-1 p 17
min AT oD+ 3 04 (1o ) o 17

Proof. We shall prove (16) again by induction with respect to i. Denote

i—1 m
Li:ZCXj+ZXj7 lgzgm
=1 =i+l
Assume that for some i = 1,2,...,m — 1 holds

min{Ll, LQ, Ceey Lm}

i1
d . -1
:mln{g (1_01 T )X—i— E

Z+17 z+2a---7Lm}- (18)

j=1 j=i+1

Equation (18) is trivial for ¢ = 1. It remains to show that if (18) is valid for i than it is
also valid for i + 1. Note that

- i—1 c—1
mln{z <1—CZ o )X +]21;H Liys

. c—1 _ LI (e~ 1)
= <l—m> X]"— Z Xj+m1n{Xi+1,2;WXj . (]_9)

Consider events E;;1x(c), 1 < k < i+ 1, where the first ¢ coordinates of vector c are
defined by o
I (e —1)

i 1sist

Cj:

Given an event E;qx(c) for some k£ =1,2,...7 we change X;’s to ¥}’s according to (8):

Gt _ ] ' Gkl g
Xj:myja 1<j<k-1 Xk:myk‘FYk-H;
k i*j+1( _ 1)
o c c
X;=Y, k+1<j5<73 Xiy1 = Wyp

7=1
Xj=Y;, j=zit2



Also, the event E; 1 x(c) provides

' i Cz‘—j+1(c _ 1) k Ci—j+1(c _ 1)
min {Xi-i-la Z Ao (= Am= eg Y
j=1 7j=1
Now we replace the X,’s by Y;’s in the right-hand side of (19) yielding
2 c—1 m
Z<1—m>ifj+lz Y. (20)
7j=1 Jj=i+2

According to Theorem 2.1 expression (20) has the same distribution as the right-hand side
of (19) conditioned on event F;; ;(c). However, (20) does not depend on k. Furthermore,
conditioning on event E;.;;.;(c) we shall have the same expression. Also, it follows from
Lemma 2.2 that changing X;’s to Y;’s by use of (8) or (9) doesn’t affect the structure of
LZ’+2, Li+37 Cey Lm Hence,

i—1
. c—1
mln{z <1—7ci_j+1 )X + Z Ly, z+2,...,Lm}
j=1 Jj=i+1
d . : -1
:mm{Z(l—cl i >X+Z z—i—z,...,Lm}.
j=1 7=t+2

Here Y;'s are again replaced by Xj;’s.
Thus, subsequently reducing the set {L;, Lo, ..., L, } we finally obtain

m—1
. d c—1
min{Li,Ly,..., Ly} =D <1_7cm—j+1_1>Xﬂ"

J=1

which is exactly (16).
Equation (17) is equivalent to (16) (see Remark 1.1). Also, (17) can be proved sepa-
rately along the same lines as (16) (see Remark 3.2). O

As above, the distribution function G,,(t) of the right-hand side of (16) can be obtained
via its Laplace-Stieltjes transform:

m—1 i m—2 g+l \ m—1 j+1 _
-3 (C 1) (1_6—6(&—_1)'5) me—1L
— i _
=1 ¢ 1 j=1 c c
j#i

The moments are

m—1 k m—1 k(. m-+k—2 m—1 _j+1

c—1 " —1) At —1

E <1—.7>Xi = k! - . —, k>1.

(Z T ) L e e e ke
FE:D)
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Figure 2: A carousel system.

The distribution function Gy, »(t) of the right part of (17) can again be found by Theorem 2
of Ali and Obaidullah [2]. The easiest representation is

m—1 n—m+2 i1 it n m—1 i1l
~ c—1 att—1 ¢t —1 At —1
Grnlf) =1 = 2, (ﬁ) <c_1 S “)Hf

0<t<l.

Further, using (15) we obtain

m—1 k -1 m—1 ki

c—1 n—+k c—1 i

oS 0-)n) () T

(i:l ctt —1 ' k k1,k2,..km—12>0 z:l—[l ctt—1
kitkot-tkp_1=k

4 An application to carousel systems

A carousel, or paternoster, is a computer controlled warehousing system which is widely
used to store small and medium sized goods which are required moderately often. The
system consists of a large number of shelves or drawers rotating in a closed loop in either
direction. The picker has a fixed position in front of the carousel, which rotates the required
items to the picker.

Following Bartoldi and Platzman [3] and Rouwenhorst et al. [10] we represent a carousel
as a circle of length 1 (see Figure 2).

Let Uy = 0 be the picker’s starting point, and let U;, where : = 1,2,...,n, be the posi-
tion of the ith item. In practice the items are often assigned to the positions in alphabetic
order. Hence, it is reasonable to assume that random variables U;, ¢ = 1,2,...,n, are
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independent and uniformly distributed on [0,1). The picker’s starting point plus n items
partition the circle in n + 1 uniform spacings Dy, D, ..., D, defined by (1).

The picker follows a certain route to collect all the items. It would be very natural for
the picker to follow the Nearest Item (NI) heuristic, where the next item to pick is always
the nearest one. This simple algorithm performs quite well, and it is frequently used in
real warehouses. It was shown by Litvak et al. [6] that the travel time N1 under the NI
heuristic satisfies .

TN L5 min{S;, Dy, }. (21)
i=1
The distribution, the moments and the asymptotic properties of T/ were obtained in
Litvak and Adan [7] as consequences of (3). As we saw in the previous section, formula
(3) is just a special case of (11).

We can also give an interpretation for the right-hand side of (17) via the travel time
in a carousel system. Let m = 1,2,...,n. Suppose that the picker is allowed to perform
at most m — 1 steps counterclockwise, and after that he must collect the rest of the items
clockwise. Then m possible routes are:

Dn+1+Dn+"'+D27

Dypi1+ Dy + -4 D3+ 2Dy,
Dn+1+Dn+"'+Dm+2Dm72+2Dm73+"'+2D17
Dn-l—l+Dn+"'+Dm+1+2Dm—1+2Dm—2+"'+2D1-

The first and the last of those routes are shown on Figure 2 with dashed lines. The shortest
route would be

Tém) = Dp1+Dy+---+ Dy + I<n1n {ZQD + z;rlD}
j=i
m—1 1
= Dn+1+Dn+"'+Dm+l+;(1_W>Dia (22)

U

where the last equality follows from (17). Now by Ali and Obaidullah [2] the distribution
function of T(™ is

m = Z+1 i+1 n m—1 2j+1 _ 1
e zo(2 7 +2)+]H)m, 0<t<1;
: i#i

Pr(T(™ <t)=1, t>1.
The moments can be obtained directly from (22):

s = (1) 3 T

kp.koyekn>0 =1
ky4kot-tkn=Fk
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It is clear that
T( n) < T( N<...< T( )

Let us give a more detailed interpretation for T ). Suppose that the picker must perform
the last step clockwise, and he has to choose the best route of this kind. We shall call
this route a One-Side Optimal (OSO) route. Note that it is never good to cover the same
interval more than twice. Hence, the picker will choose a route with at most one turn.
It means that he can either pick all the items clockwise or he can make several steps
counterclockwise and then turn. Since the last step must be performed clockwise, the
number of steps performed counterclockwise can not exceed n — 1. Thus, the travel time
TO59 for the OSO route is actually 7™, We know from (22) that

n—1 1
TT?SO — Dn+1 =+ mln {Z 2D =+ Z D } = n+1 + Z (1 — m) Dl (23)
j =1

Jj=i+1

Now we can compare the distributions of the travel times under the OSO route and the
NI heuristic. It follows from above that both TN and T.9%? are distributed as a sum of n
spacings which are multiplied by certain coefficients. The coefficients are

1 3 1 1

NI .

Tn 5, Z, ceey 1—F, 1_2_n’
TOSO_ g 9 o 1 1
O L A T L

It is clearly seen that the travel time under the NI heuristic is stochastically smaller than
the travel time under the OSO route, i.e.

Pr(TN <t) > Pr(19% <t), t>0

i ? i

Below we explain this result.
Consider a sum
Dy+Ds+ -+ Dpy. (24)

Suppose that a term D;,, for any : = 1,2,...,n can be replaced by S;. Let us say that
a; = 1, if such a replacement took place. Otherwise, we put a; = 0. Denote

o= (al,OéQ, .. .,Oén) & {O, 1}“

After the replacements sum (24) becomes

Tn(Oé) = zn:l [(1 — Oéi)DZ'+1 + Oélgl] .

One can see that

Zmln{Sl,DZH}— min {7T,(«)}. (25)

Pt acf{0,1}n
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Roughly speaking, a random value >%  min{S;, D; 11} (remember that according to (21)
it has the same distribution as 7,'') is a minimum of all random values that one can get
from (24) replacing D;;1’s by S;’s. Indeed, assume that two vectors

a(l) = (Oggl), a9, ..., an) and 06(2) = (0552)7 Qg, ..., an)

differ only in their first coordinate. Such a pair of vectors exists in {0,1}" for any
(ag, ..., ), and it is obvious that

min{T, ("), T, (a®)} = min{ Dy, Dy} + 3~ [(1 — ;) Dy + 0] .
=2

The whole set {0,1}" can be seen as a set consisting of 2"~! pairs of vectors which differ
only in their first coordinate. Hence,

Tn(a)} = min{D;, D i 1—a;)D; Sil v
i ) =m0+ {50 0000 ]
Further we consider pairs in {0,1}"! such that a vector (ay,as,...,a,) differs from the

other vector in a pair only in a coordinate a. Proceeding in this way, we obtain the desired
observation.

Now let A C {0,1}" be a set of n vectors such that one of their coordinates is 1 and
the other coordinates are 0, i.e. exactly one of Dy ’s from (24) is replaced by S;. From
(23) by changing indices we have

n+1
TO%0 L p, +2<rlrgrrll+1 {Z 2D;+ > D } = géigl{Tn(Oé)}a (26)
j=i+1

where the last equality can be straightforwardly verified. Clearly,
min {T,(a)} < min{T,(a)}.

ac{0,1}"
Thus, even before proving Theorem 3.1 and Theorem 3.4, already from (21), (25) and (26)
one can see that the random value TN would be stochastically smaller than T,75°.

Remark 4.1 Note that in the discussion above we compare the NI heuristic and the OSO
route only in distribution. It does not at all follow from our arguments that the NI heuristic
always performs better than the OSO route. For example, assume that n = 5, and the
items to be picked are located at the positions 1/32, 3/32, 7/32, 15/32 and 30/32 (see
Figure 3). The travel time under the NI heuristic is

1 2 4 8§ 15 30

TR TR TR TR n
On the other hand, the OSO route provides a sequence 30/32, 1/32, 3/32, 7/32, 15/32.
The travel time of this route is

2 2 1 2 4 8 19

R TR TR Tt TR T
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Figure 3: An example where the travel time for the OSO route is smaller than under the
NI heuristic.
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