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ABSTRACT: The now well-established Grobner basis method in exper-
imental design (see the authors’ monograph “Algebraic Statistics”) had
the understanding of aliasing as a key motivation. The basic method asks:
given an experimental design, what is estimable, or more generally what
is the alias structure? The paper addresses the following related question:
given a set of conditions which the design is known to satisfy, what can we
say about the alias structure? Some classical and non-classical construction
methods are included.
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1 The Grobner basis method

We summarise the method briefly in a number of steps.

Step 1 Define a design D C R? as a set of n distinct points: D = [a(i)]?zl.
Step 2 Set up a series of polynomial equations whose solutions give precisely
D. This, mathematically, amounts to representing the design as a
zero dimensional algebraic variety. The design ideal, Ideal(D), is the

set of all polynomials whose zeros include the design points.

Step 3 Select a so-called monomial ordering 7. This is a total well-ordering
on the monomials such that z® <, z° implies 2%z <, 282" for all

v #0.

Step 4 Generate a Grobner basis for Ideal(D), given 7, namely a special
representation of D as the solutions of polynomial equations

{9j(z)=0:5=1,...,k}

The full details are omitted.
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Step 5 List the leading terms /;(xz) = LT (g;(z)), j = 1,...,k with respect
to the monomial ordering 7.

Step 6 List all monomials not divisible by any leading term I;(z) (j =
1,...,k). Call this list Est-(D) and note that

(i) #Est,(D) = n, that is the sample size of the design.

(ii) If Est;(D) = {z*:a € L} then the monomial terms are the
basis of a saturated and estimable regression model

Z 0,2

a€L

with non singular X-matrix

X = {xa}mED7aEL
(iii) Est,(D) is an order ideal, that is if 2* € Est,(D) then 2% €
Est, (D) for any § component wise smaller than a.

A lot can be said about this process with regard to appropriate computer
algebra. For example methods are available for directly computing the
Grobner basis and Est, (D) from D. See Pistone, Riccomagno and Wynn
(2000) for details. For the present paper we note simply that the equations
{gj(z) =0:j=1,...,k} defining the design essentially also give some alias
structure. For example each leading term can be written

by = Y 090

a€EL

so that g;(z) = 1;(x) — X .cr, 6z, That is to say “higher order” terms
with respect to 7 can be written in terms of polynomials constructed from
monomials in Est, (D). Apart from the fact that the equations are depen-
dent on 7 all the alias structure can be captured from such equations. A
generic member of the ideal Ideal(D) is written Zle sj(x)g;(x) where the
s;j(x)’s are generic polynomials. Setting this to zero for arbitrary s;(z) gives
all possible alias relations.

2 A theorem on aliasing

Historically there have been many combinatorial constructions of experi-
mental design of which the standard Abelian group construction of sym-
metric and asymmetric factorial design is perhaps the most celebrated. In
such constructions one exhibits a set of conditions which the designs must
satisfy. For example to construct a 237! the equations are

CU% =1, x% =1, x% =1, T1x2x3 = 1
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In the previous section this could be considered as Step 2.

In this section we discuss some simple properties that can be predicted
for Est, (D) given the construction equations but in advance of computing
Est, (D) itself.

The equation z;z>z3 = 1 for the 23~1 above implies that the interaction
x1T2x3 and the constant term are aliased, in particular the vector obtained
by evaluating z;z223 at the design points is the unit vector, (1,...,1).
Theorem 1 generalises this observation.

Theorem 1 Let the design D be known to satisfy the polynomial equation
h(z)=0

in R% and let T be a monomial ordering. Let M (# B) be the set of mono-
mials with non zero coefficients in h. Then

M ¢ Est,(D)

Proof. This is by contradiction. Suppose M C Est (D). Then

h(z) = Z P ™

aEMCL

where Est.(D) = {x*:a € L} and all ¢, # 0 for o such that z* € M.
But this is false since all £* are linearly independent over D and h(z) =0
for all z € D.

A proof relying on more classical arguments from matrix theory is as fol-
lows. Let h(z) =3¢ ¢ax® and consider the matrix X = {2}, .p e
with columns X (a) = {2}, .. The matrix X is singular because the con-
dition h(z) = 0 implies that the linear combination of the columns of X,
{3 nem 9aX ()} is the zero vector. Thus the monomials z%, a € M are
linearly dependent over D and cannot all be included in a model identifiable
by D. [

To repeat the result of the theorem: any M must have at least one “non

zero” term not in Est, (D). Note also that if 27 ¢ Est, (D) it also follows
from Grobner basis theory that 7 ¢ Est.(D) for all v > 8 component
wise.

Corollary 1 If h(z) = z% — ¢ for some index o and constant ¢ then if
D # () then % cannot be in Est (D).

Proof. Since D is not empty the constant must be in Est. (D). This follows
from Step 6 (iii). Thus by Theorem 1, z® ¢ Est. (D). O
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Typically in construction we may know that h;(z) = 0 on D for j =
1,...,r. Then Theorem 1 applies to each corresponding M;.
Sometimes we may construct designs as exactly all solutions of h;(x) =0,
7=1...,r

D ={x:hj(x)=0, j=1,...,r}

However it is advisable to replace this by the Grobner basis representation
to obtain a more tractable description of aliasing.

Example 1 Factorial design. The corollary makes a strong connection to
the fractional factorial construction mentioned above since those consist
typically of solving sets of equations of the form

{0 —¢j:j=1,...,r}

3  Further examples

Example 2 Mixture. Here a basic equation is Y x; — 1 = 0. Theorem 1
simply says that not all of 1 and z;, i = 1,...,d can be in Est.(D) con-
firming the standard redundancy in this case. See Giglio, Riccomagno and
Wynn (2000).

Example 3 Other groups. Any design D invariant under a group G on R?
will preserve the maximal invariants, 7;(z), under G. Thus candidates for
hj(x) are

hj(x) = mj(x) — ¢

As a very simple example consider designs on a circle in R? satisfying
P 4ri=1

Then we can conclude that both of z7 and #3 cannot be in Est, (D). Since
maximal invariants are constant on orbits any design constructed as an
orbit will be invariant

D = {x = G(xg) : for a point xy € D}

In the above example one can easily construct arbitrary large designs in this
way and still not have z? and z2 in Est, (D). This can easily be extended
to rotations in R?.

An important class of groups in design theory are reflection groups. Indeed
the conditions above 22 = 22 = 22 = 1 and ;2923 = 1 are precisely a set

of invariants for the subgroup generated by the reflections

(_xla —1'2,1'3)

r1,T2,T —
( b 3) { (—(13'1,.’,1/'2,_(173)

and the design D = {(1,1,1),(1,-1,-1),(-1,1,—-1),(-1,—1,1)} is an or-
bit.
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Example 4 Lattices. One generator lattice designs are equally spaced de-
signs on the integer grid defined as

D={gk (modn):k=0,...,n—1}

where g is a vector of integers. If the components of g and n have greatest
common divisor equal to one, then D has exactly n distinct points. For
g =(1,2) and n = 5, D = {(0,0),(1,2),(2,4),(3,1),(4,3)}. The Grobner
basis computed modulo 5 and with respect to any term-ordering for which
Zo is smaller than 1, includes the polynomial z; + 2z2. Thus every point
in D has to satisfy the equation z; + 222 =0 (mod 5). The full Grébner
basis is

1+ 21’2,

x5 — T
and Est,(D) is {1, 22,23, 23,23 }. This shows algebraically that modulo 5
the design D is a one dimensional object.
Over the real numbers and with respect to a lexicographic term order-
ing (see Cox, Little and O’Shea, 1996) with again x5 smaller than x; the
Grobner basis is

gi(r) = x5 —10z5 + 3523 — 5022 + 2475,
go(x) = =z +5/6x5 —20/3x3 + 50/323 — 83 /62>

with the same Est, (D). The condition 7(z) = x1 + 222 is rewritten over
Est, (D) as

—5/6xz5 + 20/3x3 — 50/3x3 + 95/612 = 7(x) — ga(z)

With respect to an ordering that does not favour either z; or x5 so strongly,
namely tdeg (see Char, Geddes, Gonnet, Leong, and Monogan, 1991) the
set Est, (D) is {1, 21, 2, z122, 23 }. This example shows that term orderings
can be chosen to determine the structure of Est,(D) as far as the design
allows.

4  Conclusion

The theory and examples in this paper are relatively simple but, we hope,
show the power of the method. The challenge is to revisit many of the clas-
sical and some of the more recent constructions in design, such as lattices,
to relate the special algebra used in each case to the wider Grobner basis
theory. The list should include notions such as blocking, dummying, trend
resistance, cross-over which are of considerable practical importance, but
where aliasing is not yet fully understood.
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