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1. INTRODUCTION

Jaynes’ Maximum Entropy (MaxEnt) Principle is a well-known principle for inductive
inference [6, 8, 26, 16, 27, 5, 11, 20]. It has been applied to statistical and machine learning
problems ranging from protein modeling so stock market prediction [18]. One of its char-
acterizations (some would say ‘justifications’) is the so-called concentration phenomenon
[14, 15]. Here is an informal version of this phenomenon, in Jaynes’ words:

“If the information incorporated into the maximum-entropy analysis in-
cludes all the constraints actually operating in the random experiment,
then the distribution predicted by maximum entropy is overwhelmingly
the most likely to be observed experimentally.” [17, Page 1124]

For the case in which a prior distribution over the domain at hand is available, Van Camp-
enhout and Cover [27, 5] have proven the related conditional limit theorem. In Part T of
this paper, we provide a strong generalization of both the concentration phenomenon and
the conditional limit theorem. In Part IT we apply this. We first show how our theorems
can be used to construct universal models for exponential families, thereby establishing
a link with Rissanen’s Minimum Description Length Principle. We then extend an ex-
isting game-theoretic characterization of Maximum Entropy due to Topsge [26]. Finally
we combine the results of Part I with the theory of algorithmic (Martin-L6f/Kolmogorov)
randomness. This allows us to substantiate the often-heard informal claim that ‘adopt-
ing the Maximum Entropy distribution leads to good predictions if the data are random
with respect to the given constraint’ and to make precise informal notions like ‘all con-
straints actually operating in an environment’ as used in Jaynes’ statement above. We
end by discussing implications of our results in Part II for (sequential) prediction. We
identify circumstances in which Maximum Entropy distributions lead to almost optimal
predictions.

2. INFORMAL OVERVIEW

Before we dig into the mathematical details, let us give an informal overview of the
results of this paper.

Maximum Entropy. Let X be a random variable taking values in some set X', which
(only for the time being!) we assume to be finite: X' = {1,...,m}. Let P,@Q be distribu-
tions for & with probability mass functions p and gq. We define Hg(P), the Q-entropy of
P, as

Hy(P) = ~Epllog 2] = —D(PI|Q) 1)

q(x)

In the usual MaxEnt setting!, we are given a ‘prior’ distribution Q and a moment con-
straint:

E[T(X)] =t (2)

where T is some function 7' : X — R¥ for some k > 0. We define, if it exists, P to be the
unique distribution over X’ that maximizes the Q-entropy over all distributions (over X')

More general formulations with arbitrary convex constraints exist [6], but here we stick to constraints
of form (2).
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satisfying (2):

P= argmax Hg(P)= argmin D(P||Q) (3)
{P:Ep[T(X)]=t} {P:Ep[T(X)]=t}
The MaxEnt Principle then tells us that, in absence of any further knowledge about the
‘true’ or ‘posterior’ distribution according to which data are distributed, our best guess
for it is P. In practical problems we are usually not given a constraint of form (2). Rather
we are given an empirical constraint of the form

1 ¢ - .
- Z T(X;) =t which we always abbreviate to ‘T'(") = ¢’ (4)
n

i=1

The MaxEnt Principle is then usually applied as follows: suppose we are given an empirical
constraint of form (4). We then have to make predictions about new data coming from
the same source. In absence of knowledge of any ‘true’ distribution generating this data,
we should make our predictions based on the MaxEnt distribution P for the moment
constraint (2) corresponding to empirical constraint (4). P is extended to several outcomes
by taking the product distribution.

The Concentration Phenomenon and The Conditional Limit Theorem. Why
should this procedure make any sense? Here is one justification. If X is finite, and in
the absence of any prior knowledge beside the constraint, one usually picks the uniform
distribution for Q. In this case, Jaynes’ ‘concentration phenomenon’ applies?. It says that
for all € > 0,

Q (sup |- S 1(X) = P(X = )| > ¢ | T =§) = 0(c™") (5)
jeX n —1

for some constant ¢ depending on e. Here Q™ is the n-fold product distribution of @,
and I is the indicator function: Ij(z) = 1 if £ = j and 0 otherwise. In words, for
the overwhelming majority among the sequences satisfying the constraint, the empirical
frequencies are close to the maximum entropy probabilities. It turns out that (5) still
holds if ) is non-uniform. For an illustration we refer to Example 1. A closely related
result (Theorem 1, [27]) is the Van Campenhout-Cover conditional limit theorem?, which
says that
. 1 5 51
Jim Q1|70 =) = P'() (6)
nteN

where Q'(- | T(") = #) and P'(-) refer to the marginal distribution of X; under Q(- |
T =) and P

respectively.

2We are referring here to the version in [14]. The theorem in [15] extends this in a direction different
from the one we consider here.

3This theorem too has later been extended in several directions different from the one considered here
[7]; see Section 4.3.
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Our Results. Both theorems above say that for some sets A,
Q"(A|TM =1) = P"(A) (7)

In the concentration phenomenon, the set A C X™ is about the frequencies of individual
outcomes in the sample. In the conditional limit theorem A C X! only concerns the
first outcome. One might conjecture that (7) holds asymptotically in a much wider sense,
namely for just about any set whose probability one may be interested in. For examples
of such sets see Example 1. In Theorems 1, 2 and 3 we show that (7) indeed holds for a
very large class of sets; moreover, we give an explicit indication of the error one makes if
one approximates Q(A | T = t) by P(A). In this way we unify and strengthen both
the concentration phenomenon and the conditional limit theorem. To be more precise, let
{A,}, with A; C X’ be a sequence of ‘typical’ sets for P in the sense that P"(A,) goes to
1 sufficiently fast. Then broadly speaking theorems 1 and 2 show that Q" (A, | T = t)
goes to 1 too, ‘almost’ as fast as 15”(An) Theorem 3, our main theorem, says that, if m
is an arbitrary increasing sequence with lim, o, m/n = 0, then for every (measurable)
sequence {A,,} (i.e. not just the typical ones), with A,, C X™, P"(A,) — Q"(An |
T() = t). Then, in part II of the paper, we first connect this to the notion of ‘universal
models’ as arising in the MDL (Minimum Description Length) approach to inductive
inference. We next show in what sense our strong concentration phenomena really provide
a ‘justification’, not just a characterization, of MaxEnt. We show first (Theorem 4) that

our concentration phenomenon implies that the MaxEnt distribution P uniquely achieves
the best minimax logarithmic loss achievable for sequential prediction of samples satisfying
the constraint. We also show (Theorem 5) that for sequences that are algorithmically
random relative to the constraint, P achieves good loss also for loss functions other than
the logarithmic loss.

3. MATHEMATICAL PRELIMINARIES

The Sample Space. From now on we assume a sample space X C R’ for some [ > 0
and let X be the random vector with X (z) = z for all z € X. We reserve the symbol @
to refer to a distribution for X called the prior distribution (formally, @ is a distribution
over (X,0(X)) where o(X) is the Borel-o-algebra generated by X). We will be interested
in sequences of i.i.d. random variables X1, X5, ..., all distributed according to 2. When-
ever no confusion can arise, we use @ also to refer to the joint (product) distribution of
XieNX;. Otherwise, we use Q™ to denote the m-fold product distribution of ). The
sample (X1,...,X,,) will also be written as X (™),

The Constraint Functions 7. Let T' = (T}), ..., Tj) be a k-dimensional random vector
that is o(X)-measurable. We refer to the event {z € X | T'(z) = t} both as ‘T'(X) = ¢’
and as ‘T = . Similarly we write T; = t as an abbreviation of T(X;) = ¢ and T
as short for (T(X1),...,T(X,)). The average of n observations of T will be denoted by
T :=n~ 13"  T(X;). We assume that the support of X' is either countable (in which
case the prior distribution () admits a probability mass function) or that it is a connected
subset of R! for some I > 1 (in which case we assume that @ has a bounded continuous
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density with respect to Lebesgue measure). In both cases, we denote the probability mass
function/density by ¢g. If X' is countable, we shall further assume that T is of the lattice
form (which it will be in most applications):

Definition 1. [10, Page 490] A k-dimensional lattice random vector T' = (T}, ..., Tiy))
is a random vector for which there exists real-valued by,...,by and hq,...,h; such that,
for1 <j <k, VoeX:Tyx) €{bj+sh; |seN}. Wecall the largest h; for which this
holds the span of Tj;).
If X is continuous, we shall assume that 7' is ‘regular’:

Definition 2. We say a k-dimensional random wvector is of regular continuous form if
its distribution under Q@ admits o bounded continuous density with respect to Lebesque
measure.

Maximum Entropy. Throughout the paper, log is used to denote logarithm to base 2.
Let P, @ be distributions for X. We define Hg(P), the Q-entropy of P, as

Hq(P) = -D(P[|Q) (8)

This is defined even if P or () have no densities, see [6]. Assume we are given a constraint
of form (2), i.e. Ep[T(X)] =t. Here T = (Tpyy,..., Tig)), t = (fu, - - tgg)- We define, if
it exists, P to be the unique distribution over X that maximizes the Q-entropy over all
distributions (over (X,o(X))) satisfying (2). That is, P is given by (3). If Condition 1
below holds, then P exists and is given by the exponential form (9), as expressed in the
proposition below. In the condition, the notation ¢Tb refers to the dot product between a

and b.
Condition 1: There exists a 3 € R* such that Z(8) = Joex exp(—BTT(2))dQ(x) is
finite and the distribution P with density (with respect to Q)

1 5T
~ — —B1T(x)
Bz) = —=c 9)
Z(p)
satisfies E5[T(X)] = t.

Proposition 1 ([6]). Assume Condition 1 holds for Constraint (2). Then it holds for
only one B € R* and inf {D(P||Q) | P : Ep[T(X)] =1} is attained by (and only by) the
P given by (9).
If Condition 1 holds, then ¢ determines both B and P. In our theorems, we shall sim-
ply assume that Condition 1 holds. A sufficient (by no means necessary!) requirement
for Condition 1 is for example that @ has bounded support; see [6] for a more precise
characterization. We will also assume in our theorems the following natural condition:

Condition 2: The ‘T-covariance matrix’ 3 with %;; = E[TiTi;] — EplTy | EpTi]

is invertible.

Y. is guaranteed to exist by Condition 1 (see any book with a treatment of exponential
families, for example, [19]) and will be singular only if either ¢; lies at the boundary of
the range of Tj; for some j or if some of the T}; are affine combinations of the others.
In the first case, the constraint T; = fj can be replaced by restricting the sample space
to {& € X | Tjj(z) = ¢;} and considering the remaining constraints for the new sample
space. In the second case, we can remove some of the 7; from the constraint without
changing the set of distributions satisfying it, making 3 once again invertible.
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4. PART I: THE CONCENTRATION THEOREMS

4.1. The Concentration Phenomenon for Typical Sets.

Theorem 1. (the concentration phenomenon for typical sets, lattice case)
Assume we are given a constraint of form (2) such that T is of the lattice form and
h = (h1,...,hy) is the span of T and such that conditions 1 and 2 hold. Then there exists
a sequence {c;} satisfying
k
. Hj:l h;

lim ¢, = ——————

n—00 (2m)k det X
such that

(1) Let Ay, Az, ... be an arbitrary sequence of sets with A; C X'. For all n with
Q(T, =1t) > 0, we have:

P(Ap) > n~%2c,Q(A, | T =1). (10)
Hence if B1, By, ... is a sequence of sets with B; C X' whose probability tends to 1 under P

in the sense that 1 — P(By,) = O(f(n)n"%/2) for some function f : N = R; f(n) = o(1),
then Q(B,|T™ =t) tends to 1 in the sense that 1 — Q(B,|T™ = t) = O(f(n)).
(2) If for alln, A, C {z(™ | n=' 20 T(x;) =t} then (10) holds with equality.

Theorem 1 has applications for coding/compression, Minimum Description Length in-
ference and prediction. These are discussed in Section 5. The proof of Theorem 1 is in
Appendix A. Tt is based on the ‘local’ central limit theorem for lattice random variables,
which says that the probability mass functions (rather than just the distribution functions)
of properly scaled sums of k-dimensional random vectors converge to the k-dimensional
normal distribution. The original derivation of the concentration phenomenon [14] used
Stirling’s approximation of the factorial rather than the local central limit theorem; the
connection to the present Theorem 1 is in Section 4.3 below.

Example 1. The ‘Brandeis dice example’ is a toy example frequently used by Jaynes
and others in discussions of the MaxEnt formalism [14]. Let X = {1,...,6} and X be the
outcome in one throw of some given die. We initially believe (e.g. for reasons of symmetry)
that the distribution of X is uniform. Then Q(X = j) = 1/6 for all j and Eg[X] = 3.5.
We are then told that the average number of spots is E[X] = 4.5 rather than 3.5. As
calculated by Jaynes, the MaxEnt distribution P given this constraint is given by

(5(1),...,p(6)) = (0.05435,0.07877,0.11416, 0.16545, 0.23977, 0.34749). (11)

By the Chernoff bound, for every j € X, every ¢ > 0, P(|In~' 0, L;(X;) — p(4)| >
€) < 2exp(—nc) for some constant ¢ > 0 depending on €; here [;(X) is the indicator
function for X = j. Theorem 1 then implies that Q(|n"1 Y0 | I;(X;) — p(j)] > €|T™ =
f) = O(y/ne~"¢) = O(e") for some ¢ > 0. In this way we recover Jaynes’ original
concentration phenomenon (5): the fraction of sequences satisfying the constraint with
frequencies close to MaxEnt probabilities p is overwhelmingly large. Suppose now we
receive new information about an additional constraint: P(X = 4) = P(X = 5) =
1/2. This can be expressed as a moment constraint by E[(I4(X), I5(X))T] = (0.5,0.5)".
We can now either use P defined as in (11) in the réle of prior @ and impose the new
constraint E[(I4(X),I5(X))*] = (0.5,0.5)T, or use uniform @ and impose the combined
constraint E[T] = E[(T[I],T[Q},T[g,})T] = (45,05,05)T, with T[H = X, T[Z] = I4(X),T[3] =
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I5(X). In both cases we end up with a new MaxEnt distribution p(4) = p(5) = 1/2.
This distribution, while still consistent with the original constraint E[X] = 4.5, rules out
the vast majority of sequences satisfying it. However, we can apply our concentration

phenomenon again to the new MaxEnt distribution P. Let Z; jr. denote the event that

1 w— =l (X (X
|_le(Xi) _ Zz_l 5_(1 z) ]( z+1)| S €
s Zz‘:l Ij’(Xi)

According to ﬁ, we still have that X, Xs,... are i.i.d. Then by the Chernoff bound, for
each € > 0, for 5,5 € {4,5}, IB(Ij,j/’e) is exponentially small. Theorem 1 then implies
that Q"(Z; . | T™ = (4.5,0.5,0.5)T) is exponentially small too: for the overwhelming

majority of samples satisfying the combined constraint, the sample will look just as if
it had been generated by an i.i.d. process, even though Xi,..., X, are obviously not

completely independent under Q"(-|T(™) = (4.5,0.5,0.5)T).

For completeness, we now give a version of Theorem 1 for continuous-valued random
vectors. Unfortunately, we cannot use the proof technique used above to compare P(A;,)
to Q(.A,AW = 1) in the continuous case. The reason is that T(") = f is a set of Q-

measure 0 (more on this in Section 4.2). Instead, we will condition on 7™ being in a
small ball around ¢ which we will let shrink to 0 radius as n increases. For ¢t € RF, let
B.(t) := {t € R* | sup, |t — t~m| < €}

Theorem 2. (the concentration phenomenon for typical sets, continuous case)
Assume we are given a constraint of form (2) such that T is of regqular continuous form
and such that Conditions 1 and 2 hold. Fixz some h > 0 and let €, := h/n. Then there
exrists a sequence ci,Ca, ... satisfying

~ hk
lim ¢, =e 28
n—00 (2m)k det &
such that
(1) Let Ay, As,... be an arbitrary sequence of (measurable) sets with A; C X*. For all
n we have: .
P(A,) > 072, Q(A, | TM € Be, (). (12)

(2) If for all n, A, C {2 | n= 230 T(x;) € B, ()} then
lim P(A,) < 2Pln=+2¢,Q(A, | T € B, (¥)).

n—oo
4.2. The Strong Concentration Phenomenon. There are a few limitations to The-
orems 1 and 2: (1) we must require that P(A;,) goes to 0 or 1 as n — oo; (2) the
continuous case needed a separate statement, which is caused by the more fundamental

(3) the proof technique used cannot be adapted to point-wise conditioning on T(") = ¢
in the continuous case. Theorem 3 overcomes all these problems. The price we pay is

that, when conditioning on T(™) = ¢, the sets A,, must only refer to Xi,...,X,, where
m is such that m/n — 0; for example, m = [n/logn] will work. Whenever we write

Q(- | T =t) or P(- | T = t) we refer to the continuous version of these quantities.
These exist by Proposition 2 in Appendix B. Recall that (for m < n) Q™(- | T = ?)
refers to the marginal distribution of X1,..., X,, conditioned on T() = {. It is implicitly
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understood in the theorem that in the lattice case, n ranges only over those values for
which Q(T(™ = %) > 0.
Theorem 3. (Main Theorem: the Strong Concentration Phenomenon/ Strong
Conditional Limit Theorem) Let {m;} be an increasing sequence with m; € N, such
that limy, oo my/n = 0. Assume we are given a constraint of form (2) such that T is of
the regular continuous form or of the lattice form and suppose that Conditions 1 and 2 are
satisfied. Then as n — co, QM (- | T(M) = 1) converges weakly* to P™(-).

The proof (using the same key idea, but involving much more work than the proof of
Theorem 1) is in Appendix B.

4.3. Related Results. Theorem 1 is related to Jaynes’ original concentration phenom-
enon, the proof of which is based on Stirling’s approximation of the factorial. Another
closely related result (also based on Stirling’s approximation) is in Example 5.5.8 of [21].
Both results can be easily extended to prove the following weaker version of Theorem 1,
item 1: P(A,) > n 1¥le,Q(A,|T™ = i) where ¢, tends to some constant. Note that
in this form, the theorem is void for infinite sample spaces. It also cannot be applied to
prove (weaker) analogues of Theorem 2. In [15] the original concentration phenomenon
is extended in a direction somewhat different from Theorem 1; it would be interesting to
study the relations.

Theorem 3 is similar to the original ‘conditional limit theorems’ (Theorems 1 and 2) of
Van Campenhout and Cover [27]. We note that the preconditions for our theorem to hold
are weaker and the conclusion is stronger than for the original conditional limit theorems:
our theorem is a generalization of theirs which supplies us with an explicit bound on how
fast m can grow as n tends to infinity. The conditional limit theorem was later extended
by Csiszar [7]. His setting is considerably more general than ours (e.g. allowing for
general convex constraints rather than just moment constraints), but his results also lack
an explicit estimate of the speed at which m can increase with n. Csiszar [7] and Cover and
Thomas [5] (where a simplified version of the conditional limit theorem is proved) both
make the connection to large deviation results, in particular Sanov’s theorem. As shown
in the latter reference, weak versions of the conditional limit theorem can be interpreted
as immediate consequences of Sanov’s theorem.

5. PART II: APPLICATIONS

For simplicity we restrict ourselves in this section to countable sample spaces X and we
identify probability mass functions with probability distributions. Subsections 5.1 and 5.2
make frequent use of coding-theoretic concepts which we now briefly review (Sections 5.3
and 6 can be read without knowledge of coding/information theory).

Recall that by the Kraft Inequality [5], for every prefix code with lengths L over sym-
bols from a countable alphabet X, there exists a (possibly sub-additive) probability mass
function p over X™ such that for all z(™ € X", L(z™) = —logp(z™). We will call this p
the ‘probability (mass) function corresponding to L’. Similarly, for every probability mass
function p over X" there exists a (prefix) code with lengths L(z(™) = [—logp(z(™)].
Neglecting the round-off error, we will simply say that for every p, there exists a code with

4That is, for all sequences {A.} where each A,, is a measurable continuity set A, C X™, Q™" (Am,, |

T =1i) — P™ (Am,). A ‘continuity set’ A,, is a set such that the P™-probability of the boundary of
the set A, is 0; in our case, all measurable sets A,, are continuity sets. See Theorem 2.1 of [4].
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lengths L(z(™) = —log p(z(™). We call the code with these lengths ‘the code correspond-
ing to p’. By the information inequality [5], this is also the most efficient code to use if
data X were actually distributed according to p.

We can now see that Theorem 1, item 2, has important implications for coding. Con-
sider the following special case of Theorem 1, which obtains by taking A, = {x(”)} and
logarithms:

Corollary 1. (the concentration phenomenon, coding-theoretic formulation)
Assume we are given a constraint of form (2) such that T is of the lattice form and
h = (h1,...,hg) is the span of T and such that conditions 1 and 2 hold. For all n, all z()
with n=t Y | T(z;) = t, we have

—log p(z™) =
n k
1 -k
—logq(z™ | = g T(X;)=t)+ 3 log 2mn + log Vdet ¥ — g loghj +o(1) =
n

1 ¢ -k
—log q(z™ | " ZT(Xi) =)+ 3 logn + O(1). (13)
i=1

In words, this means the following: let (™ be a sample distributed according to Q,
Suppose we are given the information that n=1>"" | T'(z;) = t. Then, by the information
inequality, the most efficient code to encode z(™ is the one based on ¢(-|T() = %) with
lengths — log ¢(z(™ | T(™) = ). Yet if we encode (™ using the code with lengths — log j(-)
(which would be the most efficient had (™ been generated by p) then the number of extra
bits we need is only of the order (k/2)log n. That means, for example, that the number of
additional bits we need per outcome goes to 0 as n increases. These and other consequences
of Corollary 1 will be exploited in the next three subsections.

5.1. Connection to MDL, Stochastic Complexity, Two-Part Codes. Universal
Models play a fundamental roéle in modern versions of the MDL (Minimum Description
Length) approach to inductive inference and model selection [2, 24]. For details about
universal models and codes as well as all coding-theoretic concepts appearing in this sec-
tion, we refer to [2]. The material in the present section is not needed to understand later
sections.

Let My, = {Py(-) | 6 € Ty}, where 'y, C R¥ is a k-dimensional parametric class of i.i.d.
distributions for sample space X. Let C' be a code for alphabet X", with lengths Lo and
define the regret Ro(-) such that for all z("),

Lo(z™) = — IOgPé(;p(M)(ﬂE(n)) + Ro(z™),

where 0(z(™) is the (ML) Maximum Likelihood estimator in M, for data (™), assumed to
exist. Roughly speaking, a universal code for sequences of length n is a code C such that
the regret r¢(z(™) is small uniformly for all or (in some sense) ‘most’ (™). A universal
model is the probability distribution corresponding to a universal code.

It is well-known [2, 24] that, under mild regularity conditions, there exist universal
codes C for My, with lengths Lo (z(™) = — logpé(m(n))(x(”)) + glogn + O(1), leading to
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regret
Re(z™) = glogn%—O(l) (14)

Usually (14) holds uniformly for all sequences 1,9, .... (we sometimes need to restrict
ourselves to a compact subset of I'y in order to make (14) uniformly true). It is also
known that (14) is in some sense (up to O(1)) the best regret that can be achieved
[22, 23]. Therefore, every code that achieves (14) is usually called a ‘universal code’,
and its corresponding distribution ‘universal model’. Until very recently there were four
known ways to construct a universal model for a given class My: the two-part code, the
Bayesian mixture-code , the Shtarkov-normalized-maximum-likelihood (NML) code and
the predictive or ‘prequential’ code, see [2]. These four methods, while superficially very
different, all share the same asymptotic lengths (14). Under further regularity conditions
on My, and if the code C that is used is allowed to depend on sample size n, (14) the
Shtarkov-NML and two-part codes can be refined to give [2]:

Rc(x(n)) = glog% + log/F Vdet I(0)df + o(1), (15)
k

where I(0) is the (expected) Fisher information matrix of 6. Quite recently, Rissanen [25]
showed that the regret (15) is the best that can be achieved under at least three different
definitions of optimality. L¢(z(™) = — logpé(x(n))(ac(”)) + Re(z™), with Ro (™) given
by (15), is called the ‘stochastic complexity of z(™) relative to M, .

In the same recent reference [25], Rissanen implicitly introduced a new type of universal
code that achieves regret (15). We illustrate this kind of code for the simple case where M
is a k-dimensional exponential family with finite sample space X'. Let then My = {Py(-) |
6 € I't} be a k-parameter exponential family for X with I'y the mean-value parameter
space, ¢ the background measure and sufficient statistic T' = (Tjy), ..., Tj). Then py = p
with p given by (9), and E,,[T] =t = 6.

We will encode (™ in a way similar to (but, as we shall see, still essentially different
from) the two-part coding technique [2]: we first code (describe) a distribution for X™ and
then code the data ‘with the help of’ this distribution. In our case, for data (™), we first
encode the ML estimator é($(”)) using some code Cj with lengths L;. We then encode
2™ itself using some code Cy, making use of the fact that its ML estimator is 6(z("™).
By the Kraft inequality this can be done using Lo(z(™ | 8(z(™)) = —log q(2™ | T(") =
0(z™)) = —log q(z™ | §((™)) bits. This leads to a code C* that allows us to encode all
2™ € X" by concatenating the codewords of f(z(™) (under C1) and z(™|0(z(™) (under
Cy).

Since X is finite, n =" Y1 Tpj1(
we can choose Cp such that Ll(é
Ls(-|-) has lengths

X;) can only take on n - |X| distinct values. Therefore,
(z™)) = klogn + klog|X|. By Corollary 1 the code

~

k
Lo(a™) | 0(a™)) = ~10g Py () — 5 logn = O(1). (16)

Summing L; and Lo, we see that the total code length L*(z™) for arbitrary z™ is
bounded by & logn — logpé(w(n))(m(”)) + O(1). Therefore, the regret satisfies (14) which
suggests that C* is a universal code for Mj. Indeed, we can refine C* by changing C
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as follows. Let T'™ := {# el | IzW ean . 9= 6(z(™)}. Rissanen [25] defined the
k
(n)

canonical prior wn(é) as the following probability mass function over I',":

_ pp(T™ =0)
2 per(” po(T™) = 0)

For a sample of length n, we let C; be the code with lengths L;(0) = —logw,(#), and
we leave Cy unchanged. Then (after some algebra) L*(z(™) = —logpé(w(n))(x(")) + ¢,

wp(6) :

(17)

where ¢, is a ‘constant’ (still depending on n, but not depending on z(™). Moreover, C*
is complete (i.e. it satisfies the Kraft inequality with equality). Therefore it must be a
universal code achieving regret (15). By inspecting (13) and realizing that for exponential
families, the Fisher information I(#) is the inverse of X, the T-covariance matrix of py
[19], one finds (after quite some algebra) that asymptotically, for 6 € F;n), wy, becomes a
‘discretized Jeffreys’ prior’

N 1(0)
2pert) V 1(6)

We will omit the details of the argument. Note that the 2-part code described above is
quite different from the usual 2-part code. In that approach, instead of the ML estimator
itself one encodes the ML estimator truncated to a coarser precision of (1/2)logn + O(1)

bits per parameter. Then data z(™) are encoded using the code based on PGy where 6

wn (6)

is the truncated version of 6. Instead of using the unconditional truncated pg, we use the
conditional, but un-truncated pé(m(n))(-|m = 0(z™)) = q(|m = 0(z™)).

Other relations between MDL and Maximum Entropy have been investigated by Feder
[9] and Li and Vitanyi [21]. In the next section we will see how Theorem 1 leads to yet
another relation between minimum code length and Maximum Entropy.

5.2. Empirical Constraints and Game Theory. From now on we will only work with
countable X. The o-algebra of such & is always tacitly taken to be the power set of X.
The o-algebra thus being implicitly understood, we can define P(X) to be the set of all
probability distributions over X. For a product X = Xx;enX of a countable sample
space X, we define P(X>°) be the set of all distributions over the product space with the
associated product o-algebra.
In [26, 11], a characterization of Maximum Entropy distributions quite different from
the present one was given. It was shown that, under regularity conditions,
H,(p) = su inf F,-[—1lo @:inf su E,|—1lo X 18
G A T G MR T

where both p and p* are understood to be members of P(X) and H,(p) is defined as in

(1). By this result, the MaxEnt setting can be thought of as a game between Nature, who

can choose any p* satisfying the constraint, and Statistician, who only knows that Nature

will choose a p* satisfying the constraint. Statistician wants to minimize his worst-case

expected logarithmic loss (relative to ¢), where the worst-case is over all choices for Nature.

It turns out that the minimax strategy for Statistician in (18) is given by p. That is,
p = arg inf sup Ep-[—log %]

(19)
P p* B« [T]=t (z)
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This gives a decision-theoretic justification of using MaxEnt probabilities which seems
quite different from our concentration phenomenon. Or is it? Realizing that in practical
situations we deal with empirical constraints of form (4) rather than (2) we may wonder
what distribution p is minimax in the empirical version of problem (19). In this version
Nature gets to choose an individual sequence rather than a distribution®. To make this
precise, let

n
Co={z™ e X" | n™") T(x;) =1} (20)
i=1
Then, for n with C,, # (), p,, (if it exists) is defined by
pn = arg inf sup — logZM = arg sup inf P15 %n) (21)
peEP(X™) znec, Q($17 v 73371,) pEP(X™) z(mec, q(xla v 7$n)

pn can be interpreted in two ways: (1) it is the distribution that assigns ‘maxi-
mum probability’ (relative to ¢) to all sequences satisfying the constraint; (2) since
—log(p(z™) /q(z™)) = S (= logp(milz1, ..., 1) + log q(xi|z1, ..., zi-1)), it is also
the p that minimizes cumulative worst-case logarithmic loss relative to ¢ when used for
sequentially predicting x1,...,Z,.

One immediately verifies that p, = ¢"*(- | T(® = #): the solution to the empirical
minimax problem is just the conditioned prior, which we know by Theorems 1 and 3 is in

some sense very close to p. However, for no single n, p is exactly equal to ¢"(- | T = ).
Indeed, ¢"(- | T(™) = t) assigns zero probability to any sequence of length n not satisfying
the constraint. This means that using ¢ in prediction tasks against the logarithmic loss
will be problematic if the constraint only holds approximately (as we will discuss in more
detail in the journal version of this paper) and/or if n is unknown in advance. In the

latter case, it is impossible to use (- | T = #) for prediction without modification. The
reason is that there exist sequences (") of length ny > n; satisfying the constraint such
that ¢(z(">)|z(™) € C,,) = 0. We may guess that in this case (n not known in advance),
the MaxEnt distribution p, rather than ¢(-|T(" = #) is actually the optimal distribution
to use for prediction. The following theorem shows that this is indeed so:

Theorem 4. Let X be a countable sample space. Assume we are given a constraint of
form (2) such that T is of the lattice form, and such that Conditions 1 and 2 are satisfied.
Let Cy, be as in (20). Then the infimum in

1 ..
inf sup sup  — — logw (22)
PEP(X ) {n:Cn#0} z(Mec, n Q(flfl,---,xn)
is achieved by the Mazimum Entropy distribution p, and is equal to Hy(p).
Proof. Let C = U;2,C;. We need to show that for all n, for all " e ¢,
1 p(z(™) 1 (n)
H,(p) = ——log ™) = inf sup sup — — log p™) (23)
no 7 q(a™)  peP(X) (e, 40} asmee, T q(z™)

Equation (23) implies that p reaches the inf in (22) and that the inf is equal to Hy(p).
The leftmost equality in (23) is a standard result about exponential families of form (9);
see for example, [12, Proposition 4.1] or [24]. To prove the rightmost equality in (23), let

5To our knowledge, we are the first to analyze this ‘empirical’ game.
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(™ ¢ C,. Consider the conditional distribution ¢(- | (™ € C,). Note that, for every
distribution py over X", po(z(™) < q(z™ |z € C,) for at least one z(™ € C,. By
Theorem 1 (or rather Corollary 1), for this (™ we have

Loop(e™) 1 pe™) Kk 1
——log———~=> > —=1 ——1 - 0(—
n 08 q(zM) = n o8 q(z(M)  2n e (n)’
and we see that for every distribution py over X'*°,
1 (n) 1 5((m)
sup sup — —log M > sup sup — —log p™)

(a0} amec, T q(@™) T ozt amee, T q(z™)’

which shows the rightmost equality in (23). O

5.3. Maximum Entropy and Algorithmic Randomness. In the algorithmic theory
of randomness, [21], one (broadly speaking) identifies randomness of individual sequences
with incompressibility of such sequences. In this section we show that a sequence that
is ‘random relative to a given constraint’ is ‘almost’ random with respect to the MaxEnt
distribution P for the constraint. The reader who is not familiar with Martin-Lof ran-
domness is urged to move on to Theorem 5 which demonstrates the consequences of this
fact for prediction based on MaxEnt distributions.

Throughout this section we assume X’ to be finite and @) to be uniform, so maximizing
the entropy reduces to the ‘original’ Maximum (Shannon) Entropy formalism. Let U :=
U, X% For x,y € U, K(x|y) will stand for the prefix Kolmogorov complexity of sequence
x conditional on y; K (x) stands for K (x|\) where X is the empty sequence. For a finite set
C C U, K(x]|C) is the prefix complexity of x conditional on x € C. Kolmogorov complexity
is defined here with respect to some fixed universal reference prefix Turing Machine. For
precise definitions of all these concepts, see Section 3.1 and Exercise 2.2.12. of [21].

Theorem  (Theorem 3.6.1 and Corollary 4.5.2 of [21]) An infinite sequence
(21,%9,...) € X is Martin-Lof random with respect to the uniform distribution iff there
exists a constant ¢ such that for all n, K(x1,...,zy) > n — c.

Here, we take this characterization of Martin-Lof randomness as basic. We will extend
the notion of randomness to sequences conditional on constraints in an obvious manner.
Let {C,} be a sequence of constraints, where C,, C X" (we identify constraints with the
set of sequences satisfying them). The theorem above suggests the following definition:

Definition 3. An infinite sequence (z1,z2,...) € X is called random with respect to
the sequence of constraints {Cpn} (relative to the uniform distribution) iff there exists a
constant ¢ such that for all n with C, # 0, we have K (z™|C,) > log|Cyu| — c.

In our situation, the constraint is of form (20). Because of this simple form and since A’ is
finite, there exists a fixed-length program that, for each n, when input (n,x) with x € X",
outputs 1 iff x € C,, and 0 otherwise. Therefore the definition reduces to (z1,z2,...) is
random, iff 3c¥n : Cp #0 = K(z™|n) > log|C,| — c.

By Theorem 1, if (z1,x2,...) is random with respect to the constraints {C,}, then for
all (" € C,,

K" n) > log|Cal — O(1) = ~ log p(a™) — & logn — O(1). (24)
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In words: (see Corollary 4.5.2 of [21]) If (z1,z2,...) is random with respect to the con-
straints {Cn} (relative to the uniform distribution) then (zy,x2,...) is ‘almost’ Martin-Lof
random with respect to the mazximum entropy distribution p.

Equation 24 suggests that for the overwhelming majority of sequences satisfying the
constraint (namely, those that are random with respect to the constraint), sequentially
predicting outcomes in the sequence on the basis of the MaxEnt distribution leads to almost
optimal results, no matter what loss function we use. The following theorem shows that
this is indeed so. It holds for general prior distributions @) and is proved in Appendix C.
Consider a loss function LOSS : X x A — [0, 00| where A is some space of predictions or

decisions. A prediction (decision) strategy §* is a function 6* : U X" — A. §*(z1,...,Ty)
is to be read as ‘the prediction/decision for X, ; based on initial data (z1,...,z,). We
assume

Condition 3. X is finite. LOSS(z;+) is continuous in its second argument for all z € X.
A is a compact convex subspace of R for some [ > 0.

Under this condition, there exists at least one § attaining inf £/5[L0SS(X; §)]. Fix any such
optimal (under P) decision and denote it 4.
Theorem 5. Suppose that T is of lattice form and suppose Conditions 1, 2 and 3 hold.

Then (letting n reach over all numbers such that Q(T™) = t) > 0), for all decision
strategies 6%, for all € > 0, there exists a ¢ > 0 such that

Q(%(Z LOSS(7;;0) — Y LOSS(2330% (21,...,mi-1))) > € | T =) =O0(e *"). (25)
=1 =1

6. CONSEQUENCES FOR PREDICTION

We summarize the implications of our results for prediction of individual sequences
based on Maximum Entropy distributions. In this section X is finite and ) stands for
the uniform distribution. Suppose then you have to make predictions about a sequence
(21,...,2n). You know the sequence satisfies the given constraint (i.e. for some n, (™ ¢
Cn, with C,, as in (20)), but you do not know the length n of the sequence in advance. We
distinguish between the special case of the log loss function LOSS(z;p) = —log p(z) and
the general case of arbitrary (computable) loss functions.

(1) (log loss) The MaxEnt distribution p is worst-case optimal with respect to log loss,
where the worst-case is over all sequences of all lengths satisfying the constraint.
This is a consequence of Theorem 4.

(2) (log loss) Whatever sample (™) € C, arrives, the average log loss you make per
outcome when you predict outcomes using p is determined in advance and will be
exactly equal to Hy(p) = Ej[—log p(X)]. This is also a consequence of Theorem 4.

(3) (log loss) For the overwhelming majority of sequences satisfying the constraint,
p will be asymptotically almost optimal with respect to log loss in the following
sense: the excess loss of p over every other prediction strategy (including strategies
depending on past data) is at most a sub-linear function of n. This is a consequence
of Theorem 5. In Example 1, an example of an exceptional sequence for which p
is not optimal would be any sequence consisting of 50% fours and 50% fives.



18 PETER GRUNWALD

(4) (general loss) For every regular loss function LOSS (satisfying Condition 3), pre-
dicting using s, (that is, acting as if the sample had been generated by p) leads to
almost optimal predictions for the overwhelming majority of sequences satisfying
the constraint, in the following sense: the excess loss of § over every other pre-
diction strategy is at most a sub-linear function of n. This is a consequence of
Theorem 5.

We stress that the fact that items (3) and (4) hold for the overwhelming majority of
sequences certainly does not imply that they will hold on actual, real-world sequences!
Often these will exhibit more regularity than the observed constraint, and then § is not
necessarily optimal any more.

There are two important points we have neglected so far: (1) in practice, the given
constraints will often only hold approximately. (2) the results of this paper have important
implications for Maximum Likelihood and Bayesian prediction of sequences based on model
classes that are exponential families [1]. The reason is that the Maximum Entropy model
for constraint E[T] = t is the Maximum Likelihood model for the (exponential family)
model class given by (9) for every sequence of data 2™ with n=2 37 T'(z;) = (see e.g.
[5] or [12]) . The connection will be further discussed in the journal version of this paper.
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APPENDIX A. PROOFS OF THE CONCENTRATION PHENOMENA FOR TYPICAL SETS

Theorem 1. (the concentration phenomenon for typical sets, lattice case)
Assume we are given a constraint of form (2) such that T is of the lattice form and
h = (h1,...,hy) is the span of T and such that conditions 1 and 2 hold. Then there exists
a sequence {c;} satisfying
k
. Hj:l h;

lim ¢, = ——————

n—00 (2m)k det X
such that

(1) Let Ay, Az, ... be an arbitrary sequence of sets with A; C X'. For all n with

Q(T,, =t) >0, we have:
P(Ay) > n 2, Q(A, | T =1). (26)

Hence if By, B, . .. is a sequence of sets with B; C X' whose probability tends to 1 under P
in the sense that 1 — P(B,) = O(f(n)n"*/2) for some function f : N — R; f(n) = o(1),
then Q(B,|T™ =t) tends to 1 in the sense that 1 — Q(B,|T™ = t) = O(f(n)).

(2) If for all n, Ap C {2 | n= 23" T(x;) =1} then (26) holds with equality.

Proof. We need the following theorem®:

6Feller gives the theorem only for 1-dimensional lattice random variables with E[T] = 0 and var[T] = 1;
extending the proof to k-dimensional random vectors with arbitrary means and covariances is, however,
completely straightforward: see XV.7 (page 494) of [10].
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Theorem. (‘local central limit theorem for lattice random variables’, [10], page
490) Let T' = (T}y), - - ., Tig)) be a lattice random vector and hy, ..., by be the coresponding
spans as in Definition 1; let Ep[T'(X)] = ¢ and suppose that P satisfies Condition 2 with
T-covariance matrix . Let X, Xo,... be i.i.d. with common distribution P. Let V be
a closed and bounded set in R*. Let v, vs,... be a sequence in V such that for all =,
P (T; —t)//n =wvy,) > 0. Then as n — oo,
k
Hj:l h’] \/ﬁ

Here RN is the density of a k-dimensional normal distribution with mean vector 4 = ¢ and
covariance matrix .

=vp) — R(v,) — 0.

The theorem shows that there exists a sequence dy,ds, ... with lim,,_,,, d,, = 1 such that,
for all n with P(3°" ,(T; —t) = 0) > 0,

nk/2 i (Ti—t)
k _P( = n =0) / k

T T

The proof now becomes very simple. First note that P(A, | T = §) = Q(A, | T(n) =
t) (write out the definition of conditional probability and realize that exp(— BT (x)) =
exp(—/ATt) = constant for all z with 7'(z) = £. Use this to show that

P(Ay) > P(A, T =) = P(A, | T = §) (T =7) (28)
= QA | T() = HP(T™) =1).

Clearly, with P in the role of P, the local central limit theorem is applicable to random

vector T. Then, by (27), P(T™ = i) = ([T}_, h;)/\/(27n)F det Xd,,. Defining ¢, :=
P(T(™) = §)n*/2 finishes the proof of item 1. For item 2, notice that in this case (28) holds
with equality; the rest of the proof remains unchanged. O

Theorem 2. (the concentration phenomenon for typical sets, continuous case)
Assume we are given a constraint of form (2) such that T is of regular continuous form
and such that Conditions 1 and 2 hold. Fix some h > 0 and let €, := h/n. Then there
exists a sequence cq,Ca, ... satisfying

~ hk
lim o = e 2"
n—00 (2m)k det X
such that
(1) Let A1, As, ... be an arbitrary sequence of (measurable) sets with A; C X'. For all
n we have:
P(An) 2 n " 2e,Q(An | TM) € B, (7). (29)

(2) If for all n, A, Qil:(") | nTI  T(x;) € Be,(£)} then lim, o0 P(A,) <
Bln=Fk2c, Q(A, | T € B, (1)).

Proof. The proof is completely analogous to the discrete case, except that now we use
the ‘local central limit theorem for continuous random variables’. The 1-dimensional case,
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along with a simple proof, can be found in [10] (Theorem 2, page 489). The general case
can be found in [3] (Theorem 19.1). We cite it explicitly:

Theorem. (uniform local central limit theorem for random variables in R”, [3])
Let T' = (T}y),- .-, Tj) be a random vector; let P be a distribution so that 7'(X) has a
bounded continuous density with respect to Lebesgue measure. let Ep[T(X)] = ¢ and
suppose that P satisfies Condition 2 with T-covariance matrix 3. Let X, Xo,... be i.i.d.

with common distribution P. Let P} be the distribution of W Then P has a

density p; and we have

lim sup |p; (¢) — X(¢)| = 0.

n—0o0 tERk
Here X is the density of a k-dimensional normal distribution with mean vector y = ¢ and
covariance matrix X. O

APPENDIX B. PROOF OF THEOREM 3

Before giving the proof, we first establish some facts about the conditional distributions
Q(- | T™M = ¢) and P(- | T = ). Recall that in the measure-theoretic framework,
these can be arbitrarily chosen for ¢ in a null set [28]. If we want to speak about these
quantities for arbitrary t, we need to make sure that continuous (in t) versions of the
conditional distributions exist; we then define the ‘canonical’ conditional distribution to
be the continuous version.

Proposition 2. Suppose T appearing in (2) is of reqular continuous form and such that
Condition 1 and 2 both hold. Then there exists an open ball B¢(t) around t such that, for

t € Be(t), there exists a continuous (in the weak topology) version of both Q(- | T(™ = t)
and P(- | T =t).

Proof. Condition 2 ensures that # lies in the interior of the range of T, so we can take

€o so that Be,(t) falls within this range. 7" has a bounded and continuous density (with

respect to Lebesgue measure) under Q. Tt follows that there exists a version of Q(:|T() =

t) such that for all ¢y € Be,(t), for every bounded continuous function g : X" — R,
Eqlg(X)|T™) = t] is given by a fraction of two Riemann-integrals which are uniquely
defined for each ¢g. It is then straightforward to show that, for this version of EQ[|W =
t], limy 4, Eglg(X)|T™ = t] = Eglg(X)|T™ = t,] for all ty € Be,(%). Since this holds for
all continuous bounded g, our version of Q(-|T(") = t4) is continuous in the weak topology;

see Theorem 2.1 of [4]. Existence of a continuous version of P(-|T(") = t) is shown in the
same way. 0O

We now restate and prove Theorem 3:

Theorem 3. Let {m;} be an increasing sequence with m; € N, such that lim,_,, my,/n =
0. Assume we are given a constraint of form (2) such that T is of the regular continuous
form or of the lattice form and suppose that Conditions 1 and 2 are satisfied. Then as

n — 00, Q™ (- | T(M = {) converges weakly to P (-).
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Proof. We give the proof only for the regular continuous case where ¥ = R and T = (T[l])
is 1-dimensional. All other cases have analogous proofs. For ease of notation, we omit the
subscript n from m, whenever n is clear from the context.

Note that there exists some function A : N — R with h(n) = o(1) such that we can write
m = nh(n). By the definition of weak convergence [4], it is sufficient to prove convergence

of the distribution functions of Q™ (:|T(™ = #) to P™. Le. we must show that for all
sequences {R;} with R; € R,

lim Q(X; < Ry,...,Xm <Rp |TM =1)=P(X; <Ry,...,Xm <Rn) (30)

n—00

Let us abbreviate R, := {(z1,22,...) € X* | z1 < Ry,...,2m < Rp}. The follow-
ing equalities both follow, with some work, by Proposition 2 and the definition of weak
convergence; we omit the details.

QRm | T = 1) = lim Q( m||Z i =) <e)=limP(R m||§; i =1 <e) (31)
7
The last equality is the analogue of (28) in Theorem 1. By definition, P(R, | | 31—, (T; —
)] <e) = pimm) / ﬁéden), where we abbreviated

pinum) . — m,|z L — 1) <€) (32)
plden) . |Z L —1)] <€) (33)

The strategy of the proof will be to rewrite Pé““m) and 15};18“) so that the local central
limit theorem can be applied to them both. In our previous theorems for ‘typical sets’,
we only had to apply the local central limit theorem to P}f‘e”); the fact that m/n — 0 as

p(num)

n — oo allows us to apply it to Py too. In Stage 2 we combine the results, take the

(num)

limits lim,,_, o lim,_sq }?(den) and by (31) the result will follow.
Stage 1. Let § > 0. We partltlon the sample space X = R™ into hyper-rectangles H,
which, when mapped to ‘T-space’ by the transformation T'(#) := {t™ € R™ | 3z(™) ¢
H : T(x1) = ti,...,T(zym) = tm}, become hyper-cubes with side length §. We define
ap = 0 and

ajy1 = inf{a|a>a;; |T(a) —T(a;)] =6} if >0 (34)

aj1 = supfa|a<aj; |[T(a)—T(aj)| =0} if 7 <O. (35)
If the inf in (34) does not exist, aj.1 := a; + 1. If the sup in (35) does not exist,
aj—1 := aj—1. Both T and X have a bounded continuous density with respect to Lebesgue-
measure, which implies that for all j € Z, a; > a;j—1 and that lim;_, ) a; = (—)oo.
Therefore we can cover X by the sets #(j) := (aj,aj41]. For j0™ = (ji,...,j5m) € Z™,
define H(5(™) := (aj,,aj,+1] X (aj,,ajy41] X ... X (aj,.,aj,,,]. Clearly, the sets #(5(™)
cover X™.
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Let Sy, := > (T; — t) and define

Sm = {(x1,32,...) € X | S| < (B(n))/*v/n —m}. (36)
We have

(num) R mSm,|Z P 1) <€) =

j(m)ezm = 1
> PHE™)NRm N Smsl Y (Ti—H+ ) (i —1)| <e+md) (37)
jm)czm i=m+1 1=1

where we have defined ¢; := (1/2)(T(aj,) +T(aj;+1)). The last line holds for all 6 > 0 (note
that we let H(-) depend on §). In particular for § = ¢/m? we get, letting s,,, := > 10, (t;—1),

P(num) > Z P(H(](m))ﬂRmmSm o Z (E—£)+Sm| < 6(1+m71)) =

Y PHGE™) N Rm N Sm)P |Z i =) +sml <e(l+m ) =

jmezm
> PHGE™) N Ry N Sn) P |Z D — 1) 4 sl < e(L+m™h). (38)
JmEzm ;s H(G)NSm A =1

We are now ready to apply the local central limit theorem (see Appendix A) to the right
hand side factors in the terms of the sum (38). After some rewriting we see that for all
these factors we can write:

n—m

~ ~, 1 2 2
PSS (T =) + sm| <e(l+m™h) = z)e” 27 dy (39)
; ’ " V2ro? Jg,
2 _ —sm—e(l+m~1) _ —smte(l+m~1) .
where o = X1 and x; = e I = Ty G some function of z and

Sm is the only ingredient that can be different for different terms in (38). Now fix some
€. Since the sum in (38) is only over terms with (™ NS,,) # 0, and by the definition
(36) of Sy, for all those terms both z; and z, are uniformly (over all n, s,,, 0 < € < €)
bounded. Therefore, ¢, (z) tends uniformly to 1 for all z € [z;,z,] and for all terms in
(38), as long as € < €. It follows that, uniformly for all terms in (38) and all 0 < € < €q:

1 2e(1+m1Y)
V2re?2  /n—m

(|8m] + €(1 +m~1))?
202(n —m)

xp(— )

(40)

n—m
P(| Y (Ti=1)+sm| < e(l+m™")) > dy,
=1

where d,, tends to 1 as n tends to oo.
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Using the local central limit theorem once more, in the same way as in (39), (40), we

can derive the following upper bound for Péde“).
~ 2e
plden) < _n =€ 41
" T V2r02 Vn b

where e, tends to 1 as n tends to oo, uniformly for all € < ¢;. Combining (40), (41), (38),
we find that

7ﬂ|2: i1 <€) >

€ m~1 Sm|+€ m~1))2
M exp( L O

2/ Vi) z
PR O Sm)gn(e) (42)

where f, tends to 1 and (ep can be chosen such that) lim,,_,~, gn(€) = 1 uniformly for all
€ < €. This follows because, by our definition of Sy, s, and d, sp,/+/ n—m= o(1) for all
e < €9, uniformly for all terms in the second line of (42). Now (letting S, = X*° \ Sp)

> P(H(G™) N R N Sm) f

jmezZm H(5(mNHNS,, £

m

P(Rin N Sm) > P(Ryn) = P(Sy) = P(Rm) — P(|D_(Ti = )| > h(n)'/*vn=m) >
~ a’m ~ B o?h(n)'/3 -
P(Rm) — =P(Rm) — = P(Rm) —o(1). (43)

h(n)?3(n —m) (1= h(n))
where we have used Chebyshev’s inequality. Combining (42) and (43), we find that

lim nf lim { P( mIIX; i — 1) <€)= P(Rm) } > 0. (44)
(3
Stage 2. Stage 2 is now very simple: we repeat exactly the same argument as above with
the sets R, = A \ Ry, These are all continuity sets which implies that (31) still holds
with R, replaced by R,,. Ry, All other steps go through without modification. This
repetition of the argument gives

lim sup hm { P(R,, | |Z — i) <€) = P(Ry) } <0. (45)
n—o00 i=1
Together, (44), (45) and (31) prove the theorem. O

APPENDIX C. PROOF OF THEOREM 5

Proof. One easily establishes that the theorem holds trivially if there does not exist an
a >0 and a ¢’ € A such that E3[L0SS(X;0")] — E5[LOSS(X; 6)] > a. Suppose then that
such a & and « exist. Let A(a) := {§ € A | Ez[Loss(X;¢")] — Es[Loss(X;0)] < a}. By
convexity and continuity of A, there exist ap > 0 such that A( ) is non-empty for all
0 < a < ap. By compactness of A, we can choose an « so small such that for all § € A(«),
there exist a dp € A(a) such that for all x € X, |[LOSS(x;dp) — LOSS(z;0)| < €/2. Fix ap
small enough so that this holds. We now change the prediction strategy ¢* mentioned in
the theorem to a new strategy 0** as follows: for all n, z(™), if 6*(z(™) & A(ay), then
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o (z() = 5% (x™). If 6*(z(™) € A(ayg), then 6** (2(™) is chosen so that 6** (™) & A(ayp)
but for all z, |Loss(z; 6** (x(™)) — Loss(z; 6*(2(™))| < €/2. We have that

Q(%(Z LOSS(z;0) — ZLoss(xi;é*(ml,...,xi,l))) >e | T =1) <
i=1

=1

Q(%(ZLOSS(Q@;S)—ZLOSS(wi;é**(xl,...,:Jci_l))) >§ | T() =) (46)
i=1 i=1

while at the same time, for all i, (¥,
Ej[Loss(X; 6** ()] — Es[Loss(X;0)] > ap > 0. (47)
By the Hoeffding bound for random variables that are bounded from below [13, Theorem
3], (47) implies
1 n n
P(—() "Loss(zi;0) — Y LOSS(z; 0% (21, . . ., T Z)=0(e™
(n(; (w35 0) ; (@507 (21, .., xi1))) > 5) = O(e™™")

for some ¢ > 0 depending on «. Together with Theorem 1 and (46) this implies the
theorem. n



