MODERATE DEVIATIONS FOR LONGEST INCREASING
SUBSEQUENCES: THE LOWER TAIL
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Abstract

We derive a moderate deviation principle for the lower tail probabilities of the
length of a longest increasing subsequence in a random permutation. It refers to the
regime between the lower tail large deviation regime and the central limit regime.
The present article together with the upper tail moderate deviation principle in [12]
yields a complete picture for the whole moderate deviation regime. Other than in
[12], we can directly apply estimates by Baik, Deift, and Johansson [3], who ob-
tained a (non-standard) Central Limit Theorem for the same quantity.
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1 Introduction

Recently a problem which was invented by Ulam 40 years ago [15] has returned to the
probabilists’ attention: Consider the permutation group S, on {1,...,n}. We say that
1<i; <...<ip <nis an increasing subsequence of length k of m# € S, if w(iy) < ... <
7(ix). We denote the length of a longest increasing subsequence of a permutation = by
L, = L,(7); note that, in general, such a subsequence is not unique. Ulam’s problem is:
What is the typical asymptotic behavior of L, as n — oo, if 7 is chosen with uniform
probability 1/n! from S,,?

A Poissonized version of this problem is equally interesting: one replaces the determin-
istic number n above by a Poisson(\)-distributed random variable N. Thus one obtains
the Poissonized random variable Ly. Conditioned on the event {N = n}, Ly has the
same distribution as L,. For a geometric interpretation of Ly we refer e.g. to [2] and
[12].

The probability P[L,, <[] can also be interpreted as [, |Tr M|*"dM/n!, where U, is
the unitary group of rank [ and dM denotes the Haar measure on it. This fact and other
connections of Ulam’s problem to other mathematical topics can be found in two survey
articles by Aldous and Diaconis [2] and Deift [5].
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Ulam conjectured that

= lim —]E 1.1
Jlim —=E[L,] (11)
exists. This was proved by Hammersley in 1972 [9] by an application of the subadditive
ergodic theorem. The correct numerical value ¢ = 2 was given by Logan and Shepp
[11] and independently by Kerov and Vershik [16] in 1977. The same result was proven
by different methods by Aldous and Diaconis [1], Seppéldinen [13], Johansson [10], and
Groeneboom [8].
The large deviation (LD) principle to this law of large numbers was derived in two
papers by Seppélédinen [13] and Deuschel and Zeitouni [6]. They proved that for all x > 2

lim — log]P’ [L, > ay/n] = -2z arcoshg +2Va? — 4, (1.2)

n—oo

and that for 0 <z < 2

hm—log]P’[L <x\/_]—1—x—2—210g +2(1+x—2>10g<27332>. (1.3)

In 1999 Baik, Deift, and Johansson [3] came up with a method based on the theory of
matrix-valued Riemann-Hilbert problems and integrable systems to prove a non-standard
Central Limit Theorem (CLT) for the quantity L,. Their result (Theorem 1.1 in [3])
reads as follows: Rescale L,, as

Lo(r) = 2/

Xn(m) = — s (1.4)
Then y,, converges in distribution as n — oo to the Tracy-Widom distribution, introduced
by Tracy and Widom in [14]. All moments of y,, converge to the corresponding moments

of the Tracy-Widom distribution, as well (Theorem 1.2 in [3]). This distribution is defined
in the following way: Let u(x) be the solution to the Painlevé II equation

o (2/3)%2

NG
the notation a ~ b means that the quotient of both sides converges to 1, and Ai denotes
the Airy function. Then the Tracy-Widom distribution has the distribution function

F(t) = exp (- /too(x - t)u2(a:)da:> . (1.6)

Interestingly, the Tracy-Widom distribution first appeared in the context of eigenvalue
statistics of the Gaussian Unitary ensemble.
The following statement is an immediate consequence of the lower tail asymptotics of
the Tracy-Widom distribution (see Appendix A):
logP[L, < (2—tn 13 /n 1
i T 28T L = € Wil 1 (1.7)

t—oo n—oo t3 ]_ 2

Upe = 2u +zu with  u(z) ~ —Ai(2) ~ as r — 00; (1.5)




The asymptotics (1.7) perfectly agrees with the large deviation asymptotics for the
“upper end” of the lower tail, which one readily derives from (1.3):

logP|L, < (2—1 1
lim lim —2 L = ( )Vl =——. (1.8)
t\,0 n—00 t3n 12

1.1 Results

In this note we fill the gap between the estimates (1.7) and (1.8) by showing that in
the lower tail moderate deviation regime the probabilities scale in very much the same
way. Thus together with the results obtained in [12] we obtain a full moderate deviation
principle. Our result reads as follows:

Theorem 1.1 For all0 <n <1/3 andt > 0,

li 08P < @=tn Dym] 1 (1.9)

o0 nl=3n¢3 12

Remark: Recall that in [12] the following moderate deviation principle for the upper tail
was proved:
Forall0 <n<1/3and t>0:
logP[L, > (2 +tn")y/n] 4

i (=025 =73 (1.10)

Observe that the moderate deviations in (1.9) have twice the speed of the moderate de-
viations in (1.10). This difference is in agreement with the large deviation results cited
above and can be explained on an intuitive level as well: building unusually short longest
increasing subsequences is much more expensive than creating extraordinarily long ones,
since a very short longest increasing subsequence also restricts our choice in assembling
all the other elements in a random permutation.

A more refined version of Theorem 1.1, which also covers the cases n — 0 and n — 1/3,
will be given in Theorem 3.3 below. Both, Theorem 1.1 and Theorem 3.3, rely on the
moderate deviation principle for the corresponding quantity in the Poissonized version
of the problem. In order to state this moderate deviation principle, it is convenient to
reparametrize the pair consisting of n (the size of the permutation group) and [ (the
length of a longest increasing subsequence) in the following way:

= @ M, = 2vn=l (i — 123, (1.11)

Vin : 1173

Y

Note that +v;,, measures how much the length of a longest increasing subsequence de-
viates from its expected behavior: for large n and a typical permutation 7, the quantity
[ = L,(m) will be of order 2y/n, so that v, is close to one. On the other hand, note
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that the CLT is proved for the normalized quantity n='/%( — 2\/n) = —21/3%;}/3]\41’”
Since 7, is typically of order 1, the variable M;,, measures the distance from the central
limit (CL) regime. Indeed, the different lower tail asymptotic regimes can be conveniently
described in terms of v;,, and M ,:

CL: Yin — land M;,, = M € R

lower end asymptotics of the CL: first v, \, 1, second M;, — oc.

lower tail moderate deviations: Yin \ 1 and M;,, — oo simultaneously.
upper end asymptotics of the lower tail LD: first M;,, — oo, second 7, \, 1.

lower tail LD: M, — oo and v, — 7 > 1.

We introduce the distribution function for the Poissonized quantity Ly with N ~
Poisson(\):

b =PIy <= Y X BiL, <1 (112

Then we obtain the following result on ¢;(\):

Theorem 1.2 There are positive constants ¢c; > 2, ¢o < 1/4, and c3, so that for all X > 0
and |l € N with My > c; and 1 < v, < 14 ¢y the following holds:

logi(A)  4mn — %%A — 3 —2log v

- 1.13
Ml%)\ 4(yr—1)3 e (1.13)

with an error term €\ bounded by
el < caMy 3 log My (1.14)

Remark: Note that
4y — % =3 —2logy 1

=—4+0(y—1 1 1.15
ORI SHO0 -1 asy— L (1.15)

such that (1.13) states that under the conditions of Theorem 1.2, N ~ Poisson(\), and
for v, — 1

logP[Ly <] 1
—_— == = —— @) —1 1.16
Ml?:)\ 6 + e+ O(yn ) ( )

holds.



1.2 Incorporating an estimate of Baik, Deift, and Johansson

Our proof of Theorem 1.2 is based on an estimate in [3]. We first quickly indicate how to
translate questions about longest increasing subsequences into problems about orthonor-
mal polynomials to which the techniques in [3] and [12] apply. More precise explanations
can be found in [12] and in [3].

It is convenient to study the Poissonized quantity Ly first, N ~ Poisson()\). Once
we have obtained the moderate deviation behavior for Ly, we derive that of L, by a
de-Poissonization procedure. Roughly speaking, we compare Ly with varying Poisson
parameters A with L,. A is chosen such that n lies typically in the central regime or
the moderate deviation regime of the Poisson variable N; this allows us to separate
moderate deviation effects caused by atypically small values of N from those caused by
permutations with an unusually short longest increasing subsequence. The details are
described in Section 3.

The reason why the Poissonization helps is an identity by Gessel [7]:

di(N) = e*Di_1(N), (1.17)

where D; () is an [ x [ Toeplitz determinant:

Di_1(A) = det (/7T e_i(k_j)erﬁcosed—e> : (1.18)
- 27 :
- 0<k,j<l—1

Baik, Deift, and Johansson [3] analyze ¢;(\) by examining the asymptotics of D;_1(\)
when A — oo and [ ~ 2v/\. The above Toeplitz determinants are related to certain
orthogonal polynomials: let

!
pia(z) =Y ki (NF m(A) = Eg(A) >0 (1.19)
5=0
be the I*! orthonormal polynomial with respect to the weight function 62\&0080% on the
unit circle, i.e.,
T , do
/ pz,A(ew)pk,A(ew)BQﬁwS92— =bk, k>0, (1.20)
- T

where 6, denotes Kronecker’s delta. Then one can show (see (1.24) in [3])

_ D))

K (N) DY) (1.21)
which leads to (see (1.25) in [3])
log ¢1(A) = > log k(). (1.22)



Baik, Deift, and Johansson [3] connect x2(\) to the solution of certain 2 x 2-matrix
Riemann-Hilbert problems. As we will just use one of Baik, Deift, and Johansson’s
estimates, but (other than in [12]) not the Riemann-Hilbert techniques themselves, we
will refrain from explaining them here in detail and just refer the interested reader to the
explanations in [3] and [12].

With the help of these Riemann-Hilbert techniques, Baik, Deift, and Johansson [3]
derive (among others) the following estimate:

Lemma 1.3 (See [3], Lemma 6.3., part (ii)) For some positive constants cy, c5 (suf-
ficiently large) and ¢y (sufficiently small), the following holds: if A > 0 and q € N fulfill

1+eq P < Yor <1+ (1.23)
or equivalently
M, > c5 and yy0 < 1+ co, (1.24)
then
/@371 = exp{q¢(—yyx +10gYyr + 1)}7;}\/260%* (1.25)
with an error term
loga| < ﬁ <1 (1.26)

Note that g(y, — 1) is large if (1.23) holds and ¢, and ¢; " are large enough.

The rest of this paper is organized as follows: In Section 2 we prove Theorem 1.2.
Section 3 contains the de-Poissonization procedure which allows us to derive the moderate
deviations of L,, from those of Ly. In an appendix we show that our moderate deviation
result is compatible with the CLT derived in [3].

2 Summation

This section is devoted to the proof of Theorem 1.2. As a main ingredient we use Lemma
1.3. Positive constants c¢; keep their meaning globally during the whole article. If ¢;
depends on an additional parameter, this is denoted explicitly.

Proof of Theorem 1.2. In Lemma 1.3 above, we may assume without loss of generality
that c5 > 1, and ¢y < 1/4. We set ¢; := 2¢5 > 2. Let [ and \ fulfill the hypothesis of
Theorem 1.2. Then

A= ”/ZAMI%A(%,/\ - 1)_3/4 > 0%02_3/4- (2.1)



As a consequence of (1.22),

b

log Zg)) = qzl;l log /@‘3_1()\) (2.2)

holds for all b > [, b € N.

We choose a reference point” b € N, such that M, € [c5, ¢1]; such a number b exists:
to see this, one observes M 5, = A 13 > ¢, M, 5, =0 < 5 and for ¢ € [\/_, 2\/_]
|OM,\/0q] < (2/3)]q7Y/3 + A\MY2¢=43) < 4X"Y6/3 < 1 < ¢5 = |[cs,c1]|. Furthermore,
My < ¢ < M, implies [ < b. As a consequence of M;\ > c5, My > c¢5, and
Yo < Yia < 14 ¢y, the hypothesis (1.24) is fulfilled for ¢ = [ and ¢ = b. Hence, using the
monotonicity of ¢ — M, and ¢ — 7, this hypothesis is fulfilled for all ¢ € [, ], too.
From the formulas (2.2) and (1.25) we obtain:

e
108 25,00

b

D a(—vgn +log g +1) — Z log vg,x + Z 0gr-  (2.3)

q=l+1 q I+1 q=l+1

We examine the first sum on the right-hand side of (2.3), using the trapezoidal rule with

error estimates:
/f Yo+ LW =10 /K " (2.4)

K(@) = 5} — (o)) (2.5

here {r} = —max{n € Z : n <z} denotes the fractional part of z. We get

with f € 02[l,b] and

b

> a(=vgr +logygn + 1) (2.6)
q=Il+1

- 2f/< —1—%@%) da

[
2( %A+10g%>\+1)—§( %,A+10g71,A+1)—/
!

= M4 =370 — 27k log v — 47 + 3% + 2755 10g wa)

" K(z)
x

+ dx

b l " K(z
5(10g%>\+1)——(10g%>\+1) / ( )da:.
., T
Using 0 < K(x )g% we see
" K(x) 1. b
0< dr < —=log -. 2.7
< [ S o (2.7



To estimate the second term on the right-hand side of (2.3) we note that

b b
PAVD) !
IT 7o = VA _ (2\/X)b_ly- (2.8)
g=Il+1 q=l+1 q )
Using Stirling’s formula n! = /270" ™1/2e7"+%(") with lim,, ., 6(n) = 0, we obtain
b
H Var = (2\/X)bflebflll+1/2bfb71/2ee(l)fe(b), (2‘9)
q=Il+1

and we conclude

1 I—b I 1 b 1
—3 Z logv,, = log (2\/X) - (5 + Z) logl + <§ + Z) log b (2.10)

2
q=Il+1
-0 60) - o)
+ 5 + 5
: b 1 b a) — o
- §<10g717k+1)—5(10g7b,x+1)+110g7+%_

Finally we estimate the sum of the error terms in (2.3), using (1.26) and 2V — b =
Mzié\Q(”/b,A -1 > 1

b b b b
C4 C4 dq
oga| < S 7§2C4/ — 4 (211
qu;l ' qu;l ¢(Ygr — 1) q§1 2VA — ¢ L 2VA— ¢

2V -1 2 l M, 5

= 2¢4l — = —c4l — 2c4 1 -

Cy OgQ\/X—b 304 ogb+ Cy ogMb’A

Combining (2.6), (2.7), (2.10), and (2.11) with (2.3), we get:

log ey (2.12)

dp(A)
_ -1 —2 —2 —1 -2 -2
= A (4%)\ - 3”)’1)\ - 2719\ log v\ — 4”)’1),)\ + 3%,>\ + 27(;,>\ log 7b,A) + (1,0, ),

with an error term bounded by

M 5
My 5

le(l, 0, \)] < (14 ¢4) log

l 2

n ‘9(1) ~ 9(6)‘ < g+ 2cqlog M, (2.13)

b
log —‘ + 2¢4

for some positive constant cg; note that b/l = v/ € [1/2,2]. We estimate the b-
dependent part in (2.12) using A = 77, My \ (70 — 1) 7% /4:

2
_ _ _ Ver — 4 + 3+ 2log Y|
M1 =4y 4397242921 :M?’“ : :
‘ Yor T3 x T 271 Og”/b,k‘ bA 4(7pr — 1)
< oMy, < e} (2.14)



for some constant ¢; > 0; here we have used the convergence in (1.15) as well as 7\ €
[1,5/4]. Using our notation, part (iii) of Lemma 7.1. in [3] states the following: There is
a constant cg > 0, such that for all sufficiently large M > 0 there is C'(M) > 0, so that
for all A > 0 and ¢ € N with —M < M, < M we have

llog ¢y 1 () — log F(2Y°M, )| < C(M)qV/? + cge” (MID¥2. (2.15)

see also the last line of the proof of Theorem 1.1 of [3] (page 1170). Here F' denotes the
distribution function of the Tracy-Widom distribution. As a consequence of (2.15), there
is a constant c¢q > 0 such that

| log ¢u(A)] < co; (2.16)

to see this, one may choose ¢ = b+1 in (2.15), then use that 0 < M1\ < M\ < ¢y, and
finally use that |log F'| is bounded on bounded intervals. The estimates (2.12), (2.13),
(2.14), (2.16) and M; > ¢; > 1 together imply

loggi(A\) =\ (-1+ 47;; — 37;3 - 2@2 logvi,n) + M;“jAe,,A, (2.17)

with some error term ¢, bounded by (1.14) for some constant ¢z > 0. Hence the claim
(1.13) follows, using the fact A = 77\ M7, (x —1)7*/4, and we have proved Theorem 1.2.

|

3 De-Poissonization

We split the de-Poissonization considerations into two parts: an upper and a lower esti-
mate. For the upper bound, we use a result of Baik, Deift, and Johansson, while for the
lower bound, we compare L,, with Ly, N ~ Poisson(\), with varying values of \. Let

Qun = P[L, <] (3.1)
denote the cumulative distribution function of L,. We start with the upper bound:

Lemma 3.1 There exist positive constants cyg, c11, C12 such that for alln € N and | € N,
[ <mn, satisfying My, > ci2 and 1 < v, <1+ ¢y

log q1,1, < log ¢l(n) C11 (
Ml?,)n N Ml?,)n

Vi — 1) (3.2)

Proof. By Lemma 8.3 of [3], there exist ¢;3 > 0 and ¢15 > 2¢; (sufficiently large) such
that foralln > cp and alll e N, [ < n:

Qin < c13ti(n — V/n). (3.3)



Let [ and n fulfill the hypothesis of the lemma. Using v;,, = 2y/n/l > 1 we conclude
n> P4 =M, (. —1)/4 > ¢}y /4 > c15. Hence we can apply (3.3): Taking
logarithms on both sides of the inequality and dividing by M}, we obtain

logq;, logec lo n—+n)—1o n lo n
Bdin _ logeis g ou( \/_3) gou(n) gd);( ) (3.4)
Ml,n Ml,n Ml,n Ml,n
Note that
M3

Ly = (2\/71 —/n — l>3 It =(2vn—1-6,)%" (3.5)

with some 6, € [1,2]. Together with

20/ —1=1"3M, > 2c¢ > 4> 26, (3.6)
this implies
1 M, n—y/n n—y/n 1
e L T g ) (3.7)
2 Ml,n Yin — 1

In particular, it follows that M, ,_ m» > M;,/2 > c12/2 > s and 1 < 9,,_n < Vi <
1+ cy. Let

1 4y—~*—3—-2logy

By (1.15), there exists a constant ¢4 > 0 such that

lg(M)] < era(y = 1) (3.9)

holds for 1 < v < 1+ ¢y. With the help of Theorem 1.2 we estimate the second term on
the right-hand side of (3.4):

log du(n — /) —logdu(n)  Mp_ =M M, 4

= — S Dl — Pl 3.10
i BT + Mg, Plvn T (3.10)

with an error term p;,, := €., + g(Vi.m) satisfying
|1m| < cs M2 1og My + c1a(yim — 1), m € {n —/n,n}. (3.11)

By (3.5), (3.6), and 2/ — [ = I"*My,, = M}/ (,, — 1)"/* > M;"* we obtain

— M3

I,n

M3
‘ br v (3.12)

607,

@y —1=08,)—(2yn—1) <G5 O
B 6(2y/n — )3 T 2yn—1 T 2
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for some constant ¢35 > 0. Using (3.7), (3.11), the bound
-3
Ml,n—\/ﬁ

and the monotonicity of m — 7, ,,, we conclude

log M ,,_ m < 8M'ljn3 log M ,,, (3.13)

2 Pa—ya| + ol < 9esM P log My + 2e14(yin — 1), (3.14)

I,n

‘ Ml%nf\/_

Combining (3.10), (3.12), and (3.14) with (3.4), we obtain (3.2) for some c;; > 0 and
Cio :— 2014.
(]

Lemma 3.2 For every fivzed number 0 < a < 1/2 there is a constant cig(a) > 0, such
that for every n,l € N with 0 < 7v,; — 1 < ¢16(a) and M,; > ¢ we have

IOg Ml,n
M3

In

log qi,n > log ¢y(n)
Ml%n N Ml%n

—crr(n — 1)* — c1s (3.15)

with positive constants ci7 and cig independent of «.

Proof of Lemma 3.2. We choose a fixed number 0 < o < 1/2. Given n and [ such that
0 < Ym—1< /2 and M,; > ¢, holds, we define ¢ := (v, — 1) €]0,1] and set
A= (14+¢&)n. For > 0 we denote by P, the Poisson measure on Ny with parameter s,
and we denote by N the identity map on Ny. Furthermore we set

_dP,

U:—E

(n) = e A" = exp{n(log(1 + &) — &)} € [e "E7/2 e /4], (3.16)

For fixed [, the map n — ¢, is monotonically decreasing. Using this and the fact that
the density dP,/dP, is monotonically decreasing (because n < \), we obtain

ql,n 2 QZ,n(]- - U) (317)

dP,, e,
= [E nll—v— > E 1-—
’ {ql’ ( Ud]P’A)] = [ql’N< Ud]P’A)]

= [, [ql,N] —vE, [CIl,N] = le(/\) - U¢l(n)
> Gi(\) — e gy (n).

The heuristic idea behind the remaining part of the proof is that ¢;(\) is “close” to
¢i(n) in the sense that ¢;(\)/¢y(n) is “close” to 1 (on a rather rough scale), and e="¢"/4
is “close” to 0.

We observe that 7y — 1 = voV/1+E =1 < v = 1+ E0/2 <y — 1+ €& =
T+ Vn—1)")Yin—1) <2(yn—1) < ¢y and M, > M;,, > ¢;. Hence the assumptions
of Theorem 1.2 are satisfied for [, n and [, \. We estimate

M\ _ M~ 1
o Ml,n Yion — 1

< T+ (v — 1" (3.18)
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By Theorem 1.2, (3.8/3.9), and the above estimates, we obtain
! _ In I
AN I Min [ M
¢i(n) 6 M,

> exp {—017Mﬁn(”ﬂ,n —1)* — ¢19log Mz,n} (3.19)

) + g(Vl,A)Ml%A - g(%,n)Mﬁn + ﬁl,AMl??A - €l,an??n}

for some positive constants c¢7 and ¢19. Substituting this in (3.17) and using

2
Vin o
ng? = LM, (1 = 1, (320)

we get:

QU > (exp{—chl‘?n(%’n —1)*—cyolog M, } — e_”52/4> oi(n) (3.21)

2
Yin o a lo M,n
= (1 — exp {Ml?:n <—1l—76(7l,n - 1)2 1 + Cl7(7l,n — 1) + C19 A;gwgl ) })

In
cexp { —cir M, (i — 1)® = ciglog My, } u(n).

We observe: there is a positive constant ci6(a) (sufficiently small) such that the assump-
tions M, > ¢; and 0 < y;,, — 1 < ¢6(cv) imply

2
3 Tin 201 a log My
M}, (—E(vz,n — D™ 4 (e — )%+ crg 7, < 1. (3.22)
Note that cy7(v,, —1)* + C19Ml;f’ log M, is bounded by a constant and (7, — 1)**~! can
be made arbitrarily large by choosing ¢16(a) sufficiently small because 2 — 1 < 0. Hence,
by (3.21),

Qi = eXp{_CNMl%n(/yl,n —1)* = cglog M, — L}u(n), (3.23)
and thus we get the claim (3.15) for some constant cyg > ¢19.
([
We combine the upper and lower de-Poissonization estimates:
Theorem 3.3 As M;,, — oo and v, \, 1 (independently of each other),
l(}\gig:” — —é. (3.24)

More precisely, we have the following speed of convergence: for every fived o €]0,1/2],
there exist positive constants csg, Co1, C22, and coz(a) such that for all natural numbers
[ <nwithl <y, <1+cys(a) and M, > cy the following holds:

logq, 1
g4, T

3/2
. 3.25

< cpo(Yin — 1) + cn M, )

)

12



Proof of Theorem 3.3. The theorem is an immediate consequence of the Lemmata 3.1,
3.2, and Theorem 1.2.

|

Proof of Theorem 1.1. Given fixed numbers ¢ > 0 and 1 €]0, 1/3], we define I(n) implicitly
by the equation

/3= — 2v/n — l(n)

7 (3.26)
(In general I(n) ¢ N, however, this causes no serious problem.) Using
Mz?)(n),n = %tgnl_gn 2 50 (3.27)
and
1< Yigmym — 1, (3.28)
the claim (1.9) follows from Theorem 3.3.
(]

A Asymptotic behavior of the Tracy-Widom distri-
bution

Even though the lower tail asymptotics of the Tracy-Widom distribution seems to be well
known, we could not find a reference. Therefore we briefly describe it here.

Lemma A.1
t3
log F'(t) = exp (ﬁ + O(|t|)> fort — —o0 (A.1)

Proof. Recall that u denotes the solution of the Painlevé II equation given by (1.5). It
is known (see for example [4], Theorem 1.28) that there exist constants caq, co5 > 0 such
that

w?(x) < cyge™” for all x > —co5 (A.2)
@)= -2+ @ ith A
u”(z) = 5t - or all x < —cy5 wit :rililc)25 le(x)] < cog. (A.3)

By Definition (1.6) of the Tracy-Widom distribution,
log F((t) = — / (x — t)u?(x)dx. (A.4)
t
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We write the last integral for ¢ < —cy5 as a sum of two integrals splitting the domain of
integration into the two intervals [t, —cs5] and | — g5, 00[. Using (A.2) we obtain

< 024/ (|x] + |t])e "dz = O(|t]) ast — —o0. (A.5)

C25

‘ / Oo (z — t)u2(z)da

Using (A.3) we obtain

S T L (A6)

12
B (x—t)x
[z,

Baik, Deift, and Johansson’s nonstandard central limit theorem together with Lemma
A.1 imply (1.7). This asymptotics is also compatible with Theorem 3.3.

with

[I(t)] < + =0(Jt]) ast— —o0. (A7)

|

[,

xr2

Acknowledgment: Part of the research presented here was done while M.L. was
visiting EURANDOM. He thanks EURANDOM for its hospitality. For F.M.: This work
is part of the research programme of the ’Stichting voor Fundamenteel Onderzoek der
Materie (FOM)’, which is financially supported by the 'Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO)’.

References

[1] D. Aldous and P. Diaconis. Hammersley'’s interacting particle process and longest
increasing subsequences. Probab. Theory Related Fields, 103(2):199-213, 1995.

[2] David Aldous and Persi Diaconis. Longest increasing subsequences: from pa-
tience sorting to the Baik-Deift-Johansson theorem. Bull. Amer. Math. Soc. (N.S.),
36(4):413-432, 1999.

[3] J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the longest
increasing subsequence of random permutations. J. Amer. Math. Soc., 12:1119-1178,
1999.

[4] P.A. Deift and X. Zhou. Asymptotics of the Painlevé II equation. Comm. Pure Appl.
Math., 48:277-337, 1995.

[5] Percy Deift. Integrable systems and combinatorial theory. Notices Amer. Math. Soc.,
47(6):631-640, 2000.

[6] Jean-Dominique Deuschel and Ofer Zeitouni. On increasing subsequences of I.I.D.
samples. Combin. Probab. Comput., 8(3):247-263, 1999.

14



[7]

Ira M. Gessel. Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A,
53(2):257-285, 1990.

Piet Groeneboom. Ulam’s problem and Hammersley’s process. Preprint, 2000.

J. M. Hammersley. A few seedlings of research. In Proceedings of the Sixth Berkeley
Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley,
Calif., 1970/1971), Vol. I: Theory of statistics, pages 345-394, Berkeley, Calif., 1972.
Univ. California Press.

Kurt Johansson. The longest increasing subsequence in a random permutation and
a unitary random matrix model. Math. Res. Lett., 5(1-2):63-82, 1998.

B. F. Logan and L. A. Shepp. A variational problem for random Young tableaux.
Advances in Math., 26(2):206-222, 1977.

M. Lowe and F. Merkl. Moderate deviations for longest increasing subsequences: the
upper tail. Preprint, 2000.

Timo Seppaildinen. Large deviations for increasing sequences on the plane. Probab.
Theory Related Fields, 112(2):221-244, 1998.

Craig A. Tracy and Harold Widom. Level-spacing distributions and the Airy kernel.
Comm. Math. Phys., 159(1):151-174, 1994.

Stanislaw M. Ulam. Monte Carlo calculations in problems of mathematical physics.
In Modern mathematics for the engineer: Second series, pages 261-281. McGraw-Hill,
New York, 1961.

A.M. Vershik and S.V. Kerov. Asymptotics of the Plancherel measure of the sym-
metric group and the limiting form of Young tables. Soviet Math. Dokl., 18:527-531,
1977.

15



