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Abstract

In the Black-Scholes option price model Brownian motion and the un-
derlying Normal distribution play a fundamental role. Empirical evidence
however shows that the normal distribution is a very poor model to fit
real-life data. In order to achieve a better fit we replace the Brownian
motion by a special Lévy process: the Meixner process. We show that
the underlying Meixner distribution allows an almost perfect fit to the
data by performing a number of statistical tests. We discuss properties
of the driving Meixner process. Next, we give a valuation formula for
derivative securities, state the analogue of the Black-Scholes differential
equation, and compare the obtained prices with the classical Black-Scholes
prices. Throughout the text the method is illustrated by the modeling of
the Nikkei-225 Index. Similar analysis for other indices are given in the
appendix.

1 Introduction

To price and hedge derivative securities it is crucial to have a good modeling
of the probability distribution of the underlying product. The most famous
continuous-time model is the celebrated Black-Scholes model [3]. It uses the
Normal distribution to fit the log-returns of the underlying: the price process
of the underlying is given by the geometric Brownian Motion

St = S0 exp
((

μ − σ2

2

)
t + σBt

)
,

where {Bt, t ≥ 0} is standard Brownian motion, i.e. Bt follows a normal distri-
bution with mean 0 and variance t. Its key property is that it is complete, i.e.
a perfect hedge is in an idealized market in theory possible. It is well known
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however that the log-returns of most financial assets have an actual kurtosis
that is higher than that of the normal distribution. In this paper we therefore
propose another model which is based on the Meixner distribution.

The Meixner distribution belongs to the class of the infinitely divisible dis-
tributions and as such give rise to a Lévy process: The Meixner process. The
Meixner process is very flexible, has a simple structure and leads to analytically
and numerically tractable formulas. It was introduced in [17] and originates from
the theory of orthogonal polynomials and was proposed to serve as a model of
financial data in [9].

In the late 1980s and in the 1990s several other non-Brownian Lévy process
models where proposed. Masan and Seneta [12] have proposed a Lévy process
with variance gamma distributed increments. We mention also the Hyperbolic
Model [6] proposed by Eberlein and Keller. In the same year Barndorff-Nielsen
proposed the normal inverse Gaussian Lévy process [1]. Recently the CMGY
model was introduced [4]. All models give a much better fit to the data and lead
to an improvement with respect to the Black-Scholes model. In this paper we
provide statistical evidence that the Meixner model performs also significantly
better then the Black-Scholes Model. Moreover, the advantage of the Meixner
model over the other Lévy models is that all crucial formulas are explicitly given,
so that it is not depending on computationally demanding numerical inversion
procedures. This numerical advantage can be important, when a big number
op prices or related quantities has to be computed simultaneously.

Throughout this paper we illustrate the method by modeling the price pro-
cess of the Nikkei-225 Index in the period from 01-01-1997 until 31-12-1999. The
data set consists of the 737 daily log-returns of the index during the mentioned
period. The mean of this data set is equal to 0.00036180, while its standard
deviation equals 0.01599747. In the appendix one can find similar analysis for
other indices.

This paper is organized as follows: we first introduce the Meixner distribu-
tion and the Meixner Process in Section 2. Next, in Section 3 we fit the Meixner
distribution to our data set and we perform a number of statistical test in order
to proof the high accuracy of the fit. In Section 4, we give the analogue of the
Black-Scholes partial differential equation, we compute option prices in our new
model, and compare them with the classical Black-Scholes prices. In the ap-
pendix we summarize the analysis for other indices: the German Dax Index, the
FTSE-100 Index, the Swiss SMI, the Nasdaq Composite Index, and the French
CAC-40 Index.

2 Meixner Distributions

The density of the Meixner distribution (Meixner(a, b, d, m)) is given by

f(x; a, b, m, d) =
(2 cos(b/2))2d

2aπΓ(2d)
exp

(
b(x − m)

a

) ∣∣∣∣Γ
(

d +
i(x − m)

a

)∣∣∣∣
2

,

where a > 0,−π < b < π, d > 0, and m ∈ R.
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Moments of all order of this distribution exist. Next, we give some relevant
quantities; similar, but more involved, expressions exist for the moments and
the skewness.

Meixner(a, b, d, m) Normal(μ, σ2)
mean m + ad tan(b/2) μ

variance a2d
2 (cos−2(b/2)) σ2

kurtosis 3 + 3−2 cos2(b/2)
d 3

One can clearly see that the kurtosis of the Meixner distribution is always greater
than the normal kurtosis.

The characteristic function of the Meixner(a, b, d, m) distribution is given by

E [exp(iuX)] =

(
cos(b/2)

cosh au−ib
2

)2d

exp(imu)

Suppose φ(u) is the characteristic function of a distribution. If moreover for
every positive integer n, φ(u) is also the nth power of a characteristic function,
we say that the distribution is infinitely divisible. One can define for every such
an infinitely divisible distribution a stochastic process, X = {Xt, t ≥ 0}, called
Lévy process, which starts at zero, has independent and stationary increments
and such that the distribution of an increment over [s, s + t], s, t ≥ 0, i.e.
Xt+s − Xs, has (φ(u))t as characteristic function.

Clearly, the Meixner(a, b, d, m) distribution is infinitely divisible and we can
associate with it a Lévy process which we call the Meixner process. More
precisely, a Meixner process {Mt, t ≥ 0} is a stochastic process which starts at
zero, i.e. M0 = 0, has independent and stationary increments, and where the
distribution of Mt is given by the Meixner distribution Meixner(a, b, dt, mt).

In general a Lévy process consists of three independent parts: a linear de-
terministic part, a Brownian part, and a pure jump part. It is easy to show that
our Meixner process {Mt, t ≥ 0} has no Brownian part and a pure jump part
governed by the Lévy measure

ν(dx) = d
exp(bx/a)

x sinh(πx/a)
dx.

The Lévy measure ν(dx) dictates how the jumps occur. Jumps of sizes in the
set A occur according to a Poisson Process with parameter

∫
A

ν(dx). Because∫ +∞
−∞ |x|ν(dx) = ∞ it follows from standard Lévy process theory [2] [16], that

our process is of infinite variation.
Our Meixner(a, b, d, m) distribution has semiheavy tails [10]. This means

that the tails of the density function behave as

f(x, a, b, d, m) ∼ C−|x|ρ− exp(−σ−|x|) as x → −∞
f(x, a, b, d, m) ∼ C+|x|ρ+ exp(−σ+|x|) as x → +∞,

for some ρ−, ρ+ ∈ R and C−, C+, σ−, σ+ ≥ 0. In case of the Meixner(a, b, d, m),

ρ− = ρ+ = 2d − 1, σ− = (π − b)/a, σ+ = (π + b)/a.
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3 Fitting and Statistical Justification

To estimate the Meixner distribution we assume independent observations and
use moments estimators. In the particular case of the Nikkei-225 Index, the
result of the estimation procedure is given by

â = 0.02982825, b̂ = 0.12716244, d̂ = 0.57295483, m̂ = −0.00112426
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Figure 1: Meixner density (solid) versus Normal density (dashed)
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Figure 2: Meixner density tails (solid) versus Normal density tails (dashed)

From Figure 1, it is clear that there is considerably more mass around the
center than the normal distribution can provide. Figure 2 zooms in at the
tails. As can be expected from the semiheavyness of the tails, the Meixner
distribution has significant fatter tails than the Normal distribution. This is in
correspondence with empirical observations, see e.g. [6].

We use different tools for testing the goodness of fit: QQ-plots and χ2-
tests. It will be shown that we obtain an almost perfect fit. So we arrive at
the conclusion that the daily stock returns of the stock can be modeled very
accurately by the Meixner distribution.
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3.1 QQ-plots

The first evidence is provide by a graphical method: the quantile-quantile plot
(QQ-plot). It is a qualitative yet very powerful method for testing the goodness
of fit. A QQ-plot of a sample of n points plots for every j = 1, . . . , n the
empirical (j− (1/2))/n)-quantile of the data against the (j− (1/2))/n)-quantile
of the fitted distribution. The plotted points should not deviated to much from
a straight line.

For the classical model based on the normal distribution, the deviation from
the straight line and thus the normal density is clearly seen from the next QQ-
plot in Figure 3.
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Figure 3: Normal QQ-plot

It can be seen that there is a severe problem in the tails if we try to fit the
data with the normal distribution. This problem almost completely disappears
when we use the Meixner distribution to fit the data, as can be seen in Figure
4.
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Figure 4: Meixner QQ-plot

The Meixner density shows an excellent fit. It indicates a strong preference
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for the Meixner model over the classical normal one.

3.2 χ2-tests

The χ2-test counts the number of sample points falling into certain intervals
and compares them with the expected number under the null hypothesis. We
consider classes of equal width as well of equal probability. We take N =
32 classes of equal width. If necessary we collapse outer cells, such that the
expected value of observations becomes greater than five. In our Nikkei-225
Index-example, we choose −0.0225+ (j − 1) ∗ (0.0015), j = 1, . . . , N − 1, as the
boundary points of the classes.

We consider also the case with N = 28 classes of equal probability, the class
boundaries are now given by the i/N -quantiles i = 1, . . . , N − 1 of the fitting
distribution.

Because we have to estimate for the normal distribution two parameters we
taken in this case N − 3 degrees of freedom. In the Meixner case, there has to
be estimated 4 parameters, so we take in this case N − 5 degrees of freedom.

Table 1 shows the values of the χ2-test statistic with equal width for the
normal null hypotheses and the Meixner null hypotheses and different quantiles
of the χ2

29 and χ2
27 distributions.

Table 2 shows the values of the χ2-test statistic with equal probability for the
normal null hypotheses and the Meixner null hypotheses and different quantiles
of the χ2

23 and χ2
25 distributions.

In Tables 1 and 2 we also give the so-called P -values of the test-statistics.
The P -value is the probability that values are even more extreme (more in the
tail) than our test-statistic. It is clear that very small P -values lead to a rejection
of the null hypotheses, because they are themselves extreme. P -values not close
to zero indicate that the test statistic is not extreme and lead to acceptance of
the hypothesis. To be precise we reject if the P -value is less than our level of
significance, which we take 0.05, and accept otherwise.

χ2
Normal χ2

29,0.95 χ2
29,0.99 PNormal-value

47.45527092 42.55696780 49.58788447 0.01672773

χ2
Meixner χ2

27,0.95 χ2
27,0.99 PMeixner-value

29.21660289 40.11327207 46.96294212 0.35047500

Table 1: χ2
1 test-statistics and P -values (equal width)

We see that the Normal hypotheses is in both cases clearly rejected, whereas
the Meixner hypotheses is accepted and yields a very high P -value.

4 Pricing of Derivatives

Throughout the text we will denote by r the daily interest rate, in our compu-
tations we will take r = 0.0002. We assume our market consist of one riskless
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χ2
Normal χ2

25,0.95 χ2
25,0.99 PNormal-value

47.87381276 37.65248413 44.31410490 0.00386153

χ2
Meixner χ2

23,0.95 χ2
23,0.99 PMeixner-value

20.44369064 35.17246163 41.63839812 0.61502001

Table 2: χ2
2 test-statistics and P -values (equal probability)

asset (the bond) with price process given by Bt = ert and one risky asset (the
stock). The model which produces exactly Meixner(a, b, d, m) daily log-returns
for the stock is given by

St = S0 exp(Mt).

Given our market model, let G(ST ) denote the payoff of the derivative at
its time of expiry T . In case of the European call with strike price K, we have
G(ST ) = (ST − K)+. According to the fundamental theorem of asset pricing
(see [5]) the arbitrage free price Vt of the derivative at time t ∈ [0, T ] is given
by

Vt = EQ[e−r(T−t)G(ST )|Ft],

where the expectation is taken with respect to an equivalent martingale measure
Q and F = {Ft, 0 ≤ t ≤ T } is the natural filtration of M = {Mt, 0 ≤ t ≤ T }. An
equivalent martingale measure is a probability measure which is equivalent (it
has the same null-sets) to the given (historical) probability measure and under
which the discounted process {e−rtSt} is a martingale. Unfortunately for most
models, in particular the more realistic ones, the class of equivalent measures is
rather large and often covers the full no-arbitrage interval. In this perspective
the Black-Scholes model, where there is an unique equivalent martingale mea-
sure, is very exceptional. Models with more than one equivalent measures are
called incomplete.

Our Meixner model is such an incomplete model. Following Gerber and
Shiu ([7] and [8]) we can by using the so-called Esscher transform easily find
at least one equivalent martingale measure, which we will use in the sequel for
the valuation of derivative securities. The choice of the Esscher measure may
be justified by a utility maximizing argument (see [8]).

4.1 Option Pricing Formula

With the Esscher transform our equivalent martingale measure Q follows a
Meixner(a, aθ + b, d, m) distribution (see also [9]), where θ is given by

θ =
−1
a

(
b + 2 arctan

(− cos(a/2) + exp((m − r)/(2d))
sin(a/2)

))

For the Nikkei-225 Index, θ = 0.42190524. Note the fact that the risk-neutral-
measure only differs in the b-parameter. This parameter changes from breal =
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0.12716244 in the real world to briskneutral = 0.13974713 in the risk-neutral
world.

For an European call option with strike price K and time to expiration T ,
the value at time 0 is therefore given by the expectation of the payoff under the
martingale measure:

EQ[e−rT max{ST − K, 0}]
This expectation can be written as

S0

∫ ∞

c

f(x; a, a(θ + 1) + b, dT, mT )dx − e−rT K

∫ ∞

c

f(x; a, aθ + b, dT, mT )dx,

(1)
where c = ln(K/S0).

Similar formulas can be derived for other derivatives with a payoff function,
G(ST ) = G(S0 exp(MT )) = F (MT ) which is only depending on the terminal
value at time t = T .

If the price V (t, Mt) at time t of the such a derivative satisfies some regularity
conditions (i.e. V (t, x) ∈ C(1,2) (see [14])) it can also be obtained by solving a
partial differential integral equation (PDIE) with a boundary condition:

rV (t, x) = γ
∂

∂x
V (t, x) +

∂

∂t
V (t, x)

+
∫ +∞

−∞

(
V (t, x + y) − V (t, x) − y

∂

∂x
V (t, x)

)
νQ(dy)

V (T, x) = F (x),

where νQ(dy) is the Lévy measure of the risk-neutral distribution, i.e.

νQ(dx) = d
exp((aθ + b)x/a)

x sinh(πx/a)
dx,

and

γ = m + ad + tan((aθ + b)/2)− 2d

∫ ∞

1

sinh((aθ + b)x/a)/ sinh(πx/a)dx.

This PDIE is the analogue of the Black-Scholes partial differential equation and
follows from the Feynman-Kac formula for Lévy Processes [14].

4.2 Volatility Smile

In Figure 5 we compare the difference between the Meixner prices and the Black-
Scholes prices for various maturities (3 days (T = 3), 3 weeks (T = 15) and 3
months (T = 60)) and different strike prices (0.70 ≤ K ≤ 1.30, S0 = 1). Note
how the shape and the difference changes as time to expiration increases.

In real markets traders are well aware that the future probability distribution
of the underlying asset may not be lognormal and they use a volatility smile
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Figure 5: Difference between Meixner prices and Black-Scholes prices (S0 = 1,
T = 3 (solid), 15 (dot), 60 (thick))

adjustment. Typically the implicit volatility is higher in the money and out of
the money. This smile-effect is decreasing with time to maturity. Moreover,
smiles are frequently asymmetric.

We compute the prices of an European call option for different strike prices
in our Meixner model. Next, we compute the implied Meixner volatility s, i.e.
we look in the Black-Scholes model for the volatility parameter which give rise
to the same option price as in the Meixner case. Figure 6 plots these implied
volatility versus the strike price ratio. The dotted line is the volatility parameter
in the Black-Scholes model.

We see how the Meixner pricing model incorporates a smile effect, and as
such, because the Meixner model is closer to reality, justifies the smile effect
in real markets. One can raise the question whether the smile effect in real
markets is completely determined by an inaccurate modelling of the returns,
or not. One can expect that a better model reduces the effect, but in real
markets other additional risks, like e.g. illiquidity of not at the money options
and bid/ask spreads, need also to be priced in.
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Figure 6: Volatility smile, T = 3, 15, 60 days

Appendix

In this appendix we summarizes the analysis of other indices. The data sets
contain the log-returns over the period 1-1-1997 until 31-12-1999. We start by
given the mean, μ, of the dataset, its standard deviation, σ, and the number of
data points, n. For all indices we estimate the parameters a, b, d and m. We
calculate θ with an assumed daily interest rate of r = 0.0002. We give the density
plots, the Normal and the Meixner-QQ-plots, and the relevant values of the
Pearson tests. We furthermore look as the difference between the Meixner price
and the Black Scholes price of an European call option for various maturities.
Finally, we plot the implied volatilities which result from the Meixner prices
with respect to the Black-Scholes prices.
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DAX Index

Parameters

μ = 0.00118752, σ = 0.01566708, n = 752

â = 0.02612297, b̂ = −0.50801886, d̂ = 0.67395917, m̂ = 0.00575829

θ = −4.46513538

Density

Meixner density (solid) versus Normal density (dashed):
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Pearson χ2 test

N = 32 classes with class boundary points −0.0225 + (j − 1) ∗ (0.0015), j =
1, . . . , 31.
χ2

Normal χ2
29,0.95 χ2

29,0.99 PNormal-value
43.89175884 42.55696780 49.58788447 0.03757784

χ2
Meixner χ2

27,0.95 χ2
27,0.99 PMeixner-value

18.21277157 40.11327207 46.96294212 0.89688200

N = 28 equiprobable classes.
χ2

Normal χ2
25,0.95 χ2

23,0.99 PNormal-value
41.53191489 37.65248413 44.31410490 0.02016812

χ2
Meixner χ2

23,0.95 χ2
25,0.99 PMeixner-value

27.45744679 35.17246163 41.63839812 0.23699573

Option prices comparison

Difference between Meixner prices and Black-Scholes prices (S0 = 1, T = 3
(solid), 15 (thin dot), 60 (thick):
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FTSE-100 Index

Parameters

μ = 0.00070813, σ = 0.01147848, n = 756

â = 0.01502403, b̂ = −0.014336370, d̂ = 1.16142851, m̂ = 0.00196108

θ = −4.34746821

Density

Meixner density (solid) versus Normal density (dashed):
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Pearson χ2 test

N = 30 classes with class boundary points −0.0185 + (j − 1) ∗ (0.0015), j =
1, . . . , 29.
χ2

Normal χ2
27,0.95 χ2

27,0.99 PNormal-value
42.42944787 40.11327207 46.96294212 0.02984292

χ2
Meixner χ2

25,0.95 χ2
25,0.99 PMeixner-value

32.79237172 37.65248413 44.31410490 0.13634104

N = 28 equiprobable classes.
χ2

Normal χ2
25,0.95 χ2

25,0.99 PNormal-value
52.88888889 37.65248413 44.31410490 0.00092385

χ2
Meixner χ2

23,0.95 χ2
23,0.99 PMeixner-value

33.33333333 35.17246163 41.63839812 0.07543185

Option prices comparison

Difference between Meixner prices and Black-Scholes prices (S0 = 1, T = 3
(solid), 15 (thin dot), 60 (thick):
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SMI Index

Parameters

μ = 0.00089330, σ = 0.01406170, n = 731

â = 0.02954687, b̂ = −0.33888717, d̂ = 0.44012011, m̂ = 0.00311801

θ = −3.97213216

Density

Meixner density (solid) versus Normal density (dashed):
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Pearson χ2 test

N = 32 classes with class boundary points −0.018 + (j − 1) ∗ (0.0012), j =
1, . . . , 31.
χ2

Normal χ2
29,0.95 χ2

29,0.99 PNormal-value
42.92659121 42.55696780 49.58788447 0.04624445

χ2
Meixner χ2

27,0.95 χ2
27,0.99 PMeixner-value

24.88926666 40.11327207 46.96294212 0.58066769

N = 28 equiprobable classes.
χ2

Normal χ2
25,0.95 χ2

25,0.99 PNormal-value
44.91792068 37.65248413 44.31410490 0.00854436

χ2
Meixner χ2

23,0.95 χ2
23,0.99 PMeixner-value

24.15731875 35.17246163 41.63839812 0.39514026

Option prices comparison

Difference between Meixner prices and Black-Scholes prices (S0 = 1, T = 3
(solid), 15 (thin dot), 60 (thick):
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Nasdaq Composite Index

Parameters

μ = 0.00152919, σ = 0.01540092, n = 756

â = 0.03346698, b̂ = −0.49356259, d̂ = 0.39826126, m̂ = 0.00488688

θ = −5.95888693

Density

Meixner density (solid) versus Normal density (dashed):

10

20

30

–0.02 0 0.02 0.04
x

0

0.5

1

–0.07 –0.06 –0.05 –0.04
x

0

0.5

1

0.04 0.05 0.06 0.07
x

QQ-plots

–0.1

–0.05

0

0.05

–0.05 0 0.05
x

Normal

–0.1

–0.05

0

0.05

–0.05 0 0.05
x

Meixner

17



Pearson χ2 test

N = 32 classes with class boundary points −0.03+(j−1)∗(0.002), j = 1, . . . , 31.
χ2

Normal χ2
29,0.95 χ2

29,0.99 PNormal-value
52.4891763 42.55696780 49.58788447 0.00480544

χ2
Meixner χ2

27,0.95 χ2
27,0.99 PMeixner-value

27.40028797 40.11327207 46.96294212 0.44236623

N = 28 equiprobable classes.
χ2

Normal χ2
25,0.95 χ2

25,0.99 PNormal-value
67.55555556 37.65248413 44.31410490 0.00000881

χ2
Meixner χ2

23,0.95 χ2
23,0.99 PMeixner-value

31.62962964 35.17246163 41.63839812 0.10809438

Option prices comparison

Difference between Meixner prices and Black-Scholes prices (S0 = 1, T = 3
(solid), 15 (thin dot), 60 (thick):
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CAC-40 Index

Parameters

μ = 0.00129089, σ = 0.01430603, n = 752

â = 0.02539854, b̂ = −0.23804755, d̂ = 0.62558083, m̂ = 0.00319102

θ = −5.77928595

Density

Meixner density (solid) versus Normal density (dashed):
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Pearson χ2 test

N = 32 classes with class boundary points −0.018 + (j − 1) ∗ (0.0012), j =
1, . . . , 31.
χ2

Normal χ2
29,0.95 χ2

29,0.99 PNormal-value
44.99274115 42.55696780 49.58788447 0.02947184

χ2
Meixner χ2

27,0.95 χ2
27,0.99 PMeixner-value

31.82751935 40.11327207 46.96294212 0.23853247

N = 28 equiprobable classes.
χ2

Normal χ2
25,0.95 χ2

25,0.99 PNormal-value
42.50000000 37.65248413 44.31410490 0.01587090

χ2
Meixner χ2

23,0.95 χ2
23,0.99 PMeixner-value

24.62765955 35.17246163 41.63839812 0.36976456

Option prices comparison

Difference between Meixner prices and Black-Scholes prices (S0 = 1, T = 3
(solid), 15 (thin dot), 60 (thick):
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