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Introduction

Continuous time models and those involving stochastic di�erential equa�
tions� in particular� became very popular in modern �nancial theory� There
are several reasons for that� The continuous time setup� introduced in ��
nance by the celebrated work of Black and Scholes �	
��
� is attractive from
a theoretical point of view� It provides a plain and parsimonious way of rep�
resenting models� A variety of techniques for pricing and hedging of deriva�
tive securities were developed in the continuous time setup� especially when
underlying economic factors are described by stochastic di�erential equa�
tions �see Merton �	

�

� Typically� the idealised continuous time setup
is much simpler than discrete time considerations and therefore the deriva�
tive pricing is much simpler in continuous time� where also often analytical
formulas are available�

A continuous time model for the interest rate was �rst proposed by
Merton �	
��
� who introduced a Brownian motion as a candidate process�
Time series of historical interest rates reveal a number of salient features
such as high degree of persistence� nonnegativity and volatility clustering�
It is a common practice to model these time series by stationary processes
notwithstanding the fact that formal tests sometimes suggest the unit root
behaviour� Merton�s model� of course� captures the persistence aspect of the
interest rates time series� However� it allows for negative interest rates and
generates nonstationary series� Vasicek �	
��
 proposed to use a stochastic
di�erential equations �SDE
� namely� the Ornstein�Uhlenbeck process

drt � ���� rt
dt� �dWt� �	


Let us highlight some of the appealing features of this model� First of all� it
is clear that �	
 allows for a stationary mean reverting solution� Secondly�
the parameters of the model have a clear economic interpretation� � is the
�average� interest rate� � is the persistence parameter� �small values of �
corresponds to high degree of persistence
� and � is the volatility of the

	



process� Note that � � � corresponds to the random walk case� However�
model �	
 does not allow the volatility to be variable� and negative interest
rates may still show up� This last drawback was corrected in the Cox�
Ingersoll and Ross �CIR
 �	
��
 model

drt � ���� rt
dt� �
p
rtdWt� ��


Their model provides not only a stationary mean reverting process� but also
it does not allow the interest rate to be negative due to the so called �level�
e�ect� Interpretation of the parameters is the same as in the case of Vasicek�
The slightly more general speci�cation

drt � ���� rt
dt� �r�t dWt� ��


was employed in the work of Chan� Karolyi� Longsta�� and Sanders �CKLS

�	

�
� The parameter � control the �strength� of level e�ect and also
accounts for the degree of conditional heteroscedasticity� The value � �
� corresponds to the homoscedastic case �Vasicek model
� where the level
e�ect is absent� The case studies in CKLS shows the estimated value of
� to be about ���� in contrast to the values 	�� in the CIR model� The
works of Longsta� and Schwartz �	

�
� Koedijk et al� �	

�
� suggest a
direction for extending the CKLS model� namely� the inclusion of stochastic
volatility factors� It was repeatedly mentioned in modern literature �see�
e�g�� Rebonatto �	

�

 that one factor models fails to capture adequately
the price structure of di�erent derivative securities like yields� caps and
swaptions� One of the �rst approaches in this direction was issued in Fong
and Vasicek �FV
 �	

	
� They proposed a model of the following form�

drt � ���� rt
dt �
p
vtdW

���
t �

dvt � 	�
 � vt
dt � �
p
vtdW

���
t �

��


As we can see� this model allows for a stationary mean reverting process
whose volatility is again stationary stochastic process� Here � is still the
unconditional average of the short rate process� � controls the degree of
persistence in interest rates� In order to interpret the other parameters let
us observe that the second equation in ��
 is just a square root process
for volatility vt� Now we can interpret parameter 
 as the unconditional
average volatility� The parameter 	 accounts for the degree of persistence
in the volatility� Finally� the parameter � is the unconditional in�nitesimal
variance of the unobserved volatility process�

As in any type of modelling� to apply the model to real life data one needs
to estimate the parameters of the model� In stochastic volatility models one

�



further needs an e�cient and reliable method for estimation of unobservable
volatility component� Estimation of stochastic volatility is important in
several aspects� If we know factor values in any point in time we can calculate
implied term structure and therefore evaluate the adequacy of the model�
Knowledge of the current value of volatility allows us to draw important
economical implications� perform volatility forecast� calculate implied values
of di�erent kind of derivative securities like bond options and swaps� etc�
That� in turn� can a�ect management decisions in many �elds of economics
and �nance�

A number of sophisticated methods are available in order to estimate
the parameters of continuous time models �e�g� GMM� EMM of Gallant
and Tauchen �	

�
� Indirect inference method of Gourieroux� Monfort and
Renault �	

�
 etc�
� However� none of these methods provide opportunity
for estimation of unobservable stochastic volatility process in a model like
��
�

To emphasize the importance of estimation of stochastic volatility� sup�
pose the short rate follows model ��
� Then �see Fong and Vasicek �	

	


yields on T �maturing bonds are determined by formula

Y �t� T 
 � A�t� T 
�B�t� T 
rt � C�t� T 
vt� ��


where functions A�B�C depend on the parameters of the short rate model
and the market price of risk� As we can see� pricing formula ��
 depends on
vt� Therefore� even if the model is adequate for Data Generating Process
and the parameters are known� the performance of the model can be poor
unless we provide a good estimator for vt� volatility at time point t when we
need to �nd yield or price of some other derivative security� It is not clear�
however� what kind of market information should one use for estimation of
vt� This information can include only short rate time series data or yields
with di�erent maturities or even sets of option prices� In this article we
work with the short rate dynamics only� The methodologies discussed in
this article can be applied to many two factor stochastic volatility short rate
models e�g�� Fong and Vasicek �	

	
� Andersen and Lund �	

�
� etc� We
have chosen to work with FV model because of its simplicity� For other
models the notations will be complicated only� but would not provide any
extra insight for the proposed methodology�

Note� from equation ��
� that the quadratic variation of rt is given by
�r
t �

R t
� vtdt� Therefore� if the original short rate process can be observed

on any frequency then recovering vt is trivial from � r 
t� Usually the
best that we have is a daily series and� therefore� some indirect scheme for
obtaining vt is necessary�

�



The use of stochastic �ltering theory is very natural here� because we
want to estimate the unobserved volatility component from the observed
short rates� The equation ��
 as it is now� however� is not ready to receive
the �ltering treatment� We �rst discretize both the observation and the state
equations to bring it in the �ltering theory framework� As we shall see� the
transformed equation would be nonlinear and also with non�Gaussian errors�
As a naive approach we apply extended Kalman �lter �see Anderson and
Moore �	
�


� as if the errors were Gaussian� It happens� however� that
the method of extended Kalman �lter �EKF
 does not provide very good
estimation for typical �nancial short rate data� We suggest a method based
on Kitagawa �	
��
 scheme which incorporates both nonlinearity and non�
Gaussianity� We also use the method of conditional moments �MCM
 to
estimate volatility for comparison�

The article is organized as follows� In section 	� we carry out the dis�
cretization of the FV model� In section �� the methodologies of EKF� Kita�
gawa and MCM are described� A comparison of these three methods of
volatility estimation on simulated data is presented in section �� Section �
contains the empirical analysis� Some conclusions are o�ered in section ��

� Discretization of Fong Vasicek short rate model

Recall that the short rate equation of the Fong and Vasicek model is given
by ��
� An application of Ito formula to the �rst equation yields

de�t�rt � �
 � e�t
p
vtdWt�

Integrating by parts we obtain

rt�h � �� e��h�rt � �
 � e��h
t�hZ
t

e��s�t�
p
vsdWs�

Also� similarly�

vt�h � 
 � e��h�vt � 

 � e��h�

t�hZ
t

e��s�t�
p
vsdZs�

Therefore the discrete time speci�cation of FV model has the following
form�

rt�h � �� e��h�rt � �
 � �t�h
� ��


vt�h � 
 � e��h�vt � 

 � �t�h
� t � �� h� �h� � � � �

�



where h denotes the sampling interval �for example� on weekly frequency
h � 	���
� and the innovations �t�h
 and �t�h
 are de�ned as

�t�h
 � e��h
Z t�h

t
e��s�t�

p
vsdWs� ��


�t�h
 � �e��h
Z t�h

t
e��s�t�

p
vsdZs�

We approximate these innovations as

�nh�h
 � e��h
p
vnh

p
h �n� �nh�h
 � e��h�

p
vnh

p
h �n�

where ��n
 and ��n
 are independent standard normal random variates�
De�ning the transformed discrete observation to be

Rn � e�h�r�n���h � �
� �rnh � �
� n � �� 	� �� � � � � ��


and denoting vnh by Vn� we obtain the following discrete time state space
system

Rn �
p
h
p
Vn �n� n � �� 	� �� � � � � �



Vn � e��hVn�� � �	� e��h

 � e��h�
p
h
p
Vn�� �n� n � 	� �� � � � ��	�


with initial value V� independent of ��n
 and ��n
�

� Methods of estimating stochastic volatility

��� Extended Kalman Filter

Standard setup of the Kalman �lter is applicable to the linear state space
model of the form

yn � Zn�n � dn � �n� Var��n
 � Hn�

�n � Tn�n�� � cn �Rn�n� Var��n
 � Qn� �		


where ��n
 and ��n
 are independent normal random variables with zero
mean� Then the conditional distribution of �n given the observations y�� � � � � yn
is also normal� The mean an and variance Pn can be calculated recursively
by an application of the one step ahead prediction equations�

anjn�� � Tnan�� � cn�

Pnjn�� � TnPn��T
�
n �RnQnR

�
n�

�



and updating��ltering equations�

an � anjn�� � Pnjn��Z
�
nF

��
n �yn � Znanjn�� � dn
�

Pn � Pnjn�� � Pnjn��Z
�
nF

��
n ZnPnjn���

Fn � ZnPnjn��Z
�
n �Hn�

Here anjn�� and Pnjn�� denote the conditional expectation and variance�
respectively� of �n given the observations y�� � � � � yn���

When the state space equation is non�linear� say

yn � Zn��n
 � �n� Var��n
 � Hn�

�n � Tn��n��
 �Rn��n��
�n� Var��n
 � Qn� �	�


one can use Taylor series expansion to obtain the following approximate
linearised system�

yn � �Zn�n � dn � �n� Var��n
 � Hn� �	�


�n � �Tn�n�� � cn � �Rn�n� Var��n
 � Qn� �	�


where �Zn � d
dx
Zn�anjn��
� dn � Zn�anjn��
 � �Znanjn��� �Tn � d

dx
Tn�an��
�

cn � Tn�an��
� �Tnan��� �Rn � Rn�an��
�
The Kalman �lter for this approximate state�space model is then given

by �

anjn�� � Tn�an��
�

Pnjn�� � �TnPn�� �T
�
n � �RnQn

�R�
n�

Fn � �ZnPnjn�� �Z
�
n �Hn�

an � anjn�� � Pnjn�� �Z
�
nF

��
n �yn � Zn�anjn��

�

Pn � Pnjn�� � Pnjn�� �Z
�
nF

��
n

�ZnPnjn���

Smoothed estimate anjN of �n given the observations y�� � � � � yN is ob�
tained by the following backward recursion �

aN jN � aN

an��jN � an�� � Pn�� �T
�
n��P

��
njn���anjN � anjn��
�

In our setup we consider the observation yn to be ln�R�
n�h
� From �

 we

then have
yn � lnVn � ln ��n�

�



Clearly ln ��n is not Gaussian� but has the distribution of ln���� To use EKF
we replace this by a normal random variable with mean �	������� and
variance ��
������ the mean and variance� respectively� of a ln��� random
variable� We then apply the EKF methodology with

Zn�x
 � lnx � 	�������� Hn � ��
������

Tn�x
 � e��hx� �	� e��h

� Rn�x
 � �e��h
p
h
p
x� Qn � 	�

To initiate the recursion we use V� � 
 and P� � 	����

��� Kitagawa Algorithm

Extended Kalman �lter method linearizes the non�linear part using Tay�
lor series expansion� The methodology� however� depends on the Gaussian
property of the error terms� When the errors are not Gaussian� which is
the case of ours� Kitagawa �	
��
 method is more appropriate� In his paper
Kitagawa treats explicitly the linear case� We present below the results for
the non�linear models� The formulae are the same�

Suppose the state�space model is given by

yn � h�xn� �n


xn � f�xn��
 � g�xn��
�n

where f�ng and f�ng are independent white noise sequence� not necessar�
ily Gaussian� Exploiting the Markovian property of fxng and denoting the
observations �y�� y�� � � � � yn
 by Yn� one has the following recursive �ltering
scheme�

One�step�ahead prediction �

fnjn���xnjYn��
 �

Z �

�
pnjn���xnjxn��
fn���xn��jYn��
dxn���

Filtering �

fn�xnjYn
 �
pyjx�ynjxn
fnjn���xnjYn��


p�ynjYn��
 �

Smoothing �

fnjN �xnjYN 
 � fn�xnjYn

Z �

�

fn��jN�xn��jYN 
pnjn���xn��jxn

fn��jn�xn��jYn


dxn���

�



Kitagawa method approximates all the densities by piecewise linear func�
tions� Each density is speci�ed by the number of segments� location of nodes
and the value at each node� It is assumed that all the densities are supported
on �nite interval�� In the simplest case the nodes for all the densities are as�
sumed same� z�� z�� � � � � zL� say� Then the integration in the one�step�ahead
prediction equation is evaluated as follows�Z �

�
pnjn���xnjxn��
fn���xn��jYn��
dxn��

�

Z zL

z�

pnjn���xnjxn��
fn���xn��jYn��
dxn��

�
LX
i��

Z zi

zi��

pnjn���xnjxn��
fn���xn��jYn��
dxn���

where using the linearity of the functions in the interval �zi��� zi
�Z zi

zi��

pnjn���xnjxn��
fn���xn��jYn��
dxn��

�
�
pnjn���xnjzi��
fn���zi��jYn��
 � pnjn���xnjzi
fn���zijYn��


�
��zi � zi��


�
�

In the �ltering equation p�ynjYn��
 is evaluated as
R�
� pyjx�ynjxn
fnjn���xnjYn��


and the integration is calculated as above� The integration in the smoothing
equation is also evaluated similarly�

In our setup all the conditional distributions are Gaussian with proper
mean and variance� To start the recursion we use the steady state density
of vt� a square root process� as the initial density of V�� As for choosing
the nodes for discretizing the density one should note that increasing the
number of nodes will only increase the performance of the methodology�
In practice one can keep on incorporating more and more nodes until the
change in estimates is negligible�

��� Method of Conditional Moments

Recall� from equation ��
 and ��
� that

rt�h � �� e��h�rt � �
 � �t�h
 � e��h
Z t�h

t
e��s�t�

p
vs dWs�

�In case of in�nite support� the end points of the grid are to be chosen in such a way
that they cover the essential domain of the density

�



Hence� E��t�h
jrt� vt
 � �� and

Var��t�h
jrt� vt
 �
Z t�h

t
e���u�t�h�vudu� �	�


Approximating the integral in the r�h�s� of �	�
 as e���hvth� one obtains a
natural estimator� v�ih� for vt at t � ih� given by

v�ihe
���hh �

	

��k � 	


k�iX
j�i�k��

��jh�h
�

that is�

v�ih �

Pk�i
j�i�k��R

�
j

��k � 	
h
� �	�


where Rj �s are as de�ned in ��
� The estimator �	�
 is in fact an estimator
of vt by the method of conditional moments�

As we can see� the estimator �	�
 depends on the choice of the window
size k� In our analysis to decide about the window size we have compared
performances of MCM for di�erent values of k on simulated data� The
criteria of the goodness of �t used is an analog of R� statistic

R��k
 � 	�

nP
i��

�Vi � V �
i 


�

nP
i��

V �
i

� �	�


Based on this we have chosen k � 	�� ��� and �� for monthly� weekly and
daily data� respectively�

� Comparison on simulated data

We have simulated several short rate time series according to the FV model
for di�erent sets of parameter values close to the typical values� We have
considered three di�erent values for any parameter � �

�� � �� � 	��� se���
� �� � ��� and �	 � �� � 	��� se���
�

where �� is the estimate of � obtained by applying EMM method to the real
data and se���
 is the standard error� These values are reported in section ����

For each set of parameters we have generated �� time series of length
���� on daily frequency and of length ���� on weekly and monthly frequen�
cies� In all of these cases we have found that Kitagawa smoothing method






Table 	� Performances of the methods for di�erent frequencies

Frequency mkits �kits mmcm �mcm meks �eks

Monthly ��	��� ���	�
 ���	
� ����	� ���	�� ���	��
Weekly ������ ���	�� ��			� ������ ��	��
 ������
Daily ����	� ������ ������ ���		� ������ ���	��

mkits and �kits are the average and standard deviation� respectively� of �� � R���values

obtained by the Kitagawa smoothing method applied to �	 series simulated from FV

model
 The length of the series are ���� for daily data� and ���� for weekly or monthly

data
 mmcm� �mcm� meks� �eks are the corresponding quantities for MCM and the

extended Kalman smoothing method
 Data was simulated using parameter values 
 � �

����	�� � � ������ � � ��������� � � ������ and 	 � �������


outperforms the other methods� Here� again� we have used R��like quantity�
given by �	�
� to measure goodness of �t�

To select the node points for Kitagawa method we started with a set of
nodes and then if any estimate of volatility is too close to the right limit
of the nodes� we increased the right limit� As for density of the nodes we
compare the volatility estimates for the current set of nodes and the esti�
mates corresponding to the nodes which has density two times the current
density� If the proportional change of estimate is less than ��	� we stop�
Otherwise� we keep on doubling the number of nodes� In most of the cases
we have found that the number of nodes needed are between 	�� to ����

For MCM� as mentioned in section ���� we have used k � 	�� ��� and ��
for monthly� weekly and daily data� respectively�

Figure 	 on page 		 plots the �	 � R�
�values obtained by applying
Kitagawa smoothing� MCM� and extended Kalman Smoothing method on
simulated daily� weekly and monthly data� Table 	 on this page reports the
corresponding summary statistics � the average and the standard deviation
of the �	 � R�
�values� We see that as the frequency of data increases
performances of all the methods become better with the Kitagawa smoothing
method being the best in all frequencies� This can also be seen from Figure 	
on page 		�

Furthermore� we have noticed that when 
� 	 and � are �xed the goodness
of �t for a method is similar for di�erent sets of values of � and �� Table �
on page 	� shows this feature when 
 � 
� � ��������� 	 � 	� � 	���� and
� � �� � ���	
��� Therefore� to compare the performances of these methods
for di�erent values of parameters we �x � � �� � ������ and � � �� � ��	�


	�



Figure 	� Performances of di�erent methods on simulated data
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Table �� Performances of the methods for di�erent � and �

i� i� mkits �kits mmcm �mcm meks �eks

� � ����
� ���	�� ��		�� ������ ��	��� ������
� � ������ ���	�� ��		�� �����
 ��	��� ����	�
� � ������ ���		� ��		�	 ���	�� ��	��� ������
� � ������ ���	�� ��	��� ���	�� ��	��� ������
� � ����
� ���		� ��		�� ���	�� ��	��� ���	��
� � ������ ���	�� ��	��
 ���	�� ��	��� ���	��
� � ������ ���	�� ��	�

 ���	�� ��	�	� ���	��
� � ���
	� ���	�� ��		�� ���	�	 ��	��� ������
� � �����	 ���	�� ��		�� ���	�� ��	��� ���	
�

mkits� �kits� mmcm� �mcm� meks� �eks are as described in Table � but based on weekly

series of length ����
 To simulate data for a row a parameter 
 is set to 
i� � where

�� � ���	��� �� � ����	�� �� � �����	� and �� � ���	��� �� � ������ �� � ������
 For all

entries � � ��������� � � ������ and 	 � �������


and vary 
� 	 and � � Table � on page 	� presents the summary results� We
see that in all cases the average �	 � R�
�value for Kitagawa smoothing
method is �signi�cantly� lower than the other two methods� Another point
to note is that as � � the variance in volatility component� increases perfor�
mances of all the methods decrease�

� Empirical results

In this section we present the analysis of empirical data� Before presenting
the results we describe the data and the parameter estimation of the model�

��� Data Description

For numerical experiments with the real data we select the yields on US
Treasury Bills with maturity � months�� This maturity is short enough
to believe that these yields will approximate the �unobservable
 short rate
su�ciently well� It is known �see e�g� Andersen and Lund �	

�

 that
successful estimation of multifactor stochastic volatility models require high

�Data source
 H
�	 Federal Reserve Statistical Release
 See the web site of the Board
of Governors of the Federal Reserve System http���www�federalreserve�gov�

	�



Table �� Performances of the methods for di�erent 
� 	� and �

i� i� i� mkits �kits mmcm �mcm meks �eks

� � � ������ ������ ������ ������ ��		�� ������
� � � ����
� �����
 ���

	 ������ ��	��� �����

� � � ����
� ����
� ��	��
 ������ ��	��� ������
� � � ������ ������ ������ ���	�� ��	��� ���	��
� � � ���
�� ���	�� ��		�� ���	�� ��	��� ���	��
� � � ��	��� ���	�� ��	��� ������ ��	��� �����	
� � � ����	� ������ ������ ���	�� �����	 ���		�
� � � ��	�	
 ���		� ��	��� ���	�	 ��	��� ���	��
� � � ��	��� ���	�� ��	��� ������ ��	��� ���	��
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mkits� �kits� mmcm� �mcm� meks� �eks are as in Table � based on weekly series of length

����
 To simulate data for a row a parameter 
 is set to 
i� � where �� � ��������� �� �

��������� �� � ��������� �� � ���	�� �� � ������ �� � ������ and 	� � �������� 	� �

�������� 	� � �������
 For all entries � � ����	� and � � �����
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Figure �� U�S� ��month T�Bill yield data �weekly
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frequency data� At the same time� in order to get stable and precise esti�
mation� we need data over long period of time� We know �see Sundaresan
�	

�
� p� �

 that US Treasury Bills are issued each week� therefore we sug�
gest that weekly frequency is most adequate for the short rate modelling� In
our analysis we have used a dataset of �	�� weekly observations dated from
January 	
�� to April 	

�� Figure � shows a plot of the data�

��� Choice of Parameters

Since there are many very good methods �e�g� GMM� EMM
 to estimate pa�
rameters of a continuous time model� one can take advantage of those meth�
ods to estimate the parameter values� Actually� as in the case of Kalman
�lter� Kitagawa method also has the advantage of being able to evaluate

	�



the likelihood function while performing the algorithm� However� it is to be
noted that the likelihood obtained this way would only be an approximate
one� Therefore� to use this for maximum likelihood estimation of parameters
some special care needs to be taken to avoid numerical instability� We shall
present this elsewhere once it becomes complete�

For the actual data set we have used e�cient method of moments �EMM

to estimate the parameters� Below we describe the method very brie�y�

��� Description of the EMM method

EMM is developed in a series of work by Gallant and Tauchen �	

��	

�
�
EMM combines both e�ciency and �exibility� i�e�� being able to �t a suf�
�ciently wide class of models in a routine way� By construction EMM is
a Generalised Method of Moments with a speci�c choice of moment con�
ditions and an estimated optimal weight matrix� The method requires an
auxiliary model that embeds the structural model under consideration in a
certain metric �see Tauchen �	

�
� Gallant and Tauchen �	

�

�

EMM involves the following steps�

	� Choose an auxiliary model and get a maximum likelihood �ML
 esti�
mator  �n of the parameters of this model�

�� Generate the !e�cient� moment conditions as�

m���  �n
 �

Z
� ln f�yj �n


��
p�yj�
dy� �	�


where f�yj�
 denotes sample density according to the auxiliary model�
p�yj�
 is the sample density with respect to structural model� and  �n
is the ML estimator of the parameters in the auxiliary model�

Remark� In practice the right�hand side in �	�
 is estimated by Monte�
Carlo techniques� That means that integration in �	�
 is replaced by
averaging

m���  �n
 �
	

N

NX
k��

� ln f��yk
j �n

��

�	



by the simulated trajectory of the structural model� To simulate this
trajectory the Euler approximating scheme with moderate number of
intermediate steps was applied�

�� Build the chi�square estimator for � as�

��n � argmin
��R

k

m���  �n

�

I��n m���  �n
� ���
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where In is some consistent estimator of I��
� the information matrix
in the auxiliary model�

In our case the structural model was FV model given by ��
� The main
requirement of the auxiliary model is that it should be large enough� i�e��
it should �almost� nest the structural model in some sense� At the same
time the auxiliary model should capture the most important features of
the observed data� One of the modern methods providing a su�ciently
simple and �exible framework for auxiliary model estimation is the semi�
non�parametric �SNP
 models �see Gallant and Tauchen �	
��

� We worked
with AR�L
�ARCH�M
�Hermite�K��
 model which describes density of yt as

f�ytj�
 � C"PK�zt
#
���ytj�xt��

�$xt��

� ��	


where

C is the normalizing constant�

Pk is the Hermite Polynomial of degree K�

xt�� � �yt�L� � � � � yt��
 is the lag vector so that the conditional

distribution of yt given all the past depends only on xt���

�xt�i � �� � ��yt�i � ��yt�i�� � � � � � �Lyt�i�L���

$xt��
� R�

xt��
�

Rxt��
� �� � ��jyt�M � �xt�M��

j � ��jyt�M�� � �xt�M��
j �

� � � �� �M jyt�� � �xt��
j� and

zt � �yt � �xt��

�Rxt��

�

Estimation of the SNP model is done by maximum likelihood� providing
consistent and asymptotically e�cient estimators� A proper choice of the or�
der of the model is made using Schwarz�s Bayes information criterion �BIC

�see Schwarz �	
��

 which puts a penalty for over�tting� With this cri�
terion preferable model turns out to be AR��
�ARCH��
�Hermite����
� As
for embedding the structural model� note that once discretized FV model is
AR�	
 with conditionally heteroscedastic innovations and therefore we can
expect that AR�ARCH part of SNP will be able to incorporate this het�
eroscedasticity and Hermite polynomial will adjust the shape of the density
of the innovations�

Moment generating conditions in �	�
 were estimated by Monte�Carlo�
averaging the estimated scores of the AR��
�ARCH��
�Hermite����
 on a
series of ������ weekly observations generated by application of the Euler

	�



Table �� EMM estimates of parameters

Parameter Estimate t�statistic

� ����� 	����

� ��	�
 ��	



 ����� 
���

	 	���� 	���

� 	�
�� ����

discretization scheme with �� intervals per week to the system of SDE ��
�
The estimation results are reported in Table �� For more information see
Danilov and Drost �����
��

��� Volatility Estimation

Figure � on page 	� shows the estimated volatilities obtained by Kitagawa
smoothing� MCM and extended Kalman smoothing method� We can clearly
see that all the methods under considerations reveal two periods of high
volatility� The �rst one corresponds to years 	
���	
�� approximately� The
reasons for high interest rates volatility in this period are well known� The
Middle East War of October 	
�� when Arab countries were defeated by
Israel was followed by so called �Arab oil embargo�� It lead to a considerable
jump in oil prices� almost quadrupled� and triggered economical crisis in US�
Next few years were marked by high in�ation� high interest rates and high
instability of world security markets� The second period of high volatility
corresponds to the monetary crisis of 	
�
� When the second oil price rise
of 	
�
 happened� the United States Federal Reserve Board adopted a tight
monetary policy trying to curb in�ation and stem an out�ow of capital� This
pushed up real �and nominal
 interest rates to historically high levels� A few
other key developed countries followed similar contradictory policies� which
triggered a worldwide recession and drove up interest rates on a world scale�
see e�g� Cheru �	



� We can see that in all estimated volatility pro�les at
period 	
�
�	
�� volatility is maximal�

Also� apparently� the EKS tends to !underestimate� volatility at high
volatile regions� The MCM� in turn� !oversmoothes� volatility� especially

�These parameter estimations are obtained when the data are expressed in percentages

Since in following we use data in decimal points �divided by ����� the parameter values
were renormalised appropriately
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Figure �� Volatility estimates for weekly US ��month T�bill yield data
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� Conclusion

In this paper we have considered two factor stochastic volatility models for
short term interest rates� We have employed three di�erent methods� namely
the Kitagawa �smoothing
 method� method of conditional moments� and ex�
tended Kalman �smoothing
 method to estimate the unobserved volatility
component� Based on our analysis we �nd that Kitagawa method outper�
forms all other methods�
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