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Introduction

Continuous time models and those involving stochastic differential equa-
tions, in particular, became very popular in modern financial theory. There
are several reasons for that. The continuous time setup, introduced in fi-
nance by the celebrated work of Black and Scholes (1973), is attractive from
a theoretical point of view. It provides a plain and parsimonious way of rep-
resenting models. A variety of techniques for pricing and hedging of deriva-
tive securities were developed in the continuous time setup, especially when
underlying economic factors are described by stochastic differential equa-
tions (see Merton (1992)). Typically, the idealised continuous time setup
is much simpler than discrete time considerations and therefore the deriva-
tive pricing is much simpler in continuous time, where also often analytical
formulas are available.

A continuous time model for the interest rate was first proposed by
Merton (1973), who introduced a Brownian motion as a candidate process.
Time series of historical interest rates reveal a number of salient features
such as high degree of persistence, nonnegativity and volatility clustering.
It is a common practice to model these time series by stationary processes
notwithstanding the fact that formal tests sometimes suggest the unit root
behaviour. Merton’s model, of course, captures the persistence aspect of the
interest rates time series. However, it allows for negative interest rates and
generates nonstationary series. Vasicek (1977) proposed to use a stochastic
differential equations (SDE), namely, the Ornstein-Uhlenbeck process

dry = k(p — r¢)dt + odWy. (1)

Let us highlight some of the appealing features of this model. First of all, it
is clear that (1) allows for a stationary mean reverting solution. Secondly,
the parameters of the model have a clear economic interpretation: g is the
“average” interest rate, k is the persistence parameter, (small values of &
corresponds to high degree of persistence), and o is the volatility of the



process. Note that k = 0 corresponds to the random walk case. However,
model (1) does not allow the volatility to be variable, and negative interest
rates may still show up. This last drawback was corrected in the Cox,
Ingersoll and Ross (CIR) (1985) model

dry = k(p — r¢)dt + o\/redWr. (2)

Their model provides not only a stationary mean reverting process, but also
it does not allow the interest rate to be negative due to the so called “level”
effect. Interpretation of the parameters is the same as in the case of Vasicek.
The slightly more general specification

dry = k(pu — r¢)dt + or] dWy, (3)

was employed in the work of Chan, Karolyi, Longstaff, and Sanders (CKLS)
(1992). The parameter y control the “strength” of level effect and also
accounts for the degree of conditional heteroscedasticity. The value v =
0 corresponds to the homoscedastic case (Vasicek model), where the level
effect is absent. The case studies in CKLS shows the estimated value of
v to be about 3/2, in contrast to the values 1/2 in the CIR model. The
works of Longstaff and Schwartz (1992), Koedijk et al. (1994), suggest a
direction for extending the CKLS model, namely, the inclusion of stochastic
volatility factors. It was repeatedly mentioned in modern literature (see,
e.g., Rebonatto (1996)) that one factor models fails to capture adequately
the price structure of different derivative securities like yields, caps and
swaptions. One of the first approaches in this direction was issued in Fong
and Vasicek (FV) (1991). They proposed a model of the following form

{ dry = k(p—ry)dt + \/v_tth(l), (4)

dv, =My —v)dt + 7 odW.

As we can see, this model allows for a stationary mean reverting process
whose volatility is again stationary stochastic process. Here p is still the
unconditional average of the short rate process, x controls the degree of
persistence in interest rates. In order to interpret the other parameters let
us observe that the second equation in (4) is just a square root process
for volatility v;. Now we can interpret parameter v as the unconditional
average volatility. The parameter A accounts for the degree of persistence
in the volatility. Finally, the parameter 7 is the unconditional infinitesimal
variance of the unobserved volatility process.

As in any type of modelling, to apply the model to real life data one needs
to estimate the parameters of the model. In stochastic volatility models one



further needs an efficient and reliable method for estimation of unobservable
volatility component. Estimation of stochastic volatility is important in
several aspects. If we know factor values in any point in time we can calculate
implied term structure and therefore evaluate the adequacy of the model.
Knowledge of the current value of volatility allows us to draw important
economical implications: perform volatility forecast, calculate implied values
of different kind of derivative securities like bond options and swaps, etc.
That, in turn, can affect management decisions in many fields of economics
and finance.

A number of sophisticated methods are available in order to estimate
the parameters of continuous time models (e.g. GMM, EMM of Gallant
and Tauchen (1996), Indirect inference method of Gourieroux, Monfort and
Renault (1993) etc.). However, none of these methods provide opportunity
for estimation of unobservable stochastic volatility process in a model like
(4).

To emphasize the importance of estimation of stochastic volatility, sup-
pose the short rate follows model (4). Then (see Fong and Vasicek (1991))
yields on T-maturing bonds are determined by formula

Y(t,T)=A(t,T)— B(t,T)ry — C(t,T)vy, (5)

where functions A, B, C' depend on the parameters of the short rate model
and the market price of risk. As we can see, pricing formula (5) depends on
v¢. Therefore, even if the model is adequate for Data Generating Process
and the parameters are known, the performance of the model can be poor
unless we provide a good estimator for v, volatility at time point ¢ when we
need to find yield or price of some other derivative security. It is not clear,
however, what kind of market information should one use for estimation of
ve. This information can include only short rate time series data or yields
with different maturities or even sets of option prices. In this article we
work with the short rate dynamics only. The methodologies discussed in
this article can be applied to many two factor stochastic volatility short rate
models e.g., Fong and Vasicek (1991), Andersen and Lund (1997), etc. We
have chosen to work with FV model because of its simplicity. For other
models the notations will be complicated only, but would not provide any
extra insight for the proposed methodology.

Note, from equation (4), that the quadratic variation of r; is given by
P>y = f(f vedt. Therefore, if the original short rate process can be observed
on any frequency then recovering wv; is trivial from < r >;. Usually the
best that we have is a daily series and, therefore, some indirect scheme for
obtaining v; is necessary.



The use of stochastic filtering theory is very natural here, because we
want to estimate the wunobserved volatility component from the observed
short rates. The equation (4) as it is now, however, is not ready to receive
the filtering treatment. We first discretize both the observation and the state
equations to bring it in the filtering theory framework. As we shall see, the
transformed equation would be nonlinear and also with non-Gaussian errors.
As a naive approach we apply extended Kalman filter (see Anderson and
Moore (1979)), as if the errors were Gaussian. It happens, however, that
the method of extended Kalman filter (EKF) does not provide very good
estimation for typical financial short rate data. We suggest a method based
on Kitagawa (1987) scheme which incorporates both nonlinearity and non-
Gaussianity. We also use the method of conditional moments (MCM) to
estimate volatility for comparison.

The article is organized as follows. In section 1, we carry out the dis-
cretization of the FV model. In section 2, the methodologies of EKF, Kita-
gawa and MCM are described. A comparison of these three methods of
volatility estimation on simulated data is presented in section 3. Section 4
contains the empirical analysis. Some conclusions are offered in section 5.

1 Discretization of Fong Vasicek short rate model

Recall that the short rate equation of the Fong and Vasicek model is given
by (4). An application of Ito formula to the first equation yields

de™ (ry — p) = e\ /v dW.

Integrating by parts we obtain

t+h
Teeh = 0+ e_”‘h(rt — )+ e rh / e”(s_t)\/@dWS.
t

Also, similarly,

t+h
Viph =V + e*)‘h(vt —v)+ e Ar / M=t VsdZs.

t
Therefore the discrete time specification of FV model has the following
form,

Teyh = M+ eim(?“t — ) +e¢(h), (6)
v = v+e M —v)+n(h), t=0,h2h,...,



where h denotes the sampling interval (for example, on weekly frequency
h =1/52), and the innovations £.(h) and n(h) are defined as

t+h
ei(h) = e_“h/ e 5=0 Sy dW, (7)
t
t+h
ne(h) = Te_’\h/ A0 fodZs.
t

We approximate these innovations as

th(h) - e_ﬁh vV Unh \/E €n, nnh(h) = e_)\hT\/ Unh \/E Tn,

where (g,) and (7,,) are independent standard normal random variates.
Defining the transformed discrete observation to be

Rn = enh(r(n—i-l)h - M) - (Tnh - M)v n = 07 17 27 R (8)

and denoting v,, by V,, we obtain the following discrete time state space
system

R, = Vi\/Vhe,, n=0,1,2,..., (9)
Vi = e MV i+ 10—+ e ™MV VVoly e, n=1,2,..(10)

with initial value Vj independent of (g,,) and (n,).

2 Methods of estimating stochastic volatility

2.1 Extended Kalman Filter

Standard setup of the Kalman filter is applicable to the linear state space
model of the form

Yn = Zn Oty + dy + €y, Var(€n) = H,,
a, = Thop_1+cp+ Rnnna Var(nn) = Qn, (11)

where (¢,) and (7,) are independent normal random variables with zero
mean. Then the conditional distribution of «, given the observations y1,...,vyn
is also normal. The mean a, and variance P, can be calculated recursively
by an application of the one step ahead prediction equations,

Apln—-1 = Than—1+ cp,
Pn\nfl = TnPn—lTylL + RnQnR;u



and updating/filtering equations,

p = Qplp—1 + Pn|anZ;an71(yn - Znan\nfl —dy),
P, = Pn\n—l - Pn|n—IZr,an_1ZnPn|n—17
Fo = ZuPuyn_1Zh+ H.

Here ay),,—1 and P, denote the conditional expectation and variance,
respectively, of «,, given the observations y1,...,yn—1-
When the state space equation is non-linear, say

Yn = Zp(on)+en, Var(e,,) = H,,
Qp = Tn(an—l) + Rn(an—l)nna Var(nn) = Qna (12)

one can use Taylor series expansion to obtain the following approximate
linearised system.

Yn = Znoiy +dp + 20, Var(e,) = Hp, (13)
an = Thop_1+cn+ Rnnn, Var(n,) = Qn, (14)

where 271 = %Zn(anm—l)a dn, = Zn(a/n|n—1) - Zna/n|n—17 Tn = %Tn(an—l)a
Cn = Tn(anfl) —Than—1, Ry = Rn(anfl)-

The Kalman filter for this approximate state-space model is then given
by :

Apln—-1 = Tn(a’nfl)v
Pn|n—1 = TnPanTrlz + Rnan};a
F, = ZnPn|n—127,z + H,,

An = Qppn—1 + Pn|n712;LFn71(yn - Zn(a/n|n71))7
P, = Pn\nfl - Pn|anZ;LFr:IZnPn\nfl-

Smoothed estimate a,y of a, given the observations yi,...,yy is ob-
tained by the following backward recursion :

aNN = OaN
F ~1
ap—1|N = Op-1+ PnflTTIL—lpnmfl(an\N - an|n—1)'
In our setup we consider the observation y, to be In(R2/h). From (9) we

then have
Yn =10V, + lnei.



Clearly Ine? is not Gaussian, but has the distribution of In x?. To use EKF
we replace this by a normal random variable with mean —1.270363 and
variance 4.934802, the mean and variance, respectively, of a Inx? random
variable. We then apply the EKF methodology with

Zn(x) = Inz — 1.270363; H, = 4.934802;
To(z) = eMe+ (11— Ry(x)=re""Whvz;, Q,=1.

To initiate the recursion we use Vy = v and Py = 1000.

2.2 Kitagawa Algorithm

Extended Kalman filter method linearizes the non-linear part using Tay-
lor series expansion. The methodology, however, depends on the Gaussian
property of the error terms. When the errors are not Gaussian, which is
the case of ours, Kitagawa (1987) method is more appropriate. In his paper
Kitagawa treats explicitly the linear case. We present below the results for
the non-linear models. The formulae are the same.

Suppose the state-space model is given by

Yn = h(wn,en)
Ty = flxn1) +9(@Tn1)m

where {e,} and {7, } are independent white noise sequence, not necessar-
ily Gaussian. Exploiting the Markovian property of {x,} and denoting the
observations (y1,¥2,...,Yn) by Y,, one has the following recursive filtering
scheme.

One-step-ahead prediction :

00
fn\n—l(xn|Yn—1) = / pn|n—1(xn|xn—1)fn—1(wn—1|Yn—1)dxn—1-
0
Filtering :

r _ py|1‘(yn|xn)fn\n—1(xn|Yn—1)
fn( n|Yn) - p(yn|Yn—1)

Smoothing :

Fun (@alVy) = fn(xn|Yn)/°° Frn1 N (@1 [YN)Ppn—1 (Tns1]7n)

dxn+1.
oo fn+1|n(xn+1|Yn)



Kitagawa method approximates all the densities by piecewise linear func-
tions. Each density is specified by the number of segments, location of nodes
and the value at each node. It is assumed that all the densities are supported
on finite interval'. In the simplest case the nodes for all the densities are as-
sumed same, zg, 21, ..., 2, say. Then the integration in the one-step-ahead
prediction equation is evaluated as follows.

/ pn\nfl(xn|xnfl)fnfl(xnfl|Yn71)dxn71

o0

2L
= [ Prjn—1(Tn|Tn—1) fn—1(@n—1|Yn-1)d2sn_1

<0

L .
= Z/ pn\nfl(xn|xnfl)fnfl(xnfl|Yn71)d$nfla
i=1"%i-1
where using the linearity of the functions in the interval (z;_1, z;),

/ pn\n—l(xn|xn—1)fn—1(xn—1|Yn—1)dxn—1

i—1

~ (pn|n—1($n |zi—1) fr—1(zi-1]Yn—1) + pn|n—1(xn|zi)fnfl(zi|ynfl))

" (zi — zi-1)
2

In the filtering equation p(y,|Y,—1) is evaluated as [ pyjo(ynltn) frjn—1(2n[Ya—1)
and the integration is calculated as above. The integration in the smoothing
equation is also evaluated similarly.

In our setup all the conditional distributions are Gaussian with proper
mean and variance. To start the recursion we use the steady state density
of v, a square root process, as the initial density of Vj. As for choosing
the nodes for discretizing the density one should note that increasing the
number of nodes will only increase the performance of the methodology.
In practice one can keep on incorporating more and more nodes until the
change in estimates is negligible.

2.3 Method of Conditional Moments
Recall, from equation (6) and (7), that

t+h
Poph — o — e " (ry — p) = ep(h) = e_“h/ e”(s_t)\/v_s dWs.
t

In case of infinite support, the end points of the grid are to be chosen in such a way
that they cover the essential domain of the density



Hence, E(e¢(h)|r¢,v¢) = 0, and

t+h
Var(ei(h)|re, ve) = / e2Rut=h)y, du. (15)
t

Approximating the integral in the r.h.s. of (15) as e2<h

natural estimator, v}, for v; at ¢ = ih, given by

vih, one obtains a

2kh 1 ax 2
vipe Mh = —— g5 (h),
ih (2]{? + 1) jizk+1 ]h( )
that is, .
Zk:—l—z R2

« _ 2ug=i—k41 1Y

Un = ok + )b (16)
where R;’s are as defined in (8). The estimator (16) is in fact an estimator
of vy by the method of conditional moments.

As we can see, the estimator (16) depends on the choice of the window
size k. In our analysis to decide about the window size we have compared
performances of MCM for different values of & on simulated data. The
criteria of the goodness of fit used is an analog of R? statistic

n

Y(Vi= V)
R(k)y=1-"F2_—— (17)
> VP
=1

Based on this we have chosen k& = 10,20, and 50 for monthly, weekly and
daily data, respectively.

3 Comparison on simulated data

We have simulated several short rate time series according to the FV model
for different sets of parameter values close to the typical values. We have
considered three different values for any parameter 6 :

0y =60 — 1.5 x se(h), 05 =0, and 0, =0+ 1.5 x se(h),

where 6 is the estimate of 6 obtained by applying EMM method to the real
data and se(é) is the standard error. These values are reported in section 4.2.

For each set of parameters we have generated 25 time series of length
4000 on daily frequency and of length 2000 on weekly and monthly frequen-

cies. In all of these cases we have found that Kitagawa smoothing method



Table 1: Performances of the methods for different frequencies

H Frequency H Mkits ‘ Okits ‘ Mmem ‘ Omem ‘ Meks ‘ Oeks H
Monthly || 0.1628 | 0.0149 | 0.2197 | 0.0214 | 0.2168 | 0.0172
Weekly 0.0857 | 0.0134 | 0.1117 | 0.0208 | 0.1309 | 0.0237

Daily 0.0417 | 0.0082 | 0.0548 | 0.0110 | 0.0687 | 0.0147

mp;ts and og;s are the average and standard deviation, respectively, of (1 — RZ)—values
obtained by the Kitagawa smoothing method applied to 25 series simulated from FV
model. The length of the series are 4000 for daily data, and 2000 for weekly or monthly
data. Mmem, Tmem, Meks, Tcks are the corresponding quantities for MCM and the
extended Kalman smoothing method. Data was simulated using parameter values : p =
0.0652, x = 0.109, v = 0.000264, A\ = 1.482, and 7 = 0.01934.

outperforms the other methods. Here, again, we have used R?-like quantity,
given by (17), to measure goodness of fit.

To select the node points for Kitagawa method we started with a set of
nodes and then if any estimate of volatility is too close to the right limit
of the nodes, we increased the right limit. As for density of the nodes we
compare the volatility estimates for the current set of nodes and the esti-
mates corresponding to the nodes which has density two times the current
density. If the proportional change of estimate is less than 0.1% we stop.
Otherwise, we keep on doubling the number of nodes. In most of the cases
we have found that the number of nodes needed are between 100 to 400.

For MCM, as mentioned in section 2.3, we have used k£ = 10, 20, and 50
for monthly, weekly and daily data, respectively.

Figure 1 on page 11 plots the (1 — R?)-values obtained by applying
Kitagawa smoothing, MCM, and extended Kalman Smoothing method on
simulated daily, weekly and monthly data. Table 1 on this page reports the
corresponding summary statistics — the average and the standard deviation
of the (1 — R%)-values. We see that as the frequency of data increases
performances of all the methods become better with the Kitagawa smoothing
method being the best in all frequencies. This can also be seen from Figure 1
on page 11.

Furthermore, we have noticed that when v, A and 7 are fixed the goodness
of fit for a method is similar for different sets of values of y and k. Table 2
on page 12 shows this feature when v = 3 = 0.000264, A = A3 = 1.482 and
7 =713 = 0.01934. Therefore, to compare the performances of these methods
for different values of parameters we fix p = pu3 = 0.0652 and x = k3 = 0.109

10



Figure 1: Performances of different methods on simulated data
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All series were simulated using parameter values : p = 0.0652, « = 0.109, v =

0.000264, A\ = 1.482, and 7 = 0.01934. Daily series were of length 4000 and weekly
and monthly series were of length 2000.
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Table 2: Performances of the methods for different u and &

H Iy ‘ Uy H Mits ‘ Okits ‘ Mmem ‘ Omem ‘ Meks ‘ Oeks H
2| 21 0.0894 | 0.0136 | 0.1166 | 0.0222 | 0.1378 | 0.0222
0.0884 | 0.0124 | 0.1130 | 0.0209 | 0.1346 | 0.0217
0.0866 | 0.0113 | 0.1101 | 0.0167 | 0.1307 | 0.0220
0.0856 | 0.0122 | 0.1087 | 0.0123 | 0.1365 | 0.0240
0.0898 | 0.0117 | 0.1158 | 0.0168 | 0.1362 | 0.0158
0.0838 | 0.0130 | 0.1079 | 0.0162 | 0.1337 | 0.0123
0.0863 | 0.0128 | 0.1099 | 0.0138 | 0.1314 | 0.0174
0.0912 | 0.0135 | 0.1163 | 0.0181 | 0.1365 | 0.0245
0.0871 | 0.0103 | 0.1107 | 0.0143 | 0.1343 | 0.0194

= W N B W W

B B B W W w NN

Mkitsy, Okitsy Mmemy Tmem, Meks, Ocks are as described in Table 1 but based on weekly
series of length 2000. To simulate data for a row a parameter 0 is set to 0;,, where
w2 = 0.0599, us = 0.0652, ua = 0.0705, and k2 = 0.0577, k3 = 0.109, k4 = 0.1603. For all
entries v = 0.000264, A = 1.482, and 7 = 0.01934.

and vary v, A and 7. Table 3 on page 13 presents the summary results. We
see that in all cases the average (1 — R?)-value for Kitagawa smoothing
method is “significantly” lower than the other two methods. Another point
to note is that as 7, the variance in volatility component, increases perfor-
mances of all the methods decrease.

4 Empirical results

In this section we present the analysis of empirical data. Before presenting
the results we describe the data and the parameter estimation of the model.

4.1 Data Description

For numerical experiments with the real data we select the yields on US
Treasury Bills with maturity 3 months?. This maturity is short enough
to believe that these yields will approximate the (unobservable) short rate
sufficiently well. Tt is known (see e.g. Andersen and Lund (1997)) that
successful estimation of multifactor stochastic volatility models require high

?Data source: H.15 Federal Reserve Statistical Release. See the web site of the Board
of Governors of the Federal Reserve System http://www.federalreserve.gov/
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Table 3: Performances of the methods for different v, A\, and 7

v ‘ 2N ‘ ir H Mits ‘ Okits ‘ Mmem

‘ Tmem ‘ Meks ‘ Oeks H

2

= R R R R R R WWWWWW W W W NN NN N NN

2

o R W W W NN N R R REW W WD N PR R R WW WD N

2

B W NN HE WP WP WP WP WP WD WD W

0.0620
0.0695
0.0892
0.0702
0.0908
0.1033
0.0616
0.1019
0.1230
0.0612
0.0786
0.1020
0.0632
0.0867
0.1071
0.0585
0.0909
0.1125
0.0488
0.0686
0.0887
0.0597
0.0826
0.0944
0.0526
0.0855
0.1066

0.0240
0.0289
0.0392
0.0085
0.0104
0.0180
0.0057
0.0115
0.0146
0.0245
0.0340
0.0429
0.0064
0.0117
0.0163
0.0059
0.0092
0.0121
0.0139
0.0262
0.0322
0.0099
0.0144
0.0143
0.0060
0.0088
0.0116

0.0782
0.0991
0.1339
0.0877
0.1158
0.1460
0.0848
0.1303
0.1704
0.0813
0.1087
0.1493
0.0819
0.1098
0.1429
0.0826
0.1186
0.1531
0.0701
0.0952
0.1355
0.0793
0.1023
0.1283
0.0795
0.1081
0.1419

0.0286
0.0526
0.0670
0.0128
0.0146
0.0275
0.0108
0.0141
0.0220
0.0258
0.0508
0.0780
0.0108
0.0138
0.0261
0.0089
0.0126
0.0163
0.0153
0.0480
0.0705
0.0133
0.0156
0.0195
0.0110
0.0144
0.0176

0.1162
0.1303
0.1680
0.1035
0.1365
0.1735
0.0841
0.1367
0.1780
0.1109
0.1275
0.1690
0.0921
0.1351
0.1703
0.0733
0.1251
0.1621
0.0842
0.1158
0.1678
0.0825
0.1273
0.1557
0.0675
0.1144
0.1515

0.0603
0.0549
0.0664
0.0157
0.0156
0.0321
0.0115
0.0166
0.0168
0.0504
0.0619
0.0663
0.0114
0.0212
0.0252
0.0099
0.0097
0.0144
0.0300
0.0507
0.0832
0.0123
0.0214
0.0291
0.0063
0.0118
0.0131

Mkitsy, Ohkitsy Mmemy Tmem, Meks, Tcks are as in Table 1 based on weekly series of length

2000. To simulate data for a row a parameter 6 is set to ¢;,, where vo = 0.000221, v3 =

0.000264, v4 = 0.000307; X» = 0.151,\s = 1.482, Ay = 2.813; and 7 = 0.01266, 73

0.01934, 74 = 0.02602. For all entries 4 = 0.0652 and x = 0.109.
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Figure 2: U.S. 3-month T-Bill yield data (weekly)
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frequency data. At the same time, in order to get stable and precise esti-
mation, we need data over long period of time. We know (see Sundaresan
(1997), p. 79) that US Treasury Bills are issued each week, therefore we sug-
gest that weekly frequency is most adequate for the short rate modelling. In
our analysis we have used a dataset of 2155 weekly observations dated from
January 1954 to April 1995. Figure 2 shows a plot of the data.

4.2 Choice of Parameters

Since there are many very good methods (e.g. GMM, EMM) to estimate pa-
rameters of a continuous time model, one can take advantage of those meth-
ods to estimate the parameter values. Actually, as in the case of Kalman
filter, Kitagawa method also has the advantage of being able to evaluate

14



the likelihood function while performing the algorithm. However, it is to be
noted that the likelihood obtained this way would only be an approximate
one. Therefore, to use this for maximum likelihood estimation of parameters
some special care needs to be taken to avoid numerical instability. We shall
present this elsewhere once it becomes complete.

For the actual data set we have used efficient method of moments (EMM)
to estimate the parameters. Below we describe the method very briefly.

4.3 Description of the EMM method

EMM is developed in a series of work by Gallant and Tauchen (1996,1997).
EMM combines both efficiency and flexibility, i.e., being able to fit a suf-
ficiently wide class of models in a routine way. By construction EMM is
a Generalised Method of Moments with a specific choice of moment con-
ditions and an estimated optimal weight matrix. The method requires an
auxiliary model that embeds the structural model under consideration in a
certain metric (see Tauchen (1996), Gallant and Tauchen (1997)).
EMM involves the following steps:

1. Choose an auziliary model and get a maximum likelihood (ML) esti-
mator 0, of the parameters of this model.

2. Generate the ‘efficient’ moment conditions as:

m(p,by) = / %(ewn)p(ylp)dy- (18)

where f(y|f) denotes sample density according to the auxiliary model,
p(ylp) is the sample density with respect to structural model, and 6,
is the ML estimator of the parameters in the auxiliary model.

Remark: In practice the right-hand side in (18) is estimated by Monte-
Carlo techniques. That means that integration in (18) is replaced by

averaging
N

5 1 Oln 0,
m(p,0,) = ¥ kz_:l %

by the simulated trajectory of the structural model. To simulate this
trajectory the Euler approximating scheme with moderate number of
intermediate steps was applied.

(19)

3. Build the chi-square estimator for p as:

pn = argmin m(p, én)llglm(pa én)a (20)
peR*
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where I,, is some consistent estimator of I(€), the information matrix
in the auxiliary model.

In our case the structural model was FV model given by (4). The main
requirement of the auziliary model is that it should be large enough, i.e.,
it should “almost” nest the structural model in some sense. At the same
time the auxiliary model should capture the most important features of
the observed data. Ome of the modern methods providing a sufficiently
simple and flexible framework for auxiliary model estimation is the semi-
non-parametric (SNP) models (see Gallant and Tauchen (1987)). We worked
with AR(L)-ARCH(M)-Hermite(K,0) model which describes density of y; as

Fil0) = CIPk O)P o(yelta, > Sy, (21)
where

C is  the normalizing constant,
P, is  the Hermite Polynomial of degree K,
xi—1 = (Yi—r1,---,Yyt—1) is the lag vector so that the conditional

distribution of y; given all the past depends only on x;_1,

Pae; = Yo+ V1Yi—i +Voyi—izt + - F VLYi—im 141,
Sen = BRI,
Re oy = 710+ Tyt — feg_ o] + T2Aye-m—1 = Hay_yoo| +
+--+ Talye-1 — fay_,|, and
2 = (Y — o)/ Ray s

Estimation of the SNP model is done by maximum likelihood, providing
consistent and asymptotically efficient estimators. A proper choice of the or-
der of the model is made using Schwarz’s Bayes information criterion (BIC)
(see Schwarz (1978)) which puts a penalty for overfitting. With this cri-
terion preferable model turns out to be AR(2)-ARCH(4)-Hermite(6,0). As
for embedding the structural model, note that once discretized F'V model is
AR(1) with conditionally heteroscedastic innovations and therefore we can
expect that AR-ARCH part of SNP will be able to incorporate this het-
eroscedasticity and Hermite polynomial will adjust the shape of the density
of the innovations.

Moment generating conditions in (18) were estimated by Monte-Carlo,
averaging the estimated scores of the AR(2)-ARCH(4)-Hermite(6,0) on a
series of 200000 weekly observations generated by application of the Euler
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Table 4: EMM estimates of parameters

H Parameter H Estimate ‘ t-statistic H

I 6.520 18.83
K 0.109 3.19
v 2.640 9.26
A 1.482 1.67
T 1.934 4.34

discretization scheme with 20 intervals per week to the system of SDE (4).
The estimation results are reported in Table 4. For more information see
Danilov and Drost (2000)3.

4.4 Volatility Estimation

Figure 3 on page 18 shows the estimated volatilities obtained by Kitagawa
smoothing, MCM and extended Kalman smoothing method. We can clearly
see that all the methods under considerations reveal two periods of high
volatility. The first one corresponds to years 1973-1976 approximately. The
reasons for high interest rates volatility in this period are well known. The
Middle East War of October 1973 when Arab countries were defeated by
Israel was followed by so called “Arab oil embargo”. It lead to a considerable
jump in oil prices, almost quadrupled, and triggered economical crisis in US.
Next few years were marked by high inflation, high interest rates and high
instability of world security markets. The second period of high volatility
corresponds to the monetary crisis of 1979. When the second oil price rise
of 1979 happened, the United States Federal Reserve Board adopted a tight
monetary policy trying to curb inflation and stem an outflow of capital. This
pushed up real (and nominal) interest rates to historically high levels. A few
other key developed countries followed similar contradictory policies, which
triggered a worldwide recession and drove up interest rates on a world scale,
see e.g. Cheru (1999). We can see that in all estimated volatility profiles at
period 1979-1982 volatility is maximal.

Also, apparently, the EKS tends to ‘underestimate’ volatility at high
volatile regions. The MCM, in turn, ‘oversmoothes’ volatility, especially

3These parameter estimations are obtained when the data are expressed in percentages.
Since in following we use data in decimal points (divided by 100), the parameter values
were renormalised appropriately.
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Figure 3: Volatility estimates for weekly US 3-month T-bill yield data
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when it is low.

5 Conclusion

In this paper we have considered two factor stochastic volatility models for
short term interest rates. We have employed three different methods, namely
the Kitagawa (smoothing) method, method of conditional moments, and ex-
tended Kalman (smoothing) method to estimate the unobserved volatility
component. Based on our analysis we find that Kitagawa method outper-
forms all other methods.
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