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Abstract

In this paper we consider a random walk fSng with dependent
heavy�tailed increments and negative drift� We study the asymptotics
for the tail probability IP�sup

n
Sn � x� as x � �� If the incre�

ments of fSng are independent� then the exact asymptotic behaviour
of IP�sup

n
Sn � x� is well�known� We investigate the case that the

increments are given as a one�sided asymptotically stationary linear
process� It turns out that the tail behaviour of sup

n
Sn heavily de�

pends on the coe�cients of this linear process�
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� Introduction

In a sequence of recent papers� see e�g� ��� �� �� �� 	� 
��� the tail behaviour
of the supremum of negatively drifted random walks with dependent heavy
tailed increments is studied� In the present paper� we continue these studies�
where we consider a stochastic model which can be justi�ed as follows� Sup
pose that the nominal return of some manufacturing or �nancial system per
unit time is equal to some constant a � �� However� in a variety of practical
situations� this nominal return is not exactly achieved by the actual returns
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in the individual unit time period� We therefore assume that the actual
return in the nth period is subject to some random perturbations ��� � � � �
�n� which arise in the �rst n periods� due to unexpected claim costs or addi
tional income� For example� the perturbation �n incurred in the nth period
may not be fully reported during that period and may also a�ect the actual
returns of later periods� More precisely� the fraction c��n of �n is reported
in the nth period� the fraction c��n in the period n�
� the fraction c��n in
the period n��� and so on� where c�� c�� � � �� ��� 
� with

P�
i�� ci � 
� Thus�

supposing that the system begins to work at time zero� the actual return
in the kth period is given by the expression a�

Pk
j�� ck�j�j� Furthermore�

the sum Sn � �� � � � � �n� where �k �
Pk

j�� ck�j�j � a� can be seen as total
�cumulative� claim surplus in the nth period�

However� the results proved in the present paper hold under more general
conditions on the coe�cients c�� c�� � � �� Namely� they can be arbitrary �xed
real numbers such that

P�
i�� jcij � �� Coe�cients greater than one and

negative coe�cients could� for example� be interpreted as declaration of too
high costs and reimbursement in later periods� respectively�

The question whether the claim surplus process fSn� n � 
g is �well
behaved� or dangerous� is often answered by studying the asymptotics for
the tail probability IP�supn Sn � x� as x��� In the present paper� we de
rive conditions under which the exact asymptotic behaviour of IP�supn Sn �
x� can be determined� It turns out that this asymptotic tail behaviour
heavily depends on the choice of the coe�cients c�� c�� � � �

��� The Model

Let f�n� n � 
� �� � � �g be a sequence of independent and identically dis
tributed random variables with IE�n � �� The distribution of �n will be
denoted by F � i�e� F �x� � IP��n � x� for x � IR� The right tail of F is
denoted by F �x� � 
� F �x�� We will also use the notations� x � ��

G��x� �

Z �

x
F �y� dy and G��x� �

Z �

x
F ��y� dy�

where the integrals are �nite for each x� due to the existence of IE�n� For
any real numbers B � � and b � �� which are not both equal to �� let GB�b

be the following function �here x�� �� for x � ���

GB�b�x� � BG��x�B� � bG��x�b� � x � � �

�



By de�nition� G� � G���� G� � G��� and

GB�b�x� �

Z �

x

�
F �y�B� � F ��y�b�

�
dy�

Let a � � and let ck � IR� k � IN� be some constants� not all of which
are equal to �� IN � f�� 
� � � �g� Let the random variable �k be given by

�k �
kX
j��

ck�j�j � a�

Consider the partial sums

S� � �� Sn � �� � � � �� �n� n � 
�

Then� the sequence fSn� n � INg is called a random walk with asymptotically
stationary dependent increments and with negative drift� The following
representation of the partial sums Sn is useful� With the notation

ck �
kX
i��

ci � k � IN� �
�

we have the representation in terms of weighted sums�

Sn �
nX
j��

cn�j�j � na� ���

We assume everywhere that

�X
k��

jckj ��� ���

In Lemma 
 below� we use this condition in order to show that fSng satis�es
the strong law of large numbers� i�e� with probability 
� Sn�n � �a � �
as n ��� Hence� the supremum supn�IN Sn of the random walk fSng is a
wellde�ned random variable� which is �nite with probability 
�

��� Main Results

The purpose of this paper is to derive conditions� under which the asymp
totic behaviour of the tail IP�supn�IN Sn � x� can be easily related to the
asymptotic behaviour of the functions G��x� and G��x� as x���

�



In Section �� we derive an asymptotic lower bound for the probability
IP�supn Sn � x�� We prove in Theorem � that� if we take any di�erent
natural numbers m�� m� � IN and put C � maxf�� cm�

g � � and c �
minf�� cm�

g � �� then

lim inf
x��

IP
�
supn Sn � x

�
GC�jcj�x�

�



a
� ���

provided that C�jcj � � and GC�jcj is a long�tailed function �for its de�nition
see Section ���

In Section �� we get the asymptotic upper bound �Theorem ��� Let
C � supf�� ck� k � INg � � and c � inff�� ck� k � INg � �� where C � jcj � �
since not all ck are equal to �� If GC�jcj � S �i�e� GC�jcj is subexponential� for

its de�nition see Section ��� then

lim sup
x��

IP
�
supn Sn � x

�
G
C�jcj�x�

�



a
� ���

Combining ��� and ��� we immediately obtain the following asymptotic
tail behaviour of supn Sn� where f�x� � g�x� means limx�� f�x��g�x� � 
�

Theorem �� Let one of the following conditions hold�

�i� C � cm�
� � for some m� and c � cm�

� � for some m��

�ii� C � cm�
� � for some m�� and c � ��

�iii� C � � and c � cm�
� � for some m��

If G
C�jcj � S� then

IP
�
sup
n
Sn � x

�
� a��G

C�jcj�x� as x�� �

In Section � we consider the only possible remaining cases which are not
covered by Theorem 
� namely C � � and C � cm for any m or c � �
and c � cm for any m� We show that then the assertion of Theorem 
 holds
under the additional condition of �intermediate� regularly varying at in�nity
tails�

Notice that our results generalize a wellknown theorem on the asymp
totic tail behaviour of the supremum of negatively drifted random walks with

�



independent subexponential increments� which concerns the case c� � 
�
c� � c� � � � � � �� see ��� and also �
� �� 

�� Recently� related extensions of
this theorem to the case of random walks with dependent increments have
been proved in ��� �� �� �� 	�� An extension� which is similar to our results�
has been derived in �
��� where F is assumed to have regularly varying left
and right tails� This assumption made in �
�� is essential for the application
of Karamatatype arguments� Our proving technique used in Sections � and
� is di�erent� it allows us to omit the assumption that F is regularly varying
in Theorem 
�

��� Strong Law of Large Numbers

Lemma �� With probability 
� Sn�n� �a as n���

Proof� Condition ��� implies that the sequence cn has a limit as n���
say c � IR� Then� for any n�N � IN with n � N � we have

Sn � na

n
�

c

n

nX
j��

�j �



n

n�NX
j��

�cn�j � c��j �
N��X
j��

�cj � c�
�n�j
n

�

By the strong law of large numbers for i�i�d� random variables�

c

n

nX
j��

�j � � as n��

with probability 
� Furthermore� since IEj��j is �nite� we have for any �xed
j � ��

j�n�jj�n � � as n��

with probability 
� Hence� for any �xed N � IN�

lim sup
n��

���Sn � na

n

��� � lim sup
n��

��� 

n

n�NX
j��

�cn�j � c��j
����

Fix 	 � �� Then� there exists N such that jcn� cj � 	 for any n � N � Thus�

lim sup
n��

��� 

n

n�NX
j��

�cn�j � c��j
��� � 	 lim sup

n��




n

nX
j��

j�j j � 	IEj�j j�

Since 	 � � can be chosen arbitrarily small� the lemma is proved� �

�



� Lower Bounds

We �rst state some asymptotic properties of longtailed distributions� They
will be used in Section ��� in order to derive an asymptotic lower bound for
the tail of supremum of sums�

��� Properties of Long�Tailed Distributions

Let L be the collection of all nonincreasing functions f � IR � ����� such
that� for each y � IR�

lim
x��

f�x� y��f�x� � 
�

The distribution F is called right long�tailed if F �x� � L� For simplicity
of notation� we will write F � L if the distribution F is right longtailed�
Notice that G� � L if F � L�

The distribution F is called left long�tailed if F ��x� � L� By L� we
denote the family of all distributions on IR with this property� Notice that
the distribution F of a random variable � belongs to L� if and only if the
distribution of �� belongs to L�

Lemma �� Let f � L� Then there exists an increasing function g � IR�
IR� � ����� with g�x��� as x�� such that

lim
x��

f�x� g�x���f�x� � 
�

Proof� From the de�nition of class L we get that there exists an increasing
sequence of real numbers fxn� n � 
g such that xn � n and

f�x� n��f�x� � 
� 
�n for each x � xn�

De�ne

g�x� �

��� � if x � x��

n if xn � x � xn���

Since xn ��� we have g�x��� as x�� and� for xn � x � xn���

f�x� g�x���f�x� � 
� 
�n �

which implies
lim inf
x��

f�x� g�x���f�x� � 
 �

On the other hand� for any nonnegative function g� f�x�g�x�� � f�x�� This
completes the proof� �

�



Corollary �� Assume that f � L� Then�

lim
x��

inf
y�x

f�y � g�x���f�y� � 
 �

Proof� Fix 	 � �� Then� by the result of Lemma �� there exists an x� such
that f�x�g�x���f�x� � 
�	 for each x � x�� Thus� due to the monotonicity
of g� for each y � x � x��

f�y � g�x���f�y� � f�y � g�y���f�y� � 
� 	�
�

Lemma �� Let the sequence T�� T�� � � � of random variables be such that

Tn�n� � as n�� with probability 
� Then there exists a non�decreasing

function h � IN� IR� with h�n� � o�n� as n�� such that

lim
z��

IP
��
n��

n
jTnj � z � h�n�

o�
� 
�

Proof� Since Tn�n � � with probability 
� there exists a sequence of
integers fNk� k � 
g such that Nk �� and

IP
� 	
n�Nk

n
jTnj � n�k

o�
� ��k ���

for all k � 
� �� � � �� where without loss of generality we can assume that
Nk�� � Nk � 
� De�ne

h��n� �



n if n � N��
n�k if Nk � n � Nk���

���

Since Nk ��� h��n� � o�n�� We have� for any �xed M � IN�

IP
�	
n��

n
jTnj � z � h��n�

o�
�

NM��X
n��

IP
�
jTnj � z

�
� IP

� 	
n�NM

n
jTnj � h��n�

o�
�

Therefore�

lim sup
z��

IP
�	
n��

n
jTnj � z � h��n�

o�
� IP

� 	
n�NM

n
jTnj � h��n�

o�
�

�



Using ��� and ���� we get the following estimates�

IP
� 	
n�NM

n
jTnj � h��n�

o�
�

�X
k�M

IP
� 	
Nk�n�Nk��

n
jTnj � h��n�

o�

�
�X

k�M

IP
� 	
n�Nk

n
jTnj � n�k

o�

�
�X

k�M

��k � ��M�� �

Since M is arbitrary� letting M �� yields

lim sup
z��

IP
�	
n��

n
jTnj � z � h��n�

o�
� � �

which is equivalent to

lim
z��

IP
��
n��

n
jTnj � z � h��n�

o�
� 
 �

Putting now h�n� 	 maxfh��k�� k � ng� we obtain a nondecreasing func
tion h�n� � o�n� which satis�es the assertion of the lemma� �

Lemma �� Let a � � and n� � 
� Let h � IN � IR� be a function such

that h�n� � o�n� as n��� If G� � L� then� as z ���

�X
n�n�

F �z�na� � a��G��z��
�X

n�n�

F �z�na�h�n�� � a��G��z��

Proof� For any distribution F we have

�X
n�n�

F �z � na� �
�X
n��

Z n

n��
F �z � ay� dy

�

Z �

�
F �z � ay� dy � a��G��z� � �	�

On the other hand�

�X
n�n�

F �z � na� �
�X

n�n�

Z n��

n
F �z � ay� dy

�

Z �

n�

F �z � ay� dy � a��G��z � an�� � a��G��z�

	



as z ��� since G� � L� Thus� the �rst equivalence of the lemma is proved�
To prove the second equivalence� �x 	 � �� First�

�X
n�n�

F �z � na� h�n�� �
�X

n�n�

F �z � na� � a��G��z��

On the other hand� since h�n� � o�n�� there exists N � n� such that
h�n� � 	n for any n � N � Therefore�

�X
n�n�

F �z � na� h�n�� �
�X

n�N

F �z � n�a� 	�� � �a� 	���G��z��

as z ��� in view of the �rst equivalence of the lemma� Due to the arbitrary
choice of 	 � �� it implies the second equivalence of the lemma� �

Let bk � IR� k � IN� be a bounded convergent sequence� Thus� the
supremum b � supk jbkj is �nite� Put

Tn �
nX

k��

bn�k�k

and� for any natural numbers n � 
� m � �� n � m�

T �m�
n �

n�m��X
k��

bn�k�k�

By de�nition� for n � m�

Tn � T �m�
n �

nX
k�n�m

bn�k�k�

The sequences fTng and fT
�m�
n g ful�ll the condition of Lemma �� Indeed�

since IE�i � �� we have limn�� Tn�n � � and limn�� T
�m��
n �n � � with

probability 
 by the strong law of large numbers �see Lemma 
�� Hence�
for any function g�x� with g�x� � �� there exists a function h�n� with
h�n� � o�n� such that

lim
x��

IP
��
n��

n
jTnj � g�x� � h�n�

o�
� 
 ���

�



and

lim
x��

IP
� �
n�m�

n
jT �m�
n j � g�x� � h�n�

o�
� 
� �
��

Furthermore� for n � m� � IN� let Bn denote the event

Bn �
n�m����
j��

n
jTj j � g�x��h�j�

o


n
jT �m��
n j � g�x��h�n�

o



n
bm�

�n�m�
� x����m�b�g�x��na��h�n�

o



n�
j�n�m���

n
j�j j � g�x�

o
and� for n � m� � IN�

B�
n �

n�m����
j��

n
jTj j � g�x��h�j�

o


n
jT �m��
n j � g�x��h�n�

o



n
bm�

�n�m�
� x����m�b�g�x��na��h�n�

o



n�
j�n�m���

n
j�j j � g�x�

o
�

Lemma �� Let m�� m� � IN be any natural numbers such that bm�
� �

and bm�
� �� Then the events Bn� n � m�� and B�

n � n � m�� are pairwise

disjoint�

Proof� Let us consider� for example� any two of Bn� say Bk and Bn�
m� � k � n� If n � k �m�� then for 
 � Bn we have

bm�
�n�m�

�
� � x� ���m�b�g�x� � na� �h�n� � bm�
g�x��

whereas for 
 � Bk�

bm�
�n�m�

�
� � bm�
j�n�m�

�
�j � bm�
g�x��

If n � k �m�� then for 
 � Bk we have

Tk�
� � T
�m��
k �
� � bm�

�k�m�
�
� �

kX
j�k�m���

bk�j�j�
�

� �g�x�� h�k� � x� ���m�b�g�x� � ka� �h�k� �m�bg�x�

� g�x� � h�k��

whereas for 
 � Bn it holds that jTk�
�j � g�x� � h�k�� The rest of the
proof follows by similar arguments� �


�



Lemma �� Let bm�
� � and G� � L� Let g�x� �� be a function such

that G���x� g�x���bm�
� � G��x�bm�

� as x��� Then

lim
x��

IP
�S

n�m�
Bn

�
bm�

G��x�bm�
�
�




a
�

Proof� The function g�x� exists due to Lemma �� By Lemma ��

IP
� 	
n�m�

Bn

�
�

X
n�m�

IP�Bn�

�
X
n�m�

IP
�n�m����

j��

n
jTj j � g�x��h�j�

o


n
jT �m��
n j � g�x��h�n�

o�
�IPm�

�
j��j � g�x�

�
IP
�
bm�

�n�m�
� x����m�b�g�x��na��h�n�

�
�

This gives the following upper bound

IP
� 	
n�m�

Bn

�
�

X
n�m�

IP
�
bm�

�� � x� na
�

�

�

and the lower bound

IP
� 	
n�m�

Bn

�
� IP

��
n��

n
jTnj � g�x��h�n�

o



�
n�m�

n
jT �m��
n j � g�x��h�n�

o�
�IPm�

�
j��j � g�x�

� X
n�m�

IP
�
bm�

�� � x����m�b�g�x��na��h�n�
�
�

�
��

We have the convergence IP
�
j��j � g�x�

�
� 
 as x � �� as well as ���

and �
��� Hence� inequalities �

� and �
��� and Lemma � with z � �x �
���m�b�g�x���bm�

lead to the assertion of the lemma� �

Lemma 	� Let bm�
� �� bm�

� �� and bm�
� jbm�

j � �� Let Gbm�
�jbm�

j �
L and let g�x� � � be a function such that� with m � maxfm��m�g�
Gbm�

�jbm�
j�x� �� �mb�g�x�� � Gbm�

�jbm�
j�x� as x��� Then�

lim inf
x��

IP
�S

n�m�Bn �B
�
n �
�

Gbm�
�jbm�

j�x�
�




a
�







Remark� Notice that GB�b � L if both G� � L and G� � L
�� Another

su�cient condition for GB�b � L is G� � L and G��x�b� � o�G��x�B�� as
x��� Notice that the function g�x� in Lemma � exists� since ���mb�g�x�
can be taken as the function g�x� in Lemma ��

Proof of Lemma �� By Lemma ��

IP
� 	
n�m

�Bn �B
�
n �
�
� IP

� 	
n�m

Bn

�
� IP

� 	
n�m

B�
n

�
�

Following now the guidelines of the proof of Lemma �� we deduce that for
any 	 � � there exists x� such that� for x � x��

IP
� 	
n�m�

Bn

�
� �
� 	�

X
n�m�

IP
�
bm�

�� � x����mb�g�x��na��h�n�
�
�

IP
� 	
n�m�

B�
n

�
� �
� 	�

X
n�m�

IP
�
jbm�

j�� � �x����mb�g�x��na��h�n�
�
�

Therefore� according to Lemma ��

IP
� 	
n�m

�Bn �B
�
n �
�
� �
�	�

X
n�m

�
F
�x����mb�g�x��na��h�n�

bm�

�
�F

�
�
x����mb�g�x��na��h�n�

jbm�
j

��
� �
� 	�a��Gbm�

�jbm�
j�x� ���mb�g�x��

� �
� 	�a��Gbm�
�jbm�

j�x��

for x��� �

��� Asymptotic Lower Bounds for the Tail of the Supremum

We are now in a position to derive an asymptotic lower bound for the tail
IP�supn Sn � x� as x���

Theorem �� Let m�� m� � IN be any di�erent natural numbers� Put

C � maxf�� cm�
g � � and c � minf�� cm�

g � �� If C � jcj � � and

GC�jcj � L� then

lim inf
x��

IP
�
supn Sn � x

�
GC�jcj�x�

�



a
� �
��


�



Proof� Put bk � ck and Tn � Sn�na in Lemma �� Letm � maxfm��m�g
and let g�x��� be a function such that GC�jcj�x����mb�g�x�� � GC�jcj�x�
as x � �� which exists due to Lemma �� see the remark after Lemma ��
For n � m� consider the events

eBn �
n
jT �m��
n j � g�x� � h�n�

o


n
C�n�m�

� x� ���m�b�g�x� � na� �h�n�
o



n�

j�n�m���

n
j�j j � g�x�

o
and

eB�
n �

n
jT �m��
n j � g�x� � h�n�

o


n
jcj�n�m�

� x� ���m�b�g�x� � na� �h�n�
o



n�

j�n�m���

n
j�jj � g�x�

o
where h�n� is the function considered in ��� and �
��� By de�nition� Bn eBn  fSn � xg and B�

n  eB�
n  fSn � xg� Thus�

IP
�
sup
n
Sn � x

�
� IP

�	
n

�Bn �B
�
n �
�
�

Now the assertion follows from Lemma �� �

The following statements are immediate consequences of the proof of
Theorem ��

Corollary �� Let cm � � for some m � � and G� � L� Then�

lim inf
x��

IP
�
supn Sn � x

�
cmG��x�cm�

�
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Corollary �� Let cm � � for some m � � and G� � L
�� Then�

lim inf
x��

IP
�
supn Sn � x

�
jcmjG��x�jcmj�

�
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� Upper Bound

We �rst introduce the class of subexponential distributions� They will be
used in this section in order to derive asymptotic upper bounds for the tail
IP�supn Sn � x� as x���


�



The distribution G on IR� is called subexponential if G�x� � 
 for all
x � � and

lim
x��

G �G�x�

G�x�
� � � �
��

where G �G�x� denotes the tail of the convolution G � G�x� �
R x
� G�x �

y�G�dy�� By S we denote the family of all subexponential distributions� It
is well known that S � L�

For simplicity of notation� we will write GB�b � S if GB�b�x��GB�b����
x � �� is the tail of a subexponential distribution� In particular� G� � S if
the integrated tail G��x��G����� x � �� of the distribution function F �x� is
the tail of a subexponential distribution�

It is well known that the tail behaviour of the supremum of partial sums
of i�i�d� random variables is given by

IP
�
sup
n��

n nX
k��

�k � na
o
� x

�
� a��G��x� as x��� �
��

provided that G� � S� see ��� and also �
� �� 

�� It turns out that G� � S
is not only su�cient� but also necessary for �
��� see ����

Lemma 
� Let bk � IR� k � IN� B � supf�� bk� k � INg� and b �
inff�� bk� k � INg� Let there exist a limit

lim
k��

bk � eb� �
��

If B � jbj � � and GB�jbj � S� then

lim sup
x��

IP
�
supn

nPn
k�� bn�k�k�na

o
� x

�
GB�jbj�x�

�



a
�

Remark� The condition GB�jbj � S is ful�lled� e�g�� if G� � S and
G��x�b� � �� � o�
��G��x�B� as x��� for some � � ��

Proof of Lemma 	� Our proving argument is based on a truncation
technique� For any real z � � and for any random variable �� put

�	z
�
� 	

�����
B��
� if ��
� � z�eb��
� if �z � ��
� � z�
b��
� if ��
� � �z�


�



For x � maxfB��b� jebjgz�
IP��	z
 � x� � IP�B� � x� � IP�b� � x� � F �x�B� � F ��x�jbj�� �
��

Since GB�jbj � S� the integrated tail distribution of �
	z

� is subexponential�

Furthermore� for any 
 � �� and for any b� � �b�B�� we have

b���
� �

�����
B��
� if ��
� � z�
b���
� if �z � ��
� � z�
b��
� if ��
� � �z

�

�����
�	z
�
� if ��
� � z�

�	z
�
� � �b� � �b���
� if �z � ��
� � z�

�	z
�
� if ��
� � �z

� �	z
�
� � jeb� b�jz �

Therefore�

nX
k��

bn�k�k �
nX

k��

�
	z

k � z

n��X
k��

jeb� bkj�

Fix 	 � ��� a���� Since bk � eb� there exists K such that jbk � ebj � 	 for any
k � K� Hence�

nX
k��

bn�k�k �
nX

k��

�
	z

k � z

KX
k��

jeb� bkj� n	

	
nX

k��

�
	z

k � bbz � n	 �

where bb 	 PK
k�� j

eb � bkj� Since IE�� � �� there exists a su�ciently large

z � � such that IE�
	z

� � 	� In view of �
�� and �
��� as x���

IP
�
sup
n��

n nX
k��

�
	z

k � na

o
� x

�
�




a�IE�
	z

�

GB�jbj�x��

Hence�

IP
�
sup
n

n nX
k��

bn�k�k � na
o
� x

�
� IP

�
sup
n

n nX
k��

�
	z

k � n�a�	�

o
� x� bbz�

�

 � o�
�

a� �	
GB�jbj�x�

bbz� � 


a� �	
GB�jbj�x��


�



Since 	 � � was chosen arbitrarily� the proof is complete� �

The last lemma implies the following asymptotic upper bound for the
tail IP�supn Sn � x��

Theorem �� Let C � supf�� ck� k � INg � � and c � inff�� ck� k �
INg � �� If G

C�jcj � S� then

lim sup
x��

IP
�
supn Sn � x

�
G
C�jcj�x�

�
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� �
	�

Proof� Put bk � ck� B � C� and b � c in Lemma 	� Condition �
�� holds
because of ���� �

In the case when the coe�cients ck are either all nonnegative or all non
positive� we obtain the following two immediate consequences of Theorem ��

Corollary �� Assume that ck � � for all k � IN� Let G� � S and

C � supk ck � �� Then�

lim sup
x��

IP
�
supn Sn � x

�
CG��x�C�

�
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Corollary �� Assume that ck � � for all k � IN� Let G� � S and

c � infk ck � �� Then�

lim sup
x��

IP
�
supn Sn � x

�
jcjG��x�jcj�

�
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� Asymptotics for Regularly Varying Tails

In this section we study the only possible remaining cases not covered by
Theorem 
�

The function f � IR� � IR� is called intermediate regularly varying if

lim
�	�

lim
x��

f�x�
 � ���

f�x�
� 
 � �
��

By IR we denote the family of all functions satisfying �
��� For example�
regularly varying at in�nity functions belong to class IR� If a distribution
G has an intermediate regularly varying tail� then G � S�


�



Theorem �� Let GC�jcj � S and assume that one of the following con�

ditions hold�

�i� C � �� C � cm for any m� and c � cm�
� � for some m�� and

G� � IR�

�ii� C � cm�
� � for some m�� c � � and c � cm for any m� and G� � IR�

�iii� C � �� C � cm for any m� and c � � and c � cm for any m� and

G
C�jcj � IR�

Then

IP
�
sup
n�IN

Sn � x
�
� a��G

C�jcj�x� as x�� � ����

Proof� Fix 	 � � and suppose that condition �i� is ful�lled� Due to �
���
there exist � � ��� 	� and x� � � such that for x � x�

G��x��C � ���

G��x�C�
� 
� 	 � ��
�

Since supk�� ck � C� there exists k� such that ck� � C � �� Now it follows
from �
�� that

lim inf
x��

IP
�
supn Sn � x

�
Gck� �jcm�

j�x�
�
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Taking into account the equalities

Gck� �jcm�
j�x�

GC�jcj�x�
�

Gck� �jcj
�x�

GC�jcj�x�
�
ck�G��x�ck�� � jcjG��x�jcj�

CG��x�C� � jcjG��x�jcj�

and ��
�� we obtain for x � x� the inequality

Gck� �jcm�
j�x�

GC�jcj�x�
�

�C � ���
 � 	�G��x�C� � jcjG��x�jcj�

CG��x�C� � jcjG��x�jcj�

� �C � ���
 � 	��C � �C � 	��
� 	��C�

Since 	 � � is arbitrary� it follows from ���� that

lim inf
x��

IP
�
supn Sn � x

�
G
C�jcj�x�

�
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Combining this inequality with the upper bound �
	�� we get ����� The
proof for the cases �ii� and �iii� may be carried out in the same way� �


�



Acknowledgement

We are grateful to the referee for his helpful comments� which contributed
to improving the presentation of the results in this paper�

References

�
� Asmussen� S� ������� Ruin Probabilities� World Scienti�c Publishing
Co�� Singapore�

��� Asmussen� S�� L� Fl�e Henriksen and C� Kl�uppelberg �
����� Large
claims approximations for risk processes in a Markovian environment�
Stoch� Proc� Appl� ��� �� ���

��� Asmussen� S� and B� H�jgaard �
����� Ruin probability approxima
tions for Markovmodulated risk processes with heavy tails� Th� Ran�
dom Proc� �� �� 
���

��� Asmussen� S�� H� Schmidli and V� Schmidt �
����� Tail probabilities for
nonstandard risk and queueing processes with subexponential jumps�
Adv� Appl� Prob� ��� ��� ����

��� Baccelli� F�� S� Schlegel and V� Schmidt �
����� Asymptotics of stochas
tic networks with subexponential service times� Queueing Systems�

Theory and Applications ��� ��� ����

��� Embrechts� P�� C� Kl�uppelberg and T� Mikosch �
����� Modelling Ex�

tremal Events for Insurance and Finance� Springer� Heidelberg�

��� Embrechts� P� and N� Veraverbeke �
�	��� Estimates for the probability
of ruin with special emphasis on the possibility of large claims� Insur�
ance Math� Econom� �� �� ���

�	� Jelenkovi!c� P�R� and A�A� Lazar �
����� Multiple time scales and subex
ponential asymptotic behaviour of a network multiplexer� In Stochastic

Networks� Stability and Rare Events� eds P� Glasserman� K� Sigman
and D�D� Yao� Springer� New York� pp� �
� ����

��� Korshunov� D� �
����� On the distribution tail of the maxima of a
random walk� Stoch� Proc� Appl� 	�� �� 
���


	



�
�� Mikosch� T� and G� Samorodnitsky ����
�� The supremum of a negative
drift random walk with dependent heavytailed steps� Ann� Appl� Prob�
�� �to appear��

�

� Rolski� T�� H� Schmidli� V� Schmidt and J� Teugels �
����� Stochastic
Processes for Insurance and Finance� J� Wiley " Sons� Chichester�


�


