RENYI ENTROPIES OF APERIODIC DYNAMICAL SYSTEMS
FLORIS TAKENS AND EVGENY VERBITSKIY

ABSTRACT. In this paper we continue the study of Rényi entropies of measure-
preserving transformations started in [22]. We have established there that for er-
godic transformations with positive entropy, the Rényi entropies of order ¢, g € R,
are equal to either plus infinity (¢ < 1), or, to the measure-theoretic (Kolmogorov-
Sinai) entropy (¢ > 1). The answer for non-ergodic transformations is different: the
Rényi entropies of order ¢ > 1 are equal to the essential infimum of the measure-
theoretic entropies of measures forming the decomposition into ergodic components.
Thus, it is possible that the Rényi entropies of order ¢ > 1 are strictly smaller than
the measure-theoretic entropy, which is the average value of entropies of ergodic
components.

This result is a bit surprising: the Rényi entropies are metric invariants, which
are sensitive to ergodicity.

The proof of the described result is based on the construction of partitions with
independent iterates. However, these partitions are obtained in different ways de-
pending on ¢: for ¢ > 1 we use a version of the well-known Sinai theorem on
Bernoulli factors for the non-ergodic transformations; for ¢ < 1 we use the notion
of collections of independent sets in Rokhlin-Halmos towers and their properties.

1. INTRODUCTION

Alfred Rényi introduced the generalization of the Shannon information (entropy)
in the beginning of sixties. His approach was based on an axiomatic definition of
information, and consisted of including the standard entropy function

n
H(pla s 7pn) = _Zpl logpi7
i=1

into a one-parameter family of generalized entropy functions

1 n
Hy(pr, o pa) = =5 IOg(Zp§>, g#1.
i=1

For a fixed probability distribution (p;,...,p,) the standard entropy is recovered
from the generalized entropies as follows

H(pi,... ,pn) = équq(pl,--- . Pn)

Since then the Rényi entropies have been successfully used in information theory
and statistics, and more recently in thermodynamics and quantum mechanics. In
dynamical systems, Hentschel and Procaccia [8] suggested a one-parameter family of
generalized dimensions based on Rényi’s approach. These dimensions proved to be
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extremely useful in problems of multifractal analysis and characterization of chaotic
attractors, see e.g. [13].

Some attempts [7], [6] were made to introduce the generalized entropies of dy-
namical system using Rényi’s approach. The idea was to produce a sufficiently
rich family of invariants of a dynamical system, which will take into account the
non-uniform behavior of invariant measures. However, the proposed way of gen-
eralizing the Kolmogorov-Sinai entropy using H, instead of H;, turned out to be
non-productive. In [22] we have established the following fact.

Theorem 1.1. For an ergodic dynamical system (X, B, u, T') with positive measure—
theoretic entropy h(T, ) > 0, the Rényi entropies are given by the following formula

hT,q, 1) = {

+00, qg <1,
MT,p), q>1.

Also in [22] we suggested another family of generalized entropies, which recovers
the results reported in the physics literature [1].

The proof of Theorem 1.1 relies heavily on Sinai’s theorem on Bernoulli factors [19],
for which the assumptions of ergodicity and positiveness of the measure—theoretic
entropy are crucial.

In this paper we prove a result, similar to Theorem 1.1, but without the above
assumptions. We consider aperiodic measure-preserving automorphisms, i.e., trans-
formations 7' of some Lebesgue space (X, B, i) such that

p({z: T"(z) =z for some n}) = 0.
Surprisingly, the result for such systems is different from the ergodic case.

Theorem 1.2. Suppose T is an aperiodic measure-preserving automorphism of the
Lebesgue space (X, B, ). Let = [ pydm(t) be the decomposition of p into ergodic
components, and let

he(T, 1) = m-essinf{h(T, u;)} := sup{c :m{t:h(T, ) <c}=0 }

Then the Rényi entropies are as follows

+00, qg<l,
WT,q,p) = S MT, p) = [MT, ) dm(t), q=1,
hi (T, 1), q> 1.

This result is a bit surprising because of the following: an entropy-based invariant
can detect ergodicity. However, we are not aware of any interesting example, where
this observation could be useful. The first candidates, which come to mind, are the
non-ergodic Markov shifts, i.e., the shifts for which the transition probability matrix
P is not irreducible. It is possible in this case (provided h(T, ) > h.(T, i), of course)
to show the Rényi entropies of order ¢ > 1 are strictly smaller than the measure-
theoretic entropy, and thus, the system is not ergodic. However, this proof is much
more involved than the standard one, and follows the same idea.

The paper is organized as follows: in the next section we give a formal definition
of the Rényi entropies and establish the basic properties; in section 3 we recall facts
about the decomposition into ergodic components. We discuss a non-ergodic version



of Sinai’s theorem on Bernoulli factors, and use it for the computation of the Rényi
entropies of order ¢ > 1 in section 4. In section 5 we develop a notion of independent
partitions in Rokhlin—-Halmos towers and subsequently prove the statement for ¢ < 1.
Finally, in the last section, we pose some open questions about the possible connection
between the Rényi entropiesand the recently introduced entropy convergence rates.

2. RENYI ENTROPIES OF MEASURE PRESERVING TRANSFORMATIONS

The definition of the Rényi entropy of order ¢ of a measure-preserving trans-
formation goes along the lines of the standard definition of the measure-theoretic
(Kolmogorov-Sinai) entropy, and consists of 3 steps: the definition of the Rényi en-
tropy of a finite partition, Rényi entropy of an automorphism with respect to a par-
tition, and, finally, after taking the supremum over all finite partitions, the Rényi
entropy of an automorphism, which is a metric invariant.

For any ¢ € R the entropy of order ¢ of the partition £ = {A;}, is the number

log(z M(Ai)"), for ¢ # 1,
Hu(q,8) = (2.1)
Zu Jlogp(d;),  forg=1,

with the standard convention 09 = 0 for all ¢ € R and 0log0 = 0.
It is easy to check the following monotonicity property

H,(q1,€) < Hy(qe,§) for any € and q1 > ¢o.
The Rényi entropy of order ¢ with respect to a partition £ is defined as

1
h(T, 11, q,€) = liminf — (q, §<">), (2.2)
n—oo N
where £ = ¢ v T='¢ V... v T7"1¢ is the partition into sets ()i_y T*A;, with
Aik €&

Remark. For ¢ = 1 it is known (see for example [4]) that the limit in (2.2) exists.
The proof of this fact is based on a so-called subadditivity property of the Shannon
entropy H(1,¢&):

Hu(lv g \% 77) S HM(lv g) + Hu(lv 77)
for all partitions &, 7. As it was shown by Rényi in [14], the later is not the case
for any ¢ # 1. This creates some additional problems in the treatment of the Rényi
entropies. Nevertheless, if £ and n are independent partitions then

Hy(q,& V) = Hu(q,€) + Hyu(q,m)
for all ¢ € R. We will often exploit this fact.

Finally, we define the Rényi entropy of an automorphism 7" of order ¢ as the number
MT, pyq) = Sup MT, 1, q,8), (2.3)

where the supremum is taken over all finite partitions £ of X.

Proposition 2.1. The Rényi entropies have the following properties:
1) h(T, i, q) >0 for all q;



2) h(Tnu’aql) Z h’(Ta 22 q2) fOT' q1 S q2;

3) h(T,u,1) = h(T, pn), where h(T, ) is the measure—theoretic (or Kolmogorov—
Sinai) entropy.

4) h(T™, p,q) = nh(T, p,q) for any g € R and every n > 0.

Properties 1-3 follow easily from the definition of A(T, u, q), and 4 has been estab-
lished in [22].

3. DECOMPOSITION INTO ERGODIC COMPONENTS

Let (X,B, 1) be a Lebesgue space [4]. For a measurable partition £ = {C}}ica,
where A can be finite, countable or uncountable, we identify A and the quotient (or,
factor) X /& — the space, whose points are the elements of £&. The set A is a Lebesgue
space as well: the set £ C A is measurable if the set U;cgC} is a measurable subset
of X, and we obtain a measure m on A by letting m(E) = p(UiepCy). A system of
measures {{}, t € A, is called a canonical system of conditional measures belonging
to the partition & = {C}}en, if

1) g is defined on some o-algebra B, of subsets of Cy, such that (Cy, By, i) is a
Lebesgue space.

2) for any A € B the set A N C; belongs to B, for m-almost all ¢; the function
pi(A N Cy) is a measurable function of ¢ and

H(A) = / (AN C,) dm().

Suppose T : X — X is a measure-preserving automorphism. Then (X,B, u)
can be decomposed into ergodic components of 7. By this we mean the following:
there exists a T-invariant measurable partition £ = {C;} and a canonical system of
conditional measures {y;} such that for almost all ¢

(Cy, By, i, T\ ) is ergodic.

Suppose ¢ = {C}} is the decomposition into ergodic components of (X, B, u,T),
then

W(T, 1) = / W(T, pe) dm.

Consider the essential infimum and the essential supremum of measure-theoretic en-
tropies of the measures p; from the decomposition into ergodic components:

h(T, 1) = m-essinf{h(T, ;)| t € A = X/&} := sup{c: m({t : h(T, ) < c}) = 0},
h*(T, p) = m-esssup{h(T, ju;)| t € A = X/} := inf{c: m({t : h(T, ) > c}) = 0}.

The quantity h* (7, i), sometimes called the entropy rate, has been previously stud-
ied in the literature [9, 21, 23] in relation with the existence of finite generators (gener-
ating partitions) for non-ergodic systems. A well-known theorem of Krieger [11] states
that an ergodic dynamical system with a finite measure-theoretic entropy h(T, j1) ad-
mits a finite generator £ with card(§) < exp(h(T, p)) + 1. It turns out that for non-
ergodic aperiodic dynamical systems a similar result is true, provided h*(T, 1) < oo:
a finite generator & exists whose cardinality does not exceed exp(h*(T, u)) + 1.



Denote by 11, = {P = (P, ..., Py)} the set of all ordered partitions of X into m
sets. For any measure p on (X, B) define the partition (pseudo-)metric p, on II,, as
follows

:ZM(PkAQk)a PaQGHm-
k=1
If p,(P,Q) =0 then P and @) agree except on a set of measure 0, and, of course, in
this case we say that P = (). The space (Il,,, p,) is a complete metric space.
For an at most countable ordered partition P of (X, B, u) the distribution vector
of P is given by

Suppose P and P are partitions into m sets of (X,B,u), (Y, F,v) respectively,
then the distribution distance is

|d(P, ) — Z (Pe) — v(By)l-

Suppose we have a set {y}iep of measures on (X,B). For every t € A consider
the metric p,, on IL,,. The following fact will be used later: there exists a countable
set II,,, C II,,,, which is pu.~dense in II for almost every ¢ € A.

The existence of such II,, follows from the fundamental properties of the Lebesgue
spaces. By definition, a Lebesgue space (X, B, 1) admits a countable basis I' = { B, }.
This in particular means that for any measurable set A € B there exists a set C' from
a minimal o-algebra generated by I' such that

CCcA and p(A\C)=0. (3.1)
Denote by % the countable algebra generated by I', and let

Hm:{P:(Pl,...,Pm): B-GQL}.

Hence II,, is an at most countable collection of ordered partitions into m sets, where
elements of these partitions are taken from 2f. From (3.1) we conclude that IT,, is Pu
dense in II,,. Moreover, for almost every ¢t € A, 1, is pu.-dense in II,, as well. This
is a consequence of the following fact ([15], see also [16]): for almost every ¢ € A, the
countable collection of sets I'; = I' N C} is a basis in the Lebesgue space (Cy, B, ut)

4. RENYI ENTROPIES OF ORDER ¢ > 1

In this section we are going to prove that h(T, u, q) = h.(T, p) for every ¢ > 1. We
start by showing that h(T, p1, q) < h. (T, p).

4.1. Estimate from above. Suppose that we have two invariant measures p; and
1o for an automorphism 7'. We do not assume these measures to be ergodic. Without
loss of generality we can assume that

W, ) < W(T, pig).- (4.1)

Consider now another invariant measure u = au; + (1 — a)pe with o € (0,1). The
measure-theoretic entropy of u is given by (see [5])

h(T, p) = ah(T, ) + (1 = ) h(T, o).



Note that due to (4.1) h(T, ) > h(T, ). Let £ be some finite partition. For any
C € € one has

u(C) = ap(C) + (1 — a)uz(C),
and, therefore, ;(C)? > a4y, (C)? for ¢ > 1. Hence, for ¢ > 1,

Hy(q,&) = — ! : log(Zu(C)q> <-4 rloga — ! log(Zm(C)q>
cet

q - q - ¢—1 "\eH

=~ loga+ H,,(4.9).

From the above one easily concludes that

1 1
— lim inf — (MY < lim inf - () =
T, 1, q,€) = liminf —H,(q, &™) < liminf —Hy, (¢, 6™) = (T, ju, 4, ).

On the other hand, due to the monotonicity of the Rényi entropies with respect to ¢,
for ¢ > 1 we have

h(Ta M1, 4, g) S h(Ta M1, q) S h’(Ta M1, 1) = h’(Ta /'Ll)
Combining the two last inequalities we finally obtain that for any ¢ > 1

h(Ta 1y q) S h’(Ta /'Ll)

Thus we see that the Rényi entropy of a linear combination of two measures does
not exceed a minimum of the measure-theoretic entropies of these two measures. It
is evident that the above argument goes through in the case of a finite or countable
decomposition: =", appy, where a, > 0 and >, oy = 1.

Moreover, the above argument can be equally easily generalized to the case of, gen-
erally, uncountable decomposition of an invariant measure y into ergodic components
{tt:}. This is done in the following lemma.

Lemma 4.1. For a measure preserving system (X,B, u, T) one has

MT, 1, q) < ho(T, 1) (4.2)
for every q > 1.

Proof. Consider an ergodic decomposition of (X,,u,T) as in section 3. By the
definition of h, (T, u) for every € > 0 the set By = {t : h(T, ;) < ho(T, ) + e} has
a positive m-measure. Suppose, there exists ¢ > 0 such that for any ¢ € (0,£¢) one
has m(E;) < 1.

If such ¢ > 0 does not exist, then

MT, ) = hi(Ty ) for m — a.a. t.

As a result we immediately conclude that A(T, ) = h.(T, 1), and using the fact that
(T, p) > h(T, 11, q) for any ¢ > 1 we obtain our claim (4.2).
Assume such gy > 0 exists and chose any € € (0,2). Since m(E;) € (0,1) we can
define
1

pedm(t), iy =~ [ dm()
m(Ey) Ji, 1 —m(Er) Jg

M1 =



It is clear that p; and ps are invariant probability measures. Moreover, h(T, j11) <
h.(T, i) + . Using the above argument for two measures ;1 and ps we conclude that
for any ¢ > 1

Since € > 0 can be chosen arbitrary small, we obtain the claim (4.2). O

4.2. Bernoulli factors of non-ergodic systems. Let us recall a definition of a
Bernoulli automorphism.

Definition 4.2. An automorphism T of a Lebesgque space (X,B, u) is called Ber-
noulls, if it is measure-theoretically isomorphic to a Bernoulli shift.

If T" is a Bernoulli automorphism then there exists a partition P of X such that

1) P is generating,

2) {T"P} ez is a sequence of independent partitions.
Such partition P is called an independent generator for 7. A well known theorem
by Sinai [19] states that for every ergodic automorphism 7" with entropy h(7T, i), and
every positive number h such that h < h(7T, ), there exists a Bernoulli factor with
entropy h. A non-ergodic version of the Sinai theorem fisrt appeared in [10].

Theorem 4.3. Suppose T is an automorphism of a Lebesgque space (X,B, ). Let
T be a Bernoulli automorphism of (Y,§,v) with a finite independent generator P,
card(P) = k. Let {Cy, i} be a decomposition of (X, B, u, T) into ergodic components
and m be a corresponding measure on the factor X/{Ci}. Assume that h.(T,p) >

h(T,v). Then there exists a partition Q, card(Q) = k, such that

i) {T'Q} is a sequence of independent partitions,
i#) (@) = d(P,v).

In fact, using the techniques of [10] one can establish a non-ergodic version of
the Ornstein fundamental lemma [12, 18, 20] as well. The strategy of generalizing
“ergodic” results to the non-ergodic case consists of the following. Suppose that
{C4, i} is the decomposion of 4 into ergodic components, and that for almost every ¢
there exists a partition P; of C} into m elements which satisfies some required property.
We recall that there exists a countable family of partitions II,, which is pu,-dense in
the set all partitions into m elements for almost all ¢, see section 3. Using this family
ﬁm one can construct a universal partition P such that P N Cy; = P, for almost all t.

4.3. Estimate from below. Now we can prove a lower estimate: h(T,pu,q) >
h.(T, i) for all ¢ > 1. Before we proceed with this estimate we would like to make a
few remarks. Firstly, we compute the Rényi entropy of order ¢ for a Bernoulli shift.
Let Q ={1,... ,k}%and o : Q — Q be a left shift. Let v be a Bernoulli measure on
Q) generated by a probability vector p = (p1,... ,px), i.e.,

{w= () : Wm = Gy .. Wy = Ap} = Pa,, - - - Da,

for all m < n and ay,...,a, € {1,...,k}. Denote by & the partition into the
following cylinders:

E={A,... , Ar}, A, ={w=(w): wyp=n}.



It is not very difficult to see, that for ¢ # 1

ho,v,q,&) = — ! 110g<zk:pg)‘
=1

q E—
In particular, if p; = ... = p, = 1/k, then h(o,v,q,&) = logk. In this case, since
h(o,v) = log k, we immediately conclude that h(o,v,q) = logk for ¢ > 1.
We would also need the following statement.

Lemma 4.4. Suppose T : Y — Y is an automorphism preserving a measure v. Then
for any prime p > 1 one has

h(T?,v) = ph,(T,v).

Proof. Assume first, that (T,v) is ergodic. If T? : Y — Y is ergodic, then there is
nothing to prove, since in this case h,(T?,v) = h(T?,v) = ph(T,v).

If T? is not ergodic, then [17, p.38] there exist disjoint sets Ay, ..., A, 1, such that
Y = Uf;OIAi (mod 0), T(A;) = Ai41 mod p, and TP is ergodic on A, with respect to
v(-|Ag). Therefore, h,(TP,v) = ph(T,v).

Hence, we conclude that if (T, v) is ergodic, then h,(T?,v) = ph(T,v) for any prime
p,p=>1.

Assume now that (7', u1) is not ergodic and let = [ i dm be the decomposition of
p into ergodic components. Applying the argument above to each (7', i1;) we conclude
that h. (TP, ) = ph(T, j1y), and therefore h,(T?, ) = ph. (T, p). O

Now let us proceed with the proof of the inequality: h(T,u,q) > h.(T,p) for all
g > 1. Assume the opposite, i.e., there exists ¢ > 1 such that h(T, u,q) < h(T, p).
Take a sufficiently large prime p such that there exists an integer k satisfying

ph(T, 11,q) < loghk < ph.(T, p) = h(T7, ). (4.3)
Consider a Bernoulli shift, defined as above, with p; = ... = p, = 1/k. Then by
Theorem 4.3 there exists a Bernoulli factor @ for TP with u(Q1) = ... = p(Qx) = 1/k.

Thus h(T?, u, q, Q) = log k, but this is in contradiction with (4.3), since
ph(T, pi,q) = K(T", p1, q) = Sup h(T", p, q, R)

Hence, h(T,u,q) > h.(T,p) for ¢ > 1, and together with (4.2), this gives the
equality h(T, i, q) = h.(T, u) for all ¢ > 1.

5. RENYI ENTROPIES OF ORDER ¢ < 1

In this section we will prove the remaining part of Theorem 1.2. The techniques
which we are going to use will be different from the previous section. The reason is
that we do not want to assume h, (T, ;1) > 0 (or, even h(T, 1) > 0). In the case when
h(T, i) > 0, we can (with the help of the non-ergodic version of Sinai’s theorem on
Bernoulli factors obtained in the previous section) proceed as in [22].

Our main goal is to construct partitions with arbitrarily large Rényi entropy of
order ¢, g < 1: for every C' > 0 we have to find a partition £ such that

1
W(T, p,q,€) = liminf - Hy(q,6®) > C. (5.1)
—00

Since the Rényi entropies are monotonic in ¢ we can restrict ourselves to ¢ € (0, 1).



First of all, let us make an observation which will allow us to simplify the estimate
of the Rényi entropy of a partition from below.

Definition 5.1. The Rényi entropy of order q, ¢ # 1, of a finite partition n = {A;}
restricted to a set F, u(F) > 0, is the number

Hy(q,n|F) = —qil log (Z u(AmF)q> -

AiEﬂ

It is easy to see that any each ¢ € (0,1) and for any set F', u(F') > 0, one has
H,(q;m) = Hu(q,n|F). (5:2)

In the next subsection we will show how this can be used when F is a base of some
Rokhlin—Halmos tower and £ is some special partition.

5.1. Rokhlin—Halmos towers and independent collections of sets. We have
assumed that 7T is an aperiodic automorphism. It is well known that for such au-
tomorphisms one can construct Rokhlin-Halmos towers of any height and measure
arbitrarily close to 1.

Let M C X then 7 = {M,TM,... , T™ ' M} is called a Rokhlin-Halmos tower if

T'"MNT'M=ofor0<i#j<m-—1.
We will use the same letter 7 for U} 'T* M. The height of the tower 7 is said to be

m and () = mu(M) is its measure.
We now give a definition of an independent collection of sets relative to a Rokhlin-
Halmos tower. We will associate to such collections certain partitions, which will be

analogous to Bernoulli partitions.

Definition 5.2. Let 7 = {M,TM,... , T" 'M} be a Rokhlin-Halmos tower. We
say that a collection T = {Iy,...,Ixy 1} of subsets of T is independent relative to T if
2) denote by &1 the partition of X into the sets {I,... ,In_1,Ixy := X \ U;y:_ollj},
then
m—1

(THI TP M), , T (InnT*M)} S = {T (& N ThM)

m—1
k=0
15 a collection of independent partitions of M.

For convenience we will always assume that

8) p(I; NTFM) :%forjzl,... N and k=0,...,m—1.

Collections of independent sets exist in every tower. This follows from the following
two observations. Firstly, since 7' is assumed to be aperiodic, the invariant measure
p has no atoms. Secondly, for any Lebesgue space (X, 9B, i), where p has no atoms,
for every measurable set A and each o € [0, 1(A)] one can find a set B C A with
u(B) = a.

It follows immediately from the definition 5.2, that if Z is a collection of independent
sets in 7 and &7 is the corresponding partition, then

¥ = {Ijl AT ,N... T AM: (... .55 €{l,... ,N}k}
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FIGURE 1. Independent sets (I, [5) in 7 = (M, TM,... , T™ ' M).

is a partition of M into N* sets of equal measure p(M)/N* for every k =1,... ,m.
Using (5.2) we easily obtain an estimate on the Rényi entropy of ém):
m m 1 m ()"
Hu(q,é )> > Hu(q,f;(r )IM) =7 _qlogN <W>
_ q
—mlogN—i-1 log pu(M).
—q

If the measure of the base of the tower (M) is not too small, say (M) > N—™(1-0)/(0)
then Hﬂ(q,fém))/m > (log N)/2.

In the next subsection we estimate the Rényi entropy of a partition which is ‘close’
to some partition £z, where Z is a collection of independent sets.

5.2. Approximation lemma. Let Z = (I;,... ,Ix_1) be a collection of independent
sets in the Rokhlin-Halmos 7 = (M, ... ,T™ M), and let & = {I,,...,Ix} be the
corresponding partition. Suppose that another partition n = (Ey,..., Ey) is such
that the sets

E;-—:Ejﬂ’/'

are “close” to the corresponding I;’s for j = 1,..., N;. Since the partition fém) has
a large Rényi entropy (subject to a relation between N and u(7) of course), then the
partition 7™ has a large Rényi entropy as well. This can be rigorously formulated
in the following way.

Lemma 5.3. Let T = {I,...,In_1} be a collection of independent sets in T =
(M,..., T ' M) with m > 16, and let & = {Iy,... , In_1, Iy := X\ U;V:?Ij} be the



corresponding partition. Suppose n = (E, ... ,Ex_1, Ex) is another partition of X
such that

=

-1

1 n(EjAL) < %- (5:3)

<.
Il

Then for every q € (0,1) one has

1

1+q)
—H (m)y > al+a)
- ulg,n'™) >

q
log N —log2 + ———— log u(7) — log(2m).
(1—q)m () 2(1—q)m (2m)

| =

Proof. This lemma is a generalization of lemmas 2.6 and 2.7 from [3], and its proof
follows quite closely the proofs of the corresponding results in [3]. Nevertheless, due
to the necessary modifications and for the sake of completeness we provide a proof
here.

We shall use the following notation: let @ = {1,... , N} and

Aty =L, NT ' L,n...AT"™" forr=(r,...,r,) € Q"
A(S)=E, NT'E,Nn...NT™™E, fors=(s1,...,5n,) € Q™.

We know that pu(A(r) M) = u(M)/N™. Since n is close to &7 in 7, we expect the
sets (™ N M to have approximately the same measure as the sets of M N M. Let
us make it precise. We say that A(s), s € Q™, is a ‘bad’ (or, a ‘fat’) element of 5™
if

u(A(s) N M) > 2N (M),
and is ‘good’ (or ‘thin’) otherwise. We collect the indexes of all ‘bad’ elements into
the set

S={seQm:A(s)is ‘bad’ }.
We will now show that ‘bad’ elements of 7™ cover less than a half of M in measure,
ie.,

uOJA@ﬂM)S%MM)

seS
We introduce the following notation:

M(s,r) = A(s) N A(r) N M,

It is easy to see that,
M(s,r)NM(s,t) =@ for r#t,
T'M(s,x) N T’M(s,r) =@ for i# j,
T(s,r)N7(s,t) =@ for r#t.



Let s € 2™, then

u((uj.v;llE; A I;) ﬂT(s)) = EIL((U%IEJ A I;) ﬂT(s,r)>

m—1

= > Zu((ujﬁlE} A I;) ﬂTkM(s,r)> (5.4)

reQm™ k=0

Consider the sets participating in the last sum separately. We claim that

TFM if
(uj.\’;llE; A Ij) NTEM (s, 1) = { (1), i s # i, (5.5)
a, if s, = ry,.
For this it is sufficient to show that
ET NI, if ,
(uN;fET A Ij) NET NI, = oM M 7T (5.6)
J J k @, if s, = 4.

The proof is straightforward: let j =1,... ,N—1and k=1,...,m, then
(E] AL)NE], NI, = ((E; \I,)NE], N I,k> U ((Jj \E))NE], N I,k>
=: AU B.
Suppose first that s = r,. Then for j = s, = rp we have
AUBC ((E;\Ij)mj) U ((Ij\E;)nEj) =0,
since [; Ctforj=1,... ,N—1
For j # sy = r; we have
AUBC ((E; \ ;)N E;k) U ((Ij \E7)n I,,k> =0,
since B; NE, =1;,N1, = .
Now consider the case s, # 1. If j # s and j # rg, then
AUBC(E;NE,)U(;NI,)=0.
If j # sp and j = 1y, then A C (ET \ [;) N By, = @, but
B=(L\E)NE, (1, = (I, 0 EL,),

since E N E{ = &.

Similarly, for j = s and j # ry, we conclude that B = &, but A = E] N[, .
Hence we proved (5.6), and therefore (5.5).

Using (5.5) and the fact that T' is measure—preserving, we can simplify (5.4):

u((u;.V;E; AT ﬂT(s)) =" duls, r)u(M(s,r)), (5.7)

where dy(s,r) = #{k : sy # rr} is the Hamming distance between s and r. We
rewrite (5.7) in the following form

p((UED a L) nr(s)) = Z i Y p(M(s,r)). (5.8)

1=0  r:dg(s,r)=t



Given s € Q™ the number of r’s such that dy(s,r) =i is C% (N — 1)%, where C!, is
the binomial coefficient. Let us introduce the following notation
p(M) i
nE)= Y us), =000 (v -y,

Note that u(A(s) N M) = 37 2i(s).
Since M (s,r) C A(r) N M and p(A(r) N M) = u(M)/N™, for every i one has

p(M p(M) i
2;(s) = p(M(s,r)) < ](Vm) [ > 1] = ](Vm)C’m(N )i =y (5.9)
r:dg(s,r)=i r:dg(s,r)=i
Furthermore, for every s there exists ks € {1,... ,m} such that

ks—1

ks m
Zyi > ZCUZ(S) > Z Yi- (5.10)
i=0 i=0 i=0

From (5.9) and (5.10) we conclude that 3.7, z;(s) > 2% " y; for all [ > 0, and as a
result

izi(s) > Y iy (5.11)

1=0

m ks—1
=0

3
We will show now that if s € S then kg > [Tm] + 1. Indeed, if s € S, then by

definition of S,

p(A(s) N M) > 2" N4 (M),

and from (5.9) we have

. -
L i o i %i(s) _ p(A(s) N M) -
— ) C(N—1) > &0 = > ogmN-m/A,
D T
However, Lemma 6.1 (see Appendix below) states that

k
1 . .
~ > ChL(N—1) <2"Nm/
=0

for all k =0,1,...,[3m/4]. Hence, ks > [3m/4] + 1.



Now, for all s € S we have

u(( UNET A ) ) szz (by (5.8))

> Y= i ICH(N = 1) (by (5.11))

M(M) m ; i
> - .
— Nm §(N + 31);Cm(N 1)*  (by Lemma 6.1)

ks
m
~ 8(N +31) 2; vi

> m z;xz-(s) (by (5.10)).

Hence,

u( UXS BT A Ij) > Zu((uj.v;llE; A L) N r(s))

ses
N+31 ZZ N+31 ZZ
s€S 1=0 seS reQm

- 8(N+31) ;“

Therefore, using our assumption (5.3) one has

Y w(A(s)n M) < Mu(uflwg A Ij)

8(N + 31) 1
= 16(N + 31) (7) = g,

i.e., ‘bad’ elements A(s) cover not more than a half of M.



Now we can estimate the Rényi entropy of the partition n(™:

m m 1

>—log | Y ul(s)n M)
N s€Qm\ S
1 A(s)N M
SR S Ol
q s€Qm\ S (2mN-m/4 (M)

1 1 M
> log [ L p(M) _
1—gq 2 (Qmem/éllul(M)) a

q 1
log (M) — log 2
Y (M) -
q 1
—— log (7 ) — log 2m?.
(1—q)m ") 1—gq

= %logl\f—mlog2+ 1

1
= m(ZlogN —log2 +
This finishes the proof of Lemma 5.3. O

5.3. Partitions with large Rényi entropy. Consider ¢ € (0,1) and take N € N,

1_
N > 16. For the convenience of notation we put § = ( 5 Q). Take R € N such that
q

N > 32(N + 31)N.
We choose a sequence of Rokhlin-Halmos towers {7},
T = (Mg, ..., T"™ " My)
of height m; = Rk and measure u(1;) = N7°F*_ For each k let
T = (Li(k), ..., In_1(k))

be a collection of independent sets in 7,. We define a sequence of collections of
pairwise disjoint sets & = (Ey(k),... ,Enx_1(k)) as follows, for j =1,... ,N —1 let

E;(0) = o,
Ej(k) = (Ej(k - 1)\ ) UIj(k) fork=1,2,....
For any j € {1,...,N — 1} the sequence of characteristic functions {xg;) }z>, is
a Cauchy sequence in L;(X, B, u). Indeed, we obviously have
Ej(k) & Ej(k—1) C 7,
and hence for k1, ks > K we have
+oo

M(Ej(kl) A Ej(kz)) <3 ulm) = 0 as K — oo.

k=K
From this we conclude that there exists £; € B such that

XE; (k) — XE,; for k — oo.



It follows from the construction that pu(E; N E;) = 0 for i # j. Since we can neglect
sets of measure zero we may assume that £; N E; = & and hence we have a collection
E=(E,...,En_1) of pairwise disjoint subsets of X.

Furthermore, for every 7 =1,... ,N —1 and any L > k one has

h
=

n(Ep 6 1,(0) < p(E} o B(L) +

(]

p(Ej(L+1) & EJ¥ (1))

).

Moreover, since Ef*(k) = I;(k), u(E; A Ej(L)) — 0 as L — oo, and Ej(l +1) A
E;(l) C 7, we conclude that

l
+u(Ef (k) A Ik

Il
=

~—

W(EF 8 L) < 3 () = ) g < 1A
;= e T "1— N~ 16(N + 31)N’
and hence
N-—1
14(7)

u(E} o I(k) <

“ 16(N + 31)

J
Now let n = {E\, ..., Ex_1, Ex}, where Ey = X \UY\'E;, and applying Lemma 5.3

=1
we conclude that

1 q
—H ( : <mk>) > _logN + ———1 1
pe AU > qloe N+ g og 11(75;) + o(1)

O — =] =

log N + o(1),

where o(1) — 0 as k — oo.
For any n € N there exists £ € N such that

my =Rk <n < R(k+1) =mgq.

Since H,(q,n™) > H,(q,7"™)), we have

1 1 1 /1
5%((1,77(”)) > —Hﬂ(q,n(m’“)) > <§logN+0(1)>-

M1 My

T'his proves that
] = liminf — H — 10 .
w\d>q,7 n n pwld>M =9 g

Everywhere above we have assumed that ¢ € (0, 1). However, since

h(T, p,q,&) > WT, p,1/2,€)

for all ¢ < 0 and every partition £, we have obtained partitions with large Rényi
entropies of all orders ¢, ¢ < 0, as well. Finally, since N is an arbitrary integer, we
proved the remaining part of Theorem 1.2.



6. FINAL REMARKS

a) Another version of Rényi entropies can be defined using lim sup instead of lim inf
in (2.2). In principle, due to the lack of subadditivity of H,, there might exist a finite
partition &£ such that

. 1 n
h(T7,U/7Q7€) = lim sup — mHﬂ(Q7§( )) 7&

n—00 (
1
D (n)y —
for some ¢ € R, ¢ # 1. However, using the results of Theorems 1.1 and 1.2, one can
easily show that
(T, 1, q) = sup h(T,p,q,&) = sup W(T,p,q,&) = (T, 1, )
¢ finite ¢ finite
for all ¢ € R.
Since h(T, p,q) = +oo for ¢ < 1 in the ergodic and aperiodic cases, the claim is
obviously true for ¢ < 1.
To complete the proof we have to show that for ¢ > 1

sup BT, 0,0,€) < W(T, ) (6.1)
nite
in the ergodic case, and
S W(T, 1, q,€) < ho(T, 1) (6.2)
nite

in the aperiodic case. The first inequality (6.1) follows immediately from the mono-
tonicity properties (Proposition 2.1), and the fact that for ¢ = 1 (standard entropy)
the limit in (2.2) exists.

The second inequality (6.2) is proved exactly in the same manner as an inequality
T, p,q) < ho(T, i) in section 4.1.

b) Formally speaking, the pair of metric invariants (h(7T, ), h(T, 1, q)), ¢ > 1, can
detect ergodicity: if h(T, ) — h(T, 1, q) > 0, then (T, 1) cannot be ergodic. However,
we were not able to find any relevant examples where this could be useful.

In our opinion, an example of a measure-preserving system (X, B, u, T'), where the
non-ergodicity can be decided from the positiveness of h(T, u) — h(T, 1, q) would be
interesting.

c¢) The difference between ergodicity and non-ergodicity is less interesting than the
difference between ergodicity and weak mixing. As it is well known, weak mixing
of T" is equivalent to the ergodicity of any direct products of 7" with an ergodic
automorphism S. Suppose, T is ergodic, but not weakly mixing. Then there exists
an ergodic measure-preserving dynamical system (Y, §, v, S) such that (X xY, &, u x
v,T x S) is not ergodic. Unfortunately, the Rényi entropies are not able to detect
non-ergodicity of such systems: for ¢ > 1 one has

(T x S, xv,q) = MT,p,q) + h(S,v,q) = M(T, 1) + h(S,v) = h(T x S, x v),

where the first and the third equalities are standard facts for entropy-like character-
istics, and the second equality follows from Theorem 1.1



d) Entropy convergence rates were introduced in [3].
Let (X, B, 1) be a Lebesgue space and T be a measure-preserving automorphism.
Suppose that (X, B, u, T') has zero entropy. Hence, for any finite partition £ one has

1
— i inf — (n)y —
(T, i, ) —h&g}fﬂHM(f )=0.

Let ¢ > 0 and a,, n > 1, is a sequence of positive numbers such that a, — oo.
Denote by IT the set of all non-trivial partitions (X, B, 1) into two sets.
The automorphism 7 is said to be

e of type (LI > ¢) for ((a,),II) if for every & € II

1
liminf —H(6™) > ¢;

n—o0 an

e of type (LS > ¢) for ((ay),II) if for every £ € II

lim sup iH(f(n)) > c.
n— oo an
Similarly one defines types (LI < ¢), (LS < ¢), (LI < ¢), etc. Clearly, the type of a
measure-preserving transformation is a measure-theoretic invariant.

It was shown in [3] that there are no aperiodic transformations of type (LI < o0)
for ((a,),I1), where a,, = o(n), n > 1. Every totally ergodic transformation (i.e., T* is
ergodic for every k > 1) is of type (LS = o0) for (g(logn),II), where ¢: [0, +o0) = R
is positive, monotone increasing and

/oo g(x)dx<oo.

2
Also, in [2] F.Blume constructed a class of weakly mixing systems, which can be
distinguished by these invariants.
It would interesting to know if the corresponding notions for the Rényi entropies,
both in the case of ¢ < 1 and ¢ > 1, can produce useful convergence rates, which are
different from the case of standard entropy.

APPENDIX. AUXILIARY RESULTS

Throughout this section we assume that N € N, N > 2 [z] denotes an integer part
of z, and C* will denote the binomial coefficient

!
o i —
™kl (m = k)!
For k=0,...,m let
k . - k—1 . .
am(k, N) =Y _C (N 1), bu(k,N)=> iCj, (N = 1)\,
=0 =0

The following result is a straightforward generalization of Lemma 2.4 from [3].

3
Lemma 6.1. Let m be an integer, m > 16, and put ky = {Tm} + 1. Then



1) for k=0,1,... ko — 1 one has

N

2) for k =ky,... ,m one has
am(k, N) _ 8(N +31)
b (k, N) — m
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