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Abstract

We derive the upper tail moderate deviations for the length of a longest increas-
ing subsequence in a random permutation. This concerns the regime between the
upper tail large deviation regime and the central limit regime. Our proof uses a
formula to describe the relevant probabilities in terms of the solution of a rank 2
Riemann-Hilbert problem (RHP); this formula was invented by Baik, Deift, and
Johansson {3] to find the central limit asymptotics of the same quantities. In con-
trast to the work of these authors, who apply a third order (nonstandard) steepest
descend approximation at an inflection point of the transition matrix elements of
the RHP, our approach is based on a (more classical) second order (Gaussian) sad-
dle point approximation at the stationary points of the transition function matrix
elements.
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1 Introduction

Often combinatorics provides problems with non-standard and surprising limit theorems
in probability theory. An example, that has attracted much attention especially in the
past five years, is Ulam’s problem : Consider the permutation group S, on {1,... yn}.
We say that 1 <4; < ... < % < n is an increasing subsequence of length & of 7 € S,
iff #(41) < ... < 7(3). The length of a longest increasing subsequence of a permutation
7 will be denoted by L, := L,(7}; such a subsequence in general is not unique. Ulam’s
problem asks for the typical asymptotic behaviour of L, as » — oo, if 7 is chosen from
Sn with uniform probability 1/z!.

There is an alternative version of this problem: Take a Poisson process with intensity
one in the plane. For a fixed realisation w of this point process an up/right w-path from
(0,0) to (t,1) is a polygonal path starting in (0,0), ending in (¢,t), and connecting points
from w in such a way that it only moves upwards and to the right. Denote by £, := £,(w)
the maximal number of Poisson points in a up/right w-path from (0, 0) to (¢,t). Ordering
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the z- and y-coordinates of w induces a label (n;,n;) to every point, where n,, resp.
ny denote the order-number of the z-coordinate, resp. y-coordinate of the corresponding
point. These labels are almost surely well defined. They induce a permutation 7 via
w{n) = n,. Conditioned on the number of points in w, 7 is selected with uniform
probability from all possible permutations. Hence £ ;5 has the same distribution as Ly,
where N is a Poisson random variable with expected value A = ¢2.

Ulam’s problem also bas connections to various other mathematical topics. For exam-
ple, by the Schensted correspondence there is a bijection between permutations 7w € S,
and pairs of n-Young tableaux of equal shape with length L,(7) of the first row. Other
connections are to Ulam’s metric, patience sorting, random matrices, and to the Hammer-
sley process. For a survey over recent developments in Ulam’s problem and explanations
of the cross-connections mentioned above, the reader is referred to a recent article by
Deift [4].

Already Erds and Szekeres [6] proved that for all n one has E,[L,] > 3v/n — 1 (where
E, denotes the expectation with respect to the uniform distribution on S,). Ulam [17],
on the basis of numerical simulations, found for 1 < n < 10 that E[L,] = 1.7/n and
conjectured that

¢:= lim —IEE,,[L,,] (1.1)
exists. This conjecture was proved by Hammersley in 1972 [10] by an application of the -
subadditive ergodic theorem. While rigorously establishing the existence of ¢, Hammer-
sley did not give a numerical value for ¢. After approximating steps by Kingman [13],
Logan and Shepp [14] and independently Kerov and Vershik [12] showed in 1977 that
¢ = 2. Following ideas of Logan and Shepp [14], Deuschel and Zeitouni [5] determined
the following lower tail large deviation principle for L,: For 0 < z < 2

1 z? z z? 212
im — n < = — — —— —— . 1.2
nlggonlogIP[L < z4/n] 1+ 1 +21¢:»g2 2(1+ 4)log (4 $2) (1.2)

The result (1.2) was derived using an analysis of Young diagrams.

The combinatorial work in the above papers could be replaced by a “hydrodynamical
argument” to show the same result ¢ = 2, in two papers by Aldous and Diaconis [1]
and Seppéldinen [15]. This argument was presented in a pure way in a recent paper by
Groeneboom [9], who again proved that ¢ = 2. Yet a different proof of the same result
was given by Johansson [11].

Based on the paper by Seppéldinen [15], Deuschel and Zeitouni [5| also derived the
following upper tail large deviations: For z > 2:

lim Llogl? [L. > x\/ﬁ] = -2z arcoshg- +2vz? -4, (1.3)

n—oo 4 /7L
One observes the following asymptotics for the “lower end” of the upper tail:

logP[L, > (2 + t)/7] _ _g
£\ n—00 $3/2p1/2 -3

(1.4)



While all these methods could compute the value of ¢ and thus solve Ulam’s original
problem, none of them were appropriate to analyse other statistics of L, such as the
variance: until the mid 1990’s there was only the conjecture that Var[L,] asymptotically
behaves like n* with different values for o (among them the correct o = 1/3 given by
Kesten on the basis of arguments from first passage percolation).

Only in 1999 Baik, Deift, and Johansson [3] came up with a method based on the
theory of integrable systems to prove a non-standard Central Limit Theorem (CLT) for
the quantity L,. Their result (Theorem 1.1 in |3]) can be stated as follows: Scale L, as

L,(m) —2/n
Xn(T) 1= %- (1.5)
Then x, converges in distribution as n — oo to the Tracy-Widom distribution, introduced
by Tracy and Widom in [16]. This distribution can be defined as follows: Let u(z) be the
solution to the Painlevé Il equation

e_(2f3)33/2

NI as T — o0o; (1.8)

Use =2u+zu with  u(z) ~ —Ai(z) ~

the notation a ~ b means that the quotient of both sides converges to 1, and Ai denotes
the Airy function. Then the Tracy-Widom distribution has the distribution function

F(t) = exp ( ft T(@- t)uz(:c)da:) . (1.7)

Interestingly, the Tracy-Widom distribution first appeared in the context of eigenvalue
statistics of the Gaussian Unitary ensemble.
One observes the following upper tail of the Tracy-Widom distribution:

e-(4/3)P?

1= F(t) ~ Soan

as t — 0o. (1.8)

Hence the the following upper-tail asymptotics of the central limit regime holds:

logP[L, > (24 tn~1/3
lim fim 280 Le > @07 R)A] 4 (1.9)
t—oon—oo t3/2 3

In order to show that the moments of xy converge to the corresponding moments of the
Tracy-Widom distribution, Baik, Deift and Johansson also derived the following rough
upper bound for the upper tail probabilities; see formula (1.8) in [3]: For M > 0 sufficiently
large, there are constants ¢ > 0 and C(M) > 0 such that if M < ¢ < n%% — 2p!/3 then

Plxs > t] < C(M)e~*"". (1.10)



1.1 Results

As the starting point for the present article, we observe the similarity between the upper
end asymptotics of the central limit (CL) regime (1.9) and the lower end asymptotics of
the upper tail large deviations (LD) regime (1.4), although these two results were proved
using completely different methods. In fact a similar asymptotics holds in the upper tail
moderate deviations (MD) regime, i.e. the intermediate regime between the CL and the
upper tail LD regime:

Theorem 1.1 For all0<n <1/3 andt >0,

. logP[L, > (2+tn"")y/n] 4
£ R(=3n725372 =-3 (1.11)

This is a simplified version of the more detailed Theorem 1.2 below: On the one hand,
(1.11) contains no uniformity information in # whatsoever, and it does not catch the cases
n ™\ 0 or n /7 1/3. On the other hand, one can improve (1.11) and also (1.3) by finding
the asymptotic behaviour of P[L, > {] with error terms on a non-logarithmic scale. In
order to describe a refined result, we introduce a convenient parametrisation for (n,!),
which is well suited for an easy description of the MD regime, the asymptotic CL regime,
and the lower-end asymptotics of the LD regime: The moderate deviations regime is
characterised by 13> 1 — 2r'/2/1 > [~%/3; thus we set

2 {—2yn
Vi = -—?: My, = ll—/;/— = (1 —ya)25. , (1.12)

Using these new parameters ;, and M; ,, the different upper tail asymptotic regimes are
characterised as follows:

CL: Yi,n — 1 with M, being fixed.

upper end asymptotics of the CL: first v, /" 1, second M;, — oo.

upper tail MD: Tia /1 and M;, — oo simultaneously.
lower end asymptotics of the upper tail LD: first M;,, — oo, second v, / 1.

upper tail LD: M, — oo with 7y, being fixed.

We set
1
wo(y) := +/1 — ¥% — arcosh o (1.13)

Then the following refinement of the moderate deviations result Theorem 1.1 and the
large deviations result (1.3), proved by Deuschel and Zeitouni [5], holds:

Theorem 1.2 1. Moderate deviations. The following asymptotics hold uniformly
as Y converges to 1 from below and M, diverges to oo (independently of each
other):

e2lwo(-y;,n)

8rl(1 — A, 3%

P[L, > ] ~ (1.14)



and (more roughly):

42 (1 — 24/n)3?
3 Vi '

2. Large deviations. There are continuous functions f1, f+ :]0,1[—]0, 00[ , such that
foralll,n withl > 2\/n and My, > fi(nn.) we have

PlL, >1
f—(’ﬂ,n) < I—I[WEG»]:)- < f+(’71,n)- (1.16)

logP[L, > 1] ~ — (1.15)

A version of (1.14) with quantitative error bounds is described in Lemma 4.2 below. We
remark that (1.14) holds in the the full moderate deviations regime, in the asymptotic
central limit regime (in consistency with (1.8/1.9)), and in the asymptotic large deviations
regime (being consistent with (1.4), too).

For the poissonised quantity, i.e. the for the random variable £; introduced above, one
gets even finer asymptotics: we set

o0 -
e AN

i Pln ] =P[Lys < 1. (1.17)

QS;()\) =

n=0
Then one obtains:

Theorem 1.3 For every A > 0, | € N with 2v/X < | we have the following asymptotics,
uniformily in v -

(%,A +2./1— '712,)\ ) 712’A62!w0(7:.x)
1- ¢¢(/\) ~ as M;_A — 00. (118)

8xl(1 — 7,%)”2 (1 +4/1— 'y;‘:/\ )

A quantitative bound for the error term in (1.18) is described in Theorem 3.1 below.
Let us compare Theorem 1.2 to Theorem 1.3: On the one hand, the asymptotics of the
poissonised probabilities ¢;(A) is explicitly known both in the LD regime and in the MD
regime up to error terms which converge to zero. Compared to Seppaldinen’s result [15] we
not only cover the moderate deviations regime, but also in the regime of large deviations
we derive a finer asymptotics. Also note that the depoissonised quantities P[L, > ] are
known in the LD regime (on a non-logarithmic scale) only up to bounded factors, while in
the MD regime the error terms still vanish asymptotically: During the “depoissonisation”
step in the proof, which may be compared with a “deconvolution procedure”, we have to
take some loss of precision into account.

1.2 Review of some methods in the proof of the Baik / Deift /
Johansson theorem

Our proof of the theorems starts with a representation of ¢;(A) in terms of the solution
of a certain noncommutative, rank 2 Riemann-Hilbert problem, which was derived by

8]



Baik/Deift /Johansson. In order to explain this starting point, we briefly review parts of
the proof of the Baik/Deift/Johansson theorem. For a detailed description of the steps,
we refer the reader to Baik/Deift/Johansson’s article [3] and the references therein.

The first step consists of a Poissonisation, i.e. instead of considering the quantity L,
we consider Ly, where IV is a random Poisson number with parameter A (this step is only
necessary if we start with Ly, since £ 5 already carries the desired random structure).
A concentration result for Poisson random variables reduces the problem of studying the
asymptotics of P[L, > [] to the study of the asymptotics of ¢;{A) with A ~ n — co. The
reason why this Poissonisation step helps at all is the following beautiful identity derived
by Gessel {8] in 1990: ¢;(X) = e~*D;_;()). Here D;_,(A) is a I x | Toeplitz determinant:

Di_1()) = det ( / g~ HE=1)0 2‘/3“5";7?) : (1.19)
-z 0<k,i<l~1

The problem is thus reduced to analysing the asymptotics of the above Toeplitz determi-
nants when A — oo and I ~ 2v/A. It turns out that the above Toeplitz determinants are
intrinsically related to certain orthogonal polynomials. More precisely, let

pg,,\(z) = Z: m,,-(/\)zj, K.l()\) = I‘Cu(A) >0 (1.20)

be the I’th orthonormal polynomial with respect to the weight function ez‘/xc"s"gg on the
unit circle, i.e., -

dé

/ Pia(e?)pr(e)e 2‘/:':“‘"27‘_ =& ULE=0. (1.21)

Then one can show (see (1.24) in [3]):

2 D (A)
(A= D0 (1.22)
which leads to (see (1.25) in [3]):
log 4i(A) = 3 _log &2 (). (1.23)
k=l

At this stage Riemann-Hilbert problems (RHP’s) enter the field. There are several
equivalent versions to describe Riemann-Hilbert problems; here we describe them in
terms of open coverings: The basic ingredients to a rank k¥ RHP are an open covering
(Ui)ies of the Riemann sphere C U {oco} and holomorphic maps (“transition functions”)
Hi; : U;NnU; — Gl(k,C), i,j € J, which satisfy the consistency condition (“cocycle
relation”) H;;H;; = H;; over U; N U; N Uy for all 4,5,k € J. Then the RHP with data
(Ui)i, (H; )i ; consists of the following: Find k& X k-matrix valued holomorphic functions
A; 1 Uy — Gl(k,C), i € J, such that A; = A;H;; over U; N Uj, with the normalisation
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condition A;,(2z) = I for a fixed jo € J and a fixed 2z € Uj,. (I denotes the & X k identity
matrix; sometimes other normalisation conditions than the identity matrix are useful,
too.) We will always use zp = co. We remark that the solution of a Riemann Hilbert
problem over the Riemann sphere (or more generally over compact Riemann surfaces)
is always unique, provided a solution exists. For the particular case of interest, this is
proven in [3], Lemma 4.1; but the same proof applies to the general case as well.

The following transformation procedure is frequently used in Baik/Deift/Johansson’s
article as well as in the present article: Given arbitrary holomorphic maps { “base changes”)
B; : U; —» Gl{k, C), one can pass to an equivalent RHP with the same open covering (U;);
and new transition functions H;; = By 'H; ;B;; the solutions A; of the transformed RHP
and A; of the original RHP are connected by A; = = B 1(zg)A B;; here the left factor

Ol(zo) has the only purpose to guarantee the normahsatmn condition A;,(z) = I for
the transformed problem as well.

Sometimes - especially when using Cauchy’s integral formula - it is technically easier
to work with closed refinements (ff i); of the open covering (Uj);, with piecewise smooth
curves as intersections of different U The boundary curves 6U NAU; can be conveniently
adapted by changing the choice of (U ); as long as they do not leave the domain U; N U;
of the transition functions; we will use this freedom below to choose specific curves which
run through saddle points of the transition functions.

Fokas, Its, and Kitaev 7] discovered the following key fact: The orthonormal poly-
nomials introduced in (1.20/1.21) above can be described in terms of the solution of a
certain RHP. Baik/Deift/Johansson ({3], sections 4 and 5) then transformed this RHP
several times according to the general transformation procedure for RHP’s, which was
sketched above. They end up with a version of the RHP (see (3], formulas (5.9/5.10)),
which in our langunage reads as follows: we consider the open covering (U = C,U, =
C*,U_ = C* U {oo}) of the Riemann sphere, and the transition functions

H,=(19 , H,, = 1 -f , H_,=H_,H,, (1.24)
! 7 1 ’ 0 1 !
with
f(z) :=(—z)%exp (gg—(z - z“l)) , 0<y<l, geN. (1.25)

Of course, U, and U_ alone would already suffice to cover the whole Riemann sphere, but
the factorisation of H_ , into triangular matrices is technically very convenient.
According to [3], the RHP specified by A; = A; H,; ; over U;NU;, with the normalisation
condition A_(oo) = I, has a unique solution A; : U; — Gl(k,C), i € {+, —, *}, and the 22-
entry of this solution yields the following important connection between longest increasing
subsequences of random permutations and RHPs: With x,_, from (1.20,1.22,1.23):

Ka-1(A) = (A4)22(0), (1.26)

where 7 = «,,» is given by (1.12).



1.3 Intuitive ideas for the proof

Before starting the proofs formally, we describe roughly the intuitive ideas underlying our
method, and we compare the method with Baik/Deift/Johansson’s approach: The first
step consists in estimating the solution of an auxiliary RHP; the solution of this auxiliary
RHP serves to construct a base change of our original problem: The auxiliary problem
is specified by the artificial modification of one of the transition matrices in (1.24): The
auxiliary transition matrices are defined as H! , :=1, H] = H. _:= H, . Here and
in the following, an index ¢ € {+,*,—} (and ¢,5 € {+, %, —}) for a matrix valued function
stands for the region U; (and U; N Uj, respectively) where the corresponding function is
defined. This auxiliary specification of a RHP consists only of upper triangular 2 x 2-
matrices with 1’s in the diagonal; its solution can be written explicitly in terms of a
Cauchy integral, and the solution again consists of triangular matrix valued functions
G_, G,, and G4 with 1's in the diagonal: G+ G_H. . = G,H, ,. Using the solution
(G;)i=1+,s,— for a base change H;; = G;H; G5, we observe that the transformed RHP has

a simpler structure: the transformed transition matrices are H.+ =I,H , = H_,. =
G.H_.G;' = G_H_,G>'. However, conjugation of the lower triangular matrix H_,
with the upper triangular matrix G_ destroys the triangular structure: H_ . is not a
triangular matrix, and we cannot solve the transformed RHP as simply as we solved the
auxiliary problem. To overcome this complication, one observes that on a certain circle
C.. centered at the origin (to be described in more details below), either G_ is very close
to a constant matrix Gy (this occurs on an arc C_; C C_) or H_, is very close to the
identity matrix (this occurs on the complementary arc C_o C C_). In both cases one
has H_ + & GoH_,G;'. Since H_, is lower triangular with 1's in the diagonal, the
second auxiliary RHP with transition matrices F_ . = F_, := H_,, F, , = I can be
explicitly solved in terms of a Cauchy integral, similarly to the auxlllary RHP above: Let
(P;)j=+.+— denote the solution of the second auxiliary RHP: P, = P_F_ .. (For technical
reasons, we work with a small modification F. , of F_ in the construction of P; in the
formal proofi below, but we ignore this technical detail in this informal explanation.)
Then GoPyGy' = (GoP-Gy")(GoF- +Gy'); hence (GoP;Gy'); solves approzimately the
transformed RHP with transition matrices H;;. Again, the factor Gy on the left hand
side appears because of normalisation. Taking this approximate solution to transform the
transformed RHP again, we end up with a RHP very close to the trivial RHP, i.e. the RHP
with the identity matrix I as transition matrix. The solution of such an approximation of
the trivial RHP is close to the identity matrix; a quantitative version of this well-known
statement (see e.g. [3], section 2) is given in the appendix, Lemma A.2, below.

Next we discuss how to find approximate solutions to the above auxiliary RHPs via
a saddle point approximation. First we investigate the function f given by (1.25): fis
wildly oscillating on circles centered at the origin, unless the circle hits a saddle point of
log f. log f has precisely two saddle points 2 € Rwith 0 > 2, > -1 > 2. We solve
our first (and second) auxiliary RHP using a Cauchy integral over a circle C, (and C_)



through z, (and z_), respectively: We define
1),

2mi Jos—2

g+ = (1.27)
where C is a closed curve in C*\ {2} with winding number 1 around the origin and winding
number 1 around z (for g,) and winding number 0 around z (for g_), respectively. Then
g+ — g- = f, and the solution of our first auxiliary RHP is indeed given by

Gy = ( (1) '19* ) (1.28)

One sees that f can be well approximated on C' = C by a Gaussian centered at the saddle
point z,., at least for large ¢: this can be derived by a second order Taylor expansion of
log f at z, in a neighbourhood C,; of z; in C5; in the complement C. 5 of the arc C; )
the function f is negligible. The key fact is that in the LD and MD regime the length
scale r of C,, is asymptotically much smaller than the distance |zy — 2_|. This is to
be contrasted to the CL regime, where these two length scales are of the same order:
This is important, because the ratio of the two length scales determines the error term of
the Gaussian approximation. This is why a second order Taylor expansion at the saddle
points is insufficient to catch the CL behaviour. Indeed, Baik, Deift and Johansson [3] use
a third order Taylor approximation near z = —1: this point is (in appropriate coordinates)
an inflection point of log f. On the other hand, this third order approximation is not well
suited to describe the correct MD and LD behaviour.

Figure 1: The saddle points 21 and the arcs Cy ;, C1 2 in a complex plane.

The ideas described above are carried out in Section 2 below. In Section 3, we es-
timate the sum (1.23). Roughly speaking, the logarithm of the summands is linearly
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approximated and the sum is compared with a geometric series. Section 4 contains the
depoissonisation estimates, which use concentration bounds for Poissonian random vari-
ables. The spirit of these depoissonisation results is roughly similar to the depoissonisation
lemmas in Section 8 of [3]. However, those depoissonisation lemmas in the reference do
not yield small enough error terms in the MD regime for our purposes.

2 Saddle point approximation

In this section, we formally estimate the solution (A;); of the RHP specified by (1.24).
Let 0 <y < 1and ¢ € N. Asin (1.12), we use the abbreviation M := (1 — 7)¢%%;, M
and 1 — v serve as reference parameters. Positive constants are denoted by c,, where n
is a counting index. If ¢, depends on additional “fixed” parameters, then this is denoted
explicitly.

We prove:

Theorem 2.1 Given a positive number a < 1/4, there are positive numbers ¢,(¢) and
bi{a) = 1, such that for all v €]0,1], ¢ € N with M = (1 ~ ¥)¢*? > b(a) the following
holds:

1= (A)n(0) = LENZT 01 4 (M, ) (21)

with an error term R(M,~) that fulfills the bound
|[R(M,7)| < er(a)M—3/443, (2.2)

Remark: The rate function 2wp in the exponential in (2.1) (with ¢ removed) has the
asymptotics

2up(y) = 22 (1= 92 4O~ as 1=\ 23)

One may compare this with the exponent in the bound in part 2 of Lemma 5.1 in [3]: this
reference tells us for large M, some constant ¢; and 1 <y <1 — Mqg~%/3:

|1 — (A4+)22(0)] < caq™ /P exp {_q%ﬁ(l - ’7)3/2} ) (2.4)

which is in the MD regime roughly on the same scale as the square root of the estimate
(2.1).

Proof of Theorem 2.1: The equation f'(z1) = 0 yields the saddle points

1
+=—7"t /72— 1=—e* with uy= —arcosh ot (2.5)

10



and we get

f(z €)= f(z_e ™) =exp {q (—arcosh % + /1 —~2cosf + i(# — sin 6’)) } . (2.6)
Expanding around 6 = 0 gives
flz4€") = exp {q (wo — w26 + &,(8)) } (2.7)
with wy = woe(y) giver by (1.13), we = /1 —+%/2, and an error term e,, which is
bounded for real # and some real z with |z| < |8| by
O | & (s
le,(6)] < % |7 (\/1—7 cosz + i(z sm:c))

3 3 3
= % ‘\/1 —723inx+icos:c| < %He“ﬂ = %

(Having our goal (2.1) and Deuschel/Zeitouni’s (resp. Seppéldinen’s) result (1.3) in mind,
we observe that the exponential rate function €29 is determined - up to a square - by
the value of the transition matrix entry f at the saddle points.) For —7 < 8 < =, the
simple estimate cosd < 1 — 27~262 implies the the bound

|/ (24€°)| < exp {q (wo — c3w267)} (2.9)

with c3 := 47~2. We define the length scale

(2.8)

i TYHOS(L ) < S T, (210)

(Intuitively, the choice of r arises as a compromise: on a disk of radius r around the
saddle points, f should be approximated by a Gaussian function well enough, and outside
this disk but on a circle through the saddle point z,, f should be small enough.) It is
instructive to compare r with the distance between the saddle points:

zp =2 =2/ 2 =1=2v2/T=~v(1+0(1)) asy 1. (2.11)

We estimate for M > 1: For some positive constant ¢y,

sup
—r@Lr

flzy€?) B ser 0} (2.8) . P
efwwey — 1 = 8 [ 1] = egr =cM . (2.12)

fo the second step we used that |ge,(8)| < gr®/6 < M~3/4+32 /6 is bounded and that exp
is uniformly Lipschitz continuous on bounded domains. Let C,. denote the circle through
23, centered at the origin. We parametrise Cx by z = 21€¥, -1 < § < 7. We split
C. further into the two arcs Cy, and C, o, parametrised by || S rand r < |8} < 7
respectively. (One observes r < 7 for M > 1))
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Next we examine the following auxiliary RHP; recall the definition (1.24) of H, , =
HL | from Section 1.3:
Find holomorphic Gy : Uy — Gl,(C) with

Gy=G.H.,, G_(0)=LI (2.13)

We introduce the abbreviation
24 leTe |24

- 2|zy — z_|\/Tquy B 27|24 ~ 2z

Here are the estimates that we need for our auxiliary RHP:

go: | / elwo—w2) gg - . (2.14)
R

Lemma 2.2 The solution G4 of the auziliary RHP (2.18) is given by formula (1.28).
Given 0 < a < 1/4, there are positive constants cs(a), cs, c7{a) and by(a) > 1 such that
if M > by(a) and 0 < v < 1, then the following three bounds hold:

zzgp 19-(2) + 90] £ cs(a)M~Y4¥3ag, (2.15)
—.1
zseué) lg-(z)] < cs90, (2.16)
2 Jeseo ajesa2eleo
0) - —— M3 D 2.17

.- Proof of Lemma 2.2. We define g5 as in (1.27) and obtain the solution Gy as in (1.28) of
the RHP (2.13) as a consequence of the residue theorem. Using C = C,, we estimate g_
over C_: We estimate the Cauchy integral (1.27) at first for z € C_,: By splitting the
integration path, we get g_(2) = I) + Iz, where

1 fis) .

SN =12 .

; 2mt J s—2z ds, )= (2.18)
Ct

We compare I} with

fl : 1 eQ(wD+w2 1032(3/z+)) 24 ds - eqwo |z+|

=_— e~12% 4o < 0 2.19
271 2y — 2z s 27|zy — z_| / (2.19)
C'+,1 —-r

for z close to z_; here log denotes the principal branch of the logarithm, and we used the
substitution s = z,€*. For s € C, 1, 2 € C_, we have |s — z,| < |z4|r, |2 — 2_| < |z_|r,
hence

I%” —1| < T MY (2.20)
§—2 _ ]-l S (|Z+| + IZ-I)T S M—3/4+a; (221)
zZy — 2= |24 — 2|

12



we used (2.10), |z + |2—] = 277}, and |z, — z_|7' = (22 -1)7! < 3(1 — y)7V
In the estimate (2.22) below, we make use of Lipschitz continuity of multiplication and
division at 1, more precisely of the following fact: There are positive constants cg, cg such
that for every e with 0 < € < ¢ and every 7,y € Cwith [z —1| < ¢eand [y — 1| < e we
have the bounds |zy — 1| < ce and |z/y — 1| < coe. This fact and the estimates (2.12),
(2.20), and (2.21) together imply

f(s) B gt(wo—walog?(s/z1)} , "

d(wo—wzlog*(s/24)) 5 "

< ey M (2.22)

§—2 Zy — 2 Zy — 2 8

for s € Cy,1, z € C_,, some constant ¢;g > 0, 0 < v < 1, and M being large enough
(say M > by(a) > 1). Hence (using that the second integrand in the definition of I, is
positive):

I, = Fi| < croM~3/4+3 [}, (2.23)

We compare —I, with a Gaussian integral over R: The bounds

]e'“zdm < ./‘%le““’zda:=(a1')“le""2 (a,r > 0), (2.24)
l=|>7 |z|>r
Ity 1
quor® = —2+1M2“ > §M2“ (2.25)
imply
[Fi+o| = Iy R il (2.26)

27izy — 2| |o]>r

T 2mzp— 2| quar N quar? T T gor

Next we estimate I, for z € C_: Using (2.9), dist(Cy,C.) = |23 — 2|, and |z ~ 5] >
|24 — z_| for z € C_, s € C,, we obtain similarly to (2.26):

|Iz| = —1—/. j%ia—)- z+ei6 d9 (2<_9) -__l,?_'_l_ 69(1”0"03“’292) d9
2T r<ffl<n Z+€7 — 2 27|z, — z_| lo|>r
(2.24) g(wo—cawer?) —geawer? o (2.25) ca pr2a
< |24 € (219) € go < cuM“"‘e"i;iMz g% (2.27)

27|z — 2| geawar c3\/ Tqwer?

with some constant c;; > 0. In the next step we substitute g_(2) =1+ forz € C_
and combine (2.23), (2.26), and (2.27):

19-(2) + go| = | + go + B| < |y = I + |11 + gof + | 1| (2.28)
< M (go + I + gol) + 111 + gol + |1a] < es(a) M4 g

13



for M > by(a) and some sufficiently large constant cs{c). This proves (2.15).
We turn to the proof of (2.16): Substituting the bound (2.9) into the Cauchy integral
(1.27) yields

T
|Z+I glwo—eaw262)
N —— wo—caw2l) 4 < 2.29
zSEUP_ lg-(z)| < 2z, — 2. I e = Cedo (2.29)
for the constant cg := c§1/ %, this proves (2.16).
Next we estimate g4+(0): We split the Cauchy integral:

27,,,)“( d: 2m/f()—+—/f( ds. (2.30)

Cya Cy,2

Using (2.12) and (2.9) again, we obtain for M > 1:

2T

9+(0) - _—W

= g+(0)—|§:r—| f gdlwo—w28%) 4o (2.31)

r

el 2 | M ~3/4+32 / g?(wo—w20%) dé -+ Iz_+| f eilwo—cswa6?) 4g ]z_.,.| / eI wo—w20%) 4o
27 2x 2

IA

-r 6]>= . [61>r

< |zglem™ CqM—3/4+3a e"’~°‘9"”"2 + g~ qwar?
= |12+]€
2./7qig 27rcsqw2r 2w qunr
— 53 pf2a _lM?.a
Zy et _ e 2 e 2 N 2, |eTwo
S l +| (C4M 3/4+3CI S C?(a) 3/4+3C¥| +|

2./mqui \/E cs M« \/§M @ 2, /7qws

for some positive constant c;{@); we several times used the bounds (2.24,2.25). This
finishes the proof of (2.17) and also of Lemma 2.2.

O

We continue the proof of Theorem 2.1: We introduce the following approximations fo
tol/f on C_, F_ to H_, (recall definition (1.24)), and G, to G_:

fg(z_e“') — eq(wo—2w:(c059~1))’ Fu s :=( 1 0 ) , (2.32)

Gy = ((1) 510). (2.33)

The function f; fulfills the following bounds, which are analogous to (2.9) and (2.12): For
—-T <<,

|fo(z-€®)} < eatwomeowat®), (2.34)

5 et _

<o e{?w(“o'-“wrez) - 1| < cagr® = cgMTYASe, (2.35)
—r<B<r

14



the last estimate holds for M > 1. Analogously to the definition of g+ and G we define
1 [ fols) 1 0
= — = . 2.
p+(2) 57 jg pompl LB (2.36)
c-

px 1
Here p, (p-) is defined inside {outside) the disk with boundary C_; it is continuously
extended to the curve C_. By Cauchy’s integral formula, we have again on C_:
fo = py—p, F ,=PI'P. (2.37)

We apply Lemma A.1 in the appendix with &k = |z_|(qw;)~'/2 to fo, assuming M > 1 and
using the bounds

Ifolle.y < crzke™,  ||follpmicy < c13k™'€™,  ||foll ey S €7, (2.38)

to see:
”P:I:”Loo(c_) < ¢4 (2.39)
Just as in (2.31) one obtains
|2|eT —3/4+3q |2-]€™°
0) — < M-S o D 2.40
p+( ) 2\/@ — CT(a) zﬁm ( )
We introduce the scaling matrix
{9 C
S._( 0 1). (2.41)
Conjugation of a matrix X with S is abbreviated by X5 := S~1XS, or explicitly:
Ty Iaz )S= ( In 3712/90 ) (2.42)
a1 T22 T1g0 T2 )

We employ this operation below to “precondition” the RHP: nondiagonal terms which
have very different orders of magnitude will be transformed to terms of comparable order.

To deal with small perturbations of the identity matrix as transition functions, we work
with estimates in LP(C), 1 < p < oo: if X is a matrix-valued function on a curve C' and
p < 00, let || X 1pcy = (Jo | X(2)P |dz|)*/?; here | - | denotes any fixed submultiplicative
matrix norm. Similarly ||X ||,y is defined using the same submultiplicative matrix
norm |- |. In the case p = oo the estimates below should be interpreted as the limits
as p — oo; especially factors (qws)~'/(%} simply drop out in this limit. We estimate for
M > by(a), using p~'/(3P) < 1 several times:

H_ * F_ s = -
“( . +) Lr(C_.1) H( (Jl_' — fo)go 0 ) L?(C-1) | )
(2.6,
2.12,2.35 "
= ) cuslz_ |VPM-34+3a g (f Pa(wo—w26%) dB) (2.44)
R

ﬁ clﬁlz— |I/pM—-3/4+3cz(qwz)—l/(2p)eqwogm
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2.9)

Mo = Doy S crrlo PVP(qus) Petvogy, (2.5)
. (2.34)
“(F—,+ -1)° i < carla |V (quy) TV PPeT g, (2.46)

B 0 9=tgo (2.15) _ o
(@260 = Dfllpme = | (5 %) S e s (e
LW(C_J)
s =Dl y S csle oo ([ eromsmsag (249
o 8]>r

(2.24) (2.25) e 1 120
< c20|2—|llp(qwf")_Upe_qcawzrzeqw"90 < 621|f'3-|1”"’1‘/I""/1’e""zaM2 (qus) ™V P)egwo g,

< copla)|z_|MP MY (g, )P g0 g

- (2.34,2,25)
| =09 ST eml@)la M quy) P, (2.49)
_ (2.16)
”((G—IGQ):I:I)S”L&(C_) S Ca3, (250)
hence |
Gy'G_H_,G-'Gy — F_ ) - (2.51
e e ) (2:51)
— -1 _ -1y (B S
= ”(G0 G-(H-p = DG'Go— (Fs = D]
-1 s s - s
S 656G = || jio_ y WH- o = D || paie s 1GZ1C0Y¥ | o
S - r s
+||(H-, = I) ||z,p(c__1)||(G_‘Go— I)S“LN(C_J)-I_”(H"’*-F_"") .
=1 s S -1 S
+{[(G G-) | s gy 1H=0 = D3| iy G G0) [l ooy
F ,-I5
+ || - 1 oo
< 024((1)|z_|I/PM—3/4+30=(qw2)—1/(2p)eqwog0'
Furthermore for M > 1:
FI\S F1 s (239 quwg
IPEY ) oy S VHNPE = Doy S 1+ crse™0g0 < 263 (2.52)
the last estimate follows from
€™ <1 and gy < cor M~ < o (2.53)
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where we used that gwy is negative:

fu/r_?
Wp = — p

¥

dz < 0. (2.54)

Using (2.37), (2.51), and (2.52) we get

||(P_G'0‘1G .H_,*GZIGOP;I - I)S“Lp(c_)

= |le||Loa(c_) ||(G61G—H—.*G:1G0 - ﬁ‘—,+)s

[(P51)°] L=(C-)

Lr(C-)
< cap(a)|z- [P M43 (quyp) T/ Ol eg g, (2.55)

Note that also for p = co
|(P-G3'G_H_,GZ'GyP{! - I)S ||L,,(C_) < co(a) M3/4H3a w0 g (2.56)

We consider the following “error-term” Riemann-Hilbert problem: Find holomorphic ma-
triz valued functions Ly, with L (z) being defined inside the disk |z| < |z_|, and L_(z)
being defined outside this disk (its boundary and oo included), such that L_(co) = I and

L,=L_P.G;'G_H_,G™'G,P7! onC_. (2.57)

Let by(a) > ba(c) be so large that cog(a)carhr(a)~3/23¢ < 1/2; then the condition
M > bi{e) implies

|(P-G3 G Ho s GoP ~ 1|y, S 5 (2.58)

to see this, one uses (2.56) and (2.53). (1/2 was just chosen to have some definite number
between 0 and 1.) Using Lemma A.2 in the appendix and (2.55), we see that the “error
term” RHP (2.57) has a solution for M > b () with

[(Z+(0) = 1)%| (2.59)
2
< c25(a)|z_|M—3/4+3a (qwg)_llzeqw"go +92 {628(0!) /‘Iz'_'I'M—3/4+3a (qTU:g)—l"‘leqw"go]
(2.53)

< cog(@)]z-| M T (quyy ) 120 g,

The solution of the original RHP with transition functions specified by (1.24) can be
written in terms of the solution (2.57):

Ay = GoL PG5 Gy, A_ =Gyl_P.G;'G_, (2.60)
since A_(co0) = I and
A, (2.60,2.57) GoL_P_G;'\G_H_.G~'G, (2.61)
@2 4 H_H,,=A_H_, onC..
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We prepare some estimates, which are applied below: First we observe
2= < Jza) + |24 — 2| S 1+ |24 — 2| £ 22| (2.62)

Second, we use the bound (2.52) together with the maximum principle for holomorphic
functions to see

|PE(0)} < . (2.63)
We also need the following bounds below: as a consequence of

0 < 2.64
(2.64,2.14)
l9+(0)] < ca )z — 2| (2.65)
9o
we get
1 —au(0 (2.65) (262)
oz = |(§ 7o) %L HDrp sy o L ol 206)
1 +1
(G| = ‘( 0 1 )‘ < ¢z (2.67)
We also observe the simple fact z,2_ % 1. We estimate (A4 )22(0):
(A4 = GoPrGy G )22(0)] = |((A+ — GoPrGy ' G1)*)22(0)] (2.68) -
S - [(As = GoPiGEG4)(0)] < |GF] [(L4(0) — D] |PE(0)] (G5 |GE(0)]
(2.59,2.63,
2.66,2.67)

2 2gqwo
ZM—3/4+30: -1/2 ,quo (2_'_l_4) !Z_l IZ+| M—3/4+Sa €
ca{a)|2-| (que) ™ /%e™0gq Cas(a)—l 2y — 2| Z‘““‘“‘W qwz

| —a/4 e2awo  (2.62) _ _3/4
____________M / +3&________ < 1 — 2 1 M 3/ +3¢¥
Cas(a)l e — 2] T css(a)(1+ |24 — 2-|77)

(25)
- Amqu,
We explicitly determine the 22-entry of the matrix product in (2.68): Using the bounds
(2.14), (2.17), (2.40), and the fact z,z_ = 1, there exists a constant css{@) > 0 and an
error term |6, (M, v)| £ 1 such that the following holds:

(GoPsG5'G)n = 1—{go+ 9+(0))p4(0) (2.69)

—, |-l
- 1- 1+ 'z+ z—l e2qwo(1 + C%(Q)M—3/4+3051(M, 7))
4 qws
Combirning (2.69), (2.68), and using (2.5) respectively (2.11), we obtain for some positive
constant ¢;{a) and some |62(M,v)| < 1:

1+ IZ+ s Z_|_1
A 0) = 1-
( +)22( ) 47Tq‘lU2

eX(1 + ¢ (@) M~¥43e8(M,v))  (2.70)

= 1— '74"7;q2(V1 2qwo (1 +¢ (Q)M_3/4+3a62 (M, ’Y))

This proves (2.1) and therefore Theorem 2.1.
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3 Summation

With the notation introduced in Section 1, we prove in this section:

Theorem 3.1 For every fized a with 0 < a < 1/4 there are constants bz(a) > 1 and
csr{a) > 0 such that for every A > 0 and every ! € N with M, > bs3(a) we have the
estimate

_ Yia T+ 2./1— '}'EA 'yflAezlwo(Tt,A)
1= i) = (L+8:0 A a)Ml,f'/“Ha)( Vo) .

sri(1 - )% (1+4/1= %)

with a bounded error term |6;(l, A, @)| £ czr(a).

Proof of Theorem 8.1. The first step in our derivation is to expand the logarithm on the
right hand side of (1.23): By (2.1/2.2), we know for ¢ > 1:

63862‘?"’0(’71;,))

I1-s2_ ()] € S—F—~
ot g1 —2,)

< 038329100(‘1q,x) M;; (3.2)

if only M, » = (1 —7,,)¢?/? is large enough, say M, » > bs > 1. (One takes e.g. « = 1/8 in
Theorem 2.1 and observes 74,1 +24/1 — 42, < 3 for the numerator in (2.1).) We estimate

1 . A _ 3 1
—wo(’Y)":arcosh%—Vl—’Yz:/ Sk dmzf Vl—-’fdf”:g(l—'Y)s/?: (3.3)
2

y z 3
hence with ¢z := 4/3 and M, , being large enough, say Mg > bs = bs:

3/2
emnlny) < MR (3.4)

<
(32)
<

/ /
11— i (V)] Csse"c”M:’fM;; < coe™ WMok, (3.5)

Consequently we have for fixed positive o < 1/4 if M, » is large enough (say My, = bs{a)):
—logkl, () = (1— kL)L +e M e (g, ) (36)

Yor +24/1 7]
(2‘1) o 9,2 2qw°(-¥ )) —3/4+3ﬂ
= e W1+ M 84(g, A, @)
amg(l—2,) ( £ ( )

with some bounded error terms |62(g,A)| < cao, |64(g, A @)] € ca(a). We sum over
these approximations: To bound the error term, we observe that M, is monotonically
increasing in the argument ¢ for fixed A. If M;, > bg(a), a combination of (3.6) and
(1.23) yields for some bounded error term |85(1, A, @) < cai(a):

®. Yart24/1- Yo
~log4i(N) = (1+ MY ™850, A, a)) Y 22 e2auolnn) (3.7)

g=l+1 47rq(l - ’Y‘?s’\)
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We derive upper and lower bounds for the sum in (3.7), starting with the upper bound:
First we observe that for 0 < v < 1 themap 7y — (y+2+/1 — 7?)/(1 —+?) is monotonically
increasing, and for fixed A, 4, = 2v/A/g is monotonically decreasing in g; hence

w Yr+2y/1-2, Hf1-1h
> Vo 182 gt < e 3 erewolua), (3.8)

dmg(l—12,) = 4xl(l —7,)

g=I+1 g=i+1

We use a linear bound for the exponent in (3.8): An explicit calculation shows

) 1 o2 Yo, A
2-(qwo(7g,)) = —arcosh —, —2(qwo(’Yq,A)) =- L <G (3.9)
dq Yer O 2V /1~ 42,
hence
1
qwo(g) < lwo(mn) — (¢ — l)arcosh ;‘y; (3.10)
Therefore
=] o0
3 etrmlns) < gHuolma) § g-2harcosh i (3.11)
={+1 k=1
- 2
_ e2we(m,x) /B ezzwo(f,,',‘),

prarcoshyl 4 T QH (1 + H)

and hence, using (3.7) and (3.8):

—-3/4+3a ('YI,A + 2m 712,)\62!%(7"")
—log () < (1 + My, 5L, a)) (3.12)

87l(1 =}, )32 (1 + \/1——7,2,4\) -

Next we derive a lower bound for the sum in (3.7): We choose a fixed number o, with
0 <o £3/8,e.g o =1/4, and define

M2
myy = [———’i—} , (3.13)

arcosh v,

where [z} denotes the smallest integer j with 5 > z. It will turn out that it suffices
to consider only m;, summands in (3.7) to derive a good lower bound. Observe that
for 0 < £ < 1 the bound arcoshz™! > 2Y2(1 — 1)'/2 holds true. Therefore we get the
following estimates for £ with { < k <!+ my, and M, > 1
M3 2M

mpa <14 H
b =7 arcosh Ya V1 ma

20
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1— %y } k-1 A LB
LT R —_ < 2 < : 3.15
‘1-7,,,\ TAT o = T o ST — e (3.15)
2Mf,¥; _ 2M—3/2+al
= (1 -y )32 bA ’

In the calculations below, we use the following Lipschitz-continuity arguments: There are
positive constants c;3 and c¢,3, such that for all € with 0 < ¢ < ¢4 and for all z,, 29, 71, ¥2 >
0 with |z, /zs—1]| < e and |y /y2— 1| < € the following holds: |(z1+y1)/(z2+12)—1| <,

[(z131)/(22y2) — 1| < caze, Ha1/y1)/(@2/y2) — 1| < case, |\/Z1//T2 — 1] < caze. We get
successively for M ) being large enough, say M > br(ay) > 1

(326) o g3/ 2+e L -y

-1 LA )

—3/24m
1| < C45Mz,)\ )

1—75x

’Yq,A(l - ’Y:z,x) -1

(3.15)

~3/24-m
Ccag M !

, (3.17)

(3.16,3.17) _
cas M P, (3.18)

Jl-2, (=720
TQ,; + 2
=1 V1-72, -1 (3.18) can M-3/2+a1 (3 19)
T 2 LA N .
Y = N

Ter +24/1=70 11 —))
2
1 =%n)  pa+2/1-7,

(3.19,3.16)

CdsM'zT)? A (3.20)

We expand qwo(7,,,) for i < ¢ < I+my,: We assume again that M, is large enough, say

M » 2 bg{oy) > 1:

qwo(7gx) — lwo(mia) — (g — l)gj(lwo(’n,a))

2
™ 5

32
sup %(’Cwo (’Yk,A))

2 kefli+my)

(3.14,3.9) 2M‘2a1 1 2M2a1
: s sup < By
1—y., ke[l l+my 5] km
(3.15) 2M¢2§'

11— )32

21

su
(1 —m) ke[l,l+17::u.z]

(3.21)

i
V31—

1+ ngMz,—A3/2+al) < 3Ml:\3/2+2a1'



Using the estimates (3.20) and (3.21), we obtain:

o + 2\/1~— I Y0 + 2\/1—___
Z Ya.a v g2awo(vg,x) > Z i LG e?awolran) (3.22)

g=1+1 4mq(1 = 7gp) fury amq(l —72,)
+2,/1 — A2, Hmua
> (1 -casM ~3/24aqy 0 YA 2wl 2)+2(a~1) G (lwo(n,x ) -6 M7+
- 48 I,A 41[_1(1 2 ) € , .
RSt

The last sum is bounded from below by

™y,
—3/2+42e0\ 20 —2k arcosh v~}
(1 — cso M,/ 2¥20m)2un(n) B (8 (3.23)
k=1
e2lwol,)

~3/242 — ~1
— (1 _ C5DM1A/ + cxl)(l s 2my 5 arcosh 7,y —
' e2arcosh7,'A -1

(3 13) (1—c 0M_3 J24+201 1 _2M:§) elwo(m,)

e2aru:o'.=,h'7[‘}\1 -1

e2lwo(,n)

-3/242e
> 1- CSlM = 5
= ( LA )62 arcosh 1’!,; -1

We define an error term (I, A, a) implicitly by the following equation:

A+ 2 1 — ’712,4\ W‘Z’*ezlwo(‘ﬂ,x)
—log u(A) = (1 + 86(, ), @) M, ‘3’4+3°') ( ) (3.29)

8mi(1 — 712,,\)3/2 (1 + \/1 - 'y,":A ’ .

We combine (3.7), (3.22), (3.23), and the last step in (3.11) to obtain a lower bound
86(l, A, @) > —cs2(a) for the error term. The upper bound (3.12) tells us that §(l, A, a} is
bounded form above, too, hence |6g(l, A, @)| < cs3(a). We also need the following rough
bound for (3.24):

eZiwo(n,n)  (3.4) ~3/2 M2
[log (M) < quw < csaMy 2g—caoMiy’ (3.25)

hence ——— L 1| < e M e A 3.26
‘ 1— ¢l()\) = CB5H ( )

The estimates (3.26) and (3.24) together yield (3.1); this finishes the proof of Theorem
3.1.

(|
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4 Depoissonisation

We start with a quantitative continuity consideration for ¢;:

Lemma 4.1 There are constants css €|0,1/2] and cs7 > 0, and for every fized a €]0,1/4]
there are positive constants bg(a) and csg(c), such that for alll,n € N with | > 2\/n and
M, 2 by(cx), for all £ € R with

= < 5
1-— N e (4 1)

and for A :=n(l + &) the following bound holds:

Cs7|‘f |M1?7/;2

1 i / ’

1~ y(}) —3/443a
— | <
‘log 1 ¢z('n)‘ < ng((l’)Ml’n +

Proof of Lemma 4.1. Choose cs¢ €]0,1/2] small enough, take o €]0, 1/4[ fixed, set bg(a) :=
2b3(a), where bs{c) is taken as in Theorem 3.1. Then for some positive constants cse, ceo,

Cs1, Co2, Cs7, and css{) the considerations below hold true: Let ,ln € N, £ € R, and A > 0
fulfill the hypotheses of Lemma 4.1. We compare 7y, with y »:

(4.2)

A (4.1)
fza_l‘ﬂﬁ_l:]\/m_q <l (43)
Vi n
—_ (4.3)
’———1 A _ 1‘ = e WA 1‘ < maldl (4.4)
1-Yn 1 =Y |Yin 1-%n
We combine these two estimates in the form
1—
ma.x{ A g l 7‘“‘-1'}5 €l (4.5)
Vi 1—vn 1-%a
As a consequence,
) i— (an1
Ml:)‘ _ 1‘ (1=12) ‘ "Yl,)\ - 1’ S |€| S =, (46)
M,n 1- Yin 1-— N 2
(48 M,
My, > % (4.7)

Using (4.5), Lipschitz estimates similar to (3.17-3.20) yield:

(’n.)‘ + 2\/ 1- 712,,\)712,A (1 _712,1;)3/2 (1+ \/1 _712,11) _1 < Cs59 f (4 8)
(1—%2’,\)3/2(14'1/1"")’12,)" (’Yz,n+21/1—'yf,n)%7;n 1 =a
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Furthermore,

Vi m 1— 22
o) = wolna)| 2 | [ da| < b= mal _max oL (49)
7 H A
(4.5) \/ ’Yf 1 .1 12
< e~ | ———— P~ (1 + csolél(1 — 11,0)~ ) c1l€l(1 — vin)"",
then
{4.9,1.12) ¢ M 3/2
Hwo(yp) — wolmn)| < M, (4.10)
10c i
hence we get for M;,, being large enough, say M;, > by(a):
1— (A | @D 14671, A, c) M43
log ——————= 3/4+3a (4.11)
1— ¢u(n) 1+6(l,n a)Ml

(ma+2/1-90) ot @ = (1+y/1-.)
+ |log
=22 (14 1=22)  (mn+2y/1= %) 20

+21 wo(y,) — wo( 71,0
538,144133 -3/4+3a C62|§| 2061 |£|Ml31{2
5 c58(a)M!,n + ,

1"'711: 1_71,11

3/2
csrlé| M.
Ml,_:/4+3a + 57[‘5' in

S 058 (Cl’) 1 _ ,n °
7

This proves Lemma 4.1.
0

Forl € Ny and n € N let ¢; , denote the probability that the longest increasing subsequence
in a random permutation of {1, ... ,n} (with the uniform distribution) has a length L, < I.

For A > 0, let P, denote the Poisson distribution with parameter A over N;, and
let N denote the identity function on Ny, thus NV is a Poissonian random variable with
parameter A with respect to IPy. The expectation operator corresponding to P, is denoted
by E5. We know ¢;(A) = E,[g,~]; see formula (1.11) in [3]. Furthermore we have the
monotonicity gin41 < @2 for all n € Np; see Lemma 8.1 in [3]. We state the following
quantitative version of (1.14):

Lemma 4.2 There are constants cgz €)0,1[, cs4 > 0, and for all fized 8 €]0,3/4] there
are constants b2(B) > 1 and ces(B8) > 0, such that for all l,n with v, € [ce3,1[ and
Mg’n > blg(ﬁ) we have
ezlw()("fl,n)
]' - QI,n = 2 3/2
SR =)

bo(l,m) (4.12)
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with an error term & that fulfills the bound

|log 85(1,n)| < cas(B)M;F + 064\/(1 = Y;n)| 10g{1 — 1,0)|- (4.13)

Proof of part 2 of Theorem 1.2 and of Lemma 4.2. Consider E € R, A=n{l1+&) >0
such that (4.1) holds. {Specific choices for £ and A will be given below.) We observe that

dP = e (:‘—Z)N dP,. If £ < 0, i.e. if A < n, then dP,/dP, is monotonically increasing,
and if £ > 0, then dP,/dP, is monotonically decreasing. Abbreviating

dP AN\"
vim T2 = () = explnlog1 +) - ) (414)
n n
and s, :=1fora >0, 5, := —1 for a < 0, we get

P,
SN-nS¢ (1 - %) > 0. (4.15)

Furthermore the fact that n — ¢, is monotonically decreasing implies

SN-n(l— @) < sy-all — qn). (4.16)

Using the term on the right hand side in (4.2), we abbreviate:

/2
- cs7|¢| My,
61,11,0:(&) = exXp {5£ (Css(a)ﬂll,:ﬂ-l-aa + —# y (417}

thus we can rewrite (4.2) as
se(1 — $1(A)) < sgetn,a(§)(1 — i(n))- (4.18)
Using the inequality s¢(log{1l + &) — £) > —s¢£2/2 (recall [¢| < 1), we obtain

(4.14)

sev > see N2 (4.19)
Then
dP,
5e(l = qia)(1 — v) = 5K, [(1 — Gin) (1 - Uﬁ)] (4.20)
A
(4.15,4.16) P,
< sy [(1 ~ Q) (1 . UEH]P:)] = 5¢(Ba [1 — g v] — vEn [L — @8])

= =) = v = d) S seleimal€) = v)(1 — $i(n))
(4.19)

< se(amall) — e (1 — ¢y(n)).



In the case 1 > £ > 0, the bound log(l + &) — ¢ < —¢£2/4 implies the upper bound
v < e7™*/ for v in addition to the lower bound (4. 19). Consequently we get

(420) 1 —qn (4203 €1.n,0(/€1)

—[¢]) — e¢*/2 4.21
Qm,a( |€|) e - 1 ¢I(n) = 1- e—n£2/4 ? ( )
and thus, a little rougher, but more symmetrically:
e/ < 1 fn_ —IE]) — e-nea) 4
€lnel™ = léna € : .22
tmal~1€]) - oy < (mel-lED ) (4.22)

provided the bounds are positive. An exact maximisation of ¢, o(—|¢|) ~ e™*/* would
lead to a transcendental equation, but for our purposes, rougher bounds suffice. In fact
we derive two different lower bounds for the maximum, the first one being more adapted
to the LD regime, the second one being more useful in the MD regime. For the first
bound, we choose positive constants cgs so large and cs7 so small that cgs := cs/16 >
Ce7 + Ce6Cs7 =: Cgo. Then we set

£ = 06671;3(1 'Yln)2Mg 3/2, (4.23)

and for M , being so large that

css () M2/ 475 < coryi(1 = 0) (4.24)
we obtain
né? (12 _

RO 21—, (4.25)

3/2

estE M,
658(0-')]‘4-‘ 3/443a + *—# S ng’yl n(l "yt’.n). (426)

",

Thus we get the following lower bound for the term in (4.22):

erma(—I€]) — €€/ > glma) (4.27)
with
gly) = e M=) _ o7 (1-M) 5 0 for0 <y <1, (4.28)
hence by (4.22):
9(mp) € ——22 < g(ya) (4.29)
1~ ¢( ) ’

Take a fixed o €]0, 1/4[. We choose a continuous function f; :]0, 1{—]0, oo so large that
the assumption M, > fi(7.) implies (4.24), My, > by(a), C37(CI!)M,’_:/ 3¢ < 1/2, and

Co6Y, 2(1 - 'n,,,)Ml;f’/ ? < ¢s6. (The last condition is just (4.1) combined with the choice
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(4.23) of £.) Then Theorem 3.1 is applicable: we apply the bounds (4.29) and (3.1); then
we get with the definitions

(v+2vT=77) 7
8m(1 — 42)3/? (1 + ﬂ)

the desired bounds (1.16) for My, > fi(v,n); thus we proved part 2. of Theorem 1.2.
We derive a second bound for (4.22) next, which is well adapted for the MD regime:
We set

fe(y) = 2¥ (7)™ (4.30)

1.12 - I -
£ == /201 log(1 — )| 27 292971 (1 — )2 log(1 — ) [V2MY7. (4.31)

Then

/2
csrEMY! _
1~ ’r:’ - 23/2057’?:,: (1 = 1n) | log(1 — 1a)I2. (4.33)

Let bg{a) be taken as in Lemma 4.1, where « is given by 8 = 3/4—3a. We choose constants
ce3 €]0,1[ so close to 1 and b15(B) > by() so large that the assumptions v, € [c3,1]
and My, > bio(B) imply, say, €n,a(—£) > 1/2, csr(@)M~? < 1/2, (1 —m,)"/? < 1/4, and
(4.1); see (4.17) and (4.33). Then we get for some positive constants e, c71, C12°

€na(—€) — g e 2 €l —E)(1 — 26_"52/4) (4.34)
(4.32) e
2 fl.n,a(“f) eXP{'-Cm(l - 'n,n) }
{4.17,4.33)

2 €Xp {—c5s(a)M¢:f —cn(l - '71,1:)1/2' log(1 — ’Yl,n)|1/2} )
and by Lipschitz arguments

N+ 24/1 =7,

1+1/1-—'yf,n

and hence (4.12/4.13) follows by (3.1) and (4.22). Thus Lemma 4.2 is proved.

log < er(l = Ya)? € en(l = 1n)? log(l — )|, (4.35)

O

Proof of part 1. in Theorem 1.2 and of Theorem 1.1. The statement (1.14) is an
immediate consequence of Lemma 4.2, We observe

R Y, B VSRV,
3 'Yl,n - 3 ‘\/i = 3

2wo(Yn) ~ MYP (4.36)
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as M,n /" 1 by (2.3) and (1.12). In the estimate (4.37) below, the notation a < b means
that a/b converges to 0. Furthermore,

. 3
[log(8xl(1 — +,)¥)| 19 log(87(1 + 1..)*%) + 5 log Min| < Mﬁ,/f (4.37)

as M, — co. The combination of (1.14), (4.36) and (4.37) yields the claim (1.15); this
finishes the proof of Theorem 1.2.

To derive Theorem 1.1 we take ! = i(n) := [2\/n+tn!/2"7]: We have as n — oo
Yy /1, 1e. I{n) ~ 24/n from 5 > 0, and

Mimyn ~ /27117103 g 9= W3p1f3=1 _, oo (4.38)
from 7 < 1/3. Hence
RO=S/212 (1 = 2R/ o (1= 220 (4.39)

Theorem 1.1 now follows from formula (1.15).
a

A Appendix

Lemma A.1 There is a constant c;3 > 0 such that for every circle C in the complex
plane, every k > 0, and every f € C*(C) the following bound holds:

f(s -
sup /*——E_) ds| <k Iflpaey + erak 1l pooiey + 27 1 Nl gy - (A1)
2eQ\C - §—-z

Proof of Lemma A.1. By scaling the circle and scaling k proportional to the radius of the
circle, we may assume without loss of generality k = 1. Given z € C\ C, let C; and C,
be the arcs of points s € C with [s — 2| > 1 and |s — z| < 1, respectively; C, may be
empty, or it may be the whole circle. We have

c[-sf(Ts);ds

If C, is empty, we are done. Else let z, y denote the start and end point of Cs, respectively.
(If C is the whole circle C, we take a point £ = y € C with maximal distance |z — z|
from z as start point and end point of C;.) In the calculations below with s € C,,
log((s — z)/(z — 2)) means [ dw/(w — 2), integrated on C,. By partial integration:

< ||f||Ll(cl)félcP ls—2' < ||f||r,1(c,)- (A.2)
1

r—=z T

/és)z-dsz—/f'(s)logs-zds+f(y)logy:z, (A.3)
C Ca
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hence (using [z — z| = |y — 2]):

[&ds
§—2

Cz

2= asl + 2 (A9)

L
og

<1 i |

Ca

The integral on the right hand side of (A.4) is bounded by a constant cz3. Indeed: We
split Cy into pieces Co; := {s € C2 : €7 < |s — z| < e7*1}, j € N. Then the length
of Cy; is bounded by 2me~*!, and |log((s — z)(z — 2))| < j + 27 for s € Cy;; the last
statement follows from |Im log((s — z)(z — z)}| < 27 and from |Re log((s — 2)(z - 2))| =
—log(|s — z|/|x — z|) £ —logls — 2| < j; recall that = is a point on C; with maximal
distance from z and that |z — z| < 1. Hence the integral on the right hand side of (A.4)
is bounded by cz3 := 3 ey + 27)2me ! < c0.
Combining (A.2) and (A.4) we obtain (A.1).
g O

The next lemma considers the (matrix-valued) Riemann-Hilbert problems with a tran-
sition function I + W which is a small perturbation of the identity. Assume that W is
defined on a circle C centered at the origin, and the RHP is specified by

Ly=L_(I+W)onC, L_(0)=1, (A.5)
L., to be defined inside the disk with boundary C and L_ to be defined outside the disk.

Lemma A.2 Assume that [|Wl e, < 1. Then the RHP (A.5) has a solution Ly which
fulfills

1 W32
L) -1 < —= [ IW + : A6)
| +( ) | |C| (” "Ll(c) 1— |IW”L°°(C) (

Proof of Lemma A.2. By scaling, we may assume that C is the unit circle. Let Cy :
L*(C) — L*(C) denote the Cauchy operator

Cef(z) = tim —— & LCL 4 (A7)
w— C

where w is taken in the interior of the unit disk for C; and in the exterior of the unit disk
for C_. Then +C; are orthogonal projectors with C, — C_ = id; this can be seen using
a Fourier series of f. (To be precise, Cy is first defined for smooth f only and then can
be continuously extended to L2(C), since it is a bounded operator.) We write (A.5) with
the substitution Ay = Ly — I as

Ay —A_=W+A WonC, A_{c0) =0, (A.8)
and

A =Ci (W +A_W)on C. (A.9)
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The map K : A — C_(AW) is a bounded linear operator in L?(C) with operator norm
1K 20y 22(cy < W] (o) < 1; hence equation (A.9) has a solution A_ with

1AL < IC-W |2y W | 2
— 2 —_— P
e =1 Wl ooy = 1= [IWllzeo(ey

(A.10)

and therefore

1
< o (W) + 1A lpsiey W ey -
(A.11)

[A(0)] =

5 . W =AW T

The estimates (A.10) and (A.11) together yield (A.6).
a
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