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ABSTRACT. This paper develops formally some ideas introduced in [14, Chap-
ter 6]. We show that the manifold of probabilities associated to an exponential
model with monomial sufficient statistics on a lattice is an algebraic variety
coming from a toric ideal. This fact is relevant because of the existence of
computational tools for commutative algebra that can be applied for example
to log-linear models for contingency tables. The same algebraic structure is
used to discuss conditional independence models on trees.

1. Introduction

In the last few years the subject of Computational Commutative Algebra has
attracted much attention in a number of applied fields. This rise of interest is proved
in particular by the number of textbooks and monographs recently published. In
this paper we refer especially to [6], [3] and [11]. In the monograph [14, Chapter 6]
a fundamental methodology is given which uses Grébner bases (at two levels) in the
construction and analysis of statistical models and sub-models. In this paper we
give a condensed version of this construction together with related further rigorous
results pertaining the statistics of models on lattices. In addition a number of key
examples draw out the connections between some parts of the basic construction
which are important in statistics.

The use we make of Computational Commutative Algebra can be described
heuristically as falling in three stages. The first stage refers to the construction
of polynomial functions of a variable z over R? with values y in R, giving exact
interpolation of “minimal degree” at a finite set of points D C R?, called an exper-
imental design or support. The second stage considers the special kind of functions
related to probability models of the form

p(z) >0, z€D, and Zp(x) =1
zE€D

We call D a support then and talk about a discrete probability model p over a
support D. There are two principal cases y = p(z) and y = log p(z). Suppose that
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in the second case the sought polynomial is ¢(z) then
p(e) = exp (t(z)), ©€D

In a special case when D is a subset of an integer lattice a third step is possible
in which by reparametrization p(z) can be written as a “power product”. From
this, using toric ideal theory, the algebraic equations satisfied by the p(z), (z € D),
considered as indeterminates, are seen to belong to a toric ideal.

Statistical sub-models are set up by considering, in this construction, the class
of polynomials which are candidates for p(z) or logp(z) as a polynomial, or by
considering the algebraic restrictions to be satisfied by parameters, such as the
individual probabilities. Note here the double use of p(z) which can be both a
polynomial function or a vector of parameters. For example independence models
which might be written

p(z1,72) = p1(z1)p2(72)
where p;(z1) and pa(z2) are the marginal distributions of X; and X5 respectively

and where x = (z; : z2) is some partition of the variable space. This converts
naturally to

p(w1,z2) = expty(z1) expita(z2) = exp (t(z1) + t(z2))

giving additivity of the exponential representation.

2. Commutative Algebra in Statistics

The set of real random variables on a probability space has the algebraic struc-
ture of a commutative ring. What we stress here is the less trivial fact that com-
putational commutative algebra is relevant to problems encountered in statistics in
the same sense that computational linear algebra is.

It is outside the scope of this article to give a self contained treatment of the
notions in commutative algebra we found important for statistics. We restrict
ourselves to a list of definitions and properties, and refer mainly to the textbooks
[6], [5] and [11]. The actual computational feasibility of our methods is important.
For the purpose of illustration in this paper we use the system CoCoA, see [2] and
[11, 275-304]. Many other symbolic computation systems are available, see [6,
Appendix C] and [14, Section 1.2] for short reviews. The use of Grobner bases
in statistics is just one of the possible applications of symbolic computation in
statistics. Compare [1] for a different approach to the issue of symbolic computation
in this field of application. The special application we are describing here was
initiated in [7] and [15].

The key notion allowing the actual computation over polynomial rings is that of
total ordering on terms. Here a term is a product of indeterminates (or variables), a
monomial is a constant (typically a real number) multiplied by a term, a polynomial
is a sum of monomials. The ring of polynomials with variables z1,...,z4 and real
coefficients is denoted R[z1, ..., zq4].

DEFINITION 2.1. Let d be a positive integer. A term-ordering is a total ordering
relation > over the monomials in d indeterminates such that
(1) 1 <z for all z* = 7" ... 25" with a; € Z>o for alli =1,...,d,
(2) if 2@ = 28 then z®t7 = 2P+ for all vector a, 3,y with non negative
entries.
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The leading term of a polynomial f € R[zi,...,zq] with respect to the term-
ordering > is the largest of its terms with respect to =, LT (f).

Point (1) corresponds to the requirement that the relation > is a well-ordering,
while Point (2) expresses compatibility with simplification of monomials, that is, if
zf divides z® then z® > zf. Alternative notations for a term-ordering are >, and
T.

To a finite set D C R? of distinct points one can associate (in a non -unique
way) a set of N = #D terms, so that all the real functions over D can be expressed
as real linear combinations of these terms. A technique to compute these termss
is given by Grobner bases and it assumes a term-ordering. We will refer to such a
basis as a monomial basis.

A support D C R? is seen as an (affine) algebraic variety that is the set of zeros
of a system of polynomial equations.

DEFINITION 2.2. Let D C R? be a finite set of distinct points, that is a support.
Let R[z1,...,zq] be the set of all polynomialsin the z;’s (i = 1,...,d) and with real
coefficients. The set Ideal (D) C R[zy,...,z4] is the set of all polynomials whose
zeros include the points in D.
THEOREM 2.3. Let D be a support in R?.
(1) Ideal (D) is a polynomial ideal.
(2) Ideal (D) is generated by fi,...,fs € Rlz1,...,2z4] if and only if all and
only the solutions of the system of polynomial equations fi = ... = fs =0

are the points in D.
(3) Ideal (D) is a radical ideal.

PrOOF. All obvious. We recall that an ideal is a subset of the ring which is
closed by linear combinations with coefficients in the ring, and an ideal I is radical
if f™ € I implies f € I. O

DEFINITION 2.4. Given a polynomial ideal I C Rzy,...,z4] and a term-
ordering 7, a finite subset G of I is called a Grobner basis for I with respect
to 7 if

Ideal (LT, (g) : g € G) = Ideal (LT, (f) : g € I)

The important Hilbert basis theorem states that every polynomial ideal (except
Ideal (0)) is finitely generated. That is for every polynomial ideal I there exists
(non-unique) fi,..., fs € Rlz1,...,z4) such that for all f € I then f =37 hif;
where h; € Rlzy,...,z4]. Moreover for every term-ordering there exist Grébner
bases. For a term-ordering, 7 there exists a unique reduced Grébner basis where a
Grobner basis G is reduced if for all g € G 1) the coeflicient of LT, (g) is 1 and 2)
no term of g belongs to the ideal Ideal (LT (f): f € G\ {g}).

Given an ideal I C R[zy, ..., z4] the equivalence relation, ~; over Rlzy,..., z4]
modulo 7 is defined as: for all f,g € R[z1,...,z4] then f ~; g if and only if
f — g € I. The quotient space is then defined as

]R[.’El,...,.’I?d]/I:{[f]:fN[ngI‘ f,gE]R[ml,...,xd]}

THEOREM 2.5. Let I be a polynomial ideal in R[z1,...,z4] and 7 a term-
ordering.
(1) The quotient space R[z1,...,z4]/I is a vector space over the real numbers.

(2) Let G be a Grébner basis of I with respect to .
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(a) A vector space basis of Rzy,...,zq]/I is given by
Est, (D) = {z% : 2% is not divisible by LT,(g), g € G}
={z*:a €L}

(b) The full design matriz Z = [z°],cp.,c1, iS invertible.
(3) Let D be a support and I = Ideal (D) the corresponding support ideal.
Then
(@) f ~1 g if and only if f(a) = g(a) for alla € D
(b) The dimension of Rlz1,...,z4]/I as R-vector space is equal to the
number of points in D.
(c) The design matriz for the regression model

y= ZOaxo‘+s

aEM
with M C L is full rank.

Note that the monomial basis obtained via Grébner bases are just an instance
of all possible monomial bases. For a discussion of monomial bases arising in binary
designs, see [9].

3. Experimental designs and residual space

In this section we consider sub-models, first in the interpolation case. The link
with the area of experimental design and with “statistical thinking” is strict. Thus
let be given a set

{z%:a € M}
of linearly independent monomials on D. The linear independence in particular is
always true if M C L, that is the model is a subset of the exponent list in Est. Let
Zl = [xa]zeD;aeM
be the design matrix corresponding to the statistical sub-model M. It is very
common, for example in statistical analysis to fit sub-models such as linear (planar)
models or quadratic models. Now extend Z; to a full basis for the column space
(range) of Z in an orthogonal way. With abuse of notation we can replace Z by
this partially orthogonal basis and write

7 = [Zl . Zz]
where Z!Z, = 0. In statistical modeling we consider a model
y=2710+c¢

and the least squares estimate of 8 is § = (Z¢Z,)" Z!Y. The fit is ¥ = PY where
P is the projector Z! (Z’fZl)_1 Z; and the orthogonal projector is

I1-P =27 (2i2) " 7y

In the Grobner case, the invertibility of Z¥Z; and ZZ, comes from the fact that
Z1 and Zy are full rank which itself derives from the Grobner basis construction.
In statistical jargon we might consider Z (columns) as “spanning the space of
residual”.

Despite this straightforward explanation the structure of Z, is not so trans-
parent. We will see that special instances are useful, for example integer valued
matrices.
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ExAMPLE 3.1 (One-dimensional polynomial regression). Consider the set of
points D = {0,1,...,N — 1} C Z. Construct orthogonal polynomials on D of
increasing order

].,pl(ﬂ?), yee e 7prl(m)
Let the sub-model consist of terms

{l,x,:vz,...,xq}

where ¢ < n — 1. Then it is clear that a candidate for Zs is

I:pj (x)] zeD;j=q+1,...,N—1

Notice that since D consists of integers the p;(z) will have rational coefficients.
These can be converted to integer by multiplication of a suitable integer. Then Z»
as constructed can be replace by an integer matrix.

ExAMPLE 3.2. Consider the full factorial design 2¢ with levels —1 and 1. For
all term-orderings the Est set is composed of all the multi-linear terms, that is in
L there are all the vectors a = a;...ag with o; = 0,1 for all ¢ = 1,...,d. The
choice of —1 and 1 as levels implies that the Z matrix is orthogonal. Thus for every
sub-model M C L automatically Z, = Z,; is orthogonal to Z; = Z)y,.

ExAMPLE 3.3. Let D be the two-dimensional support with the particular struc-
ture

that is D = {(0,2),(0,1),(0,0),(1,0),(2,0)}. This is called an echelon design.
Echelon designs have the property that if a point a = (ay,...,a4) is in D then also
(y1,-.-,yq) isin D if 0 <y; <ag foralli=1,...,d. Also in this case for all 7
there is only one Est, namely {z* : « € D}.

Consider a subset of Est that is again echelon. For example M = {(0,0), (1,0), (0,1)}.
Then, before conversion to the [Z; : Z3] form we have

10 2 0 4
1 01 01
Z=|10 0 0 1
11010
1 2 0 40

where the first three columns refer to M and give Z;. The last two columns are the
evaluations of 2 and z3 at D. Now we may chose Z, so that its columns generate
the same two-dimensional space as the last two columns of Z and moreover its
columns are orthogonal to the first three columns of Z. For example we can take

1 0
0 1
Zy=10 -1
-1 0
0 2

We will see that the definition of the space of residuals of a model in the vector
space sense is not enough for a fully satisfying theory of exponential models on a
lattice. We will need actually a combinatorial definition, as follows.
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DEFINITION 3.4. Let D C 7% be a lattice support and let Est = {z® : v € L}
be a monomial (Gr6bner) basis. If M is a monomial model and Z; = [mﬁ]zeDﬁeM
the model matrix, we call integer orthogonal every polynomial p of the quotient

space R[z1,...,z4]/ Ideal (D) such that:

(1) The polynomial p is integer valued, p(z) € Z, z € D.
(2) The integer values p(z),z € D are relatively prime.
(3) The polynomial p is orthogonal to the model, that is

> p(a) =0, feM

zeD

4. Toric ideals

We recall briefly the notion of toric ideal as presented in [11, Tutorial 38|
and [16], see also [17] and [5]. The relevance of this concept for the analysis of
contingency tables for fixed margins and the application to simulation for exact
tests has been singled out in [7], see also [8]. We present below our application to
exponential models on finite lattices D C Z%,. We are not going to discuss any
application, but the reader will recognize, for example, one of the main theme in
the classical theory of log-linear model for contingency tables, see [10].

Toric ideals are related to algebraic varieties defined parametrically by mono-
mials.

DEFINITION 4.1. Let R[¢] = R[(o, ..., (s] be a polynomial ring and let {5 - - - ',
o; € ZS;OI, i=1,...,n, be a finite list of terms. Consider in the extended polyno-
mial ring R[p, (] = Rlp1,...,Pn,Co,.-.,(s] the ideal J generated by the binomials
pi— (o - ¢¥e. If Rlp] = Rp1,...,pn], the elimination ideal I = JN R[p] is called

the toric ideal of the matrix Z1 = [ov;],_, .o o

We outline the relevant facts with a two simple non-statistical examples of
application of toric ideals, both taken from the literature. The theory relevant for
statistical models will be described in the next Section 5

EXAMPLE 4.2 ([6, Section 4.6]). In R[p1,p2,ps3,(] we consider the identities
p1 = (3, p2 = (%, p3 = ¢®. This can be considered in several ways, all meaningful:
a) a parametric description of a curve in the three dimensional space of coordinates
P1,D2,P3; b) a homeomorphism of the ring R[p; , p2, ps] into the ring R[] derived
uniquely from the rules p; — (3, p2 — (%, p1 — (%; ¢) an ideal J generated by
the polynomials p; — (3, p2 — ¢*, p1 — ¢°. The kernel of the mapping defined in b)
is the ideal I consisting of all polynomials f(p1,ps2, p3) such that f(¢3, (3, ¢5) = 0.
This ideal is easily seen to be equal to the elimination ideal J N R[p;, p2, p3]. The
curve a) is the variety of the ideal I. The computation using CoCoA gives the basis
—p3 + paps, —P3 + P1D3, Pip2 — P2 and the corresponding equations are the implicit
equations for the curve a).

Now let us consider a reduction of the previous problem to linear algebra:
assume (p > 0 and rewrite the initial identities as logp; = 3log(, logp, = 4log(,
ps = b5log(, that is the vector log[p], [p] = (p1,Dp2,ps3), is proportional to the
vector u = (3,4,5). By introducing the vectors v = (1,—2,1) and w = (3, -1, —2)
which span u’, we can write v* log[p] = 0, w’log[p] = 0, or p1p3 = p2, p} = paps.
Comparison with the previous results shows that one equation is missing, and, more
important, that the variety now contains the axis p; = p2 = 0 which is not part of
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the original curve a). Computation of the colon ideal Ideal (p1ps — p3,p3 — pops) :
Ideal (p1, p2) gives I, eliminating the extra unwanted component.

We describe now the theory relevant to fill the gap between the residual matrix
and the toric ideal. Given two polynomial ideals I, J C R[zy, ..., z4] the colon ideal
I:J is defined as

I:J={g€eRzy,...,z4]: fge forall feJ}

The saturation of the ideal I C R[z1,...,z4] with respect to the polynomial
f € Rlzy,...,z4] is defined as

I:f*={geR[z1,...,24]: f™g € I for some m > 0}

THEOREM 4.3. Let I C R[zy,...,z4] be an ideal and let f € Rlz1,...,24] be a
polynomial. Then

(1) I: f° is an ideal.

(2) I:fcI:f2cI:f3.

(3) There exists m > 0 such that I : f™ =1: f>.

(4) Suppose that I is generated by fi,...,[fs and define the ideal I of the
extended polynomial ring R[z1,...,z4,y] generated by fi,...,fs and 1 —
fy. Then I: f~ =IO\ Rlzy,...,zq].

Saturation is a way to localize around f, that is to make f invertible.

This construction is related to the choice of the Z5 matrix in our above devel-
opment (Z!Z5 = 0) and in particular to the fact that multiplication or division of
columns of Z> by a non-zero integer (and which keeps Z, integer) and more general
column reduction of Z5 leads to the same saturation of the ideal and lattice ideal.
That is bases of the column space spanned by Z» can be associated to different
toric ideals. But these toric ideals have the same saturation ideal with respect to
the polynomial f = z; ... x,, where n is the number of columns in Z.

EXAMPLE 4.4 ([16]). Consider the following system of equations

p1 = st

3,2

p2 =8t

(4.1) X
p3 = st

pa = s°t?

The elimination of the s and ¢ indeterminates from System (4.1) is equivalent to
determine the kernel of the following homomorphism of R-algebras

¢: Rlpi,p2,p3,pa] — R[s, t]
(plap27p37p4) — (St,83t2,8t4,85t2)

To System (4.1) we can associate the “Z;” matrix

7y =

TR W
CIRIC Oy

and the system of linear equations
21+ 3220 +23+ 524 =0
z21+ 220+ 323+ 224 =0
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whose solutions are the integer orthogonal vectors. Here one can see that an in-
teresting connection of toric ideals to Diophantine linear systems; this was first
pointed out in [4]. Two solutions for this system are (z1, 22, 23, 24) = (7, -2, —1,0)
and (4,-3,0,1). Then, a basis of the “Z,” matrix is

-7 4
2 -3
Zy = 1 0
0 1

and the binomials p] — p2p3 and pips — p3 are in the kernel of ¢. Also any other
polynomials in Ideal (pZ — p2p3, pips — p%) belongs to the kernel of ¢. Actually
there are other polynomials in ker(4) for example p3p, — p3ps. It can be proved
that ker(¢) is the saturation ideal of Ideal (pz — p2p3, pips — pg) with respect to the
polynomial p1papsps.

Definition 4.1 itself suggests a method to compute toric ideals as elimination
ideals of s and t from the system

p1 — st
Dy — 5312
ps — st
Dy — 5582

Another method to compute the wanted saturation ideal is to consider the following
ideal in the extended space

Ideal (p] — p3ps, Pips — Py, P1papspat — 1) C Rlp1, pa, s, pa, t]
and intersect it with R[z, p2, p3, pa]-

5. Exponential models and toric ideals

In this Section we apply all the machinery of previous Sections to exponential
models. Let D C Zio be a (lattice) support and let M be a monomial model, that
is the set on monomial functions on D given by 2, 3 € M is a linearly independent
set. We assume 0 € M and consider the exponential model

(5.1) plz;y) =exp | > vz’

BeEM

As z € Z¢,, then 2P is a non-negative integer for 3 € M, and we introduce the
(-parameters defined by

(5.2) (g =exp(Yp), BEM

The p-parameters, that is the vector [p] with components p(z;%), x € D depend
on the (-parameters according Equations (5.1) and (5.2), and the dependence is a
monomial function:

(5.3) plz) = [J ¢g't

BeEM

As before, we consider the model matrix Z; = [mB] and a residual integer

zeD;BEM
valued matrix Zs.
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THEOREM 5.1. Let us consider the polynomial rings R(p,{) = Rlp(z),z €
D,(3,B8 € M], R(p) = Rp(z),z € D], R(¢) = R[(g, € M], and let J be the
ideal generated in R(p, () by Equations (5.3). Let Z5 denote the set of all integer
ortogonal polynomials. Let I = J N R(p) be the toric ideal in R(p).

(1) The probability parameters [p] of the exponential model in Equation (5.1)
belong to the irreductible variety Variety (I) N Variety (3, . p p(z) — 1).

(2) The toric ideal I has a binomial homogenous basis. This basis can be
computed by elimination of the (-variables in J.

(3) For each column f of the residual matriz Zs, denote by fy and f_ respec-
tively the positive and the negative part. Then the binomial

(5-4) II p@"* — I] p(z)*-

zeD z€D

belongs to the toric ideal I.

(4) Let Iy be the ideal generated by the binomials in Equation (5.4). Then
Iy C I, and I is the saturation of Iy for the monomial H,BeM Cg- In
particular, a basis of I can be computed by the elimination of t in the
ideal generated by the Equations in (5.4) and t[[5cp, (s — 1

(5) The set of binomials

I p@)o+® = I] p(z)?- ), g€ 2,

zeD z€D

is a basis of the toric ideal I.

PROOF. Point 1. follows from the exponential model expressed in the (-
parameters, plus the normalization condition. Note that the existence of a poly-
nomial parametric representation for this variety implies that the variety is irre-
ductible, see [6, Section 4.5]. Point 2. is an application of the general theory. Point
3. follows from considering positive values for the parameters, and observing that
the vector of the log-probabilities log[p] is a linear combination of the columns of
the model matrix Z;, or, equivalently, orthogonal to le columns of the matrix Z,.
Point 4. follows from the general theory. Point 5. follows from the fact that any
vector in Z5 can be a column in Z3 and the logarithms of the binomials in a basis
of the toric ideal form an integer orthogonal vector. O

There is a very close connection to the toric ideal constructed by exhibiting
the p(z) as power products and the residual space construction on Z,. Suppose
that D is lattice. We can always construct an orthogonal matrix Z» (Z{Z; = 0)
with integer coefficients. Any standard construction such as Gram-Schmidt or the
Cholesky orthogonal polynomial construction will lead to a rational Zs which can
be made integer by suitable multiplication by an integer. Now Z3 gives a basis for
the toric ideal as follows. For each column j of Z5 divide the row indices in three
groups according as to whether the entry (;; is positive, zero or negative. Call the
three set of indices so obtained J;r, J]Q and Ji respectively. Then the toric ideal

has a basis

H P — H pgij for all j

g ieJ;
In the toric ideal theory different bases for the subspace orthogonal to Span (Z)
(the column space of Z;) namely different Z, lead to different bases for the ideal.
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One may also obtain different Grobner bases of the toric ideal by varying the
monomial ordering ¢, but there is only a finite number of such bases. Their union
is still a Grobner basis and is called the universal Grébner basis of the toric ideal
(see [17]).

Underlying the Z5 construction and the construction obtained by varying o is
the lattice ideal. This is easily captured by considering all integer solutions to

Z3lq) =0

which defines an integer lattice. This lattice is independent of the actual Z; basis
(or the Grobner basis) used in the construction.

6. Modeling independence

In statistical inference many of the probability models used are based on as-
sumptions of independence or conditional independence. In the present Section
we examine the implications for indipendence and conditional independence of our
assumption of finite lattice support, D C Zio. Consider first the following simple
example in order to review our basic setup in this perspective.

EXAMPLE 6.1. Let X; and X, be two independent Bernoulli (0, 1 valued)
random variables with marginal probabilities p; = P (X; = 1) and p» = P (X3 = 1).
Independence says, for example that

P ({Xl = 1} n {X2 = ].}) = p1p2
Now consider the exponential formulation. By independence, and because The
interaction term z;xzs is omitted, this is
logp(z1,2; ) = exp(Yo + Y121 + P212)

Then we have

0 1
0 -1
1 2= |
1 11 1

It is easy to check that che unique column of Z5 is also the unique integer ortogonal,
then the toric ideal in obvious notation is

1
1
Zy = 1

o = O

Poop11 — propor =0
This condition is very familiar to students of the 2 x 2 contingency table.

The attractive feature of the exponential interpolation is that essentially any
conditionality structure can be captured by the structure of the terms X*Y?#Z7,
afy € M appearing in the sub-model

(6.1) P(X,Y, Z;) =exp | D> Yap, XVPZ7
afByeM

Here capital letters denote block of variables.

It is enough for the purpose of the present paper to model a single conditional
independence structure. Thus for three vector random variables X,Y, Z, let X and
Y be conditional independent given Z, written as X [[Y|Z. Then the following
proposition holds; it is a version of a well known result in graphical models, see
[12, Chapter 4]. We partially follow the presentation given in [13].
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LEMMA 6.2. Let X, Y and Z be disjoint blocks of variables. Let us assume the
following:
(1) For each z € Dz the corresponding section of the sample space is a product
Dxyz—, = Dx z—, X Dy,z—,.
(2) The joint quotient ring R[X,Y, Z]/Ideal (Dx y,z) has a monomial vector
basis that contains the terms in the model X*YPZY, afy € M, and a
monomial vector basis both of the marginal quotient rings

R[X, Z]/ Ideal (Dx.z) and R[Y, Z]/Ideal (Dy.z)

(The assumption is in particular true in the set product case, Dx y,z = Dx x Dy x
Dyz.) Then X [1Y|Z under the distribution in Equation (6.1) if and only if the
model structure M does not contain any (a, 8,7) with a, B both nonzero, that is
any X,Y interacion is excluded.

ProOOF. Under the product assumpion (1) the conditional independence is
equivalent to the factorization, or, taking the logarithms, the representation of
S apyer Yapy X“YPZY as a sum of a function in R[X, Z]/Ideal (Dx,z) plus a
function in R[Y, Z]/Ideal (Dy,z). Under the second part of the assumption this is
possible only in absence of the indicated interactions. O

The omission of the terms X®Y#Z” with a and 3, both non-zero, (a # 0)(8 #
0) = 1, from the model affects the form of the residual matrix Z> and of Z> in the
analysis of the previous sections and equivalently the toric ideals. The following
lemma then, links the model structure implied by X [[ Y| Z to the structure of the
toric ideal.

LEMMA 6.3. In the set up of Lemma 6.2, in the product case, construct separate
series of orthogonal polynomials with integer coefficients {pa}, {¢s}, {ry} on Dx,
Dy and Dz, respectively. Then one residual matriz is

Zy = [paQBTW](a;éO)(Bﬂ):l

and the toric ideal can be constructed by saturation.

PROOF. The product of integer orthogonal polynomial bases is an orthogonal
integer base for the product space. a

The above can be generalized to a very important group of models based on
trees.

7. Conditional independence on trees

We refer to [12] for graph theory in graphical models. First recall that a
tree is a graph G(E,V) with no cycles. By identifying a source (root) vertex
v € V and giving the edges directions (arrows) away from the source the tree
becomes a special case of a directed graph. Directed graphs are at the foundation of
Bayesian influence diagrams and hence of modern probabilistic artificial intelligence,
or learning. Moreover trees are an important subclass of models which we now
explain by example.

ExaAMPLE 7.1. Consider six binary random variables X, ..., X5 and the fol-
lowing tree in which each node holds one of the random variables except for the root
to which we simply attach the symbol 1. The tree in Figure 1 holds the information
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X3
X1
X4
1
Xs
X2
Xs

FIGURE 1. A tree of random variables.

about conditional independence as follows:
Xi[1X:
Xs [ X4| Xy
X5 [ X6| X2

The support is taken to be D = {0,1}% and the joint density is p(z) > 0, z € D
can be factorized using the chain rules for condition probability. Thus with = =
(ml, ey .’176)
p(z) = p31(23|T1)par (T4]71)ps2(T5|T2) pe2 (76 |72)p1 (21) P2 (T2)
Now switch to the exponential interpolation. The full Est, (D) is all 26 multi-
linear terms
1,21,22,...,2122L324T5 %6
The sub-model represented by the tree is
M: 1,

T, T2, T3, T4, T5, Te,

13, T1T4, T2T5, T2T6
Notice that, with care, M can be read directly off the tree. Below we will give a
systematic way of doing this.

DEFINITION 7.2. Let D = {0,1}¢ and let (binary) random variables X1, ..., X4
have a joint distribution p(z) > 0, = € D and )  _,p(z) = 1. The random
variables are said to be a tree model with respect to a directed tree T'(E, V) with
#V =1+ d and some vertex vy if “children” are conditionally independent with
respect to “parents”

H X;| X;

e(i,5) EE(i,5)

where E(i, j) is the set of directed edges out of vertex i.
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The corresponding factorization of p(z) takes the form
p(z) = II p(zj|z:)
i,j:i€Vie(i.)EB(i,)

DEFINITION 7.3. For any tree T(E,V) define a maximal chain as a connected
path from the root to a final branch. The maximal chains together with all their
subsets form a simplicial complex. These subsets are themselves sometimes referred
to as be chains, but need not be connected. Call the simplicial complex generated
in this way C(T).

In the Example 7.1 above, the maximal chains give z;z3, 124, T225, T2T6-

THEOREM 7.4. Let Xi,..., X4 be a tree model with respect to the tree T(E,V)
and let C(T') be the simplicial complex generated by the mazimal chains of T. Let the
distribution be p(z) > 0, € D = {0,1}?. Then define the exponential interpolator

o0
aeM
Then for any s € C(T) define
Ms={a:a;=1,i€ S and a; =0, i ¢ S}
Then

M ={Ms: S eC(T)}

ProoOF. By repeated applications of the previous Lemma 6.2 g

We are now in a position to give explicit generators for the toric ideal for the
raw p(z) and hence to set up algebraic formulae for the probabilistic model. We
consider the setup of Theorem 7.4. The following is a direct consequence of the
“automatic” orthogonality of Example 3.2.

THEOREM 7.5. Let L be the full list for the (saturated) model consisting of all
multi-linear terms. Define

M=L\M

(where M is defined in Theorem 7.4) namely the complementary list in L. Then
the model toric ideal is the saturation of the ideal generated by the binomials

{ Il »- ] p(x):aeﬁ}

T:z>¥=1 z:z*=0

PROOF. By computation of the relevant Z5 and the result on saturation. [
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ExAMPLE 7.6. For the Example 7.1 the list {wo‘ T € M} is

T1T2, T1Ts,

I2T3, T2Tyq,

T34, T3T5, T3T6,

T42s5, T6T6,

T5T6,

T1T2T3, sy T4T5T6,
T1X2T3T4, seey T3T4T5T6,
T1X2T3T4T5, ) T2X3T4T5T6,
T1T2X3T4T5T6

Each of these leads to a generator of the toric ideal. Choosing one example
2324 0 gggee=10(2) — Mpigza=op(2)
The algebraic conditions for the p(z) are given by
{Ms:pa—1p(z) — Mpipa—op(z) = 0l € M}

In the tree case exhibited here M can itself be seen to have its own simplicial
structure.

8. Final comments

This binary case can be extended in a straightforward way to the case when
each X; is a vector random variable by using Lemmas 6.2 and 6.3.

This more general case arises as an important reduction of directed graphs
which arise as the main component of Bayesian influence diagrams (for details see
[12]). These can be explained simply as follows. We associate to each vertex v; of a
directed graph G(E, V) a random variable X;. Then the X,..., X,, (where n is the
number of vertices) is said to have the Markov property with respect to G(E,V)
if (again) “children” are conditionally independent given “parents” and in such a
way that “parents” separate “children” from “ancestors” (vertices further back but
reverse reacheable from children). However when parents are grouped together so
that is any two parents which have the same children are merged (“moralisation”
to use the quaint term) the graph becomes a tree in which the merged parents
are grouped together at a super-node (called a “clique”). Thus the general tree
formula can be seen in a sense as holiding together the maximal amount of first
order Markov resolution.

Returning to the first case of interpolation in Section 1 we can call the raw
polynomial through the probabilities in the saturated case

p(z) = Z Oz

acL
In matrix terms we have
b = 28
0] = Z '[p]

Adjoining to this the toric ideal conditions derived from Z; we can produce poly-
nomial interpolator which satisfy the model conditions on the p(z) imposed by the
model M C L. We can for example compute, as possibly rational forms, all the
conditional probabilities in the tree case.
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