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Abstract

Generalized likelihood ratio statistics have been proposed in Fan, Zhang and Zhang (2001} as a gener-
ally applicable method for testing nonparametric hypotheses concerning about nonparametric functions.
The likelihood ratio statistics are constructed based on the assumption that the distributions of stochastic
errors are in a certain parametric family. We extend their work to the case where the error distribution
is completely unspecified via newly proposed sieve empirical likelihood ratio tests. The approach is also
applied to test conditional estimating equations on the distributions of stochastic errors. It is shown that
the proposed sieve empirical likelihood ratio statistics follow asymptotically rescaled x?—distributions,
with the scale constants and the degrees of freedom being independent of the nuisance parameters. This
demonstrates that the Wilks phenomenon observed in Fan, Zhang and Zhang (2001) continues to hold
under more relaxed models and a larger class of techniques. The asymptotic power of the proposed test
is also derived, which achieves the optimal rate for nonparametric hypothesis testing. The proposed
approach has two advantages over the generalized likelihood ratic method: it requires only to specify
some conditional estimating equations rather than the entire distribution of the stochastic error and the

procedure adapts automatically to unknown error distributions including heteroscedasticity.
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1 Introduction

Over the last two decades, many computationally intensive nonparametric techniques and theory have been
flourishedly developed to exploit possible hidden structures and to reduce modeling biases of traditional
parametric methods. Methods such as local polynomial fitting, spline approximations and orthogonal series
expansions as well as dimensionality reduction techniques have been studied in great depth in various statis-
tical contexts. Yet, there are no generally applicable methods available for the inferences in nonparametric
models. Various efforts have been made in the literature on nonparametric hypothesis testing. See for exam-
ple Bickel and Ritov (1992}, Eubank and Hart (1992), Hardle and Mammen (1993), Azzalini and Bowman
(1993), Fan (1996), Spokoiny (1996), Inglot and Ledwina (1996), Kallenberg and Ledwina (1997), among
others. For an overview, see the recent book by Hart (1997). However, most of these methods focus only
on the one-dimensional nonparametric regression problem. They are difficult to be extended to multivariate
semiparametric and nonparametric models.

In an effort to derive a generally applicable testing procedure, for multivariate semiparametric and non-
parametric models, Fan, Zhang and Zhang (2001) proposed generalized likelihood ratio tests. The work is
motivated by the fact that the nonparametric maximum likelihood ratio test may not exist in many nonpara-
metric problems. Further, even if it exists, it is not optimal even in the simplest nonparametric regression
setting. Generalized likelihood ratio statistics, obtained by replacing unknown functions by reasonable non-
parametric estimators, rather than the MLE as in the parametric setting, have several nice properties. In
the varying-coefficient model

Y =ay(U)X: +--- +ap(U)X, + 6, (1.1)

where (U, X3,--+,X,) are independent variables and Y is the response variable, Fan, Zhang and Zhang
* (2001) unveil the following Wilks phenomenon: The asymptotic null distributions are independent of nuisance
functions and follow a y?-distribution (in a generalized sense) for testing the homogeneity

Ho :al(-) = 91,“‘,0.,(') =0,, (1.2)
and for testing the significance of variables such as
Ho: () =az2(-) = 0. (1.3)

In other words, the generalized likelihood ratio statistic A, follows asymptotically a rescaled x?—distribution
in the sense that (2b,)~Y/2(ricAn — bs) AN (0,1) for 2 sequence b, — oo and a constant rx. We will use
the notation rx A, ~ xt_ to denote the result. The significance of the result is that the scale constant cx and
the degree of freedom b, are independent of nuisance parameters, such as the joint density of (U, Xy, -+, Xp)
and the parameters 0;,---,8, in (1.2) and the functions a3(-}, - ya5(-) in (1.3). This Wilks phenomenoa
is the key to the success of the classical maximum likelihood ratio tests for parametric problems. With the
above newly discovered Wilks phenomenon in nonparametric models, the P-values can easily be computed by
using either the asymptotic distributions or simulations via fixing nuisance parameters or functions under the
null hypothesis at certain values of interest. Further, Fan, Zhang and Zhang (2001) show that the resulting
tests are asymptotically optimal in the sense of Ingster (1993).

The idea of the above generalized likelihood method is widely applicable in semiparametric and non-
parametric models. It is easy to use because of the Wilks phenomenon and is powerful as it achieves the
optimal rate of convergence. Yet, one needs to specify the parametric form of the error distribution such



as ¢ in (1.1) in order to construct the generalized likelihood ratio statistic. While the procedure based on
the normal likelihood may be still applicable to the case where the distribution of ¢ is homoscedastic, it
may not be efficient. When the error distribution is heteroscedastic with the variance var(e|U) = o%(U), the
construction of the generalized likelihood ratio test statistic needs the knowledge of the variance function
o2(+). This motivates us to propose the sieve empirical likelihood ratio test statistic for handling the case
where the exact form of the error distribution is unknown, but some qualitative traits of the distribution is
known. A popular model is to assume

E[G(e)lU} =0 (1.4)

where G = (Gh,---,Gk,)" is a k,—dimensional function (see Owen, 1988; Newey, 1993; Zhang and Gijbels,
1999). This is a much less restrictive assumption than a parametric form on the distribution of £. In
particular, when the conditional distribution of £ given U is symmetric about 0, we may choose a sequence
of k, grid points, say, 0 = 5, < 83 <--+ < 8, and take

Gi(e) = I(e € [sg—1,8k]} — I(~€ € [8k-1,8%]), 1<k <k (1.5)

or a smoother version of the function Gy. Note that as max; <k <k, (8k —3x—1) — 0, k, — 00, these restrictions
are essentially the same as the symmetric assumption.

A few questions related to the sieve empirical likelihood ratio test arise naturally. First of all, it is not
clear how to construct an empirical likelihood in the nonparametric setting. Secondly, it is not obvious
whether a particular construction of the empirical likelihood ratio statistic will follow the Wilks’ type of
result. Thirdly, it is not granted that the resulting test statistic is asymptotically optimal in the sense of

" Ingster (1993). Finally, it remains unknown whether the empirical likelihood ratio statistics will adapt to
unknown distribution of ¢ including heteroscedasticity. These issues are poorly understood and the new
phenomena need to be discovered.

The technical derivations for sieve empirical likelihood ratio tests are very involved. To ease some
of the technical burden, we choose the varying coefficient model (1.1) for our investigation. The model
arises from various contexts and has been widely used. For example, in many biomedical studies, it is
frequently encountered the issue such as the extent to which the effect of exposure variables on the response
variable changes with the level of a confounding covariate (e.g. age). See, for example, Cleveland, Grosse
and Shyn (1991), Hastie and Tibshirani (1993) and Carroll, Ruppert, and Welsh (1998). In longitudinal
studies, investigators often want to exam how the effects of covariates on response variables change over
time (Brumback and Rice, 1998, Wu, Chiang and Hoover 1998). In nonlinear time series, the model allows
different autoregressive model for different regimes of state variables (Chen and Tsay, 1993; Cai, Fan and
Yao, 2000). It includes the thresholded autoregressive model (Tong, 1990) as a specific example. The model
has successfully been applied by Hong and Lee (1999) to the inference and forecast of exchange rates. Thus,
our study in model (1.1) has direct implications on the above problems.

For the varying coefficient model (1.1), it arises frequently whether the coefficient functions are really
varying or whether certain covariates are statistically significant. This leads to the problem of testing for
homogeneity (1.2) or the problem of testing for significance such as the problem (1.3). As to be explained
at the end of section 2, these problems can be reduced to the problem of testing against a specific null
hypothesis:

Hp : a1(") = a10(’), -+, ap(+) = apo(-),
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for some given functions as,- -, ap0. Our approach is to first construct the local linear estimator of the
coefficient functions ay,---,a, via a local version of the empirical likelihood, then substitute the estimate
into a special sieve empirical likelihood {see Zhang and Gijbels, 1999; Liu and Zhang, 2000). This allows us
to form the empirical likelihood ratio statistics. We will show that the proposed sieve empirical likelihood
procedures follow the Wilks type of results under more relaxed assumptions on the error distribution of
¢. ‘This provides a useful extension of the results given by Fan, Zhang and Zhang (2001). Note that our
procedure is very different from that of Kitamura (1997} in which he considered testing problems for finite
dimensional parameters in weakly dependent processes. He first used the local (blocking) approximation to
construct a global estimating equation, then apply Owen’s procedure directly.

Our empirical likelihood ratio method applies also to the nonparametric tests on density functions. Asan
illustration without introducing new statistical setting, we regard the constraints (1.4) as a null hypothesis.
We will demonstrate that the Wilks type of phenomenon continues to hold for this nonparametric testing
problem.

When p =1 and X = 1 and the coeflicient function a;{-) = 8, under the constraints (1.4) and (1.5), the
model becomes a one-sample symmetric location model which is well studied, for instance, by Hettmansperger
(1984) and Bickel et al. (1993). In Section 2, we find that for this special case, the first step in our procedure
essentially makes the information on the stochastic error to be efficiently used (see, Owen, 1988; Liu and
Zhang, 2000). Moreover, the second step makes the likelihood ratio statistic adaptive to heteroscedasticity.
As a result, our procedure has two advantages over the parametric model on the error distribution. Firstly,
it requires only some conditional estimating equations such as (1.4) rather than the whole distribution
of the stochastic error. Secondly, the asymptotic null distribution of the sieve empirical likelihood ratio
statistic asymptotically follows a rescaled x2-distribution. The scaling constant and the degree of freedom -
are independent of the conditional distribution of ¢ evex if the stochastic error is heteroscedastic in U. The -
procedure and results can be easily generalized to a more general constrained regression model in Zhang and
Gijbels (1999).

The paper is organized as follows. In Section 2, the sieve empirical likelihood ratio statistics are introduced
for testing the goodness-of-fit of the estimating equations and for testing some simple and composite null
hypotheses. In Section 3, the asymptotic null and non-null distributions of these statistics are derived. The
technical conditions and the proofs are deferred to Section 4.

2 Sieve Empirical likelihood

It is more convenience to work on the matrix notation for model (1.1):
Y = A"(U)X +¢, (2.1)

where Y is the response, U € 2 C R! (with Q bounded) and X € RP are covariates, ¢ is the stochastic error
and A(U) = (a1(u),---,ap(u)) is the vector of varying coefficients. Let {(Y;, X;,U3)}, be an iid random
sample from the model (2.1) with the restriction (1.4). According to Owen’s procedure (Owen, 1988},
to construct an empirical likelihood which can identify an infinite dimensional parameter such as Afu) in
(2.1), we need to establish an infinite number of unconditional estimating equations. Such a likelihood
is often theoretically intractable. To overcome this difficulty, Zhang and Gijbels (1999) proposed a general
procedure to build a sieve empirical likelihood via the local approximation. For the model (2.1) the procedure
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consists of two steps: First, for each U; construct n local empirical likelihoods which can locally identify
A(u),u = U;. These local empirical likelihoods lead to a weighted approximation of the logarithm of the
conditional probability mass dPy, x)jy=v, (Y, X;}. Then a log-likelihood is obtained simply by summing up
all of these approximated logarithms. In the first step, we will use the local linear approximation of the
nonparametric coefficient functions A(-) (see Fan and Zhang, 1999; Cai, Fan and Li, 2000). In other words,
in a neighborhood around a given point ug, approximate A(-) by

Au) = A{uo) + A'(uo)(u —up), for u =~ up.
Thus, around the point ug, the model (2.1) and the restriction (1.4) can be written respectively as

Y = Baluo)T Z(X,(U ~ uo)/h) +¢, for U = uo,
E[G(Y — Baluo)" Z(X,(U — ug)/R)|U =u) =0, foru=up (2.2)

where Ba(uo) = (A7(u0), AT (u0))™ and Z(X,t) = (X7,tXT)". This is indeed a local linear model. To
incorporate the local linear model, let & represent the size of the local neighborhood where the approximation
is valid and K be a weight function, which is a symmetric probability density function. Let p;,i =1,---,n
be the conditional empirical probability mass of (X,Y) given U = up, putting on the i-th data point
(X:,Y:)(i = 1,---,n). Suppose that given U, ¢ and X are independent. Then, the conditional constraints
(2.2) can be translated into the following unconditional estimating equation

> piGin(uo, Ba(uo)) =0,

=1
where
Gin = Gin(uo, 8) = G(Y; — 87 Z(X:, (U; — uo)/h)) ® Z(Xi, (Ui — uo)/h)

with ® being the Kronecker product, 8 = (A", hB")", A = (a1,"--,a,)" and B = (by,---,b,)". To see why
we need an extra factor Z(X;, (U; — uo)/h) in the unconditional estimating function Gy, we let G(c) = ¢
temporally. It is actually based on a well-known fact that in the linear model the product of the residual and
the covariates is a good estimating equation for the parameter §4. This leads to the following estimating
equation
n

2 pilYs = BT Z(X:, (Ui — w0/ ) Z(Xi, (Us - uo) /h) = 0.

i=1
In light of this fact, for a general G, we should build the estimating equation by multiplying each components
of G by the covariate vector Z(X;, (U; — up)/h), which admits the form G;.

Thus, following Owen (1988), the local empirical log-likelihood function of 3 is defined by

n " n
1(B,u0) = sup{D _ wa(Us,uo)logpi i pi 20,1 <i<n, Y p =1, piGin(uo, ) = 0}
i=1 i=1 i=1
where wy (Ui, uo) = Kn(Us — o)/ T i Kn(Unm — up) with K, () = K(-/h)/h. By the Lagrange multiplier
method, we obtain

(B, u0) =Y _ wa(Ui, u0) logwn(Us, ua) — > wa(Us, uo) log(1 + af (w0, B)Giin),

i=1 =]



where o, (ug, 8) satisfies

= Gip (uCh ﬁ) _
2 U ) T e, B) G (40, B S

i=1

Define the estimate of 8 by

B(ug) = argmaxyl(B, uo)- (2.4)

The first p components, denoted by fi(ug), give an estimate of A(up), and the remaining components estimate
hA'(ug). An approximate empirical likelihood, called the sieve empirical likelihood for the nonparametric
function A can be introduced by adding the logarithm of the conditional likelihood at each data point:

n
HAIG) = UBa,U)
=1
The name “sieve” originates from the following two facts: (1) in the above procedure {E[G(e)]U =
Ujlhi<j<n is a sieve approximation to the constraints (1.4); (2) {(Ba,U;) is the weighted approximation of
the logarithm of the conditional probability mass dP(y,x)v=u; v, (Y;, X;). See Zhang and Gijbels (1999) for a
more detailed explanation. Motivated by Fan, Zhang and Zhang (2001), we define the logarithm of the sieve
empirical likelihood under the nonparametric model (2.1) with constraints (1.4) by substituting B = f into
1(A|G), leading to
1(elG) = Z HAW;), Us}-
=
We now consider the nonparametnc test concerning about the density function of c. As a specific
a.pphcahon of the sieve empirical likelihood, we consider the testing

Hog : E[G(e)IU) =0, (2.5)

where G is given in (1.4). Without the constraint (1.4), following the above derivations, the corresponding
logarithm of the sieve empirical likelihood is

WOIN) =D S~ wal(Us, U;) logwa (Ui, Uj).
j=1i=1

Thus, we can construct a goodness-of-fit test of the hypothesis (2.5) based on the following logarithm of the
sieve empirical likelihood ratio:

(G) = UBIG)-I®eIN),
= 35 wn(U;,Uj)log(1 + &(U;) Gin(U;, ) (2.6)
=1 =1

where &(u) = an(u, B).

Next, we consider the sieve likelihood ratio test for the nonparametric coefficient function A(-) under
the restriction (1.4). In the varying coefficient model (2.1), we ask naturally whether the coefficient is
really varying or whether certain covariates are statistically significant. This leads to the parametric null
hypothesis:

Hyn : A() = 0.



More generally, we wish to test the composite nully hypothesis, which involves nuisance functions A2(-):
Hey 1 Ay = Ayo — Hy. - A # A (2.7)

with Az(-) completely unknown. This problem includes the test of significance (1.3) under model (1.1) as a

specific example. Here we write

_ [ Aio{uo) _{ Ai(wo)
AO(“O) = ( Azo('uo) )’ and A(“O) = ( Az('uo) ):

with Ajo(u) and A;(u) being p1(< p) dimensional. To construct the likelihood ratio statistic for Hg., we
introduce the following notation:

Baa(uo) = (A5 (uo), hAT (o)), B2 = (A3,hB]), B = (Afp(uo), A7, hA1H(uo), hB7)".
Let

Ba(uwo) = (A3,hB3)" = argmaxg (6", uo),
B(uo) = (Afo(uo), A7, hAj5(uo), hBI)

and the corresponding &*(uo) be defined by

1< G (w0, B* (u0))
0=-— Ui, 7 "
n ‘z:; wi(Uss o) 1 + &*7 (u0)Gin(0, 8* (uo))

Then, the sieve empirical likelihood ratio statistic for Ho, can be written as
l(Hou|G) = 1(902|G} - 1(O|G). (2.8)
with "
H0u2lG) = D (B (U;),Uy)-
=1
The sieve empirical likelihood ratio test for the semiparametric model that A(-) has a certain parametric
form such as the linear model can be constructed analogously. Similarly to Fan, Zhang and Zhang (2001),

the asymptotic null distributions of the sieve likelihood ratio statistics for composite null hypotheses can be
derived from those for simple hypotheses (see the next paragraph). This motivates us to consider

Ho,: A=A — H,:A# A (2.9)

for a given Ag. Analogously to I(Hp,), we can construct the following likelihoed ratio statistic:

l(Ho,|G) = 1(4o|G)—-UOI|G)
= 33 wn(Us, U og(L + a(U, Bo) Gin (U, o) — HG) (2.10)
j=114=1

where (y denotes B8a,. Note that when Ag in Hg, is known, we can assume, without loss of generality, that
Ag = 0. This can be accomplished through a simple transformation A* = A — Ay. With this transformation,
(2.9) is equivalent to

Hj,: A*=0 — H A" #0. (2.11)



We opt for general Ao, since the results have implications on the composite null hypotheses. To appreciate
this, consider the composite null hypothesis testing problem:

Hy: A€ Ap -t A ¢ A, (2.12)

where Ag is a set of functions. Let I(Ag]G) be the sieve empirical likelihood under the hypothesis Hyp in
(2.12). Then, the sieve empirical likelihood ratio statistic is simply

An = I(Ag|G) — 1(O)G).

Let A} denote the true value of the parameter function A. Consider the fabricated testing problems with
the simple null hypotheses:
H|: A=Ay, — Hy:A# A (2.13)

and
Hj: A=A, — H{: A€ Ap. (2.14)

Let 1(A4}|G) be the sieve empirical likelihood under Hy. Then, the sieve empirical likelihood ratio statistic
for (2.12) can be written as
An = AAGIG) ~ A" (4G),

where M(A44|G) = I(45|G) — I(©|G) is the sieve empirical likelihood ratio statistic for the problem (2.13) and
A (A41G) = I(AH|G) — I(Ag|G) is the sieve empirical ratio test for the problem (2.14). Thus, the asymptotic
representation of A, follows directly from those of A(4j) and A* (A4), which admits the form given by (2.10).

3 Asymptotic theory

3.1 Asymptotic expansions

In order to obtain the properties of the sieve empirical likelihood ratio statistics in (2.6) and (2.10), we first
develop some uniform asymptotic representations for the local sieve empirical likelihcod estimator B and
the Lagrange multiplier & in (2.3) and (2.4). These results are the generalizations of Liu and Zhang (2000).
They also indicate the performance of the sieve empirical likelihood estimator. Using these results we will
establish the asymptotic representations for I(G) and I(Hys|G) in (2.6) and (2.10). For the simplicity of
presentation, we assume G is differentiable. Let f(uo) be the density of U at the point up. Set

D(uo) = —EIQ%EUHOL V(uo) = EiG(e)G" (e)|U = uo],

(w) = BEXX"|U = uclf(uo), s=(1 0 ) w = [ ORI
0 B2

mi(uo) = —{D(u0)"V(u0) ' D(x0)} ™ D" (uo)V 7 (u0)Gle:),

Cluo) = V~(uo) - V" (u)(D" (o)V " (uo)D(uo))~* D{0) D" (u0)V ™" (wo)s
&6 = Y- AT({UnX.

Theorem 1 Suppose that the conditions (K0), (U0), (A1)~(A10) and (B2 )~(B5) in Section 4.1 hold and
that the underlying A(u) is linear or has the twice continuous derivative and satisfies the condition (B6). If



there exist some positive constants by,b and n < 1/2 such that by < hn? < by, then uniformly for ug € Q,

n -1
Blwo) = Bluo)+ %ZKh(Ui - o) ( F_li‘u_ul)(};)x (U: — uo)/h ) mi(uo)(1 + 0p(h/?)) + Op (R?),
. _ 1 _ T uo)X; 1/2 2
Sluo) = gKﬂ(U ul{Cluo)Gled} @ ( ﬂz_ll'"l(uo)Xi(Ui - ug)/h ) (1+0p(A75)) + Op(h).

As a consequence of Theorem 1, we have the following asymptotic uniform expansion:

Aluo) — Aluo) = = zynw—mm*mm ) Xim:(0)(1 + 0p(h/2)) + Oy (A?).
R
The asymptotic normality of the local sieve empirical likelihood estimator follows easily from the above
asymptotic expansion.

In Theorem 1, the requirement that & is differentiable can be relaxed by imposing some entropy conditions
on G and by assuming E[G(e — t)|U = ug] is twice continuously differentiable in ¢. In this case D{ug)
should be replaced by —{8E[G(e — t)jU = u¢]/8%}):=0. Similar to Liu and Zhang (2000), we can show that
the asymptotic efficiency of Afug) is increasing in D(uo)”V (uo)~1D(uo). In particular, in the setting of
symmetric location model mentioned in Section 1, we can find a squence of G, say {G*)} such that the
corresponding fi(uo) is asymptotically adaptive to the unknown conditional density of ¢ given U = up. In
practice, to save the computational effort, we prefer to choosing a G with a small %, and a relatively larger
D(uo)V (u0) "1 D(uo).

We now give the asymptotic representations for the sieve empirical likelihood ratio statistics I(G) and
I(Hos|G). The results indicate that they admit a generalized quadratic form. To facilitate the notation, the
following notaticn is introduced. Let

$an(l) = Kn(U: — U)Kn(Us — UYCUY1 + (U; = UNUr = Uz ' )XIT U X 71U,
K*(s) f K@K (s + (1 + (s + )z Ve, (3.1)
Pien = Elpun (Vs U, Xi, X))
= KU~ UIOw; )XIT=H(U3)Xe (1 + Op(h)),
T, = ) ZG (e:)PiunGler)-

n(n—l

Similarly, we define

an(U) = Ki(U: = U)K (Up - YWY HXTT YN X {L + (U = UNU — U 'R 3 71U,
Qun = Elgan(DIUi, U, Xi, X)),
I = 'n(nl— 1) ;Gr(ei) (Qikn — Bikn) Gler).

Then, we have the following result.

Theorem 2 Suppose the conditions of Theorem 1 hold. Then under Hyg,

2(G) = (ko = plfY l)p[ﬂl f K2(8)(1 + 23 V)dt + (1 + 0,(RY2))nT, + 0p(R1/2); (3.2)
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and under Hos, if Ao is linear or nh®/2 — 0, then
oA(Hos|G) = 2'5’_' / K2(6)(1 + 2zt )t + (1 + 0p(BY2)T + 0p(R72), (3.3)
where || is the length of the support Q of the density f.

Note that if there are no components in 4, then under Hog the factor ko —1 in (3.2) should be ko, since
we cost p degrees of freedom to estimate them when there are p components in A.

3.2 Asymptotic null distribution

With the asymptotic representations, we are now ready to derive the asymptotic distributions of the test
statistics lg and I(Hp,|G). Like in the parametric case for the stochastic error ¢ (see Fan, Zhang and Zhang,
2001), under the null hypotheses the sieve empirical likelihood ratio statistics in (2.6), (2.8) and (2.10) are
asymptotically x?—distributed and their degrees of freedom are independent of the nuisance parameters such
as A4, G, and the distribution of €.

Theorem 3 Under Hyg and the conditions of Theorem 1, for ko > 1, we have rxlg ~ xg,_ with

2K7(0) , _ (ko= L)plOlex

TK = -""———f K'(S)zdS’ n h

where K*(s) is defined in (8.1), ex = K*(0)?/ [ K*(s)?ds. For ko =1, we have rlc = o0p{1).

Remark 3.1 If K() has support [~1,1], and if K(t) and |t|K(¢) are concave on t € [—1,1], then by the ~
same argument used in the Sherman inequality (see, Farrell, 1985, pp.343), we have

IK*(s)] < [ K(t)K(s +t)dt + 3" f I ()]s + t1K (s + t)dt < K*(0).

Thus when K*(s) > 0,8 € [-1,1], 7k = 2. In particular, when K is the uniform kernel function, ric = 2.8176
and cx = 1.0566; when K is the Epanechnikov kernel function, Tk = 2.5154 and cx = 1.2936.

The next theorem presents the asymptotic null distribution of I(Hos|G).

Theorem 4 Suppose that the conditions of Theorem 1 hold. Then under Ho,, Trl(Hoo)G) ~ xf'.l; and under
Hoo, if nh®2 = 0, then ril(Hou|G) ~ Xb-, where b, = p|Qex/h and by = p1|Qex /b with cx and T
defined in Theorem § and py being the dimensionality of Ajg in (2.7).

Theorems 3 and 4 indicate that the sieve empirical likelihood ratio statistics continue to apply to the
case where the distribution of the stochastic error ¢ is completely unknown and furthermore there are many
nuisance parameters in null hypotheses. In particular, the stochastic errors are allowed to be heteroscedastic
and unknown. This is a useful generalization of the results in Fan, Zhang and Zhang (2001) where the
distribution of ¢ is essentially known. In particular, if the variance is heteroscedastic with var(e|U) = o2(U),
they have to rely on the knowledge of o%(-) to consiruct the likelihood ratio statistics. This drawback is
repaired by the empirical likelihood ratio method, while their Wilks phenomenon is inherited.
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3.3 Asymptotic power

To demonstrate the effectiveness of the sieve empirical likelihood method, we consider, for simplicity, the
test statistic for the problem (2.11) under the contiguous alternative A,(-) — 0, with AJ(-) being bounded.
That is, we allow the coefficient functions close to the null hypothesis, but is still in the class of functions
with the bounded and continuous second derivatives. This is a much less restriction than the contiguous
alternatives of form A, (u) = a,Bp(u) for a sequence a, — 0 and a given By, considered by many authors
{e.g. Eubank and Hart, 1992, Eubank and LaRiccia, 1992, Hart, 1997, Inglot and Ledwina 1996). The latter
implicitly assumes that A}, (u) — 0 and A%{u) — 0, which are too restrictive for nonparametric applications.
We begin with the following notation. Let

W, =_ZK,,(U, Un)G(e:)V U)X T Y U)X  A(UR)T X 6%(‘:"), (3.4)
itk
= _ 08G(e) BG(E,)
—i - ae E[ lU],
W = -ZK,,(U Uk)"fv-‘(v,)ukA(U, "X XIT U)Xk X[ A(UR), (3.5)
ik
Wi = _ZK,,(U Uk)::'V‘l(Uk)E[aG(e")|Uk]A(U; X XITMU)XXIA(UL).  (3.6)
i#k

Then, following the same arguments used in Fan, Zhang and Zhang (2001), we can derive the asymptotic
power l(Hy,|G) through the next theorem.

Theorem 5 Assume that Ay = 0 and that the underlying coefficient A = A, has the twice conlinuous
derivatives and satisfies nhEA(U)" XX A(U) = O(1), max,, ||A(z)]| — 0 and max, [|A"(u)]| = O(1) as
n — 00. Assume that G is twice continuously differentiable. Then under the conditions of Theorem 1,
2U(Hos|G) = p'“'x'(m +nE{D(U)"V-YU)DU)AUY X X" A1 + of1))
4

-ﬂE{D(U)TC(U \D(U)A"(UY XX A" (U}

- j ] (s + 02K ($)K (s + )(1 + p3 "t(s + £))deds(1 + o(1))

+(1 4 0p (AT + 2Wy, + Wy, + 2W5 ) + 0,(h~1/?)
where D, V, C and K* are defined in Subsection 3.1.

Using the above result, similar to that in Fan, Zhang and Zhang (2001}, it can easily be shown that the
sieve empirical likelihood ratio can detect alternative with rate n=%/% when h = ¢,n=2/? {for some constant

¢.. This rate is optimal in the ordinary nonparametric regression setting.
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4 Technical conditions and proofs

4.1 Technical conditions

Define
An(uo’ﬁ) = —ZKI'A _uo)Gih(uUaﬁ)7
=1
Zn(ug,B) = S [1Gja(u0, I,

Vﬂ(uO:ﬁ) = = ZKh(U - UO)GIh(uﬂs ﬂ)Gsh(u’U! ﬁ):

1.—1

_ 1 ih(uoﬂl’z)G{h(umﬁ)
Va(uo, 0, 8) = EK"(U 1+ o™ Gin(uo, B)

_ 1~ Kn(Ui—u0) 9Gin(uo, B)
Bn('uo,a,ﬂ) = n;l-l—a"Gih(‘uo,ﬁ) dp™ ’

_ 1 i Kn{Ui —uo)  0Gin(uo, B)
Calvnr@f) = 03 (T o Ga(ue, AV OB

.1 2 Ka(Ui —u0) 0°Gin(uo,B)
Dn(uo,a,ﬂ) = Tbl; 1 +aTGih(u0,ﬁ) 8668" )

1 Kn(Ui~uo)  8Gin(u0,B8) .- 0Gin(uo, )
.Eﬂ('-‘o,a)ﬂ) = Z (1 +QTG;};('MO,ﬁ))2 3ﬁr ﬂ Bﬁ .

aG:h ("'Cla ﬁ)!

Here and hereafter the norm of a metrix W = (w;;) is defined by |{W]| = JErw P w¥. Let 7o denote an
arbitrary positive constant. Let ©q be a compact subset of R2? such that 5 is an inner pomt of ©¢. Define

Fi = {K((u — %0)/h}G(uo, ) : vo € R, [18 — Boll < o}

Fa = {K((u —0)/h)Gn(uo, )G} (0, ) : uo € 2, |I8 = Boll < 7o}-

Fs = {K((u— m)/h)-ai—’;(;‘fil €, 5 € 6o}

Let P, denote the empirical distribution of {(Ui, X:,Y:)}, and N(§, Ly(Pn), F), § = 1,2,3 the covering
numbers (see, e.g., Pollard, 1984, pp. 25 for the definition). We impose the following technical conditions:
(KO0). K has the support {~1,1] and max; K(t) < co
(U0). The density of U is Lipschitz continuous and bounded from zero.
(Al). E[G(e}U] =0. and ¢ is independent of X' given U.
(A2). There exist a constant > 4 and a function F(Y, X) satisfying
sup IG(Y = 87 Z2(X, )| 12(X, )] £ F(Y, X),
18] <1,|18~-Boll<bo
sup E[F(Y, X)5|U = 4] < 0.
u

(A3). For 1 < k < ko,

Sup E[GE(Y - A7 Z(X, IZ(X,D|PIU = uo +th] = O(1).
118—B8ol|Sro.uo €, ]t[£1

12



(A4). There exist ¢; (F,) and some positive constant ¢, such that Ee, (F,) — ¢, and
N(8, Ly(Fn), F1) < a1 (Pr)(hE)™.
(AS5). Uniformly for || — Bo]| — 0 and i — 0,
E{G(Y - 7 Z(X,(U ~ w)/h)|U} = O(h®) + O(]|8 — Bol))-
(A6). There exist c2(P,) and some positive constant ¢z such that Eea(P,) — ¢2 and
N(8,L1(Fr), F2) < ca Pn)(RE) ™.

(AT). sup)a_goli<romocaiti<t EIGR (Y = BT Z(X, )| Z(X, 1)]|*|U = uo + th] = O(1).
{A8). Uniformly for || — Boil ~+ 0 and A& — 0,

E{G(Y - B Z(X, (U — u0)/R)G™ (Y — BT Z(X, (U — uo}/R))|[U} = O(h*) + O(||B - Boll)-

(A9). V{(up) and I'(up) are Lipschitz continuous in #g € Q. Their minimum eigenvalues are uniformly
positive in ug € 1.
(A10). For any p > 0, there exists a constante{p) > 0 such that when £ is small enough,

inf EK - .
ﬁeeo,lfg—ﬁoilzp” w(U — u0)Gr{uo, B)|| > c(p)

For a positive sequence p,,; — 0 and a small enough constant po, as n — oo,

jnf EKw(U — uo)Gn(uo, A)l| 2 pn1 + O(R?).
PnlSlléEﬁoIIsz” w(U — u0)Ga(ug, B)l| 2 pn1 + O(A%)

(B1). There exist a constant » > 2 and a function F,(Y, X) such that
sup E[FY (Y, X)|U = u] < oo,
u

3Gh(ﬂo,ﬂ)

2 O I(U — < h) < Fy(Y, X).
?:,.l;” aﬁf “ (] ’ltol_ )_ 4( )

(B2) For a constaat ¢,
N(8,L1(Py), F3) < e(h6)™™2.
(B3). Uniformly for up € Q and ||8 — Bo|| < ™ = o(R/?),
8Gh(uo, B)
apT

(B4). sup)a_pq|i<ro.iti<1 Elll0Gh(uo, 8Y/887|P|U = uo + th) < co.
(B5). There exists function a F5(y,z) such that

EKy(U - uo) = D(uo) ® (S ® T(uo)) + o(h/?).

sup E[FZ(Y, X)|Y =] < oo,

ath(uﬂgﬁ)
su e NE(|U — ol < B) < F(Y, X).
"OE“-“ﬁ-pﬁoI]gro” BB “ (I ol ) 5( )

{B6). There exists a function F such that sup, E[Fs(e, X)||X||>|U = u] < oo, and that and for | —ug| <
k,

2
180G (e + %A"’(uo + 8(U — uo))X(U — u0)*/B?) + (B — Bo)" Z(X, (U — wo)/h))/O¢|| < Fe(e, X)

uniformly for |s| < 1, ||f — Bo}} < 7o, and ug € L.

13



Remark 4.1 Suppressing dependence on X, we denote Z(t} = Z(X,t). Suppose for some to > 0, there exist
integrable functions F;(Y,X),7 = 1,3 such that

sip KOG — £ Z@)I NZ@N < A(Y, X),

18—Boll<ro,t

s KONEE=EZD a2 @1l + 1201 < v X),
il8—Bal|<ro.t e

o KOIGY - 7 ZE 12O < F(Y, X).
(18—Bo|l<ro,t

Then for some posilive constent ¢,

K (2 — 41)/h)Gnlus, Br) — K{(u = u2)/h)Gn(uz, B2)|
< {IR(Y, X) + Fa(Y, X) + Fs(Y, X)Hlw = wal /B + 181 — Bell}-
Thus the condition (A4) holds if EF;(Y,X) < 00, j = 1,2,3. The similar remarks can be made about the
conditions (A6) and (B2).

As pointed out in Section 2, EK, a(U=u0)Gr(ug, Ba) = 0,10 € €} can be viewed as certain local estimating
equations associated with the equations E[G(Y — A(UY X WU = uo) = 0,20 €  as A(u) is ezpanded around
each ug. In this sense, the first part of (A10) implies that when Ba (coefficients of the approzimetion of A)
is away from the true value Po (coefficients of the approzimation of Ag), WEKW(U — uo)Gn(uo, B! is away
from 0. This is a little stronger than the requirement that E[G(Y - A7(U)X)[U) =0 if and only if A is equal
to the true value. The second part of (A10) is a local condition which says locally ||EKn(U —~ u0)Gn(uo, S|
is bounded below by the norm of the linear function of § near the true value Po. For instance, assumne the
first component of G is Y — AT(U)X and assume that E[XXT|U = u] is positive definite uniformly in u.
Then we have ' ' -

|EKAU — 20)Gn(uo, Ba)|| = [IEKAU — uo)lY — F2Z(X, (U — uo)/h)] ® Z(X, (U —uo)/M
= O(h?) + (Bo — Ba)’ f K()E[Z(X,)Z7(X, t)|U = uo + th]f(uo + th)dt
> c||Bo — Ball + O(B?),

provided h is small enough.

4.2 Proofs

Lemma 4.1 Under the conditions (K0}, (U0), (A2)~(A4), if there exist some positive constants bg, by and
n < 1/2 such that by < hn? < b, then there exists a sequence of positive constants d, — 0 such that

An(uo, B) = EK(U — ug)G(Y — B7Z(X, (U — u0)/h)) ® Z(X, (U — uo)/h) + op(n~ ¢ A RM ).
Furthermore, if the condition (A1) holds and n > 1/(2£), then uniformly in ||8 — fol| < ™o = o{n=118)d,,,
An(t0, B) = 0p(n™"/4)dn.
Proof: Write
An(uo,B) = EKn(U —u0)G(Y = B Z(X,(U —u0)/h) ® Z(X, (U — 0)/h)

+Aa ('U'Ds ﬁ) + An2(u0: B},
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where

Ani(uo, ) = ':; > Kn(U: ~ u0)Gin(uo, BI(F(Y;, X:) < M.,)
i=1

-'EK,&(U - uD)Gh(uﬁ'r ﬁ)I(F(KX) < M'n.)’

Aoalun ) = 3 Kalls = w)Ginua, B)I(F(K:, X0) > M)
—EKp(U — uo)Ghluo, BYI(F(Y,X) > M,).
Note that
B Ana (w0, B)| < 2EKA(U = uo)l|Gi(uo, DIF(Y, X) > Mal| < eMy<. (43)

Consider the following empirical processes

va(g) =n"2MIY S (Y, X u0, 8) — Eg(Y, X, u0,8)), g€ Fu.

i=1

Obviously, by the condition {A3),

MJZEHQ(Y, X! Ug, ﬁ)”2

< chM;? sup Eviu=uo+nGi(Y — 87 Z(X, ) Z(X, )P
uo,t,||G—Holl<ro
< O(hM;z) =u.

Now let M, = n%, §, = (h*/2 An~Y¢)(logn)~! and M = 8,n'/2AM}. Using Lemma 6.2 in Zhang and
Gijbels (1999), we have

P{sup||An1(n0, B)IIE5" > Mo} = P{ sup llea{gMZ I > M)
g

< a{n!/2(MhM,) 1) exp{-csM?/v} + cv™** exp(~nv)
= O((h%6,) " Yexp{—cad2nh® M2 [AMI?} + coO(hRM %)™ exp(—canh M ). (4.2)

The last terms in (4.1} and (4.2) are o{é,,) and o(1) respectively if

bo € hn" < by, nhiflogn — o0, nl~H¢h/logn — oo,
nhM; 2 flogn — 00, M7t 50

The above requirements are fulfilled provided that for sy > 0,

bo < hn?<by, 0<7< min{%, 1-2/¢),
max{n/(2(§ — 1)),1/(£(£ — 1))} < so < (1 —n)/2.

These conditions are equivalent to
bo < hn" Sy, 0<n<min{z,1-2/61-1/61-2/(E(E~ 1))} =1/2

since { 2 4. The remaining part of the lemma is obvious because of the condition (A5). The proof is
completed.
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Lemma 4.2 Under the conditions (K0), (U0), (A2), (A6) and (A7), asn — oo, bo <hn? <b,0< <
1/2, we have

Va(uo,8) = EKn(U — uo)Galuo, B)G} (0, ) + 0p(h'/?)
= V(o) ® (S ® (o)) + 0p(h**) + O(18 — Boll)-

Proof: The proof is similar to that of Lemma 1 if we replace { there by £/2 and M, by M2, In particular,
note that

WEKW(U — uo)Ga(uo, B)G7 (w0, B)I(F(Y, X) > Mo
< sup BIF(Y, X)EU = u]M2~¢ = O(M2~°).
Let M, = n*. Then a similar inequality to (4.2) holds if

bo < hn? < by, nh?flogn — oo,
nhM74 /logn — oo, Mg—gh-uz — 0.

These conditions are equivalent to
b < hn? <by, 0<7n<min{l/2,1-2/¢}=1/2
due to the fact that £ > 4. This completes the proof.

Lemma 4.3 Under the conditions (K0), (U0), (A1)~(A10), if there exists a sequence of positive constants
dn, — 0 such that es n — co, bo < hn < by, 1/(2€) < 1 < 1/2, then we have

Bluo) = Poluo) + 0p(n Y€ ARY2)dn,  an(tio, Bluo)) = 0p(n™"/¢ ARI/?).
Proof: First of all, by Lemma 4.1, we obtain
An(uo, Bo) = 0p(n~YE ARV)d,. (4.3)
Note that the condition (A2) implies
Za(uo, B) = 0p(n}/*) (44)

uniformly in ug € Q and ||8 — fo]| < ro. Combining (4.4) with (4.3), Lemma 4.2 and the condition (A9), and
and using the same argument as that of Owen (1988), we have

n (0, fo) = 0p(nHE AR, (4.5)
Set ¢, = (h1/2 An~€)d,, and let u(uo, B) satisfy
w(uo, B)||EKw(U = u0)Gn(uo, B)l| = EKA(U — u0)}Gn (%o, B)-

Define

To(wo,B) = =3 Kn(Us — uo)log(l + duauluo, B) Gin(uo, ),
i=1

To1(uo,B) = %ZKh(Ui — uo) log(1 + $nuluo, B) Ginluo, NI (NG ]l < n1/6).

i=1
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Then uniformly for %o and 83,

Tni(uo,8) = ¢n%ZKh(Ui—uo)u(ﬂo,ﬁ)fGih(uo,ﬁ)I(”Gm”Snl/e)

i=1
1 n
~5AI0WI Y F¥, X
= ¢n(u(uo, B EKL(U — u0)Gh(uo, B) + 0p(¢2) + Op(¢2). (4.6)
Futhermore, by (4.3)~(4.6),
—Tn(ug, Bo) 2 "‘|0p(¢f;)|°

Consequently, we have

P{ sup (—Tn(uo,B)) > —Tn(uo,Bs),for some ug}
[18—Bolt2p

SP{ inf [I[EKL(U — up)Gnluo,B)|| < |0p(¢n)|,for some ug}
|1B—Bol|Zp

which together with the condition (A10) leads to
Blua) = fo = 0p($n) = 0p(n~ /¢ A BV /P)d.
Invoking the argument of Owen (1988) and Lemma 4.1 again, we have
(o, Buo)) = op(n~/¢ A R1/?)

uniformly in up. This completes the proof.

Lemma 4.4 Suppose for some positive constants by and by, bp < hn" < b1, 0 < n < 1/2. Then under the
conditions (K0), (U0), (A2), (A6), (A7) and (A9), as n — o0, we have

Va(ug, @, B) = V(uo) ® (S ® T(ua))(1 + 0p(h!/?))
uniformly for uo € 2, llo| + 118 — Boll < o(n=2/¢ AR'/2).
Proof: Note that under the condition (A2), we have

sup Za(ug, B) = 0p(n~2/¢)
%€, ][B8-Foll<ro

which together with Lemma 2.2 yields

Va(uo,,8) = Vn(%vﬁ)+0p(““”""“g:z:83%

= Va(uo, ¥2) + Opllladl)
V(u0) ® (§ ® (1)) + 0p(h'/2) + Op(lle]).

Z Kn(U; ~ wo)F(Y;, Xi)°
i=1

The proof is completed.
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Lemma 4.5 Suppose there exist positive constants by, by and n such that bp < hn" < by, 0 <5 <1/2. Then

under the conditions (K0), (U0), (A2), (B1)}~(B4), as n — oo,

Bn(uo, e, 8) = D(ug) ® (S ® T(ua))(1 + 0p(h!/?))
uniformly for ug € @, ||| + ||8 - foll < o(n=1/€ ARIZ),

Proof: Note that by the condition (A2), we have
max Sup |la” Gin (w0, B)] = 05(1)
which with the condition (B1) implies
Ba(uo, e, 8) = Ba(0,0, 8) + Ox(llal]).

It remains to prove

Ba(u0,0,8) = D(u0) ® (S ® [{uo)) + op(h/?).

To this end, we write

Ba(u0,0,8) = By (o, 8) + Bra(uo, 8) + BEn(U - ue) 222520:0)
where
Bu(o,) = 13 Ka(w —u) e Br(r v, x) < o)
i=1
~BE(U - w0) 22 P p(r, v, ) < ),
Bus(o,) = + 3 Katus —u) et Brr, v, x) > M)
i=1
~BK(U — )22 D 1(m (v, X) > M),
Obviously,

Bn2(‘“0s"/’2) = O'p(Mfla-y)i
E (K((U — uo)/R)|0Gn(uo, B)/087I| /Mn)* < O(hM?).

Thus, a sufficient condition for (4.7} is

bp < hn?"<b, M,=nr%,
nhflogn — oo, nhM;2flogn — oo, M},"’h_l/z—po,

These are equivalent to
by <hn®<b;, 0<n<min{l1/2,1-1/v}=1/2

by noting that v > 2.
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Lemma 4.6 Under the conditions (K0), (U0), (A2), (B1), as h — 0, nh — o0,
Cn(uo, 0, 8) = Op(llell)
uniformly for ug € Q, llall + |18 = Boll < o(n=1/% ARI/2).
Proof: Note that by the condition {A2) and ||t || € o{n~Y/¢ A h}/?), we have

max sup ||a” G;a(u, 8)|] = 05(1).
A< K S

Thus
1
ICn(uo, 06, Y < Op(lledl)~ ;Kh(m — ug)Fy (Y, X:)F(Y:, X:)
= Oy(lall

by the conditions (A2) and (B1). The proof is completed.

Lemma 4.7 Under the conditions (K@), (U0) and (B5), as h — 0 and nh — oo,
Dn(uos e, 8) = Opllall)

uniformly for up € Q, |la]| + (|8 — Boll € o(n~1/¢ ARL/2),

Proof: The proof is similar to the proof of the last lemma and hence is omitted.

Lemma 4.8 Under the conditions (K0), (U0) and (B5), as h = 0, nh — oo,
En(uo,0,8) = Op(lled|?)

uniformly for up € Q, ||ad| + JIB — Bol] < o{n=1/¢ A BM2),

Proof: The proof is similar to the proof of the last lemma and thus omitted.
Proof of Theorem 1: First of all, using Lemma 4.3 , we obtain

Bluo) — o = 0p(R/2 AnE), (o) = 0p(h}/? AnTHE),
Furthermore, by the definition of & (= &(u)) and 3 (= B(ug)), we have

Gin(uo, B)
14 &7 Gin(uo, 8)
& 8Gn(uo, B) /087
1+ &’Gih(ﬂo,ﬁ) '

1 T
0 = - ZKh(Ui - up)
i=1

1 n
0 = — ZK;,(U; — Up)
R i=1
Then the Taylor expansion, we have

0 = An('u(): ﬁO) = Vn(u(),anl,ﬁnl)& + (Bn(‘uo, anl:ﬁnl) =3 Cn('uor anlgﬂnl))(ﬁ - ﬁO)
0 = {Bn(uo,n2,Bn2 — Cnlto, @n2, Bn2)}& + (Dn(t0, @n2, Baz) — Enl(to, @n2, Ba2)(B — Bo)
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where an;, j = 1,2 are between & and 0 and Bnj, § = 1,2, are between 3 and By. By using Lemmas 4.4 to
4.8, the above equations become

—~An(uo, fo}
¢

—(1+ 0p(RM2))V (o) ® (S ® T(u0))é& + (0p(hY/?) + D(ta) ® (S ® T(w)))(5 ~ Bo)s
(0p(h'/2) + D(uo) ® (S ® T'(u0)))& + 0, (h*2)(B — fo)-

It follows that

(B—fo) = ~[(D(uo) V") D(uo)) ™ D(ua)V' (o) @ (5™ @ [(uo) ™) + ap(h'/")} (0. o),
& = V(o) = V(o)D" (uo0)V (o) D(1o)) ™ Dlwo) D" (un)V ™ (o) + (A /)] A (i, o).
Observe that
AnfuoB) = =3 Kn(Us ~w)G(¥i = A7(UDX; + 5 A"(UD)Xi(Us = wo)’

i=1

+{B = Bo)" Z(X;, (Us —ug)/1)) @ Z(X:, (Ui — uo)/R)
= %2 Kn(U; ~ u0)G(e:) @ Z(Xi, (Ui — uo)/h) + %20?(1) + 0,18 - Boll)

i=1
where the last equality follows from the condition (B6) (or A is linear). Now the proof can be completed by
some simple calculations.

Proof of Theorem 2: Under the conditions of Theorem 1, we have h — 0, and nh3/? 5 0o. Recall that
given U, £ and X are indepedent by the condition (A1). By the Taylor expansion and.Lemma 4.4, there are
matrices V2 (U;) such that as n — oo, uniformly in Uj,

VIU) = V(U;)®(S8TUN)(1 +op(h/?)
. werr et 1 .
&U;) = Va(Uj) I; ;Kh(Ui - U;)Gin(U;, 8)-
The last two equalities lead to

I(G) = Z &(Uj)f Zl _Z,_:;ih‘gf(;f’_) Uj) G,‘h(Uj,B)

i=1

5 3 &(U) ValU;, 5°6(V;), BYa(Us)
j=1

= > U s R ) — 3V 6 ANATS)

j=1

1 =, P .
= S+, (K3 3 £ UNSU;) V() © (S 8 T(ua)la(Us), (48)
=1
where 0 < s8* <1, and V,,(u, a, B) is defined at Subsection 4.1. Note that we draw out the factor 1+ o,,(h” 2)
from the inside of the summation in (4.8) because the 0,(h'/?) is uniform with respect toU;, 1< j<n and
&U;)TV(U;) @ (S @ T(U;Na(U;) /6(U;)7&(Us), 1 £ § < n are bounded away from 0 and oo (see Condition
(A9)). It follows from the definition of C(u) in Subsection 3.1 that C(u)V (u)C(n) = C(u). Thus, combining
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(4.8) and Theorem 1, we obtain

Gy = ( +0p(h”2))z ZKh(U U;C(U;)G ()"

i=1 1—1

® ( = [V({U;) @ (S ® I(U;))]

u (U ~ U)EN U ')X'/h) F{GA)

F'I(U )Xk
x—kZ-:Kh(Uk ~ U;)(CW;)G(er)) ® ( i ) G

= (+op(R/2) 22221@({1 U;)Kn(Ue — Us)f 2 (U;)

i=1 k=1 j=1

xG7(e)C(U;)Ge)(1 + 3 (Us = U} (Ui = Up) /W )XITHU) X + Ca (4.9)

where ¢, = 0 when Ay is linear, and otherwise {, = O,(nh*). The last term in (4.9) can be decomposed as

follows:

(1 + 0p(h/2)) L(G) = Tana + Trza + Tuazz + Toza + T2z + (o (4.10)
where
To1 = 2221@(11 — U2~ HU3)IG™ (:)C(U3)Ges) — EIG™ (e:)CWU;)G(e| (U, U]
x(;:;;(v U;? /R X T~ (U)X,
Taun = 2ZZK,,(U — U;)2E[GT (e:)C(U;) G (e)|(Us, Uyl
x(f—:;;w. U;) R XIT~1(U;) X — EIX]T~H(U; )Xil(UnU,)])f‘l(U i)
Tz = J}ZK:.(U — Uj)*B(G" (€:)C(U;)G(el(Us, Uy))

i=1 j=1

x(1+ p3' (Us = U P R EIXTT - U)Xl (U Ul F~H(U5),

Ty = Z > Ku(Ui - U)Kn(Us - U;)G (e:)C(U;)Gler)
i#Fk je{i,k}
(L + (U; = U; )Wk — Us)pg* R XTT(U;) X
Tozz = % D {K(Uk = U)/R)G™ (e)C(U;)G(er) XTT ™ (Ui Xee f 7 (Us)

ik
+K((Us - U) /)G (€)CUG(er) XIT~H U Xe f 1 (Us)}.
Observe that as nh3/2 — oo, h — 0,
Tum = T (f)z Zt (CUIVU)pf (V)

2EK;,(U - U;Ptr(C(U;)V(UY))
i#j
(14 p3 (Ui = Uz W) (C~HU)DUN SO FU;)

= KO mwcuwwn/rw) + 0,1) + 2.

= o (h'1/2) +7, (4.11)
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where

T, = — ZKh(U U tr(CU;)V(U:))
i#]
x(1+ p3 (Us = U2 R3)er (@~ (U DU FU)FU))

= G- Dpifl —}:)plﬂl ] K2(t)(1 + p3 *t2)dt + 0, (h™/).
This is because

EY,

1+ O(R)s f K21 + p3 8 )dtEtr(CUWV{U 1)

Il

”(ﬂ——)u + ORI / K2(t) (1 + p3 ' 82)dt,
Var(Z,) < O(n-lh—ﬂ) = o(h™1).

By a similar argument, we have the following equalities

Tun = f‘f}zgt OV U)XTH U)X - BIXTT U)XV S (:)
= 25 KalUs - Uar(CUV UL + w7 Us = U [6)
i#]

x(XITY(U;))X: — EIXIT™YU)X:|(Us, UV f~H(U5)
K(O) p( —1/2)+o (h—ljz)

Tpo2 = Op(h_1/2)§

Tan = 0,(h7%) + 257 ZG (€:)®irnGlex)
itk

(4.12)

(4.13)

(414)

where ®;; can be found in Theorem 2 and the last equality follows from the Hoeffding’s decomposition for
the variance of U-statistics. Now (4.10)~(4.14) imply (3.2). (3.3) can be proved by a similar argument by

showing that

H(4o|G) = (1 +0p(hV/ 2) Z AL(U;, Bo)V(U;) ® (S @ T(U;))]) ™ An(Ujs fo)-

i=1

The proof is completed.

Proof of Theorem 3: Invoking the asymptotic representations in Theorem 2, we need only to prove

the asymptotic normality of T,. To this end, we first calculate the variance of Ty,

(2+o(1)
n(n —
- @%?L?tr{g(‘bmg(e?)m(52)q’IzshG(€1)G'(Ex))}
= 2(;(4- O(h))t {EK (U2 — Ul)zc(Ul)G(Ez)GT(Ez)C(Ul)G(Ez)G(é:g)T

x X]T1 (Ul)XZX;I‘ YUh)X; }

Var(T,)

E{G" (1)@120Gle2)}?
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= ——2.,(:(: _O 1(;2)”{;3 f K*(£)2dtC(Uh)V (U2)C(U)V{Up )tr (DT )T (U2)) (F(U2)£(Th)) '}

2(:(: ?(]_f;zl)_pE{fml(Ul)tT(C(Ul)V(Ul))} f K*(t)%dt

Let D; = (&, X:,U;), 1 € 1 € m, and I, be the o—algebra generated by Dy,---,Di, 1 < k < n. Set
®,(D;, D) = G7(€:)Pirn G(er), 71 = 0, and

Mk = E[Tnink] - E[Tnlnk—l]-

Then
k-1

2
Tk = - 1) ;Qh(Dj,Dk), 2<k<n

and {7.«,TI;} is a sequence of martingale differences. By Theorem 4 of Shiryayev {1996, pp.543), it sufficies

to show
n
Var™'(Tn) Y Eln2i[Tie—1] — 1 in probability (4.16)
k=2
and
ar~3(T,) i Ent, — 0. (4.17)
k=1

In the following, D = (e, X, U) denotes a general random variable independent of D; and D;. To prove (4.16)
and (4.17), we need the following equalities for i < 7,
E[®,(D;,D;)?|D;] = %fK*(t)’th;T“(U,')X;G’(s,-)C(U,-)G(s,-)(l + O(h)),
E(2u(D:, DYr(D;, D)(D:i, D;)] = Gle:) E[Kn(U - U)Kn(U ~ Up)C(UnV(U)C(U;)
xtr(T™H (U)X X T~ Y U)X X])(Ds, DG e5),
S0 DD, D) = z(1+0(m) [ ] K* () K* (s dtds E{(X]T - (U;) X;)?
x(G"(&;)C(U;)G(e;))
E®i(D;,Dy) = O(1)1+ O(h))’:—s [ K*(t1dt.

These are obvious by the assumption that £ and X are independent given /. Now with the above equalities,
we can derive

n n k=1
2 Elulles] = Y e {3 El@a(D; Da)IDs)
k=2 k=2 =1
k—1
+>_ E[®4(D;, Dx)8n(D;, Di)|(D:, D)1}
i#f

n k-1
2 - > - +f(h) f K*(£)?dtX]T N U:) X:G" (e:)C(U;)Gles)

2 — 1})2
k=2 n (n 1) i=1
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n-1

+ Z T 2~ )B8(Da DI (D, D)0, D)

(4.18)

g
- (o Cway S (0 = DX UIXGT (E)OTIGE) + T
i=1
= a+om)iLE ﬁi*(tp)—dt EE[XIT (U)X U] EIG" (e:)C(U)G(EeU] + L
= (1+o())Var(Tn)+ Ta
where
8 n—1
Y, = F TR ; 7 — )G(e:) E[K(U — UDKL(U — Un)CU)V (U)C(Us)
xtr(T (U)X X T~Y(U) Xa XEWU:, Uk, X, Xi)|Gex)-
Note that
n—1
BT = nT(nEi_m g(n — k)2E[G(e:)" E[KL(U — U)K (U - U )C(U:)V(U)C(Uk)

xtr(r-l (U)X XTT Y U)X XD WU, Xi, Ur, Xi)|Gler))
= o( l)p [ [K*(t) * K*(8)]?dt

= Ol )VaT(T M

which implies T, = 0,(Var{T,) and where K*(t)*K*(t) is the convolution of K* (t) with itself. Substituting
the above equality into (4.18), we get (4.16). Analogously, (4.17) follows from the following calculations

Bk = s )422{0(h2) +oE=1y

k=2 k=2 l#j
2
t<_’l
= O(Va.'r'(Tﬂ)2 ( g —={0(n) + O( )}

The proof is completed.

Proof of Theorem 4: The first part is similar to the proof of Theorem 3. The details are omitted. To

show the second part, we recall that I'(up) = E[XX7|U = uo]f(uo) and write

x T T
Xk=( . ), T = ( 1 12 , and I‘11,2=r11"rl21—";21r21

X ’SZ) T2y T2

where X,(cl) is p; dimensional, T'11,T2,T21,22 are p1 X ;1, p1 X P2, P2 X P1 and pp X p, matrices and
p2 = p — p1- Following the same steps in the proof of Theorem 3, we first extend Theorem 1 as follows:

Ba(uo) = B2 (uo) + Z Ku(Us = o)

1—1

rz—zl (uD)X?)
13 D52 (u0) X D (U: ~ wo)/h
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&*(ug) = "ZKh(U —w){(V ' (u0)G(&:)) ® ( 'I(HD)X ; —uo)/h )

= T uo) X:(Us
0
T (uo) X
~VTID(DVTID)IDVIG(e) @ ) : HI + 0p(R/2)) + O, (R?).

17T (w0) X (U — wo) /R
Then, by using the decomposition formula in Fan, Zhang and Zhang (2001), we have
XITW 7 X = (X7 - X T (U)o (V)T (U)X = Taa(Un)05 U X))
+ X T (U)X,

The remaining part is very similar to the proof of Theorem 3. The details are omitted.
Proof of Theorem 5: The argument is similar to Fan, Zhang and Zhang (2001) but more tedious. For
simplicity, we derive it heuristically. Write

1 n n T
KHIG) = (-+op(W)zs 3232 S " K(Us = U KalUs = Us) 3G (es + AU Xo)
i=1 k=1 j=1
XV_I(U NG(ex + A(UR) Xi)(1 +,u.-1U 7 Ui Uk = I Us —)xr! (U)X — g
= (1 +0,(RY2))(Wao + Wiy + Wiz + W3} — I (4.19)
where
L Ui-U; U -
Wao = Ku(U; = U KU = U1 + 3" Us
n0 o3 ;E; K( K (Uk — Us)( 5 5 )f(U,
xG(e,-)’V'l(U DG (e ) XIT Y (U;) X,
Wa = EZZK,.(U U;)Kn(Ur = U1+ p3 L Y )
n2 i=1 k=1 j=1 h h 'f(U)
xGle:) VX U; )6G(Ek)x1'r ~LU,) Xe XL A(UL),
_ _ L Ui-U; U
W = 53 g;;;mv ~ Up)En(Us = Up)(1+ 3 = - Y% f(U,)
x 260 eV NG LA
_ B _1U —U; Ui —
96T G
é‘z ) A (E")A(U Y X:XTT~H(U;) XWX AUE)
where €7 is between ¢; and €; + A(U;)7 X; and &}, is between &; and e; + A(Ux)” Xi. Under some regurality
conditions,
. LU =U Ui - -
W = 5 ZZG(E,) {ZK,,(U = Uj)Kn(Ux = Up)(L+ 3" = - )f(U )v ;)

=1 k=1 J=1
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BG(E.&)

xXTT~HU;) X X7 A(U)}
= SWintop(hh),
Wnzo = Waa
where WY, is defined in (3.4). Similarly we write
Whas = Weay + 2Whaa + Wias
where, when EA(U)" X X" A(U) = O(Z),

1 " hi hid ._1 Ug U' Uk - U' 1 —1
W-n.3l = 2_ ;kg ZKh(U UJ)Kh(Uk - UJ)(]- + h : h J)f(UJ)V (UJ)

=1

LAU) XX TN (U)X XTA(Uk)

= }: ETK(Ui — Un)V " (U)Z:AU:) X XTT™ (U Xu XL A(UR) + 0p(h7H7)

= ( )t W2ﬂ/2 +0p(h7*2),

Wy = 2nzzz~fzjxh(v - UK (U, - U1+ g B T sy 0)

i=1 k=1 i=1

< B12S R 0 AU XX U)X XA
= WSn/2 + op(h'—llz)

Wazs = znZZZE[aG(E)W]EKh(U UpKn(Ux — U1+ p3

i=1 k=1 3=1

aUi-U; Uk )
R
f(U VU B U AU X XD U)X XA
0pti) + 2E(E X Qv )BIZ5E  AY XX AW + o)
Recall that W, and Wy, are in (3.5) and (3.6) respectively. When EBAUY X XTA(U) = O(;%), we have
War = —1?:; ;l z TR (U; — Un)V N U)Z AU X XTT (U)X XL A(Uk) + op(h~/%)
= O(n—hz) + W2 /2 + 0, (h"1/?),
Waze = Wa'n/ 2+ 0p(h71/?),
Ws = Oplmp)+ 2EEZSE v ) BCSEUIAUY XX AW+ o(1).
Similarly, we have
Il = (1+ O,,(h_l"r2 —1—2 izﬂ: i Kn(U; = U )Kn(Ux — U A+ p3 —1Ui— 5 UJ U = U’)
=1 k=1 j=1
f—(lﬁﬁcf (£:)C(U;)Glew) + 251 + Sna] (4.20)
where

1 S LZUi=U; U =U;, 1
= g 2o 2 U - U = U+ 13 5= = ) gy

i=1 k=1 j=1
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aG(Ek)

xG"(e))C(U;)—7-2-A"(U; ) (Us — U;)* X,
= p(n(nh)-lhz) = p(h)
— Ui =U; U =
Sn2 = 2n2§§§m,v = Us)En(Ue = Uj) (1 + 3" = - )f(U)

A"(U) X X{T~ !(U )Xe XL A" (U — U (U - U;)?
- —E—E{D’(U)C(U)D(U)A”(U)"XX"A"(U)}
< / / £23(s + 2K ()K (s + £)(1 + iy (s + 8)deds(1 + 0p(1))

where U} is between U, and U;. Now the desired result follows from (4.19) and (4.20). This proves the

theorem.
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