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Abstract

The Taylor expansion is a powerful tool in the analysis of deterministic
functions. In the case of stochastic processes there exists already a stochastic
Taylor expansion for diffusion processes and some general existence results
for other classes of processes. We explicitly calculate a stochastic Taylor
expansion for multivariate Poisson processes. An extension to diffusion pro-
cesses with Poisson jumps is straightforward. The expansion is used for two
financial applications in the context of Risk Management.

1 Introduction

If we study local properties of a deterministic function the Taylor expansion plays a
crucial role. But stochastic processes do not behave in the same way as determinis-
tic function, therefore we can not do a deterministic Taylor expansion for stochastic
processes. There exist already some results about stochastic Taylor expansions for
diffusion processes (see for example [2] or [9]). Strongly related to the question of
Taylor expansions is the Chaotic Representation Property (CRP) derived for nor-
mal martingales, i.e. for martingales X such that 〈X, X〉t = ct , for some constant
c > 0 in [4], or for Lévy processes with exponential moments in [11]. The CRP
gives us nice existence results of decompositions of L2 random variables on some
probability space in terms of orthogonal sequences of martingales. Although it is
sometimes in principle possible to calculate the coefficients of the expansion (see
[10]), the calculations may become quite involved.
In this paper we give a simple and explicit calculation of a stochastic Taylor ex-
pansion of a function of Poisson processes at a fixed time t . In the next section we
explain the idea in the one-dimensional case. In Section 3 we extend this result to a
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multivariate Poisson process. Then we put the expansion of [9] and the expansion
for multivariate Poisson processes together. Finally we apply our results to various
examples related to Risk Management in Section 4.

The main tool we use is Itô’s formula. One possible general formulation can
be given as follows (see [15, p. 70ff]).

Theorem 1.1 (Itô Formula). Let X = (X1, . . . , Xn) be an n-tuple of semimartin-
gales and let f : IRn → IR have continuous second order partial derivatives. Then
f (X) is again a semimartingale and the following formula holds:

f (Xt ) = f (X0) +
n∑

i=1

∫ t

0+
∂ f

∂xi
(Xs−)d Xi

s

+ 1

2

∑
1≤i, j≤n

∫ t

0+
∂2 f

∂xi∂x j
(Xs−)d[Xi , X j ]c

s

+
∑

0<s≤t

(
f (Xs) − f (Xs−) −

n∑
i=1

∂ f

∂xi
(Xs−)�Xi

s

)
. (1)

Remark. The Poisson process is a finite variation process. Furthermore it can only
jump finitely many times in each finite time interval. For such processes formula
(1) reduces to a much simpler form. As one easily checks we have:

f (Xt ) = f (X0) +
∑
s≤t

f (Xs) − f (Xs−). (2)

Now the function f need not be C2. In fact we do not have to put any restriction on
the function f . Similar to the treatment of diffusion processes in [9] we recursively
use formula (2) for Poisson processes. Only in the end when we generalize to
jump-diffusions we have to use formula (1).

2 The univariate case

One basic object in this paper are Poisson processes:

Definition 2.1. A Poisson process Nt with parameter λ is a counting process start-
ing at 0 with stationary, independent increments and Nt ∼Poisson(λt).

We introduce the following notation:

Notation:
Given a function f : IR → IR we define the difference operator � by: � f (x) =
f (x + 1) − f (x). We then extend this notation. Set �0 f (x) = f (x), �1 f (x) =
� f (x) and define �i f (x) = �(�i−1 f (x)) recursively.
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Remark. The difference operator � f should not be mixed up with (�Nt ) which
denotes the jump process of Nt . The meaning should always be clear from the
context.

We now explain the main idea of the expansion. In the case of a Poisson process
one can easily rewrite Itô’s formula as has been done in Remark 1. For an arbitrary
function f we obtain the following:

f (Nt ) = f (0) +
∑

0<s≤t

( f (Ns) − f (Ns−))

= f (0) +
∑

0<s≤t

( f (Ns) − f (Ns−))�Ns

= f (0) +
∑

0<s≤t

( f (Ns− + 1) − f (Ns−))�Ns

= f (0) +
∫ t

0+
( f (Ns− + 1) − f (Ns−))d Ns

= f (0) +
∫ t

0+
� f (Ns−)d Ns . (3)

The second and third equality follow from the fact that for a Poisson process
�Ns = 1 in the case of a jump at time s or 0 otherwise. Then we use the defi-
nition of the integral in the Poisson case and finally the definition of the difference
operator �.
In the same way as above one can apply Itô’s formula to the function � f (Ns).

� f (Ns) =� f (0) +
∫ s

0+
�(� f (Nu−))d Nu . (4)

Plugging (4) into (3) leads to:

f (Nt ) = f (0) +
∫ t

0

(
� f (0) +

∫ s−

0+
�(� f (Nu−))d Nu

)
d Ns

= f (0) + � f (0)

∫ t

0+
d Ns +

∫ t

0+

∫ s−

0+
�2 f (Nu−)d Nud Ns . (5)

We then go on inductively. To simplify notation and to get rid of multiple integrals
which show up in the expansion we use some well-known results related to multiple
integrals with respect to a Poisson process.

2.1 Multiple stochastic integrals

Multiple stochastic integrals with respect to the Poisson process show up in the
expansion. We use the following notation.

P (n)
t ( f ) =

∫ t

0+

∫ t1−

0+
· · ·
∫ tn−1−

0+
f (Ntn−)d Ntn . . . d Nt1 , (6)

P (0)
t ( f ) = f (t).
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We simply write P(n)
t in (6) for f ≡ 1.

Example. We give some easy examples for this notation.

P (0)
t =1,

P (1)
t =

∫ t

0+
d Nt1 = Nt ,

P (2)
t ( f ) =

∫ t

0+

∫ t1−

0+
f (Nt2−)d Nt2d Nt1 .

We cite a result of [5, p. 23] which can easily be proved by induction.

Proposition 2.2. Given a Poisson process (Nt )0≤t . Then we have for all n ≥ 0
that:

P (n)
t =

(
Nt

n

)
. (7)

Proof. See [5]

Example. This proposition gives an easy way of calculating multiple stochastic
integrals with respect to a Poisson process.

P (2)
t =

∫ t

0+

∫ s−

0+
d Nud Ns = 1

2
Nt (Nt − 1),

P (3)
t =

∫ t

0+

∫ s−

0+

∫ u−

0+
d Nvd Nud Ns = 1

6
Nt (Nt − 1)(Nt − 2).

2.2 The stochastic Taylor expansion

We can now prove the following theorem.

Theorem 2.3. (Stochastic Taylor expansion for the Poisson process). Given
(Nt )0≤t a Poisson process and f : IR → IR. Then for all m ∈ IN0 the following
expansion holds:

f (Nt ) =
m∑

i=0

�i f (0)

(
Nt

i

)
+ P (m+1)

t (�m+1 f ). (8)

Proof. By induction.
From (3) we have that f (Nt ) = f (0) + ∫ t

0+ � f (Ns−)d Ns = f (0) + P(1)
t (�1 f ).

This is the statement for m = 0.
Assume the statement is true for m − 1, i.e.

f (Nt ) =
m−1∑
i=0

�i f (0)

(
Nt

i

)
+ P (m)

t (�m f ).
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From (4) we expand the function �m f (Ntm ) and get:

�m f (Ntm ) =�m f (0) +
∫ tm

0+
�m+1 f (tm+1−)d Ntm+1

⇒ P (m)
t (�m f ) =�m f (0)P(m)

t + P (m+1)
t (�m+1 f ).

Example. Theorem 2.3 shows, how to calculate stochastic Taylor expansions for
arbitrary functions. Set for example m = 2, then:

f (Nt ) = f (0) + ( f (1) − f (0))Nt + ( f (2) − 2 f (1) + f (0))
1

2
Nt (Nt − 1) + R.

When we drop the remainder term R, the approximation is exact on the set {Nt ≤
2} as one can easily check.

The property of exactness of the truncated stochastic Taylor expansion for the Pois-
son process holds more generally. Define the truncated Taylor expansion fm(Nt )

as:

fm(Nt ) =
m∑

i=0

�k f (0)

(
Nt

k

)
. (9)

Proposition 2.4. The truncated stochastic Taylor expansion fm(Nt ) for the Pois-
son process is exact on the set {Nt ≤ m}.
Proof. By induction.
f0(Nt ) = f (0) is exact on {Nt = 0}.
m ≥ 1. Assume the statement is true for m − 1. On the set {Nt ≤ m − 1} we have
that

(Nt
m

) = 0, hence fm−1 = fm on {Nt ≤ m − 1}. By assumption fm−1 is exact on
this set. It remains to show that fm(m) = f (m).
A simple calculation shows that:

�k f (0) =
k∑

i=0

(−1)k+i

(
k

i

)
f (i).

Therefore we can write

fm(m) =
m∑

k=0

�k f (0)

(
m

k

)
=

m∑
k=0

k∑
i=0

(−1)k+i

(
k

i

)
f (i)

(
m

k

)

=
m−1∑
i=0

(
m∑

k=i

(−1)k+i

(
k

i

)(
m

k

))
f (i) + f (m)

=
m−1∑
i=0

⎛
⎜⎜⎜⎜⎝
(

m

i

) m−i∑
k=0

(−1)k+2i

(
m − i

k

)
︸ ︷︷ ︸

(1−1)m−i=0

⎞
⎟⎟⎟⎟⎠ f (i) + f (m),

and hence the Proposition is proved.
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Corollary 2.5. i) fm(Nt ) −→ f (Nt ) almost surely for m → ∞.

i i) If ‖ f ‖L∞ ≤ M, then we also have, that
fm(Nt ) −→ f (Nt ) in L1 for m → ∞.

Proof. To prove i) we use the following:

{sup
n≥m

| fn − f | > ε} ⊂
⋃
n≥m

{| fn − f | > ε} ⊂
⋃
n≥m

{ fn �= f } Prop.2.4⊂
⋃
n≥m

{Nt > n}

But
⋃

n≥m{Nt > n} = {Nt > m}.

⇒ P[sup
n≥m

| fn − f | > ε] ≤P[Nt > m] =
∑
n>m

e−λt (λt)n

n!

≤ (λt)m+1

(m + 1)! → 0 as m → ∞.

We use Proposition 2.4 again, to show ii).

E[| fm − f |] =E[| fm − f |, Nt > m]
≤E[| fm |, Nt > m] + E[| f |, Nt > m]

E[| f |, Nt > m] ≤M P[Nt > m] → 0 as m → ∞

|�l f (0)| ≤M
l∑

i=0

(
l

i

)
= M2l

⇒ | fm(Nt )| ≤M
∑
l≤m

2l

(
Nt

l

)

⇒ E[| fm |, Nt > m] ≤M
∑
l≤m

2l
∑
k>m

(
k

l

)
e−λt (λt)k

k!

=M
∑
k>m

e−λt (λt)k

k!
∑
l≤m

(
k

l

)
2l

≤M
∑
k>m

e−λt (λt)k

k!
∑
l≤k

(
k

l

)
2l

=M
∑
k>m

e−λt (λt)k

k! 3k = Me−λt
∑
k>m

(3λt)k

k!
m→∞−→ 0 .

Remark. We can even prove the stronger assertion that the whole trajectory con-
verges uniformly, because | f (Ns)− fm(Ns)| = 0 on {Nt ≤ m} for s ≤ t . Therefore
we know that sups≤t | f (Ns) − fm(Ns)| = 0 on {Nt ≤ m} and the proof is analogu-
ous to the proof for i) above.
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3 The multivariate case

In this section we extend the result from Theorem 2.3 to the multivariate case. We
start with a d-dimensional Poisson process Nt = (N (1)

t , . . . , N (d)
t ) where N (i), N ( j)

are independent Poisson processes for i �= j with intensities λi . We use now Itô’s
lemma again. As the main ideas become already clear in the two-dimensional case
we let d = 2. In the same way as in (3) we can write for any function f : IR2 → IR:

f (Nt ) = f (0) +
∑

0<s≤t

f (Ns) − f (Ns−)

= f (0) +
∑

0<s≤t

(
f (N (1)

s− + 1, N (2)
s− ) − f (N (1)

s− , N (2)
s− )
)

�N (1)
s

+
∑

0<s≤t

(
f (N (1)

s− , N (2)
s− + 1) − f (N (1)

s− , N (2)
s− )
)

�N (2)
s

= f (0) +
∫ t

0+
�1 f (Ns−)d N (1)

s +
∫ t

0+
�2 f (Ns−)d N (2)

s , (10)

where we have introduced the notation �1 f (x, y) = f (x + 1, y) − f (x, y) and
�2 f (x, y) = f (x, y+1)− f (x, y) respectively. The reasoning for the first equality
is exactly the same as in the univariate case. For the second equality we have to
note that �N(1)

t �N (2)
t = 0 a.s., as two independent Poisson processes do not jump

at the same times almost surely. Therefore we can divide the sum in the first line
and we have a f (Ns) = f (N (1)

s− + 1, N (2)
s− ) in the sum in the second line and the

equivalent in the the sum in the third line. The last equation follows from the
definition of the integral as above.
It is now again clear how to go on. We define gi (Ns) = �i f (Ns) for i = 1, 2.
Then we apply (10) to the functions gi . Putting these expressions in the integrals
above leads to:

f (Nt ) = f (0) + �1 f (0)

∫ t

0+
d N (1)

s + �2 f (0)

∫
0+

d N (2)
s

+
∫ t

0+

∫ s−

0+
�1(�1 f (Nu−))d N (1)

u d N (1)
s

+
∫ t

0+

∫ s−

0+
�1(�2 f (Nu−))d N (2)

u d N (1)
s

+
∫ t

0+

∫ s−

0+
�2(�1 f (Nu−))d N (1)

u d N (2)
s

+
∫ t

0+

∫ s−

0+
�2(�2 f (Nu−))d N (2)

u d N (2)
s . (11)

We can now certainly expand each of the remainder integrals further but we do this
in a “symmetric” way, because then we are able to get rid of the integrals in the
expansion. We explain this treatment in the general d-dimensional case. To do this
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we need some further notation.

Notation: A multi-index a of length l := l(a) ∈ {0, 1, . . . } is a row vector
a = (a1, . . . , al), where ak ∈ {1, . . . , d}. The set of multi-indices is denoted
by M = {(a1, . . . , al) : ai ∈ {1, . . . , d}, i ∈ {1, . . . , l}, l = 1, 2, 3, . . . } ∪ {ν},
where ν is the multi-index of length zero.
We further define some operations on multi-indices which prove to be useful:
Given a = (a1, . . . , al) ∈ M \ {ν} and b = (b1, . . . , bm), c = (c1, . . . , cn) ∈ M
we set: −a = (a2, . . . , al),

a− = (a1, . . . , al−1) and
b ∗ c = (b1, . . . , bm, c1, . . . , cn).

We define the permutation invariant set of multi-indices of order n with param-
eters i1, . . . , id ∈ IN0, where n ≥ 1 and i1 + · · · + id = n as follows:

Si1 ...id = {a = (a1, . . . , an) : #{aj = k} = ik for j = 1, . . . , n, k = 1, . . . , d}.
We also define the difference operator �a for a = (a1, . . . , al) ∈ M as:

�a f (x) =
l∏

j=1

�a j f (x).

One can easily check, that the difference operators commute. Therefore we have
for a ∈ Si1 ...id :

�a f (x) =
d∏

j=1

�
i j

j f (x) =
i1,...,id∑
k1,...,kd

(−1)l(α)+∑d
j=1 k j

d∏
r=1

(
ir
kr

)
f (k1, . . . , kd). (12)

Sometimes only the number of each coordinate matters. Therefore we denote by
si1...id a representative of each set Si1...id (one can for example choose the element
of Si1 ...id such that a1 ≤ a2 ≤ · · · ≤ an). And finally we define the stochastic
integral of an element a = (a1, . . . , al) ∈ M and a function f recursively as:

Pa( f )t =
{

f (Nt ) n = 0,∫ t
0+ Pa−( f )s−d N (al )

s n ≥ 1.

If f ≡ 1, Pa( f )t is denoted by Pa,t as before. The following generalization of
Proposition 2.2 holds:

Proposition 3.1. Given a d-dimensional Poisson process (N(1)
t , . . . , N (d)

t ) where
N (i), N ( j) are independent Poisson processes for i �= j . Then the following holds:

∑
a∈Si1...id

Pa,t =
d∏

j=1

(
N ( j)

t

i j

)
. (13)
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Remark. If i j = n for some k then we have that Si1...id = {( j, . . . , j)} and we are
back in the univariate case. The statement of the proposition reduces to Proposition
2.2.

Proof. (By induction on the order of Si1...id .)
n = 1: S1

i1...id
= {(a1)}, where a1 = j .

∑
a∈S1

i1...id

Pa,t = P( j),t = N ( j)
t ,

which is the statement for n = 1.
Assume now that the statement is true for n − 1. By Proposition 2.2 we have that:

d

((
N ( j)

t

i j

))
=
{(N ( j)

t
i j −1

)
d N ( j)

t if i j �= 0

0 if i j = 0

We now use the integration by parts formula [15, p. 76] to derive the differential of
the right hand side of (13). The bracket terms drop out because of the independence
of the Poisson processes.

d

⎛
⎝ d∏

j=1

(
N ( j)

t

i j

)⎞⎠ =
d∑

k=1
ik �=0

⎛
⎜⎝ d∏

j=1
j �=k

(
N ( j)

t−
i j

)⎞⎟⎠( N (k)
t−

ik − 1

)
d N (k)

t

=
d∑

k=1
ik �=0

∑
a∈Si1 ...(ik −1)...id

Pa,t−d N (k)
t

=
∑

a∈Si1 ...id

d Pa,t .

In the second equality we have used the induction assumption and the last equality
follows from the definition of Pa,t .

We proceed as follows. We expand the remainder terms appearing in (11) in such a
way that Proposition 3.1 helps us to take many integrals together. A necessary con-
dition for this procedure is the commutativity property of the difference operators
�.

3.1 The stochastic Taylor expansion

We have now all tools to state a stochastic Taylor expansion for d-dimensional
Poisson processes.
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Theorem 3.2. (The stochastic Taylor expansion a for d-dimensional Poisson
process) Given a d-dimensional Poisson process (Nt ) as above and a function
f : IRd → IR. The following expansion holds:

f (Nt ) =
m∑

k=0

∑
i1 ,...,id ∈IN0
i1+···+id =k

�sk
i1 ...id

f (0)

d∏
j=1

(
N ( j)

t

i j

)

+
∑

i1+···+id =m+1

∑
a∈Si1 ...id

Pa(�a f )t . (14)

Proof. By induction.
m = 0: When we make a similar expansion as in (10) for d Poisson processes we
get:

f (Nt ) = f (0) +
d∑

j=1

∫ t

0+
� j f (Ns−)d N ( j)

s

= f (0) +
∑

i1+···+id =1

∑
a∈Si1...id

Pa(�a f )t ,

which is the statement for m = 0.
m ≥ 1. Assume that the statement is true for m − 1, i.e.

f (Nt ) =
m−1∑
k=0

∑
i1 ,...,id ∈IN0
i1+···+id =k

�si1 ...id
f (0)

d∏
j=1

(
N ( j)

t

i j

)

+
∑

i1+···+id =m

∑
a∈Sm

i1...id

Pa(�a f )t .

By (10) we expand the functions �a f (Nt ). For each a ∈ Si1...id we have that:

�a f (Nt ) =�a f (0) +
d∑

j=1

∫ t

0+
� j�a f (Ns)d N ( j)

s

⇒ Pa(�a f )t =�a f (0)Pa,t +
d∑

j=1

P( j)∗a(�( j)∗a f )t .

Each possible combinations of i1, . . . , id ∈ IN0, i1 + · · · + id = m contributes by

Proposition 3.1 �sm
i1 ...id

f (0)
∏d

j=1

(N ( j)
t
i j

)
and for the remainder we have that:

∑
i1+···+id =m

∑
a∈Si1 ...id

d∑
j=1

P( j)∗a(�( j)∗a f )t =
∑

i1+···+id =m+1

∑
a∈Si1 ...id

Pa(�a f )t .

Hence Theorem 3.2 is proved.
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In the same way as for the one-dimensional case we can show the exactness of the
truncated multivariate stochastic Taylor expansion fm(Nt ) on certain sets, where
obviously fm(Nt ) now is defined as

fm(Nt ) =
m∑

k=0

∑
i1 ,...,id ∈IN0
i1+···+id =k

�si1 ...id
f (0)

d∏
j=1

(
N ( j)

t

i j

)
(15)

(
=

∑
i1 ,...,id ∈IN0
i1+···+id ≤m

�si1 ...id
f (0)

d∏
j=1

(
N ( j)

t

i j

))
.

The following generalization of Proposition 2.4 holds:

Proposition 3.3. The truncated stochastic Taylor expansion fm(Nt ) is exact on the
set Em =⋃ {N (1)

t ≤ i1, . . . , N (d)
t ≤ id} ⊃ {N (1)

t ≤ �m/d�, . . . , N (d)
t

≤ �m/d�}, where the union has to be taken over all combinations i1+· · ·+id ≤ m.

Proof. It suffices to show the following: fm(Nt ) is exact on the set {N(1)
t =

n1, . . . , N (d)
t = nd} for any n1, . . . , nd such that n1 + · · · + nd ≤ m.

We define m′ = n1+· · ·+nd , n̄ = (n1, . . . , nd) and k̄ = (k1, . . . , kd). We examine
(15) and remark that if there exists a j such that nj < i j then

∏(n j
i j

) = 0, i.e. all
combinations of i1, . . . , i j with this property do not contribute to fm .

⇒ fm(n̄) =
m′∑

k=0

∑
i1+···+id =k

i j ≤n j

�sk
i1 ...id

f (0)

d∏
j=1

(
n j

i j

)

(12)=
m′∑

k=0

∑
i1+···+id =k

i j ≤n j

i1,...,id∑
k1,...,kd

(−1)
∑

i j +k j

d∏
r=1

(
ir
kr

)
f (k̄)

d∏
j=1

(
n j

i j

)

=
m′∑

k=0

n1,...,nd∑
k1 ,...,kd∑

k j ≤k

f (k̄)
∑

i1+···+id =k
k j ≤i j ≤n j

(−1)
∑

i j +k j

d∏
r=1

(
ir
kr

) d∏
j=1

(
n j

i j

)

=
m′∑

k=0

n1,...,nd∑
k1 ,...,kd∑

k j ≤k

f (k̄)

(
n j

n j − k j

) ∑
i1+···+id =k
k j ≤i j ≤n j

(−1)
∑

i j +k j

d∏
j=1

(
n j − k j

i j − k j

)

=
m′∑

k=0

n1,...,nd∑
k1 ,...,kd∑

k j ≤k

f (k̄)

d∏
j=1

(
n j

n j − k j

) ∑
i1+···+id =k−k′

0≤i j ≤n j −k j

(−1)
∑

i j +2k j

d∏
j=1

(
n j − k j

i j

)
,

where k′ =∑ k j . But now we fix k1 ≤ n1, . . . , kd ≤ nd such that k1 + · · · + kd =
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k ′ ≤ k and examine the coefficient of f (k1, . . . , kd).

d∏
j=1

(
n j

n j − k j

) m′∑
k=0

∑
i1+···+id =k−k′

0≤i j ≤n j −k j

(−1)
∑

i j

d∏
j=1

(
n j − k j

i j

)

=
d∏

j=1

(
n j

n j − k j

) m′∑
k=k′

∑
i1+···+id =k−k′

0≤i j ≤n j −k j

(−1)
∑

i j

d∏
j=1

(
n j − k j

i j

)

=
d∏

j=1

(
n j

n j − k j

) m′−k′∑
k=0

∑
i1+···+id =k
0≤i j ≤n j −k j

d∏
j=1

(−1)i j

(
n j − k j

i j

)

=
d∏

j=1

(
n j

n j − k j

) ∑
0≤i j ≤n j −k j

d∏
j=1

(−1)i j

(
n j − k j

i j

)

=
d∏

j=1

(
n j

n j − k j

) d∏
j=1

(1 − 1)n j −k j .

If k j = n j for all j then the coefficient is 1, in all other cases the coefficient
vanishes, which proves the Proposition.

Corollary 3.4. i) fm(Nt ) −→ f (Nt ) almost surely as m → ∞.

i i) If ‖ f ‖L∞ ≤ M, then we also have, that
fm(Nt ) −→ f (Nt ) in L1 as m → ∞.

Proof. i) By Proposition 3.3 we know that the truncated Taylor expansion is exact
on the set En = {∑ N (i)

t ≤ m}. It is a well-known property of Poisson processes
that

∑
N (i)

t ∼ Poisson(
∑

λi t). Therefore we use an analogous argument as in the
proof of Corollary 3.4 to prove i).
ii) Define Gn = {N (1)

t ≤ �n/d�, . . . , N (d)
t ≤ �n/d�} = {max j=1,...,d N ( j)

d ≤ �n/d�}
and Mm = ∑

N j
t ≤ �m/d�. Obviously we have the following inclusions: Mm ⊂

Gm ⊂ Em . Therefore

E[| fm − f |] =E[| fm − f |,EC
m ] ≤ E[| fm − f |,GC

m]
≤E[| fm|,GC

m] + E[| f |,GC
m] ≤ E[| fm|,MC

m ] + M P[GC
m]︸ ︷︷ ︸

→0

.

12



By (12) we have that |�α f (0)| ≤ 2l(α)M .

E[| fm|,MC
m ] ≤M E[

m∑
k=0

2k
∑

i1+···+id =k

(
N ( j)

t

i j

)
,MC

m ]

≤M E[
m∑

k=0

2k

⎛
⎝ d∑

j=1

N ( j)
t

⎞
⎠k

,MC
m]

≤M E[
m∑

k=0

2k Sk
d,t, Sd,t > �m/d�] = M

m∑
k=0

2k
∑

l>�m/d�

lk

k!e
−λ̃ λ̃l

l! ,

where we used the abbreviation Sd,t = ∑d
j=1 N ( j)

t , but Sd,t is again Poisson dis-

tributed with parameter λ̃ = t
∑

λ j . The sums in the last expression are inter-
changeable and therefore we have:

E[| fm|,MC
m ] ≤M

∑
l>�m/d�

e−λ̃ λ̃l

l!
∞∑

k=0

(2l)k

k!

=M
∑

l>�m/d�
e−λ̃ λ̃l

l! e2l = Me−λ̃
∑

l>�m/d�

(λ̃e2)l

l! .

This last expression again tends to 0 as m → ∞ and the proof is finished

Remark. - The infinite sum exists and gives us a chaos expansion in terms of the
non-compensated Poisson process. If we then turn to the compensated Poisson
process and adjust the coefficients we have the explicit form of the chaos expansion
for the compensated Poisson process. This expansion has the advantage that it
consists of a decomposition in terms of strongly orthogonal processes which may
simplify many calculations.
- Theorem 3.2 shows in particular that a standard Taylor expansion is completely
useless. As the Poisson process can only jump up one unit the important parts of
the function f are of course the values of the function at the positive integers and
zero.
- It is of course possible to expand some Poisson processes further than others
and it is possible to write an expansion which is no longer symmetric. For the
ease of exposition this special treatment has been chosen. The general case is a
straightforward extension of our results.

3.2 The Diffusion-Poisson case

The obvious next step is to extend the method to a multivariate process Xt , Xt =
(X (1)

t , X (2)
t ), where X (1)

t is an r-dimensional diffusion process, i.e.

X (1)
t =X (1)

0 +
∫ t

0
a(s, X (1)

s )ds +
∫ t

0
b(s, X (1)

s )d Bs, (16)

13



with ai (t, x), bij (t, x) Borel measurable functions; 1 ≤ i ≤ r , 1 ≤ j ≤ m,
(Bt)t≥0 m-dimensional Brownian motion on a fixed probability space (�,F , P)

with filtration (Ft). The coefficients a(t, x) and b(t, x) satisfy the global Lifschitz
and linear growth conditions (see [8, p. 281ff]) to ensure existence and uniqueness
of the solution of (16).
The process X(2)

t = (N (1)
t , . . . , N (d)

t ) is a d-dimensional Poisson process as in the
previous section. In the following we change the notations a little bit and follow
the notation of [9]. The components of a multi-index α = (a1, . . . , al) can now
vary between 0 and m+d. We define the following operators:

L0 = ∂

∂t
+

r∑
i=1

ai(t, x)
∂

∂xi
+ 1

2

r∑
i,k=1

m∑
j=1

bij (t, x)bkj (t, x)
∂2

∂xi∂xk
, (17)

L j =
r∑

i=1

bij (t, x)
∂

∂xi
for 1 ≤ j ≤ m, (18)

Lk =�k−m+r for m + 1 ≤ k ≤ m + d, (19)

Of course we define the operators La for a ∈ M recursively as La = La1 L−a. We
define also the following multiple Itô Integrals with respect to “suitable” functions
f and a multi-index a = (a1, . . . , al).

Iα[ f (·, X ·)]t :=

⎧⎪⎪⎨
⎪⎪⎩

f (t, Xt ) : l = 0∫ t
0 Iα−[ f (·, X ·, )]s−ds : l ≥ 1, al = 0,∫ t
0 Iα−[ f (·, X ·)]s−d B(al)

s : l ≥ 1, 1 ≤ al ≤ m,∫ t
0 Iα−[ f (·, X ·)]s−d N (al−r)

s : l ≥ 1, m + 1 ≤ al ≤ m + d.

Remark. The only restrictions on “suitable” functions stem from the integrals with
respect to Brownian motion. We define similar classes of functions as in [9].
Namely:

Hv ={ f : ∀t ≥ 0, | f (t, ω)| < ∞ P a.s.} (20)

H(0) ={ f : ∀t ≥ 0,

∫ t

0
| f (t, ω)|ds < ∞ P a.s.} (21)

H(1) ={ f : ∀t ≥ 0,

∫ t

0
| f (t, ω)|2ds < ∞ P a.s.} (22)

H( j) = H(1) for all j = 1, . . . , m. For α ∈ M with at least one component less
then m we define αc = (a j1, . . . , a jk ) the collapsed multi-index, where we deleted
all components bigger than m.
Hα is recursively defined to be the set of càdlàg processes such that the process
(Iαc−[ f (·)]0,·, t ≥ 0) satisfies Iαc−[ f (·)]0,· ∈ H(a jl )

.

We recursively use Itô’s lemma to derive a stochastic Taylor expansion for

14



processes Xt defined as above. Using formula (1) we have that:

f (t, Xt ) = f (0, X0) +
∫ t

0+
∂ f

∂t
(s, Xs−)ds +

r∑
i=1

∫ t

0+
ai (s, X (1)

s )
∂ f

∂xi
(s, Xs−)ds

+
m∑

j=1

∫ t

0+

r∑
i=1

bij (s, X (1)
s )

∂ f

∂xi
(s, Xs−)d B( j)

s

+ 1

2

r∑
i,k=1

m∑
j=1

∫ t

0+
bij (s, X (1)

s )bkj (s, X (1)
s )

∂2 f

∂xi∂xk
(s, Xs−)ds

+
m+d∑

i=m+1

∫ t

0+
�i f (s, Xs−)d N (i−m)

s

With the help of the notations defined above we can write this in a more condensed
form, namely:

f (t, Xt ) = f (0, X0) +
m+r∑
j=0

I( j)[L ( j) f (·, X ·)]t (23)

Similar to the strategy of the proof of the Itô-Taylor expansion in [9] one can prove
the following theorem.

Theorem 3.5. Let A ⊂ M be a hierarchical set, and let f : IR+ × IRr × IRd → IR,
then the Itô-Taylor expansion

f (t, Xt ) =
∑
α∈A

Iα[ fα(0, X0)]t +
∑

α∈B(A)

Iα[ fα(·, X ·)]t (24)

holds, provided all of the derivatives of f , a and b and all of the multiple It̂o
integrals appearing in (24) exist.

Proof. The proof of this theorem is analogous to the proof in [9] and the proofs of
the previous theorems.

Remark. It is straightforward to extend this result to the case of bounded stopping
times, i.e. instead of considering the interval [0, t] we can look at [ρ, τ ], where ρ

and τ be two stopping times with:

t0 ≤ ρ(ω) ≤ τ(ω) ≤ T w. p. 1.

The task of establishing convergence results for the Poisson-diffusion case has still
to be resolved.
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4 Applications to Risk Management

The first application considers a simple jump-diffusion. We assume that the log-
returns of some financial risky asset are given by:

Xt = μt + σ Bt + c(N (1)
t − N (2)

t ), (25)

where B is a standard Brownian motion, independent of two independent Poisson
processes with the same intensity λ. We assume that the annual volatility is 0.2, the
annual drift is 0.07. Furthermore the jump-size c is 0.05 and 75% of the variance
are explained by the Brownian motion part which implies that λ = 2. Our market
consists of this risky asset together with a riskless asset with price process Yt =
exp(rt).
We consider the case of a Call option in this market. As the market is incomplete,
one may argue about the proper way to price this option. We do not want to discuss
problems of option pricing in incomplete markets and simply take the Esscher
measure (see for example [6]) for pricing. So the price of the Call can be given
as:

C(x, t) = EQ[e−r(T −t)(ST − K )+|St = S0e
x], (26)

where the Radon-Nykodym derivative of Q with respect to P is given by dQ/dP =
exp(θ X − K (θ)). The parameter θ is the solution of K (θ + 1) − K (θ) = r , where
K denotes the cumulant generating function of X under the physical measure P.
For the following S0 and K are chosen equal to 1 and the risk-free interest rate
r = 0.05, the time to maturity T = 1/2. A stochastic Taylor expansion Ĉ(t) for
this function can easily be done according to Theorem 3.5. As hierarchical set we
choose A = {n(α) + l(α) ≤ 2}, n(α) denotes the number of zeros of α and l(α)

denotes the length.

Ĉ(t) =C(0, 0) + (C(0) + μC(1))t + C(1)Bt + C(11)

2
B2

t + C(2)N
(1)
t + C(3)N

(2)
t

+ Bt(C(12)N
(1)
t + C(13)N

(2)
t ) + C(22)

(
N (1)

t

2

)
+ C(33)

(
N (2)

t

2

)
+ C(23)N

(1)
t N (2)

t , where (27)

Ca =LaC(0, t) and a ∈ A. (28)

This expansion is then used for short-time risk management. Assume we are inter-
ested in the possible changes of the value of the option over t = 5 days. The func-
tion C(x, t) is strictly monotonically increasing in x and therefore we can approx-
imate the exact density of C(Xt , t) by conditioning on the number of jumps and
truncating the infinite sum at an appropriate level. We compare the exact density
with the results from simulation. We simulate 500’000 times the three-dimensional
vector (Wt , N (1)

t , N (2)
t ) and perform a non-parametric density estimation with the

kernel k(x) = 15/8(1 − 4x2)2 for |x | ≤ 1/2, and 0 else. Figure 1 shows the exact
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density and the non-parametric density estimation and the relative error of the ap-
proximation.
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–0.05

0

0.05
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0.04 0.06 0.08 0.1 0.12 0.14
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Figure 1: Exact density and non-parametric density estimation for the Call option
and relative error of the approximation with respect to the exact density.

The interval shown captures 99.8% of the mass of the distribution. Figure 1
indicates that in this case we can approximate most risk measures which only de-
pend on the distribution.

Next, we apply the approximation to a more sophisticated model. We now
exploit the well-known approximation of a Lévy process X with characteristic
triplet (γ, σ, ν) by discretising the Lévy measure ν. We choose some small ε

and let all jumps smaller than ε contribute to the diffusion part of X . Then we
make a partition of IR \ [−ε, ε] of the following form. We choose real numbers
a0 < a1 < · · · < ak = −ε, ε = ak+1 < ak+2 < · · · < ad+1. Define X (d) by:

X (d)
t = γ t + σn Bt +

d∑
i=1

ci (N (i)
t − λi t) with (29)

σn = σ +
∫ ε

−ε

x2ν(dx) (30)

λi =
{

ν([ai−1, ai [) for i ≤ k

ν([ai , ai+1[) for k + 1 ≤ i ≤ d
(31)

c2
i λi =

{∫ ai −
ai−1

x2ν(dx) for i ≤ k∫ ai+1−
ai

x2ν(dx) for k + 1 ≤ i ≤ d
(32)
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Remark. The procedure is explained for example in [16]. By [13] one can show
that X (d) → X weakly in the sense of the Skorohod topology for d → ∞.

The further strategy is similar to the strategy for the jump-diffusion. We want
to do risk management for a Call option. Again the Esscher measure is used for
pricing and Formula (26) holds. We calculate the exact density of the Call and the
result from a non-parametric density estimation obtained from 500’000 simulations
of the approximation for two Lévy processes, namely a NIG Lévy process (see
for example [16]) and a Lévy process of Meixner type (see [7] or [18]). These
two processes are both pure jump processes. We recall the density, the cumulant
generating function, the drift and the Lévy measure for these two processes.

fNIG(x;α, β, δ, μ) =δ α eδ
√

α2−β2+β (x−μ)K1(α g(x − μ, δ))

π g(x − μ, δ)
, (33)

g(x; δ) =
√

x2 + δ2

KNIG(θ;α, β, δ, μ) =μθ + δ
(√

α2 − β2 −
√

α2 − (β + θ)2
)

, (34)

γNIG(α, β, δ, μ) =μ + 2δα

π

∫ 1

0
sinh(βx)K1(αx)dx, (35)

νNIG(dx;α, β, δ, μ) =δ α eβ xK1(α |x|)
π |x| dx . (36)

The function K1(x) denotes the modified Bessel function of the third kind of order
1 (see for example [12]). And now for the Meixner case:

fMei(x;α, β, δ, μ) =
(2 cos β

2 )2 δe
β (x−μ)

α

(∣∣∣�(δ + i(x−μ)

α
)

∣∣∣)2

πα�(2 δ)
, (37)

KMei(θ;α, β, δ, μ) =μθ + 2δ

(
log cos

β

2
− log cos

α θ + β

2

)
, (38)

γMei(α, β, δ, μ) =μ + α δ tan
β

2
− 2 δ

∫ ∞

1

sinh β x
α

sinh π x
α

dx (39)

νMei(dx;α, β, δ, μ) = δ e
β x
α

x sinh π x
α

dx . (40)

From the form of the cumulant generating functions one easily deduces that the
density at any time t can be calculated by multiplying the parameters δ and μ by t
for both cases. The parameters for the Esscher transforms are also easily found. In
the NIG case one only has to shift β to β + θ to get the density under the measure
Pθ and similarly from β to β + αθ for the Meixner case.
The parameters are chosen from moment estimates of the Nikkei index over the
period 01.01.97 to 31.12.99, which give us in total 737 daily observations. The
estimated parameters are (α, β, δ, μ) = (49.78, 1.57, 0.013, −0.00044) in the
NIG case and (α, β, δ, μ) = (0.030, 0.13, 0.57,−0.0011) in the Meixner case for
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daily returns. The statstical justification for this specific data set can be found for
the case of the Meixner process in [17]. Similar investigation has been made for
the NIG case for example in [14].
For the discretisation we choose in both cases ε = 0.005 and the ai are chosen
symmetric with |ai | ∈ {ε, 0.008, 0.0125, 0.02, 0.04, 0.08, 0.2, ∞}. Figure 2 shows
the comparison of a non-parametric density approximation obtained from 500’000
simulations of (29) in this case and the true density in the NIG case, the Meixner
case being similar. The interval shown for the relative error captures over 99.5% of
the mass of the distribution. The price of a Call option in this market can be written

0
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Figure 2: Density and non-parametric density estimation from simuating (29) for
the NIG process and the corresponding relative error of the approximation with
respect to the true density.

again as (26). A stochastic Taylor expansion Ĉ(t) for this function can easily be
done according to Theorem 3.5. As hierarchical set we choose A = {n(α)+l(α) ≤
2}. So the form of the stochastic Taylor expansion can be given as (27) with the
obvious difference that now we have 14 independent Poisson processes. The results
in the NIG case are shown in Figure 3 and the results in the Meixner case are
shown in Figure 4. These two processes are chosen in order to get rid of any
problem concerning Fourier inversion, as we can explicitly give the density for any
time horizon as outlined above. Therefore we can compare the results obtained
from simulations with the exact results. The interval shown captures 99.6% of the
mass of the distribution. Figure 3 and Figure 4 show that the stochastic Taylor
expansion can be used in this context. Suppose one has to assess the magnitude
of possible losses for a more complicated derivative in a Lévy type model. If one
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Figure 3: Density and non-parametric density estimation for the Call option and
relative error of the approximation with respect to the true density for a NIG Lévy
process.

has to rely on simulations, it can be very time consuming to evaluate the derivative
for each simulation. Using the method outlined above one roughly has to evaluate
the derivative d(d + 5)/2 times where d denotes the number of Poisson processes
used for the approximation. This can often lead to a significant speed-up of the
procedure.
Finally we compare two approximated risk measures obtained from simulations
with the exact calculations obtained from the NIG Lévy process. The accuracy
of this approach is compared to results obtained from the Black-Scholes model,
i.e. we fit the daily log-returns to a normal distribution. The two risk measures
considered are the Value-at-Risk (VaR) and the Tail conditional expectation (TCE).
The VaR of a random variable X (which stands for the random outcome of some
financial position over a fixed time horizon) for some fixed level α is defined as:

VaRα(X) = −qα(X), (41)

the negative α-quantile of X , which is defined unambiguously for our example.
The TCE with level α, denoted by TCEα, is the risk measure defined by:

TCEα(X) = −E[X |X ≤ −VaRα(X)]. (42)

For further particulars of these risk measures we refer to [1] or [3]. The follow-
ing tables give an overview over the obtained results, where we calculate the risk
measures for X being the value of a Call option in the NIG market after 5 days.
The column “relative error” calculates the relative error of the empirical quantile
obtained from the simulation of the approximation with respect to the true quantile
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Figure 4: Density and non-parametric density estimation for the Call option and
relative error of the approximation with respect to the true density for a Meixner
Lévy process.

in percent. The column “quotient with BS” shows the quotient of the relative error
for the Black-Scholes approximation divided by the relative error for the approx-
imation. With the exception of the 0.005-quantile and the TCE for the level
0.01 all errors are smaller for the approximation outlined in this chapter than for a
simple normal approximation, which is admittedly the least we should expect. The
biggest percentage error for these risk measures is only about 2%.

level exact quantile relative error quotient with BS
0.001 0.0273 1.91% 5.24
0.002 0.0307 1.66% 2.97
0.005 0.0358 0.694% -.617
0.01 0.0401 0.363% -9.90
0.02 0.0449 0.00309% -1970
0.05 0.0520 0.108% -74.6

Table 1: Comparison of lower quantiles for different levels.
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level exact quantile relative error quotient with BS
0.95 0.121 - 0.431% 37.2
0.98 0.135 - 0.135% 102.
0.99 0.146 0.477% -23.1
0.995 0.158 0.646% -13.9
0.998 0.173 0.865% -8.26
0.999 0.186 0.894% -5.92

Table 2: Comparison of upper quantiles for different levels.

level exact TCE relative error quotient with BS
0.001 0.0235 1.40% 11.7
0.002 0.0266 0.669% 15.2
0.005 0.0310 0.198% 19.3
0.01 0.0348 - 0.407% 0.752
0.02 0.0391 - 0.998% 3.79
0.05 0.0452 - 0.939% 7.14

Table 3: Comparison of TCE for lower quantiles for different levels.

level exact TCE relative error quotient with BS
0.95 0.137 - 1.92% 15.4
0.98 0.152 - 1.15% 19.2
0.99 0.163 - 0.426% 37.0

0.995 0.176 0.0459% - 253.0
0.998 0.192 - 0.0296% 287.0
0.999 0.205 0.171% - 32.5

Table 4: Comparison of TCE for upper quantiles for different levels.
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