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Abstract

For a continuous transformation f of a compact metric space (X, d) and
any continuous function ¢ on X we consider sets of the form

Ka_{xeX nlgn;o;Z@ —a}

For transformations satisfying the specification property we prove the
following Variational Principle

hiop(fy Ko) = sup(hu(f) : p is invariant and /cpdu = a),

where htop(f,-) is the topological entropy of non-compact sets. Using this
result we are able to obtain a complete decription of the multifractal spectrum
for Lyapunov exponents of the so-called Manneville-Pomeau map, which is
an interval map with an indifferent fixed point.

1 Introduction

Often the problems of multifractal analysis of local (or pointwise) dimensions and
entropies are reduced to consideration of the sets of the following form

n—1
K, = {a: €X: nlLH;O%Z@(fl(m)) = a}, a € R,
=0

where f: X — X is some transformation, and ¢ : X — R is a function, sometimes
called observable. Typically, f is a continuous transformation of some compact
metric space (X,d) and ¢ is sufficiently smooth.



In particular, one is interested in the “size” of these sets K,. The following
characteristics of the sets K, have been studied in the literature:

an(a) = dimH(Ka); gnp(a) = htop(f: Koz);

where dimp (K ) and heop(f, Ko) are the Hausdorff dimension and the topological
entropy of K, respectively. The precise definition of the topological entropy of non-
compact sets will be given in section 3, but for now the topological entropy should
be viewed as a dimension-like characteristic, similar to the Hausdorff dimension.
The functions D, («), £,(a) will be called the dimension and entropy multifractal
spectra of ¢.

Recently similar problems were considered in the relation with a definition of a
rotational entropy [8, 10].

Multifractal analysis studies various properties of the multifractal spectra D, (),
&, () as functions of a, e.g., smoothness and convexity, and relates these spectra to
other characteristics of a dynamical system. In order to obtain non-trivial results
one typically has to make 2 types of assumptions: firstly, on the dynamical system
(X, f), and secondly, on the properties of the observable function (. For example,

e ([15], see also [16]) if f is a sufficiently smooth expanding conformal map, and
¢ is a Holder continuous function, then &, () is real-analytic and convex.

e ([21]) if f is an expansive homeomorphism with specification, and ¢ has
bounded variation, then &, () is C' and convex.

In both cases, £,(a) is a Legendre transform of a pressure function P,(q) = P(qy),
where P(-) is the topological pressure.

Conditions on ¢ in the examples above are ment to ensure the absense of phase
transition, i.e., existence and uniqueness of equilibrium state for potential gy for
every ¢ € R. The main goal of this paper is to relax such conditions and to obtain
results for systems exhibiting phase transitions.

A natural class of observable functions ¢ would be the set of all continuous
function. Moreoveor, the set of all continuous functions is quite rich in the sense
of possible phase tranitions. For example [20, p.52], for any set {u1,...,ur} of
ergodic shift-invariant measures on A%, where A is a finite set, one can find a
continuous function ¢ such that all these measures u;, i = 1,... , k are equilibrium
states for ¢. Nevertheless, A.-H. Fan, D.-J. Feng in [7], and E. Olivier in [14],
in the case of symbolic dynamics, obtained results on the spectrum &,(a) for
arbitrary continuous functions ¢, similar to those mentioned above. In fact, they
were studying the dimension spectrum Dy, (), but in symbolic case for every a one
has £,(a) = #(A)D,(a), where #(A) is the number of elements in A.

In this paper we study the entropy spectum &,(a) for a continuous
transformation f on a compact metric space (X,d) and arbitrary continuous
function ¢. The main result of this paper (Theorem 5.1) states that if f is a
continuous transformations with specification property, then for any a with K, # &
one has

Ep(a) = Hp(a) = Ayp(a),



where
Hy(a) := sup{hu(f) : 14 is invariant and /(pd,u = a},

and A, () is a special “ball”-counting dimension of K,, similar to one introduced
in [7].

Readers, familiar with Large Deviations, will recognize in H,(a) the so-called
rate function. And indeed, we use the Large Deviation results for dynamical systems
with specification obtained by L.-S.Young in [24].

The most intricate part of our proof is the equality £,(a) = Ay (). To show it
we use a Moran fractal structure, inspired by one constructed in [7] for the symbolic
case.

The Manneville-Pomeau map is a piecewise continuous map of a unit interval
given by

fo(x) =z +2' modl, 0<s<l.

This map has a unique indifferent fixed point z = 0, and is probably the simplest
example of a non-uniformly hyperbolic dynamical system. Thermodynamic
properties of this transformation are quite well understood, see [19, 22, 12, 13].

In [18], M. Pollicott and H. Weiss studied the multifractal spectrum for ¢ =
log f1, i.e., the spectrum of Lyapunov exponents. They were able to obtain a partial
description of this spectrum. Using our results we able to complete the picture, see
section 6 for details.

A straightforward modification of our proofs shows that the results are valid in
more general settings as well. Suppose f: X — X is a continuous transformation
with specification property and ¢ = (¢1,...,p4) : X — R? is a continuous
function. For o € R? consider the set

n—1

. i N
K, = {xEX: nlggoﬁ;(pj(f () =¢q;, j=1,... ,d}.
Then
Eo(a) = hiop(f, Ka) = sup{hu(f) : it is invariant and /(pd,u = a}. (1)

In fact, even more is true. Suppose again that ¢ : X — R? is a continuous function
and ¥ : Im(p) — R™ is a continuous map defined on Im(yp) = {p(z) : z € X} C RY.
Define

n—1

K;’w = {:U €X: lim ‘~I—'(l Z(p(f’(x))) = ﬁ}

n—00 n
=0

Then for any # such that Kg’o‘p # @ one has

Evop(B) = hiop(f, K;’W) = sup{hu(f) : u is invariant and \If(/ <pd,u) = ﬂ}. (2)



As an imediate consequence of (1) and (2) we obtain the following result, which
we call the Contraction Principle for Multifractal Spectra, due to the clear analogy
with the well-knwon Contraction Principle in Large Deviations:

Ewop(B) = ;}113_[? Ep(a).

For more detailed discussion and some examples see section 7.
Everywhere in the present paper #(C) denotes a cardinality of a set C. Proofs
of all lemmas are collected in section 8.

2 Multifractal spectrum of continuous functions

Let f : X — X be a continuous transformation of a compact metric space (X, d).
Throughout this paper we will assume that f has finite topological entropy. Suppose
@ : X — R is a continuous function. For a € R define:

n—oo N 4

Ka:{a:EX: lim lnz_:lcp(f"(:n)):a}. (3)
i=0

We introduce the following notation
L, ={aeR: K, # o}
Lemma 2.1. The set L, is a non-empty bounded subset of R.

Definition 2.1. A continuous transformation f : X — X satisfies specification
if for any € > 0 there exists an integer m = m(e) such that for arbitrary finite
intervals I; = [aj,b;] CN, j=1,... ,k, such that

and any x1,-..,x in X there exists a point x € X such that
d(fPt%z, ffx;) <e forall p=0,...,b; —aj, and every j =1,... k.

Following the present day tradition we do not require that z is periodic.
Specification implies topological mixing. Moreover, by the Blokh theorem [2],
for continuous transformations of the interval these two conditions are equivalent.
Using this equivalence and the results of Jakobson [9], we conclude that for the
logistic family f.(z) = rz(l — z) the specification property holds for a set of
parameters of positive Lebesgue measure.

The specification property allows us to connect together arbitrary pieces of orbits.
Suppose now that for two values oy, as the corresponding sets K, , K4, are not
empty. Using the specification property we are able to construct points with ergodic
averages, converging to any number « € (a1, a2). Hence, £, is a convex set. This
implies the following:



Lemma 2.2. If f : X = X satisfies specification, then L, is an interval.

We recall that the entropy spectrum &,(-) of ¢ is the map assigning to each
a € L, the value

Eo(a) = hiop(f, Ka)- (4)

The definition and some fundamental facts about the topological entropy of non-
compact sets are collected in the following section.

3 Topological entropy of non-compact sets

The generalization of the topological entropy to non-compact or non-invariant sets
goes back to Bowen [3]. Later Pesin and Pitskel [17] generalized the notion of
the topological pressure to the case of non-compact sets. In this paper we use an
equivalent definition of the topological entropy, which can be found in [16].

3.1 Definition of the topological entropy.

Once again, let (X, d) be a compact metric space, and f : X — X be a continuous
transformation. For any n € N we define a new metric d,, on X as follows:

dn(z,y) = max{d(fk(m),fk(y)) : k=0,...,n—1},

and for every € > 0 we denote by B, (x,¢) an open ball of radius ¢ in the metric d,,
around z, i.e.,
Bp(z,e) ={y € X : dp(z,y) <e}.

Suppose we are given some set Z C X. Fix ¢ > 0. We say that an at most
countable collection of balls I' = {B,, (z;,¢)}; covers Z if Z C U; By, (z;,€). For
' = {By,(zi,e)}i, put n(I') = min; n;. Let s > 0 and define

m(Z,s,N,e) = 1rlleexp(—sni),

where the infinum is taken over all collections I' = {B,,, (z;,€)} covering Z and such
that n(I') > N. The quantity m(Z,s,N,e) does not decrease with N, hence the
following limit exists

m(Z,s,e) = A}i_r)n()om(Z,s,N, €) = ;i%m(Z,s,N,s).

It is easy to show that there exists a critical value of the parameter s, which we
will denote by hiop(f, Z,€), where m(Z, s,e) jumps from +oo to 0, i.e.,

+OO, S <htop(f7 Z)S))

m(Z,s,e) =
0, s> hiop(f, Z,€).



There are no restriction on the value m(Z,s,e) for s = hyop(f, Z,€). It can be
infinite, zero, or positive and finite. One can show [16] that the following limit
exists

htop(f) Z) = &!1_[}(1) htop(f: Z) 6)'

We will call hyop(f, Z) the topological entropy of f restricted to Z, or, simply, the
topological entropy of Z, when there is no confusion about f.

3.2 Properties of the topological entropy

Here we recall some of the basic properties and important results on the topological
entropy of non-compact or non-invariant sets.

Theorem 3.1 ([16]). The topological entropy as defined above satisfies the
following:

1. htop(f: Zl) S htop(f) Z2) fOT‘ any Zl g Z2 g X;
2. hiop(f, Z) = sup hiop(f, Z;), where Z = U2, Z; C X;
i
The next theorem establishes a relation between topological entropy of a set and

the measure-theoretic entropies of measures, concentrated on this set, generalizing
the classical result for compact sets.

Theorem 3.2 (R. Bowen [3]). Let f : X — X be a continuous transformation of
a compact metric space. Suppose p is an invariant measure, and Z C X is such
that u(Z) = 1, then

htOP(f> Z) > hu(f);

where hy,(f) is the measure-theoretic entropy.

Suppose we are given an invariant measure p. A point x is called generic for u
if the sequence of probability measures

1 n—1
Orn =~ Opha);
k=0

where 6, is the Dirac measure at y, converges to p in the weak topology. Denote by
G, the set of all generic points for p. If p is an ergodic invariant measure, then by
the Ergodic Theorem u(G,) = 1. Applying the previous theorem we immediately
conclude that hop(f, Gu) > h,(f). In fact, the opposite inequality is valid as well:

Theorem 3.3 (R. Bowen [3]). Let u be an ergodic invariant measure, then

htop(f) Gu) = hu(f)

Ya. Pesin and B. Pitskel in [17] have proved the following variational principle
for non-compact sets.



Theorem 3.4. Suppose f : X — X is a continuous transformation of a compact
metric space (X,d), and Z C X s an invariant set. Denote by M;(Z) the set of
all invariant measures p such that u(Z) = 1. For any x € X denote by V (z) the
set of all limit points of the sequence {0, ,}. Assume that for every x € Z one has

V(z) "M (Z) # 2.

Then hiop(f,Z) = sup  hu(f).
HEM(Z)

The conditions of this theorem are very difficult to check in any specific situation.
However, there is no hope for improving the above result for general sets Z. There
are examples [16, 17] of sets, for which the condition V(z) N M;(Z) # @ does not
hold for all € Z, and one has a strict inequality

hiop(f, Z) > sup{hy(f) : 1€ My(X) and u(Z) = 1}.

In this paper we restrict our attention to the sets of a special form: namely, the
sets K, given by (3). For these particular sets we prove a variational priciple for
the topological entropy, provided the transformation f satisfies specification:

Theorem 3.5. Suppose f : X — X is a continuous transformation with the
specification porperty. Let ¢ € C(X,R) and assume that for some a € R

n—1
Ko={rex: ngn;o%§¢<fi<w>> =a} #o,

then
hiop(fy Ko) = sup{hu(f) : i is invariant and /(pd,u = a}.

Remark 3.1. Under the conditions of the above theorem, it is possible that for a
certain parameter value «, there exists a unique invariant probability measure L,
with [ pdp = o, such that

htop(fa Ka) = hua (f)

Hence, pq is a measure of mazximal entropy among all invariant measures p with
[edu = a. However, it is also possible, that po(Ka) = 0. This situation, for
example, occurs in the family of Manneville-Pomeau maps, see Remark 7?7 for more
details.

3.3 Entropy distribution principle.

The following statement will allow us to estimate the topological entropies of the
sets from bellow, without constructing probability measures, which are invariant
and concentrated on a given set. It is sufficient to consider only probability
measures, which need not be invariant, but which satisfy some specific 'uniformity
condition’. We call this result the Entropy Distribution Principle, by the clear
analogy with a well-known Mass Distribution Principle [6].



Theorem 3.6 (Entropy distribution principle). Let f : X — X be a
continuous transformation. Suppose a set Z C X and a constant s > 0 are such
that for any € > 0 one can find a Borel probability measure u = p. satisfying

1) pe(Z) >0,

2) pe(Bn(z,e)) < Cle)e™™ for some constant C(e) > 0 and every ball B, (z,¢)
such that B (r,e)NZ # @.

Then hiop(f,Z) > s

Proof. We are going to show that h.op(f, Z,€) > s for every sufficiently small ¢ > 0.
Indeed, choose such € > 0 and consider the corresponding probability measure ..
Let T' = {B,,;(x;,€)}; be some cover of Z. Without loss of generality we may
assume that B, (z;,€) N Z # @ for every i. Then

Zexp —sn;) > Cle Zus ni (Tiy€

> Cle)™ us(ui B, (mi,s))z Cle) " p=(Z) > 0.

Therefore m(Z,s,e) > 0, and hence hiop(f, Z,€) > s. O

4 Upper estimates of £,(a).

In this section we are going to define two auxiliary quantities H,(a) and A, ().
These quantities will be used to give an upper estimate on the multifractal spectrum

Ep(a).

4.1 Definition of H,(«)

Let us introduce some notation
M(X) : the set of all Borel probability measures on X,

Mp(X

)
MG(X) = the set of all ergodic f-invariant Borel probability measures on X,
a):

M (X, @,

the set of all f-invariant Borel probability measures on X,

the set of all f-invariant Borel probability measures, such that

/(pd,u:a.

We consider the weak topology on M(X) and also on its subsets M;(X), M$(X),
etc.; as it is well known, M(X) is compact metrizable space in the weak topology.

Lemma 4.1. For any a € L, the set M;(X,p,a) is a non-empty, convexr and
closed (in the weak topology) subset of M;(X).

This result allows us to define the following quantity: for any a € £, put

H,(0) = sup{hu(f) : 1€ Ms(X,p,0)}. (5)



Lemma 4.2. For any ¢ € C(X,R), H,(«) is a concave function on the convex
hull of L.

4.2 Definition of A,(«a)

Here, following the approach of [7], we introduce another dimension-like
characteristic A, () of the set K,. We use a word “dimension” in association with
Ay (a), because Ay () is defined in terms similar to the definition of Hausdorff or
box counting dimensions.

For a € £, and any § > 0 and n € N put

P(a,d,n) = {m €X: ‘%nz:lgo(f’(m)) —a‘ < 5}.
i=0

Clearly, for a € £, and any 6 > 0 the set P(«a,d,n) is not empty for sufficiently
large n.

Fix some ¢ > 0 and let N(a,d,n,€) be the minimal number of balls B, (z,¢),
which is necessary for covering the set P(a,d,n). (If P(a,d,n) is empty we let
N(a,d,n,e) =1).

Obviously, N(a,d,n,e) does not increase if § decreases, and N(a,d,n,e) does
not decrease if € decreases. This observation guarantees that the following limit
exists

Agy(a) = lim lim lim llogN(oz,(S,n,es). (6)

£—00—0 00 T

One can give another equivalent definition of A,(a). The equivalence of these
definitions will be useful for subsequent arguments. Let us recall a notion of (n,e)-
separated sets: a set E is called (n,e)-separated if for any z,y € E, = # vy,
dp(z,y) > €.

By definition, we let M («, §,n, ) be the cardinality of a maximal (n, €)-separated
set in P(«,d,n). Again, we put M(a,d,n,e) = 1if P(a,d,n) is empty. A standard
argument shows that

N(a,d,n,e) < M(a,0,n,¢e) < N(a,d,n,e/2) (7)

for every n € N and all €, 6 > 0.
Moreover, if f satisfies specification, then taking an upper limit instead of the
lower limit with respect to n in the definition of A, (a) will give the same number.

Lemma 4.3. If f satisfies specification, then
oo oo 1 T |
Ay(a) = ;I_If%) }ILIB Jgnoo - log N(a,0,n,¢). = ;I_If%) }ILIB Jgnoo - log M (a,0,n,¢).
We will not use this result, and therefore, will not give a proof, which is based
on establishing some sort of subadditivity of N(«,d,n,e):
(N(a,d,n,4e))* < N(a, 46, nk + km(e),¢)

for all integers k > 1 and all sufficiently large n, where m is taken from the definition
of the specification property.



4.3 Upper estimate for £,(«) in terms of H,(a) via A, («).

Theorem 4.1. For any o € L, one has
£4(0) < Ay (@) < Hy(a).

Proof. The first inequality £,(a) < A,(a) is quite easy. Its proof is based on a
standard “box-counting” argument. Following [7], for & € L,, § > 0 and k € N
consider sets

Gla, b, k) = ﬁ P(a,6,n) = ﬁ{xeX: ‘%nz:lga(fi(a:))—a‘ <o},
n==k =0

n==k

It is clear, that for any § > 0

K, = {a: €X: T}i_)n;o%i:cp(fi(w)) - a} c |J Gla,5,k). (8)
=0 k=1

We are going to show that hep(f,G(a,d,k),e) < Ay(a) holds for any £k > 1,
implying hiop(f, Ko, €) < Ap(a) as well.

Fix arbitrary & > 1, then G(«, 6, k) (as a subset of P(a,d,n) for n > k) can be
covered by N(a,d,n,¢€) balls B, (x,¢) for all n > k. Therefore for every s > 0 and
all n > k we have

m(G(a,d,k),s,e) < N(a,d,n,e)exp(—ns). 9)

Suppose now that s > A, (), and put v = (s — A,(a))/2 > 0. Since

R
Ay(a) = ;1_% gliI(l) nl;_n(l)o - log N(a,d,n,¢€),

for all sufficiently small ¢ > 0 and § > 0, there exists a monotonic sequence of
integers n; — oo such that

N(a,8,m,€) < exp(m(Ay(a) +7))

for all I > 1.Without loss of generality we may assume that n; > k. Then, from
(9) we obtain
m(G(a, 67 k)) S, 6) < exp(_nl/)/))

and hence m(G(a, d, k), s,e) = 0. Therefore hiop(f,G(e,d,k),€) < s, and

htop(fa Koug) S Sllp htop(faG(aaéa k),S) S S
k

due to (8). Thererefore, hiop(f, Ko) = lime_so hiop(f, Ka,€) < s as well. Finally,
since s > A, (a) was chosen arbitrary, we conclude that E,(a) = huop(f, Ko) <
Ay ().

The second inequality A, () < Hy,(a) is closely related to the second statement
of Theorem 1 by L.-S.Young in [24], and is in fact a large deviation result. In the

10



last stage of our proof, similar to [24], we will rely on one fact, which is established
in a standard proof of the variational principle for the classical topological entropy
[23].

In order to show the inequaity A,(a) < H,(a), it is sufficient, for any v > 0,
to present a measure p € M (X, ¢, a) (i.e., an invariant measure with [ odu = «)
such that

hu(f) > Ap(a) — 7.
Fix arbitrary v > 0. By the definition of A, (a), there exists a sufficiently small
€o > 0 such that for all € € (0,&9) one has

Ay(a,e) = lim lim llogN(oz,(i,n,es) > Ay(a) — 1

0—0 500 N 3

Y-

Put g, = %, k > 1. For any k > 1 one can find a sufficiently small 6, 6 — 0,
such that 1 5
lim —log N(a,dk,n,er) > Ap(a) — 37

n—oo I
Also, for any k£ > 1 we choose some ny, € N, ny — 0o, such that
N := N(a, bk, ng,er) > exp(nk(A¢(a) — 7))

Let Cj be the centers of some minimal covering of P(a, dy,ny) by balls B, (z,e).
Note, that #(Cr) = N, and By, (z,er) N P(a, dg,n,) # @ for every z € Cf.
Otherwise, the covering, would not be minimal. For any k& > 1 define a probability

measure 1
O = m Z 51;
z€C},
and let
1 ng—1 ) 1 1 ne—1
=— op=— 3 — 3 i)
Kk T zg(f Yok Ny ; - Z; fi(z)
1= x k 1=

Let p be some limit point for the sequence ug. By Theorem 6.9 in [23], p is an
invariant measure, and we claim that

/(pd,u = q, (10)

ie., p € My(X,p,a). Indeed, for every k > 1, one has

nkfl

‘/‘Pdﬂk —Oé‘ < Nikmgk‘n_lk ; o(fi(z)) — al.

However, for every x € C} there exists y = y(x) € P(a,dk,ni) such that
dp, (z,y) < €. Therefore

nkfl nkfl
1 1

— > p(fi(z) —a| < o Z lo(fi(x)) — @(Fi())| + 6 < Var(p,ex) + o,

n n
k i=0

11



where Var(p,e;) = sup(|e(z) — ¢(y)] : d(z,y) < ex) — 0 as k — oo, since ¢ is
continuous. Hence, we conclude that

/(pdp,k—)a, k — oo.

The above invariant measure y is a limit point for the sequence . Hence, there
exists a sequence k; — oo such that py, — p weakly. This in particular means that

/ pdpg; — / edp.

Therefore we obtain (10). Finally, repeating the second half of the proof of the
classical variational principle [23, Theorem 8.6, p. 189-190] we conclude that

1 1
h > lim —log N > lim —log N, > A — .
u(f) 2 kl—r>noo - og N = kljnclxy - og N, 2 w(a) Y

This finishes the proof. a

5 Lower estimate on &£,(«).

The main result of this section is the following theorem.

Theorem 5.1. Let f : X — X be a continuous transformation with the
specification property and ¢ € C(X,R). Then for any a € L, one has

Es(a) =Ay(a) = Hy(a). (11)

Proof. In Theorem 4.1 we proved that for any continuous transformation f one has
Eo(a) < Ap(a) < Hy(a) for all @ € L,. Hence, it is sufficient for the proof of
(11) to show the opposite inequalities £,(a) > Ay(a) > H,(a). We start with the
inequality A, (a) > H, (). Our proof relies on the proof of statement 3 of Theorem
1 in [24], but let us first recall one result of A. Katok [11].

Theorem 5.2. Let f : X — X be a continuous transformation on a compact
metric space, and v be an ergodic invariant measure. For ¢ > 0, § > 0 denote
by N}’(é,s,n) the minimal number of e-balls in the d,-metric which cover a set of
measure at least 1 — §. Then, for each § € (0,1), we have

— 1 1
hy(f) = lim lim —log Nf(d,e,n) = lim lim —log Nf(d,e,n).

e=+0n—oon e=20 S50 M

Remark 5.1. Suppose v is ergodic and Y C X is such, that v(Y) > 1—46. Denote
by S(Y,e,n) the mazimal cardinality of an (n,e)-separated set in'Y . Similar to (7)
we conclude that S(Y,e,n) > N}’(&,E,n).

To prove the inequality A,(a) > Hy(a), it is sufficient to show that for any
v > 0 and every u € M;(X,p,a) one has

Ap(a) 2 hy(f) — 4.
Choose arbitrary v > 0, and let € > 0, § > 0 be so small, that the following holds

12



1) v > 0;
2) d(z,y) <e = |p(z) —py)| <

1
3) lim —logN(w,3d,n,e) < Ay(a) + 7.

n—oo 1

We can approximate p by an invariant measure v with the following properties (see
[24, p.535]):

k
a) v= E Aivi, where A; >0, Y. A\; =1, and v; is an ergodic invariant measure
=1
foreveryi=1,... ,k;

b) hu(f) = hu(f) =3

c) ‘/g@dl/—/g@d,u‘<6.

Since v; is ergodic for every i, there exists a sufficiently large N such that the
set of points

n—1

Yi(N) = {a: €X: ‘%Zg@(ﬂ(m)) —/(pdui <~ foralln > N}
j=0

has a v;-measure at least 1 — v for every i = 1,... | k.

Therefore, according to Theorem 5.2, there exist integers N; such that for all
n; > N; the minimal number of 4e-balls in d,,;-metric, which is necessary to cover
Yi(N) is greater than or equal to exp(n;(h,,(f) —)). This implies, according to
the remark 5.1, that the cardinality of a maximal (n;,4e)-separated set in Y;(N)
is greater than or equal to exp(n;(h,,(f) —7)). Finally, choose a sufficeintly large
integer Ny such that for every n > Ny one has

n; = [An] > max(N;, N)

for all ¢ = 1,...,k, also denote by C(n;,4¢) some maximal (n;,4e)-separated
set in Y;(N). For every k-tuple (zi,...,zy), where z; € C(n;,4¢), find a point
y = y(®1,...,7,) € X such that it shadows pieces of orbits {z;,..., f* ta;|i =
1,...,k} within the distance € and the gap m = m(e). Put n =m(k — 1)+ >, n;.
Firstly, we observe that to different (xy,...,2;) € Cp, X ... x Cy, correspond
different points y = y(x1,...,xk). This is indeed the case, because for y =
y(z1,...,z,) and y' = y(x},... , ) one has

di(y,y') > 2e. (12)
Secondly, for every y = y(x1,... ,z)) one has

LS o) - a] < 26+ 5
ﬁp:()‘P Yy (¢4 Py @Lllco-
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Hence, for sufficiently large 7 (i.e., large n) every point y = y(x1,... ,xg) is in
P(a,30,1).
On the other hand, due to (12), one would need at least

#(Coy) % o X #(Cy) > exp(Dan](, (F) = 7) + -+ D] (o () = )
> exp(n(hy(f) — 27)) > exp(n(hu(f) - 37))

e-balls in the dp-metric to cover P(a, 34, 7). Therefore

lim %logN(a,?)(s,ﬁ,E) > hu(f) —37.

n—oo T
Hence, due to the choice of ¢,6 > 0, we have A,(a) +v > h,(f) —37y. This finishes
the proof of our first inequality A, (a) > H, ().

A much more difficult inequality to prove is the the remaining one: &,(a) >
Ay(a). In order to show it we will construct a Moran fractal, suitable for the
purposes of computation of topological entropy. Roughly speaking Moran fractal
is a limit set of a following geometric construction: consider a monotonic sequence
of compact sets {F}}, Fr+1 C Fj, such that F}, is a union of Ny, closed sets Agk),
i =1,...,Ng, of approximately the same size. Moreover, the sets Agkﬂ) forming
the (k + 1)-level of the construction are somewhat similar to the sets Agk) of the
k-th level. The Moran fractal associated to this consturction is the set ¥

F:ﬂFk.
k

One could think of a Moran fractal as a generalization of a standard middle-third
Cantor set. A particular choice of Fj will ensure that the limit set F' will be a closed
subset of K, but also will allow us to construct a probability measure p on F,
satisfying the conditions of the Entropy Distribution Principle with s = A, (a) —
for any v > 0. Thus the topological entropy of F' will be larger or equal than s.
Since F' C K, the same will be true for the topological entropy of K.

Fix some v > 0, and choose a sufficiently small € > 0 such that

1
lim lim —logM(a,d,n,8) > Ay(a) —v/2.

0=0p 500 M

We assumed that f satisfies specification, let m = m(e) be as in the definition of
the specification property, and let

my, =m(e/2%), k>1.
Choose also some sequence §, | 0 and a sequence ny 1 +o0o such that
My == M(«a, 6, nk,82) > exp(ng(Ay(a) — 7)), and ng > 2™

To shorten the notation we put s = Ay (a) — 7.
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By definition M} is the cardinality of a maximal (ng,8¢)-separated set in
P(a, 6,n). Denote by Cr, = {z¥| i = 1,..., M} one of these maximal (ny, 8)-
separated sets.

Step 1. Construction of intermidiate sets Dj;. We start by choosing
some sequence of integers { Ny} such that N; = 1 and two following conditions are
satisfied:

1) Np > 2m+1tme+s for k> 2;
2) Npyq > 2Nt tNelutme) for > 1.
Then this sequence Ny is growing very fast, and in particular

Ning +...+ Nk(nk + mk)

. Mgyl Mgy
lim AL T R4l

=0 d 1 =0. 13

k—o00 Ny, a k;nolo Nk+1 ( )

For any Ny-tuple (ig,... ,in,) € {1,..., My} let y(iy, ... ,in, ) be some point

which shadows pieces of orbits {«f,, fzf,..., f*~'zk}, j =1,..., Ny, with a gap
mg, i.e.,

as - ) €
dnk(mij7f Jy(zly--- 7ZNk)) < Q_k’

where a; = (ng + mg)(j — 1), j = 1,...,Ng. Such point y(i,... ,in,) exists,
because f satisfies specification. Collect all such points into the set

Dy = {y(il, cesin)| i, in, € {1, ,Mk}} (14)
We claim that different tuples (i1,...,in,) produce different points
y(i1,...,in,), and that these points are sufficienly separated in the metric d,,

where
tr = Npng + (Nk — 1)mk

This is the content of the following lemma.

Lemma 5.1. If (i1,... ,in,) # (J1,--- ,JN,), then
dtk(y(ila"' 7iNk)7y(jla--- 7-]Nk)) > 6e. (15)
Hence, #(Dy,) = M,iv"

Since N7 = 1, without loss of generality we may assume that D; = C}.

Step 2. Construction of L;. Here we construct inductively a sequence of
finite sets L. Points of Ly will be the centers of a balls forming the k-th level of
our Moran construction.

Let Ly = Dy and put [y = ny. Suppose we have already defined a set Ly, now
we present a construction of Lj4q1. We let

let1 = Uy + Mpg1 + top1 = Ning + No(ne +ma) + ..o+ N (N1 + Mpgg1).
(16)
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For every x € Ly, and y € D11 let z = z(x,y) be some point such that

dy, (z,z) and dtk+1(y,fl’“+m’““z) < (17)

€
< 2k+1 ’ 2k+1 :

Such a point exists due to the specification property of f. Collect all these points
into the set

Lyt Z{ZZZ(w,y)IwELk, yEDk+1}- (18)

Similar to the proof of Lemma 5.1 we can show that different pairs (z,y), z € Ly,
y € Dy.y1, produce different points z = z(z,y). Hence, #(Lg+1) = #(Li)#(Dk+1)-
Therefore, by induction

#(Ly) = #(D1) ... #(Dy) = MM ... M.

It immediately follows from (15) and (17), that for every z € L; and any
Y,y" € Diy1, y #y', one has

i (2(2,9), 2(0,9") < o, and di, (2(2,9), 2(,3')) > 5e. (19)

2k’

There is an obvious tree structure in the construction of the sets L. We will
say that a point z € Liy1 descends from x € Ly, if there exists y € Dy such that
z = z(z,y). We also say that a point z € Ly, descends from x € Ly, if there exists
a sequence of points (zx,... ,2k4p); 2k = T, Zk+p = 2, and z; € Ly, such that 244
descends from z; in the above sense for every [ = k,... ,k+p— 1.

Step 3. The Moran fractal F'. For every k put

Fo= U (n5)

x€Ly

where B;(z,d) is the closed ball around = of radius § in the metric d;, i.e.,

Bi(z,0) ={y € X : di(z,y) <}

Lemma 5.2. For every k the following is satisfied:

— € — €
1) for any z,z' € Ly, x # &', the sets By, (a:, F)’ Bi, (m', F) are disjoint;

2) if z € Ly descends from x € Ly, then
— € — €
Blk+1 (Z, ﬁ) g Blk (1}, F)
Hence, Fi+1 C Fy,.
Finally, we put

F= ﬂFk.

k>1

It is clear that F' is a non-empty closed subset of X.
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Lemma 5.3. For every x € F one has
1 n—1 )
Jim_ kz_% o(f'(2) = a.

Therefore F C K.

Step 4. A special probability measure p. For every k& > 1 define an atomic
probability measure py, as follows

ur({z}) = Lt for every z € L.

#(Lk)
Obviously, pr(Fy) = 1.

Lemma 5.4. A sequence of probability measures {ur} converges in a weak topology.
Denote the limiting measure by u, then p(F) = 1.

An important property of the limiting measure p is formulated in the next lemma.
Lemma 5.5. For every sufficiently large n and every point x € X such that
Bp(z,e/2)NF #£ &
one has
pw(Bn(z,e/2)) < e (20)

Summarizing all from above we see that for every positive v and every sufficiently
small € > 0, we have constructed a compact set F', FF C K,, and a measure u such
that (20) holds. ;From the Entropy Distribution Principle and the fact that C K,
we conclude

Ap(a) =2y =5~ < hiop(f, Fr2/2) < hiop(f, Kasre/2),
and hence

£5(0) = huop(f, Ka) = T huop(f, K ©) > Ayla) — 2.
Since v > 0 is arbitrary, we finally conclude that £,(a) > A, (), which finishes
the proof of Theorem 5.1. |
6 Manneville-Pomeau map

Before we start we the detailed discussion of the multifractal spectrum for Lyapunov
exponents of the Manneville-Pomeau maps, let us establish a general relation
between the multifractal spectra in general and the Legendre transform of the
pressure function.
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For a continuous function ¢ : X — R, and ¢ € R let P,(q) = P(qy), where P(-)
is the topological pressure. By the classical Variational Principle one has

P() = sup{ b (1) + [ wdus we My 0},

Since we have assumed that the topological entropy of f is finite, P(%)) is finite for
every continuous . Moreover, P(-) is convex, Lipschitz continuous, increasing and
Plc+yp+€&—Eo f) =c+ P(y), whenever c € R, and ¢, ¢ € C(X,R).

For any a € R define the Legendre transform P}(a) by

Pi(a) = inf (P,(a) - o).

Note, that Pj(a) < +oo for all a € R, however, it is possible that P}(a) = —oo.

Theorem 6.1. Let f : X — X be a continuous transformation with specification,
and ¢ : X — R be a continuwous function. Then

(i) for any o € L, one has
Hy(a) < P;(a);

(it) if, moreover, f is such that the entropy map p — h,(f) is upper semi-
continuous, then for any « from the interior of L, one has

H,(a) = P}(a).

Remark 6.1. Transformations f : X — X with an upper semi-continuous entropy
map
H(p) : My(X) = [0,400) : pu = hy(f)

play a special role in the theory of equilibrium states. This class of transformations
includes, for example, all expansive maps [23]. A useful property of such
transfomations is that every continuous function ¢ has a least one equilibrium state.

Proof of Theorem 6.1. (i) For any a € L, and any ¢ € R one has
Ho(@) = sup{(£): e My(X), [ pdu=a}
= SUP{hu(f) +q/<pdu 1 op € My(X), /wdu = a} —qa

< SUp{hu(f) + q/sadu D pE Mf(X)} —qa = P(qp) — qq,

where the last equality follows to the Variational Principle for topological pressure.
Hence, H, () < inf, (P(qp) — qa) = Pj(a).

(if) It was shown by O. Jenkinson [10], that if the entropy map is upper semi-
continuous, then for any a from the interior of L, there exists ¢* € R and an
invariant measure v, which is an equilibrium state for ¢* such that

/apdi/:a.
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Hence
Ho(@) =sup{h,(f): we My, [pdu=a}>n(f) =Pla"p) - g'a.

Therefore H,(a) > Pj(a) and the result follows. O
The following theorem is an immediate corollary of Theorems 5.1 and 6.1.

Theorem 6.2. Suppose f : X — X is a continuous transformation with
specification property such that the entropy map is upper semi-continuous. Then
for any a € (inf £,,sup L) one has

£,(a) = P2 (a).

Remark 6.2. Note that for transformations with the specification property, L, is
an interval.

Let us consider in greater detail an application of the above theorem to the
multifractal analysis of the Manneville-Pomeau maps.

For a given number s, 0 < s < 1, a corresponding Manneville-Pomeau map is
given by

f:00,1]=1[0,1]:2 =z +2"" mod 1.

The map f is topologically conjugated to a one-sided shift on two symbols, and
thus satisfies the specification property. Morevoer, f is expansive, and hence the
entropy map is upper semi-continuous. Let p(z) = log f'(x). With such choice the
level sets K are preciesly the level sets of pointwise Lyapunov exponents, which
are defined (provided the limit exists, of course) as

Az) = nlLII;O % log|(f™)'(z)], and K, ={z: \z)=a}.

Due to the fact that = 0 is an indifferent fixed point for the Manneville-Pomeau
map, there exist points & with A(z) arbitrary close to 0, and hence inf £, = 0.

Let us discuss some thermodynamic properties of the Manneville-Pomeau maps.
First of all, there exists a unique absolutely continuous f-invariant measure pu.
Moreover, i is an equilibrium state for the potential —p and p is ergodic. However,
there exists another equilibrium state for —p, namely, the Dirac masure at 0, &y.
The coexistence of two equilibrium states results in a non-analytic behaviour of the
pressure function P,(q) := P(gy). Namely, it was shown in [19, 22] that P,(q) is
positive and strictly convex for ¢ > —1, and P,(g) = 0 for ¢ < —1, see Figure 1.

Since f satisfies specification and is expansive, Theorem 6.2 is applicable and
hence £, (a) = Pj(a). The graph of P;(«) is shown in Figure 1.

The entropy spectrum &, () is concave, but not strictly concave. The graph of
E,(a) contains a piece of a straight line.

We represent the interval [inf L, sup L,] = [0, &] as the union of two intervals
[0, 0] and (ap, @], where g is the largest a such that P*(a) = a, i.e.,, P*(-) is
linear on [0, ap]. In fact,

a0 = hu(f) = [ log 1'dp,
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P(a)

2y

a

o=-1

Figure 1: The pressure function P,(¢) and its Legendre transform P*(a) = &, (a).

where p is an absolutely continuous invariant measure.
Additional considerations show that:

e For each o € (0,ag) there exists a unique invariant measure p, €
M;([0,1], ¢, a) such that

hu, (f) = sup{h,,(f) : v is invariant and /gadu = a},
i.e., it is a measure of maximal entropy in M ([0, 1], ¢, @), and hence
htop(f: Ka) = hua (f);

e Moreover, for any a € (0, ag) one has
po = ap+ (1 — a)do,
where p is the absolutely continuous invariant measure mentioned above.

Since p, dp are ergodic, and K, are invariant sets, we conclude that
pa(Ka) =0

for all a € (0, ap). This is a new phenomenon, because until a typical situation in
multifractal analysis would be pq(K,) = 1 for the “maximal” measure p,. And
indeed, for all a € (ag, a1], the measures p, of maximal entropy in M ([0, 1], ¢, @)
exist as well, but

pa(Kqa) = 1.

The explanation of this phenomenon lies in fact that the pressure function has a
phase transition of the first order at ¢ = —1.
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7 Multidimensional spectra and Contraction Principle

Suppose f : X — X is a continuous transformation of a compact metric space
(X, d) satisfying specification property, and ¢ : X — R? is a continuous function.
Suppose also that we are given a continuous map

v:U— R™.

where U C R? is such that Im(¢) = {¢(z): € X} CU. For any 3 € R™ define
a set

K% (3) = {a: €X: lim \p(%(sn )) = ﬂ}.

n—o0

We are interested in the entropy spectrum of ¥ o ¢, i.e., the function

E\I’Otﬂ(ﬂ) = htop (f7 K\IjoW(ﬂ))’
defined on a set Lyo, = {B: KY°?(3) # @}. Our claim is

Theorem 7.1. Let f be a continuous transformation satisfying the specification
property, and ¢ : X — R, ¥ : R? — R™ be continuous map such that ® o p is well
defined. Then that for every 8 € Lyo, one has

Ewop(B) = sup{hu(f) ;o is invariant and \If(/ <pd,u) = ﬂ}. (21)

The proof of this fact is a generalization of the 1-dimensional proof presented in
the previous sections.

We would like to discuss now some corollaries of Theorem 7.1. First of all, by
taking ¥ to be identity we immediately conclude that

Eola) = hiop(f, KZ) = sup{hu(f) : p is invariant and /(pd,u = a}. (22)

A second corollary is the following theorem, which we call the Contraction
Principle for entropy spectra due to a clear analogy to a well-known Contraction
Principle from the theory of Large Deviations, see e.q. [5].

Theorem 7.2. Under conditions of Theorem 7.1, for any 8 € Lyo, one has

Ewop(B) = sup  Ey(a). (23)
a:¥(a)=08

Proof. The statement follows from the variational descriptions (21), (22) of the
entropy spectra Ewo,(8) and E,(a). Indeed, to prove the claim we have to show
that

sup{n (1) e Ms() and ([ i) = 5)

= sup sup{hu(f): p € Mg(X) and /gad,u:a}. (24)
a:¥(a)=4
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A proof of (24) is straightforward. O

In our opinion, it is an interesting question whether the contraction principle
(23) is valid for systems without specification.

For transformations f with the specification property the domain £, is a convex
set, and £,(a) is a concave function. Theorems 7.1, 7.2 can be used to produce
multifractal spectra £yo, which are not concave, or defined on a non-convex
domains Lyo,. For another setup which also leads to a non-concave multifractal
spectra see [1, Proposition 10].

8 Proofs

Proof of Lemma 2.1. Any continuous transformation of a compact metric space

admits an invariant probability measure. Moreover, there exist ergodic invariant
measures. Suppose pu is ergodic, then by Ergodic Theorem

n—

S o(fi (@) = / di, as m— oo

i=

1
n

for pra.e. x € X. Hence, L, # @. Clearly, L, C [—|[¢|lco,|l¢l|co], where
[lspllco = max, [p(z)] < oo. O

Proof of Lemma 2.2. Suppose K,, # @, i = 1,2. let t € (0,1) and put a =
ta; + (1 — t)as. Choose some z; € K,, and take any u; € V(z;), i = 1,2, where
V(z) is the set of limit points for the sequence of probability measure

1 n—1

Then p; is an invariant measure with [ @du; = a;, i = 1,2 (see the proof of Lemma
4.1 below). Put g = tuy + (1 — a)pz. Obviously, [¢dp = a. Now, we apply
[4, Proposition 21.14], which says that for a transformation with the specification
property every invariant measure (not, necessarily ergodic!) has a generic point,
i.e., there exists a point € X such that d, , — 1 as n — oco. Hence, for the same
point = one has

1 n—1 .
/¢d5z,n = Z;w(f (z)) — /sodu =q,

and therefore, K, # &. O

Proof of Lemma 4.1. We start by showing that M (X, ¢, @) is not empty for any
a € L,. Take any = € K,, and denote by V(z) the set of all limit points of the
sequence {0z n}n>1- Due to compactness of M(X) the set V(z) is not empty.
Moreover, V(z) C My(X) [23, Theorem 6.9]. Consider an arbitrary measure
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uw € V(z). By the construction of V(z), there exists a sequence nj — oo such
that d, n, — p weakly. Hence

1 ¥

> @) > [edu koo,

s
Since z € K,, we obtain that [ ¢du = a, and hence, p € M;(X, ¢, a). Convexity
and closedness of M (X, ¢, ) are trivial. O

Proof of Lemma 4.2. Convexity of H,(a) is an obvious consequence of the affinity
of the entropy map h,(f) : Mp(X) — [0, +00], [4]. O

Proof of Lemma 5.1. If (i1, ... ,in,) # (J1,---,jN, ), there exist [ such that i; # jj.
By the construction of y(iy,... ,in,) and y(j1,...,jn,) we have

dnk(m?z:faly(ily"' 7ZNk)) <g, and dnk (xfmfaly(jl:"' 7.7Nk)) <e.

Since z¥ , 2% are different points in the (ny,8¢)-separated set, one has

dnk(faly(ila--- 7iNk)7faly(j17--- 7.]Nk))
Z dnk(mfl’m.];z) _dnk(mfﬂfaly(il"" 7ZNk)) - dnk(x;?l’faly(jl)"' 7.7Nk))
> 8 —e—¢ =6¢.

Since
dtk(y(ih"' 7iNk))y(j1)"' 7.7Nk)) > dnk(faly(ih'" 7iNk))faly(j1)"' )ij))>

the proof is finished. O
Proof of Lemma 5.2. 1) By (19) for z,2' € Ly,  # ', one has d;, (x,z") > 5e.

Hence - -

Blk (1}, F) ﬂ Blk (.’El’ F) = .
2) For x € L, and z € Lg4q such that z descends from z, by (19) one has
di, (z,2) < ¢/2%. Hence, By, (2,e/2F) C By, (v,e/2¥71). Finally, since Iy > I,
one has

§lk+1 (Z>5/2k) - §lk (Z)5/2k)'

Proof of Lemma 5.3.
Estimate on Dj. Let us introduce some notation: for any ¢ > 0 put

Var(p,c) = sup{|e(z) — o(y)| = d(z,y) < c}.

Note, that due to compactness of X, Var(p,c) — 0 as ¢ — 0 for any continuous
function . Also, if d,(z,y) < ¢, then

S o @) - X o] < X Jets @) - o) < nvare, o).
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Suppose now that y € Dy, let us estimate |Etp"_01 e(fP(y)) — tka|. By the
definition of Dy, there exist a Ng-tuple (i1,...,in,), and points a:fj € C} for
j=1,...Ng, such that

dnk(m?j’faj )< 2_k

where a; = (ng +my)(j — 1). Hence,

nkl

~ €
pzz:o o(fPaf) z:: (fatPy) ‘ <nkVar(g0,2—k).

Since :rfj € Cy C P(a,dr,ni) we have

ne—1

| X etrs ) = mal < me(Var(o, 55) + 1) (29

p=0

To estimate |Z;’“ 01 e(fP(y)) — tka| we represent the interval [0, ¢, — 1] as the union

Np—1 Np—2
U [aj,aj+nk—1]U U [aj+nk,aj+nk+mk—1].
j=0 7j=0

On the intervals [a;, a; 4+ ny — 1] we will use the estimate (25), and on the intervals
[a; + 1k, aj + ng + my — 1] we use that

mkfl

‘ D p(foatmatry) — mka‘ < my((lelleo + |al) < 2myflol|co,
p=0

since a € L, C [—||¢llco, [|¢]|lco]. Therefore

trp—1

> () — tra| < Neni (Var(e, o

p=0

5 +01) + 2N = Dmllgllcs.  (26)

Estimate on L. Introduce

lp—1

> w(f7() ~
=0

R, = max
z€Ly

Let us obtain by induction an upper estimate on Ry.
If k =1, then Ly = D; = Cy C P(a,01,n1) (note, that Iy = ny), therefore we
have
Ry <114;.

By the defintion of Ly every z € Ly is obtained by shadowing of some points
x € Ly and y € Dgyq:

dlk (37,2’) < dtk+1 (yaflk+mk+1z) <

IS
2k+1 ’ 2k+1 '
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Hence,

Ipp1—1 I—1 I—1
PIRILE zk+1a\<\z (7)) = 3 e @)] + |3 el (@) - ka
p=0 p=0 p=0
Ip+mp41
X el =) - migaal
=l
tkfl 1 tpy1—1 try1—1
+| et - 3 PPN +] X el W) ~ tisra
p=0 p=0
glkVar(cp, ;ﬁ) + Ry, + 2my 1 l@llco + trra Var (o, %%)

€
+Np170k41 (Var(% W) + 5k+1) + 2(Ngt1 — Dmga]|el| oo,
where we have used the estimate (26) for |Zt’“+1 Lo(fr(y)) - tp+1c|. Hence
€
Risr < By + 2l Var(p, giog) + b1 Okt + 2Nkamia [ oo,
and by induction

N,m
Rk<221 (Var ¢,2 ) + 6, + 1; p||<p||co) (27)

p=1

Let us analyse the obtained expression for Rj. We claim that Ry/l; — 0 as
k — oo. We start by observing that, Var(yp, ) — 0 since ¢ is continuous.
By the choice of the sequence {d;} one has §; — 0 as well. Moreover, since
I, > Ni(ng + my) and the sequence {ny} is such that ny — co as k — oo, and
ng > 2™ we conclude that my/ng — 0 as well. Therefore, we can rewrite (27) as

k
<D by,
p=1

where ¢, — 0 as k — oo. By the choice of Ny (13), we have I, > 2%-1, hence for
suffiently large k one has

and hence Ry /I — 0 as k — oc.
Estimate on F. Now, suppose z € F', n € N and n > [;. Then there exists a
unique k > 1 such that
Iy <n <lggr-

Also, there exist a unique j, 0 < j < Ngy; — 1 such that

I+ j(nrgr +mpg1) <n <lp+ (G + 1) (g1 +mpg1)
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Since = € F there exists z € Lj41 such that
€
Ay, (,2) < oTh
On the other hand since z € Ly there exist Z € Ly and y € Dy such that

dlk (jvz) dtk+1 (y)flkerkHZ) <

€
< 2k+1 ’ 2k+1 :

Therefore

dlk (.T,.f) dtk+1 (flk+mk+1xay) <

€
< 2k—1" 2k—1"

Moreover, if j > 0, then by the definition of D4y there exist points
Pt ,a:ffl € Cjy1 such that

i1 ?

k41 €
dnk+1 (mzt+ 7faty) < W?

where a; = (ng+1 +mgs1)(E—1),t=1,...,7, and hence

I3

k+1 gl
dnk+1 (HZ~+ 7f k+mk+1+atm) < W

1t

(28)

We represent [0,n — 1] as the union

J
[0, = J{J Uk + (¢ = D(mpgr + ngg), b + tHmpes +ngg) — 1]
t=1

Uk + (s +na11),m — 1],

One has
Ir—1 -1 Iy Ir—1
> elfma) —la| | X w(sPa) = 3 ()| + | X () — e
p=0 p=0 p= p=0

< lVar(p, zr) + B

On each of the intervals [a¢, as + (mg41 +ng1) — 1], where a; = I + (¢ — 1) (mp41 +
nk+1), we estimate

at+mpqp1+nep1—1

‘ Z o(fPx) — (mp1 + nk+1)a‘

p=ay
< 2myp|lellco + npr16kr1 + iy Var(p,e/2572),
because of (28) and the fact that a:fjl € Crt+1 C P(a, 041, npey1)-
Finally, on [l + j(mg4+1 + ngs1),n — 1] we have

n—1

‘ Z @(fPx) — (n —lp — j(mit1 + nk+1))a‘

p=lrp+j(mrs1+nes1)

<2(n =l — j(mas1 +ne1))llellco < 201 +mgga) ol co.
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Collecting all estimates together one has
n—1 c
‘Z o(ffz) — na‘ < Ry + (I + jng41) Var (g, %—,2)
=0

+ 2(nk+1 +0+ 1)mk+1)||90||00 + Mk 10k41-
Now, since n > lg + j(ng+1 + mg41), and Iy > Ni, we obtain

Ng+1 + Mp41 | Mp41

‘_Z‘P (fPx)— ‘ +Var(<p, = 2)+2( N + - )||(,0||Co+5k+1

Since the right hand side tends to 0 as k — oo, and k& — oo for n — oo, we finally

conclude that
1 n—1

lim = Pr) —
Jim 5 2 elfra) =a
=

for all z € F, and hence, F' C K. O

Proof of Lemma 5.4. We are going to show that for every continuous function
there exist a limit

I(9) = Jim / ¥ dus. (20)

Obviously, if I(¢) is well defined, then I is a positive linear functional on C(X, R).
Hence by the Riesz theorem there exist a unique probability measure p on X such
that

:/z/;du for every ¢ € C'(X,R),

and thus, pr — p weakly.
Let us prove (29). It is sufficient to show that for every ¢ > 0 there exists
K = K(6) > 0 such that for all k;, ks > K one has

[ o, = [wdina] = |z 2 g T o )| <o

yEL
Without loss of generality we may assume that k; > ky. Then

1 1 1
IR gz‘”(y)‘ < mgkl\‘/’(“’) ()

T€ Ly,

where y(z) € Ly, is a uniqie point in Ly, such that = descends from y(z). Taking
into account the way the sets L; were constructed, we conclude that
€
(e, y(@)) < 5o
Hence, for ki, ks > K one has

[ wdimn, ~ [ v,

< sup([v(@) —v(w)| : dla,y) <

2%)—)0 as K — oo.
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Now, we have to show that u(F) = 1. Note, that pug4p(Fi) = 1 for all p > 0,
since Fi4p C Fy, and pg4p(Fr4p) = 1 by construction. Since 4 is the weak limit of
{pr}, and Fy are closed, using the properties of weak convergence of measures we

obtain
u(Fy) > ph_r>noollk+p(Fk) =1,
and hence p(Fy) = 1. Finally, since F' =, Fy, one has u(F) = 1. O

Proof of Lemma 5.5. By the definition, B, (x,€) is an open set, thus, since ur — p,
we have

#(Bn(z,2)) < im g (Bn(z,e)) = lim ﬁ#({z €Ly : 2 € Bulr,0)})

Suppose n > l; = ny, then there exists £ > 1 such that
I <n <lpyr.
As in the proof of Lemma 5.3, let j € {0,..., Ng+1 — 1} be such that
e+ (i1 +mi1)j <n <le + (i1 +mia) (5 + 1).

We start by showing that # (B, (z,e) N L) < 1, and thus pug (B, (z,€)) < #(Li) ™"
Indeed, suppose there two points 21,29 € L such that 21,20 € By(x,e) as
well. This means that d,(z1,22) < 2e. However, from (19) we know that
dy,, (z1,22) > be. Hence, we have arrived at contradiction, since n > [ and thus
dn(Zl,ZQ) Z dlk (2’1,2’2).

We continue by showing that pg4+1(By (2, €)) does not exceed (#(Ly) x M,g_ﬁ)_l
Suppose, two points 21,22 € Lyy; are in B, (z,¢) as well. Therefore, there exist
points x1,z2 € Ly and y1,y2 € D1 such that

Z1 = 2(35172/1)7 2 = 2(5527212)-

All the points in Dy are obtained by shadowing certain combinatations of points
from Cl41 (see (14)), i.e.,

ylzy(ily--- )iNk+1)7 y2:y(i’1)'--7i9\fk+1)7
where (i1, ... ing ), (i1, iy, ) €{1,... y Mgy YVe41,
We claim that necessarily z1 = @2 and (i1,...,i;) = (i,...,4;). Indeed, if

x1 # x2 then
dlk (1‘1 ) 1‘2) < dlk (1’1, Zl) + dlk (Zl) 1‘) + dlk (1‘, Z2) + dlk (Z2) 1‘2)
€ €
< 2—k+5+5+2—k < 5,
and thus we have a contradiction with (19). Similary we proceed with our second

claim. If j = 0 there is nothing to prove. Suppose j > 0 and there exists t,
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1 <t <, such that iy # ij. Since y1 = y(i1, ... ,iny,,), and yo = y(iy, ... i, ),
one has . .
k+1 k+1
dnk+1 (mit+ )fatyl) < QICT’ dnk+1( * fat ) 2k+1 .
Moreover,
€ €
iy, (21,91) < ST iy, (22,92) < SRFL?
and hence

dnkJFl (.TZ+1 mkl+1) <dnk+1( k+1 fatyl) + dtk+1 (yl:flk—‘rkarlZl) +

dn (21, Z2) + (flk+mk+122 yz) +dpy, (Fy2,25)
€

SW + 2+ —/— +

+ 2k+1 2k+1

2k+1 < Ge,
which contradicts the fact that dy,,, (v ghtt :n’”,“) > 8¢, since :v’”“ :v’”,“ are
different points in a (ngy1,8¢)-separated set Ck+1

Since (i1,...,%;) is the same for all points z = z(z,y(i1,..., i],... iNkH))

Niy1—J

which can lie in B, (z,¢), we easily conclude that there are at most M " such

points. Hence

1 Nii1—j 1
tri1 (Bn(2,6)) < ———f—M [ = ——
#LMe T R L) M,
For any p > 1 one has
1
fetp (B (2,6/2)) £ -
#(Lk) My,

as well. This is indeed the case, because the points of L ,, which lie in B, (z,/2),
can only descend from the points of Ly41, which are in B, (z,). We provethis
finally by contradiction. Suppose we can find points z; € L1 and 23 € Lyyp, 22
descends from z; such that

dp(z2,2) <e/2 and dp(z1,2) > €.
This implies that dp(z1,22) > dn(z1,2) — dp(z,22) > €/2. The latter however is

not possible, since

3 9 9

dn(21,22) SdlkJrl(Zl,ZQ) S W-‘-W—F... = W

Hence there are exactly #(Dg+2) ... #(Dg4p) points in Lyyp,, p > 2, which descend
from a given point in Ly,;. Hence

M I #(Die) - #Diry) 1
H(L) MY #(Diga) . #(Digy)  #(Le) M,

,uk+p(Bn(x>6/2)) <
And therefore

. 1
w(Bn(z,e/2)) < p11_>_H;o tk+p(Bn(z,6/2)) < m
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Now, by the choice of k and j we have
n =l — (g1 + mpgr) < nggr + My,
where I, = Niny + Nao(ng + mo) + ... + Ng(ng + my). Therefore

n— 1l — j(Ngs1 + Mpy1) < Mkt Mgy

- < —0ask—
Ig + j(ngt1 + mps) Ni

because of the choice of Nj. Since Mj has been chosen in a such way that
My, > exp(sny), and my, are much smaller than ny, for large k& we obtain

#(Lk)Mg+1 = _Z\JlN1 . le:Vleg—H Z exp(s(Nlnl + N2n2 + ...+ Nknk +jnk+1))
> exp((s = 7/2)(Nins + ..+ Ne(g +mi) + (i + i) )
> exp((s —7)n)
Therefore, since k — oo as n — oo, for all sufficiently large n one has
(B (w,e/2)) < exp(—n(s — 7))

for every x such that B, (z,e/2) N F # &. O
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