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On accuracy of multivariate
compound Poisson approximation

Abstract

We present multivariate generalisations of some classical results on accuracy of
Poisson approximation for the distribution of a sum of 0-1 random variables.

1 Introduction

Let X, X;,Xz,... be a stationary sequence of dependent random variables (r.v.s). The
key object in Extreme Value Theory is the number of exceedances

Na(u) = _}j:ln{x,- > u}.

Investigation of N,(u) is motivated by applications in finance, insurance, network
modelling, meteorology, etc. (cf. [11, 19]). -

In the independent case, N,(u) has binomial B(n,p) distribution, where p =
P(X > u). i p is “small” then L (N,(u)) may be approximated by the Poisson
II(np) distribution. Accuracy of Poisson approximation for a binomial distribution
has been investigated by famous authors (see, e.g., [17, 14, 10, 3] and references in [6}).
The case of a sum of dependent 0-1 random variables was the subject of [9, 2, 3] (see
also references in [3]).

The natural measure of closeness of discrete distributions is the total variation
distance (TVD). Recall the definition of the TVD between the distributions of random
vectors X and Y taking values in 27, where Z, = IN U {0}:

dpy (X;Y) = dpy (L(X); L(Y)) = sup [IP(X € A)-P(Y € A)} .

Let 7 be a Poisson random variable with the parameter np. According to Barbour
and Eagleson (2],

dpy (Na(u)im) < (1 —¢™) p. (1)

This is probably the best universal estimate of the TVD between binomial and Poisson
distributions; it improves the results of Prokhorov [17] and LeCam [14]. Sharper bounds
are available under extra restrictions (see [10, 20]).

1Eurandom, PO Box 513, Eindhoven 5600 MB, Netherlands.
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Dependence can cause clustering of extremes, and the Poisson approximation may
no longer be valid. It is known that under a mild mixing condition, the limiting
distribution of N,(u) is compound Poisson.

Accuracy of compound Poisson approximation for £ (N,(u)) has been evaluated in
(1, 15, 18], among others. The feature of the estimate given in [15] is that it coincides
with (1) in the particular case of independent r.v.s.

A natural problem is to investigate the distribution of the vector

N, = (Nn(ul): ey Nﬂ(um))

of the numbers of exceedances given a set of distinct levels uy,...,u,. The problem
has applications in insurance and finance. For instance, a stationary sequence {X;}
of (dependent) random variables can represents claims to an insurance company. Let
N(u;) denote the number of claims exceeding a level w;. It can be of interest to
approximate the probability that the number of claims exceeding u; equals n;, 1 <
t < m. This question can be easily addressed if the distribution of the vector N, has
been approximated.

We show that under natural conditions, the limiting distribution of N, is neces-
sarily compound Poisson. We evaluate accuracy of multivariate compound Poisson
approximation for the distribution of N, . In particular, we improve the corresponding
results of Barbour et al. [4] and Novak [15]. In the case of independent trials, our result
yields an estimate of accuracy of multivariate Poisson approximation for a multinomial
distribution.

2 Results

We may assume % > ... > un, . Let F,p = Fup(ur,...; um) be the o-field generated
by the events {X; > u;}, a <i < b1 < j<m. Denote

al) = a(,{uy,...,un}) =sup{IP(AB) - P(A)P(B)|,
B(k) = B(l,{w,...,un}) = sup Esupg |P(B{F,,;) — P(B)|,

where the supremum is taken over all A € F;, B € Fipty14, 7 2 1, such that
IP(A) > 0.
Condition A, = Ap{uy,...,um} s said to hold if

on = o(ly, {ur, .yt }) = 0

Jor some sequence {l,} C Z; such that I,/n —+ 0 as n = co. A vector Y has a
multivariate compound Poisson distribution II(}, £(Z2)) if

v=%z,
i=1
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where Z,Z,,... are i.i.d. random vectors, m is independent of {Z;} and has the
Poisson distribution with parameter A.

Theorem 1 Assume condition A,,, and suppose that up, = unm(n) obeys
limsup nlP(X > un) < 00. (2)

If N, converges weakly to a random vector Y then Y has a multivariate compound
Poisson distribution.

Let ¢(n),¢1(n),¢z2(n),... be independent random vectors with the common distri-
bution

L(¢(n)) = L(N:|N(um) > 0), 3)

where r € {1,...,n}. The proof of Theorem 1 shows that Y < II(}, £(Z)), where
A = — lim InIP(Np(um) = 0) and L£{¢) is the weak limit of £({(n)) for an appropriate
sequence r = T .

Denote

p=P(X > un), ¢=P(N(un) >0), k=[n/r], ¥ =n—rk,

and let = be a Poisson random variable with parameter kq.
In Theorem 2 below we approximate the distribution of N, by the multivariate
compound Poisson distribution £(N), where N = X7, (i(n).

Theorem 2 If n>r >12>0 then
dpy (Na;N) S (1 —e™)rp+ (2nr~H 4+ )p + nr~t min{B(!); (1)}, (4)

where k(1) = 2(1+2/m) {2 1m2e2(1)}/C™ if m2(m—D/2a(1) < 1, otherwise (1) =
1.

Barbour et al. [4] evaluated accuracy of compound Poisson approximation for
general empirical point processes of exceedances in terms of a weaker Wasserstein-
type distance d,, . Concerning the approximation £(N,) =~ L(N), Theorem 3.1 in [4]
yields d,, (Na; N) < (1.65(1 —rp)~/2 4 e”’) rp + 2(2rp + nr~)p + nr-15(!). In the
case m = 1 (the 1-dimensional situation), (4) improves a result from [15] (cf. also {1]).
If m =1 and the random variables {X;} are independent then (4) with {=0,r =1
yields (1).

As a consequence of Theorem 2, we derive an estimate of accuracy of multivariate
Poisson approximation for a multinomial distribution.

Let : = (il, cesy Zm) y where 2'1 S ves S im . Denote * = (‘il,ig e il, ...,im . im—l),

N:: = (Nn(ul): Nﬂ(ulv U2), ey Nn(u’n“l’ 'U.'m)) ’
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where N,(u,v) = i, I{u > X; > v} as u > v. Evidently, the distribution of N,
determines that of N and vice versa.
The statement of Theorem 2 can be reformulated as follows: if n > r > [ > 0 then

dry (N3; N7) < (1= e™)rp + 2or 7+ ')p + nr- i min{B(1); 6(1)},  (47)

where N* =37, ({(n), random vectors {*(n),(;(n),... are independent and have the
common distribution IP({*(n) =i*) =P({(n) =1).

If the random variables {X;} are independent and r =1 then N} has the multi-
nomial distribution B(n,p;,...,pn) with parameters p; = P(X > u;), p; = P(u; >
X >ug)yey P = Pttme1 2 X > up):

. nl e
P (N = (bl b)) = Llilyl(n— l)!plll"'p#"(l = P) E (5)

where | = li+...+ln < n, p=p;+...4+pm . Theorem 2 yields an estimate of accuracy of
multivariate Poisson approximation for the multinomial distribution B(n,p;,..., ) -

Corollary 3 Let m,...,mn be independent Poisson random variables with parameters
nP1, .oy NPm . Denote Y = (m1,...,7) . If L(Y,) = B(n,p1,..ypm) then

dp, (YY) < (1 - e""’) p- (6)

3 Proofs

Proof of Theorem 2 incorporates some ideas from [15] and results of Berbee [5] and
Bradley [8].
Denote I; = (I{X > w1}, ..., I{X > un}), and let

(7 +1)rAn

Ny= Y L (0<j<k=n/r).

i=jr+l

Evidently, N, = Zf:u N, ;. Notice that the last block N, may be omitted:

=0

k-1
dpy (Nfﬁz Nm') SP(Nex # 6) < r'p.
Following Bernstein’s “blocks” approach, we subtract a subblock of length ! from each
block Xjry1,..., X(j+1)- of length . Denote
(F+1)r-1

k-1
Nj= 3 L, N;=% N,; (0<j<k).

i=jr+1 1=0
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Then P (T2 Noj # TH2h N2;) S kTP (Noo # Nio) < Kip.

3=0 3=0 *"r,j

Let {N,T:J} be independent copies of N;,. Denote
i-1 k=1
Si=3Y_ N+ > N (0 <i<Kk).

Notice that 5; + N,‘."‘j = Sj_1 + N;_, . We apply Lindeberg’s device (cf. [15]) in order
to replace {N;;} by {N,’,':,}

=1

k=1 k=1 k=1 .
]P(ZN:J. € A) ~ IP(EN:J. € A) =3 {P(S;+ N:; € A)-P(S; + Ny € A}
7=0 j=0

According to Berbee’s lemma ([5], ch. 4), the random vectors Tio N, N and

N,“ ; can be defined on a common probability space so that P (N:,j # ﬁ:,j) < B().
Therefore,

b— k—
P(ZfN;j < A) -P(zjlzv;j “ A) < kB(Y).

J=0 3=0
The mixing coefficient « is weaker than B. Using Lemma 4 below, we evaluate

’IP( kN € A) - IP( i N:J € A) in terms of a(!). Note that IE|N;,| = rp.
Inequality (10) with 4 = 1 and y = rp entails the random vectors Y2 mry N7
and JV,’_': ; can be defined on a common probability space so that P (N,’_': i F N,:_,) =
P (|Nz; — N7yl > 1) < w(l) if m2(™/%a(l) < 1. Hence

JP(EN:,j € A) = IP(E N:; € A)| < kmin{8(); (D)} .
=0 =0
Let {N,;} be independent copies of N, o, and set N, = f;cl, N, ;. Evidently,
P ( s N,; #¥kd N,:j) < klp. Combining our estimates, we get
dpy (Na3 N) < 2Kkip + r'p + kmin{B(1); x(1)} -
Denote p = Y52} I{N,; # 0}, and put
Z=0,Z;=G(n)+..+Gn)  (G21).

By Khintchin’s formula (see [12], ch. 2), N, £ Z,. According to (1), dp, (p;7) <
(1 -~ e"“’) g . Using this inequality and an idea from [15], we conclude that

1 - -
dry (2 Zx) = 52 |P(Zu=)~P(Z: =1)|

]



1 &2 -
< 52ZlP(Zm=z)']P(u=m)~IP(1r=m)|
{ m=0
= dTV (J”a "T) < (1 - e_kq)q < (1 - e—n;p)rp'
The result follows. (m]

The proof of Theorem 2 shows that the term (1 — e™™P)rp in the right-hand side
of (4) may be replaced by any other estimate of d,, (u,n) (cf. [10, 20]).

Proof of Theorem 1. Let {r =r,} be a sequence of natural numbers such that

n> > L+ 1, nrta/m L0, (7

Such a sequence exists: one can put r, = max{ [na};’ (2+”‘)] ; [\/n(ln +1) ]} (note that

rp — 0 because of (2)).
If N, = 3N then there exists the limit

BmIP(Np(tm) = 0) := e™*. (8)

If t=0 then N,(um)— 0, and the assertion of Theorem 1 trivially holds. Evidently,
t < oo (otherwise 1+ o(1) = IP(N,(um) > 1) < EN,(um) = rp = 0). Thus,
t € (0;00). :

It is known (cf. {13, 16]) that (8) with ¢ € (0;00) is equivalent to IP(N,(un) >
0) ~ tr/n. Therefore, if N, = 3N then Theorem 2 implies

[Ec™M» =exp (t (tpg(n)('v) ~ 1)) + o(1) = BN (Vv e R™)

as n — 0o, where (. is the characteristic function of {(n). Hence there exists the
limit nllpnolo Pen)(v) = @(v) . As a limit of a sequence of characteristic functions, it is a
characteristic function itself. Therefore,

Ee*N = exp (¢(1o(v) — 1)) -

This is a characteristic function of a compound Poisson random vector with intensity
t and multiplicity distribution £(() such that Ee®¢ = p(v). m]

Proof of Corollary 3. Let r =1 and [ = 0. Then (*(n) takes values (1,0,...,0) ,...,
(0,...,0,1) with probabilities p,/p,...,pm/p and L(r) = II(np). By Theorem 2,

dTV(Kl; 3 C;(n)) < (1 - e—np) -

=1



It is easy to see that

m

[Eexp (wg (;(n)) - (n 5o (e - 1) p,-) _ Y

i=1
for any v € R™. Hence }7_, (;(n) Ly. O

For v € R™, we put |v| = maXicm |vi|. Let (X,Y) be a random vector taking
values in IR’ xIR™ , and let @ be the a—mixing coefficient corresponding to the o—fields

o(X) and o(Y).

Lemma 4 One can define random vectors X,Y and YV on a common probability space
in such a way that Y is independent of X, Y2Y and (y>0,K € IN)

P (¥ - Y| >y) <2m32Km/%0 + 2P([Y| > Ky). 9)

In particular, if v = EY4|Y|’ < 0o and b(v/y)® > m2(™~1/2q then

1/(2b+m)

P (Y —Y|>y) < 2(1+2b/m) [@0m=12m b)2(v fy)'™ o™ | (10)

H ve = esssup |Y| < oo then (10) yields
P (|Y - Y| >y) <22 (v fy)a. (11)
In the case m = 1, (10) improves the result of Theorem 3 in [8].

Proof of Lemma 4. Denote Y< = YI{|Y| < Ky}. Vector Y< takes values in
[~ Ky; Ky]™. Splitting [—Ky; Ky| into 2K intervals of length y induces the partition
of [-Ky; Ky]™ into N = (2K)™ cubes H,, ..., Hy . Accordingto Theorem 2 in (8], one
can define X,Y< and ¥< on a common probability space so that ¥'< is independent

of X, Y<2Y< and
P (V< -Y*|>y) =P(A) < VBNa,

where A = {¥"< and Y'< are not elements of the same H;} .

_ Now we construct a vector Y on the base of V< such that ¥ £ Y. We put
Y =Y+ I[{f" = 0}Y’, where Y’ is independent of all other random vectors,
LY)=L(Y|B) and B={Y<=0}={Y =00r |Y|> Ky}.

Evidently, ¥ 2 Y. Indeed, P(Y =0) = P(Y< =0 =Y") = P(B)P(Y' = 0) =
IP(Y =0), and if 2 # 0 then

P(Y €dz) =P(Y< € d2) + P(Y< =0,Y’ € dz)
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=P(B.,Y € dz) + P(B)P(Y € dz|B) = P(Y € dz),

where B, = {0 < |Y] < Ky} is the complement to B. It is easy to see that ]P(lj’ #
Y )=P(Y<=0+#Y")=IP(B)P(Y #0|B) = P([Y| > Ky). Hence

P (Y - Y<|>y) <VBNa+P(Y # V) < VBNa+ P(IY| > Ky).

It remains to construct (X,Y’) on the base of (X,Y~). Let {Y;} be independent
random vectors with distributions £(Y;) = L(Y|B,X = z). Denote Y* = Y= +

I{Y< = 0}Yx. Then (X,Y*) 2 (X,Y) . Indeed,

P(X €dz,Y*=0) = P(X €dz,Y< =0=Yy)=P(X € dz, Y = 0)IP(Y, = 0)
= P(X €dz,B,Y =0)=IP(X € dz,Y = 0).

If 250 then
P(X €dz,Y"€dz) =P(X €dz,Y" €d2)+P(X €dz,Y" =0,Yx € dz)
= P(X € dz,B.,,Y € dz) + P(X € dz, B)P(Y, € dz) = IP(X € dz,Y € dz).
Note that P(Y* #Y<) =1P(Y< =0 # Yx) = P(|Y| > Ky). Therefore,
P(V-Y|>y) < P(¥-Y|>y)+P(Y]|> Ky).

Combining our estimates, we get (9).
Using Chebyshev’s inequality, we deduce

P (Y —Y|>y) < cK™?+dK™*,
where ¢ = 2(™+3)/2q and d = 2(v/y)*. The function f(z) = cz™? + dz~° takes its

minimum in z > 1 at z, = max{(2bd/cm)?*(™*+®);1}. Since ¢ = E(;b(_%%, in-
equality (9) entails (10). The proof is complete. 0
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