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Abstract

Decomposing a biological sequence into modular domains is a basic prerequisite to identify functional
units in biological molecules. The commonly used segmentation procedures usually have two steps:
First, collect and align a set of sequences which are homologous to the target sequence; then parse this
multiple alignment into several blocks and identify the functionally important ones by using a semi-
automatic method, which combines manual analysis and expert knowledge. In this paper, we present
a novel exploratory approach to parsing and analyzing the above multiple alignment. It is based on
an analysis-of-variance (ANOVA) type decomposition of the sequence information content. Unlike the
traditional change-point method, our approach takes into account not only the composition biases but
also the overdispersion effects among the blocks. More generally, our approach provides a better way for
judging some important residues in a protein. Our approach tested on the families of ribosomal proteins

has a promising performance. Some subsets of residues critical to these proteins are found.
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1 Introduction

Multiple sequence alignment has now become a standard tool for finding conserved patterns in a set of
biological sequences (see, e.g., Durbin et al, 1998; Baxevanis and Ouellette, 1998; Duret and Abdeddaim,
2000). In the case of DNA, such patterns could be binding sites for a protein or cis-regulatory elements (see,
e.g., Hughes et al., 2000; Stormo and Fields, 1998). In proteins, these could be DNA- and RNA-binding
sites (see, e.g., Casari, Sander, Valencia, 1995; Hofmann et al., 1999). Usually a biological sequence is made
up of several segments of the same or different functions. Since not all of these segments evolve at the
same rate, a very common situation occurs when some of these segments are well conserved across certain
phylogenetic domains, whereas others are very divergent and full of gaps, such that positional homology
cannot be precisely determined and multiple substitutions have erased the phylogenetic information. In such
a situation, it is important to distinguish between conserved and variable regions of an alignment. This gives
rise to the following generalized segmentation problem. Given N (> 1) sequences, say, Aj,---, Ay, which

are aligned as follows:

A1 ail a12 ... a1,
A2 as1 ass  ...... CLQSO
(1.1)
AN . an1 aAN2 e AN s

how can the above matrix be partitioned into several blocks in order to identify some specified common
patterns in these sequences? Here a;; represents a symbol from the set { A, C, G, T, —} (i.e.,four bases plus
the gap) in the DNA case, or a symbol from the set {K, R, H, S, T, N, Q,D,E,; AV, L L, M, F, Y, W, C, G,
P, — } (i.e., twenty amino acids plus the gap) in the protein case. To avoid confusion, we will call these sets
the alphabet sets later on. More generally, given a family of unaligned sequences, how can we align them
so that we can efficiently partition these sequences? In this paper, focusing on a set of aligned sequences,
we develop a new global segmentation method based on an ANOVA type decomposition of the information
content (IC) of these sequences. The information content of a set of aligned DNA fragments without gaps is
introduced by Berg and von Hippel (1987) and Schneider et al. (1986) as an estimate of average specificity
of the DNA-binding protein directly from a collection of regulatory sites. Here we extend this concept to
proteins. A main advantage of our procedure over other existing methods is that we can obtain not only
an optimal segmentation, but also the composition biases and dispersions within and among these blocks.
Then we can identify the important ones through comparing the normalized information contents of these
blocks. To show this potential, we apply our procedure to the families of ribosomal proteins.

As our other contribution, we modified the Auger-Lawrence dynamic programming algorithm to solve
the computational problem with a polynomial time effort (Auger and Lawrence, 1989). Thus we give an
answer to whether the computation of the Jensen-Shannon divergence based segmentation is NP-complete
(Romén-Roldan et al., 1998; and Clote and Backofen, 2000).



2 Information content approach

2.1 General concept

Here we give a general concept of information content, which is suitable for the multiple alignment in (1.1)
and for any subset of the columns {1,---,s0} called [1,s]. Consider a subset of [1,s¢], say B. If letting
k =1,2,--- vy represent the twenty amino acids (vp = 20) or four DNA bases (v = 4), and k = vp + 1
stands for any gap, the IC of variation (ICV) for block B (i.e., the columns indexed by B) can be defined as

vo+1
ICV(B,q(B Zka:]long(k)
jEB k=1 (k)

where f(k,j) is the frequency of k in jth column, modified by the root N type pseudocount:
N ++VN

with py being the vector of background probabilities (Lawrence et al., 1993); and q(B) = (¢g(1),---,qB(vo+
1))T is the vector of the average alphabet frequencies in block B (i.e., > jen f(.7)/|B| where |B] is the

f(k,j) =

number of columns in B). ICV(B,q(B)) describes the variation within block B. To show the composition
deviation between block B and the whole aligment, we define the following IC of bias (ICB) for B:

vo+1

(k)
ICB(B,q([1,s )log, ————.
( q 0] Z qB 82 q[l,SO](k)

Then we can write the bias-to-variation ratio of block B as

ICV(B,q(B))

S(B) =
and the normalized information content of block B as
AICr(B) =1CB(B, q([1, s0))) + ICV(B, q(B)/|B.

Note that AIC7(B), a measure of how important block B is, allows one to compare one block to another.

2.2 ANOVA decomposition

For any partition of [1, so], say [1,s0] = UJ*By, Bt = [t + 1,1141], for some integers l; (I1 = 0,141 = So),
1 <t<m+1,itis directly to prove that the total information content, ICV([1, so], q([1, so])), admits an
ANOVA type decomposition:

ICV([1, 50}, a([1, so])) = IC{™ + 1C%™ (2.1)
where
ey = Ic$)<{3t}m)=fjlcv<3t,q<3t>>,
ICYY = ICYY({Bi}m) = > IBIICB(By, (L, s0))) (2.2)



and |Bi| is the number of columns in Bs.

Like ANOVA, we have a very simple intuitive interpretation for (2.1): ICS;”) is the total IC difference
among blocks, while IC%;,n) the total IC spread within blocks. In the literature, ICE;L) is often ignored. We
find that it may be useful in showing the possible overdispersions among these blocks (see the next section).
As a main application of the above interpretation, we find the following segmentation procedure:

When the number of blocks is fixed, the best way to parse the alignment is to choose By, 1 <t < m to
maxmize the total IC difference, that is, to maximize Ian) or equally to minimize ICE;L).

This interpretation also gives a motivation of defining the standardized composition difference between
two successive blocks, say B, t = s,s + 1, by
.= |B|ICB(B;,q(B; U By1))

’I"(B ,B +1) = tis R
v SLICV(By) /(|Bs| + | Bos |)

(2.3)

We can use r(Bs, Bsy1) in (2.3) to test whether the difference between two successive blocks B, and By
is significant.
There are two issues in the implementation of the above method. One is about the computation. The

other is about the choice of the number of blocks. We discuss these issues in the following two subsections.

2.3 Algorithm

Obviously for a fixed number of blocks, say m, there are m,(%lm), ways of parsing. So it is time-consuming
to use the brutal force optimization. In the case of single DNA sequence, Romédn-Roldan et al. (1998)
and Clote and Backofen (2000) even conjectured that this problem may be NP-complete. Fortunately,
we find a variation of the Auger-Lawrence dynamic programming with O(N®sq) computational effort. Set
ICgr[Ll)ﬁo] = max(g,},, ICS;”) ({Bt}m)- Analogously, we define 105377[11),]'] for any 1 < j < so. Then the mechanism
behind this algorithm is shown by the following recursive forward formulae:

C% = (j — i+ 1) *ICB([i,j], a([L,s0)), 1<i<j;

K ke .
Cl(,j) - 1H<1?’<Xj{cl(yl Dt Cl(g)l,j}: 1 <j < so; (2.4)
(m)  _ ~(m-1)
ICB[LSO] - C'1780 :

After ICgr[Ll) 5o is obtained, the associated partition can be constructed by the standard backforward tracking
procedure of the dynamic programming.
Proof of (2.4): It suffices to show by induction on m that for any 1 < j < s,

(m) _ o(m-1)
e =y,

For m = 1, the assertion is obvious. Suppose the assertion is true for m = n. Then we show that it holds
also for m = n + 1. To this end, we note that for any partition, say {B¢}n+1, of [1, j], by the assumption for

m=n,

> IBICB(By, q([1, 50])) + | Bny1 [ICB(Buy1, a([1, s0])|

t=1

<max{C{7" + ) ;) = o).



This yields
(n+1) (n)
ICB[L].] <Cp;-

On the other hand, by definition, there are 1 =1} < --- <}, , = j such that

n+1
n 0 n+1
o) =3 ,)I:H <ICH )
t=1

The proof is completed.

2.4 Choice of the number of blocks

The underlying number of blocks is determined by the complexity of the sequences under investigation. There
are several ways for determining such a complexity. One is based on the biological knowledge. The others
are based on certain loss functions. In the former we first select m using our biological knowledge. Then
we make the optimal ANOVA type decompositions followed by identifying the conserved blocks. Finally we
predict their roles. Some training samples and structural information seem useful in choosing m. However
it is not very reliable because many protein domains are poorly annotated in the current protein sequence
data bases (see, e.g. Gracy and Argos, 1998).

For the loss function based methods, we need to tackle the issue of the possible overdispersion among
blocks. This is because the alphabet frequencies in some positions of many DNA and protein motifs are
highly heterogenous. Such a phenomenon can be partially described by an overdispersion factor (see Lindsey,
1999). The degree of overdispersion in the model is directly related to the number of blocks in a partition
and to the complexity of each block.

To highlight the above point, we consider the following change-point testing model (Li, 2001). Under

)T.

)

the null hypothesis Hy, the columns in (1.1) have the same alphabet probabilities, say p = (p1, "+, Duyo+1
whereas under the alternative hypothesis Hy, we have m blocks, A;, t = 1,---,m. The columns in these
blocks have some different alphabet probabilities, say p(*) = (pgt), T 7p$;?+1)T, t =1,---,m, respectively.
Under Hy, the log-likelihood is of the form
vo+1
l(p|Ho) = > nlogpy
k=1

where ny, is the count of & in the whole alignment. Accordingly, under H;, the log-likelihood becomes

m vo+1

(p, - p™IH) = 3" Y ny logp)

t=1 k=1

where ngf) is the count of k£ in the t-th block. Then the corresponding log-likelihood ratio test statistic can

be rewritten as

M) ... pmH) — _ 10(m
p(l)ffi?:%(m)l(P P Hy) — maxI(p|Ho) = 1C5™

Thus, compared with the ANOVA decomposition (2.1), the above testing model completely ignores IC%,;,n),
the variability of individual positions within blocks. This shows why in some cases the above testing model

is too restricted to extract the main features from these blocks. For example, if we are looking for the second



structures for a family of protein sequences, it is obviously unreasonable to assume the homogeneity of the
amino acid frequencies across the corresponding region in these sequences.

In what follows, we introduce two loss function based approaches for choosing the number of blocks.
Compared with the second approach, the first one has a slightly better performance in terms of Ian) while
performing a little worse in terms of resolution.

Method 1: For several a (e.g., 0.2,0.25,0.3,0.4), minimize the following modified Bayesian information
criterion (BIC)

IC%m) —N*x(m-—1)

with respect to m, where « reflects the roughness of the optimal partition. For the ribosomal protein families,
in most cases using a = 0.3 can nearly recover the signatures presented in the data base PROSITE. Note
that this constant is slightly larger than that used by Braun, Braun and Miiller (2000) in the single DNA
sequence case because of the overdispersion effect.

Method 2: Use a resolution criterion (RC) in which we choose B, 1 < ¢t < m so that the differences
between the successive blocks are not less than a prespecified constant co, i.e., (B¢, Ber1) > ¢o, 1<t < m.
Here c¢p shows the roughness of the resulting partition. To adapt the above dynamic programming to this

new situation, we slightly modify (2.4) by setting

€)= (j —i+1) *ICB([i, i), a1, s0])), 1<i<j
(I)lj = {l : T([l,l], [l + 1,]]) Z Co};
1 0 0 .
C'I(J)(co) = lrggfi{cl(’l) + Cl(+)17j}, 1 <5< sp.
For k> 1,let 1 =1l < -+ <l(x41)» = [ be the boundaries of the partition induced by Cl(fcl_l) (co). Then for

k=2,---,m, we iteratively define
rj ={l:r(lgp—1yx + LI, 14+ 1,5]) > co}
and
O (o) = max{C1 V(o) + Ot} 1< < s

1C3) = Ci(co)

1,80] 1,50

where 105371),30] is a modified version of that in Subsection 2.3.

How to choose c¢p? Observe that without overdispersion, r(B;, Biy1) is approximately x? distributed
with a degree of freedom vy for the large blocks, which has the 0.005 quantitle 2.00 when vy = 20. Taking
the possible overdispersion into account, we set ¢y = 2¢; for protein sequences where ¢; is used to reflect the
overdispersion effect allowed among the blocks. For instance, in the ribosomal protein case, we can choose
several values for ¢q, say 1.75,2, and 2.25. Note that Agalarov et al. (2000) have shown that some ribosomal
proteins like S18 may have the multiple functions: RNA-binding and protein-protein interaction. We use
¢; = 1.65 to find the composition domains for these functions (see Table 3.6).

In light of the above arguments, we suggest the following strategy in practice: Begin with moderate «
and ¢y to find functional domains. Then take low a and ¢y to localize functionally important subsets of

residues within these domains.



3 Examples

In this subsection, we evaluate our approaches on the two kinds of ribosomal protein families: small-subunit
families and large-subunit families, designated S1, S2, ---, and L1, L2, - - -, respectively.

Ribosomal proteins, extremely ancient molecules, are windows into the protein evolution. The recent
studies showed that there are some strong similarities between the binding-patterns (or structures) of RNA-
and DNA-binding proteins (see, e.g., Draper and Reynaldo, 1999). In particular, several binding strategies
used by DNA-binding proteins are found in those for ribosomal proteins. The key step in finding the RNA-
binding motifs is to form ribosomal protein families with a certain degree of diversity and homology across
certain phylogenetic domains. Wong and Zhang (1999) collected all the known ribosomal proteins from
the following model organisms. Archaebacteria: Archaeoglobus fulgidus, Methanobacterium thermoau-
totrophicum, Methanococcus jannaschii, Pyrococcus horikosshii. Eubacteria: Aquifex aeolicus, Bacillus
subtilis, Mycoplasma genitalium, Mycoplasma pneumoniae, Mycobacterium tuberculosis, Borrelia burgdor-
feri, Treponema pallidum subsp. pallidum, Chlamydia trachomatis, Escherichia coli, Haemophilus influenzae
Rd, Helicobacter pylori, Synechocystis PCC6803, Thermus thermophilus. Eukaryotes: Saccaromyces cere-
visiae, Caenorhabditis elegans, Rat, Drosophila melanogaster. They grouped them into about one hundred
families by pairwise alignment. The multiple alighments for these families are available from Jian Zhang.
The motifs of these protein families are identified by using the Gibbs motif sampler MACAW (Baxevanis and
Quellette, 1998) and the iterative masking. According to the current structural or biochemical information
on some sites of these motifs, they found that almost all the most conserved motifs based on MACAW are
located in the putative RNA-binding domains. However it is difficult to determine the boundaries of these
motifs. Here we first make multiple alignments for all these families by means of CLUSTAL W with default
setting (Thompson, Higgins and Gibson, 1994). Without loss of generality we use the uniform background
probabilities, namely p, = (1/21,---,1/21), because it doesn’t affect the optimal partition. Then we ana-
lyze these alignments by our new approach. Compared with MACAW, our approach gives not only a better
boundary resolution but also composition biases and variations for these motifs. As examples, we present
these analyses for the L2, S15, and S18 families in Tables 3.1 to 3.6. These families have ICB([1, so], py)
values of 0.346, 0.374 and 0.250, respectively. Some similar results for the other families are available from
the author on request.

In these tables, the i and [; columns give the indices and right boundaries (i.e., locations of change
points) of blocks B;, i = 1,---,m in the optimal partition. The AICy;, S; and r; columns show the total
average information content, bias-to-variation ratio and resolution for each block, respectively. Here we write
AICy; = AICy(B;), Si = S(B;) and r; = r(B;, Bi+1). As pointed out before, AICy; allows one to compare
one block to another. Our experience confirms that those blocks with a relatively higher S; are often very
divergent and full of gaps or are singletons, whereas those blocks with a moderate S;(> 1) or a relatively
higher AICy; are often corresponding to some important regions.

We adopt the following procedure for summarizing the information. We first classify the blocks with
S; > 1 into two groups according to whether they are gap blocks (i.e., more than half of which are gaps) or
not. For example, for the L2 family, we classify blocks 2, 13, 17, 27, and 36 in Table 3.2 as gap blocks and
assign blocks 6, 7, 10, 19, 23, 29, 30, and 31 group ¢ of non-gap blocks. The next step is to classify the blocks
with S; < 1. For example, we select those blocks, which have a AICy; value larger than 25% of the highest

among these blocks, to form group ®. We call them potentially important blocks for a further analysis.



For L2, we use both Methods 2 and 1. By using Method 2 and the experimental results of Nakagawa et
al. (1999), we find that in Table 3.1 the conserved blocks 3, 4, 6 are located in the N-terminal RNA-binding
domain while the conserved block 8 is in the C-terminal RNA-binding domain (Figure 3.1). The functions
of two conserved blocks 9 and 10 remain to be determined. Table 3.2 further indicates several potentially
important sub-blocks (sites) within these domains: (1) from positions 75 to 84; (2) from positions 101 to
116; (3) from positions 181 to 198; (4) from positions 211 to 213; (5) from positions 241 to 251; (6) from
positions 257 to 276. The blocks in regions (1) to (5) are the potentially important residue subsets in the
binding domains just mentioned, while the blocks in region (6) are the potentially important residue subsets
for block 10 in Table 3.1.

[Figure 3.1 here.]
[Table 3.1 here. ]
[Table 3.2 here. |

For S15, from Table 3.3, using Method 2 with ¢y = 4.5 we identify three potentially important blocks:
blocks 3, 5, and 7. These blocks are located in the RNA-binding domain. Furthermore, using Method 2 with
co = 3.5, we find five very informative subsets of residues in this domain: blocks 6, 16, 18, 20, and 31 in
Table 3.4 (Figure 3.2). Interestingly, they are all functionally important because they serve as the S15-rRNA
interfaces (see Agalarov et al., 2000).

[Figure 3.2 here.]
[Table 3.3 here. |
[Table 3.4 here. |

For S18, from Table 3.6, on the basis of the experimental results of Agalarov et al. (2000), we find that
blocks 7 and 9, which have several hydrophobic positions, are putative regions for the interactions between
S6 and S18, while block 8 is the putative region for the RNA-binding (Figure 3.3). The role of block 6 has
not been determined yet although it has the second largest AICy; value. It may be a RNA-binding site
because it has two very conserved hydrophilic positions.

[Figure 3.3 here.]
[Table 3.5 here. ]
[Table 3.6 here. |

4 Discussions and conclusions

4.1 Possible extensions

The concept of information content has been shown to be a very useful objective function for discovering
regulatory sites or binding motifs in co-regulated genes (see, e.g., Heumann et al., 1994). But in other
settings, we need to exploit some special pattern features. As an example, we modify the above concept for
the protein coding region recognition by utilizing its nonuniform codon usage feature: each nucleotide has
its own phase because the probability of appearance of a nucleotide is different in each of the three positions
of the triplets (see, e.g., Grantham et al., 1981). Since this feature is not present in noncoding regions, it

can be used to distinguish coding from noncoding. To this end, for u = 1,2,3, and for [1, sg], we set the



phase set
[1,50]™ ={v:ve[l,so,v=u mod 3}

and let ¢ = (¢ (1),---,¢™ (k)T with

1 )
@R = e S (k).
|[L, s0]]
JE€[L,80](w)
where 1 < k < v + 1 and |[1,50]("] is the size of [1,50](*). Then the modified information contents are

defined as follows:

f(k, )

1CV(L ol alltso)) = 30 30 37 (kd)logs i

u=1 je[l s0](w) k=1

ICB([1,50],pg) = ZZlOg2 Ec

u=1 k=1

(4.1)

where q([1, so]) = (@7, qP7T, 3T,
Similarly, to establish an ANOVA decomposition for the modified IC in (4.1), we consider only those B,

of the forms [v;+ 1, v,] for some integers v; and v,.. Let the phase set Bt(u) ={v:v€By,v—y =u mod 3},

at" () =B (u)| > fkg)

jeB™

and write

where 1 <k <wvp+ 1, u =1,2,3; and modify the summands in (2.2) by letting

il £(k.4)
ICV(B;,a(By) = Z Y. D f(k)log, <u),J ’

u=l jeA() k=1 g (k)

(W) vo+1 (u) ( )(k‘)
ICB(Bs,q([L, 50]) = ZIA IZq k) log, & WO

~

where as (4.1) q(B;) and q([1, so]) denote the vectors of the average alphabet frequencies in the phase sets
Bt(“), u=1,2,3and [1,s0]™, u = 1,2, 3, respectively. Then the decomposition formula (2.1) still holds.
The problem we investigated in the previous sections can be viewed as that of clustering a set of ordered
objects (i.e., columns) which are characterized by some probabilistic vectors (i .e., the alphabet frequency
vectors). We will show elsewhere that our method is even useful in building a phylogenetic tree for a set of

sequernces.

4.2 Relation to the other methods

For a single DNA sequence, our method is equivalent to a generalization of the Jensen-Shannon divergence
based segmentation method (Oliver et al., 1999) except that we take into account the possible overdispersion
effect on the choice of the significance level. Here the overdispersion means that in reality there is greater
variability among the columns in (1.1) than would be expected from a statistical model (e.g., product
multinomial model), because we can not expect each domain to be completely homogeneous. There are
many different segmentation methods in literature. See the recent review by Braun and Miiller (1998). All

these methods, though effective in detecting a long pattern (e.g., a coding region), are not very useful for



detecting a short pattern like a cis-regulatory element. In order to identify these short patterns, we usually
need to collect and align a set of similar DNA sequences (or fragments) across the different species (André
et al., 2001). Then these patterns can be found by parsing this multiple alignment. In the case of protein,
Liu and Lawrence (1999) introduced a Bayesian global segmentation model. However, for other multiple
alignment procedures (for instance, Clustal W or profile HMM), there is no general approach to identifying
several patterns simultaneously. The traditional methods are based on a moving window with iterative
maskings (Hughes et al., 2000). The length of a local window or the boundaries of these patterns are often
determined in an adhoc way. For example, we often need to specify the bandwidth of the Gibbs motif
sampler (Liu, Neuwald and Lawrence, 1995; Baxevanis and Ouellette,1998) using our experience. Auger and
Lawrence (1989) presented a nice discussion on the advantages of global methods over the moving window
methods. Finally, we note that our method can be integrated into evolutionary trace analysis for identifying

structual features within a protein (Landgraf et al., 1999).

4.3 Conclusions

We have introduced a general concept of information content for a set of aligned sequences. We have presented
an ANOVA based information content method for predicting functionally important motifs in both DNA
and proteins. A dynamic programming algorithm has been modified for solving the computational problem
in parsing a multiple alignment. We have evaluated our method on the ribosomal protein families. Some new
motifs related to the interaction between the ribosomal proteins and ribosomal RNA have been recovered.
The major shortcoming of our procedure is the prerequisite of a valid alignment of the input sequences.
This could be difficult sometimes, especially, for the genomic sequences. Although it seems possible to
develop some procedure for aligning and parsing the input sequences in an iterative way on the basis of
certain ANOVA decompositions of the sequence information content, the computational time for such a task

turns out prohibitively long.
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ecoli MAVVKCKPTSP-GRRHVVKVVNPELHKG--—-—-———=——=——= KPFAPLLEKNSKSGGRN-NNGRITTRHIGGGH

yeast MGRVIRNQRKGAG-S———IFTSHTRLRQGA
arcfu MGKRIISQNRGKGTP-——TYRAPSHRYKTD
ecoli KQAYRIVDFKR-NKDGIPAVVERLEYDPNRSANIALVLYKD—-——— GERRYILAPKGLKAGDQIQS-————————

yeast AKLRTLDYAER--HGYIRGIVKQIVHDSGRGAPLAKVVFRDPYKYRLREEIFIANEGVHTGQFIYAG—
arcfu AKLLRFK—---—-DEVVAAKVIDIQHDSARNGPVALVKLPD——-—— GSETYILAVEGLGTGDVVYAG————————

aalaaaaaa——--- block 4 -—aa—————————-——- | |----— block 6 -———|
ecoli GVDAAIKPGNTLPMRNIPVGSTVHNVEMKPGKGGQLARSAGTYVQIVARD--GAYVTLRLRSGEMRKVEADCRAT
yeast —KKASLNVGNVLPLGSVPEGTIVSNVEEKPGDRGALARASGNYVIIIGHNPDENKTRVRLPSGAKKVISSDARGV
arcfu -DNVEIASGNITYLKNIPEGTPVCNIEAQPGDGGKFIRASGTFGFVVSREAD--KVLVQMPSGKQKWFHPNCRAM

| === ———————— block 8 aaaaa aaa
ecoli LGEVGNAEHMLRVLGKAGAARWRGVR—-—-——- PTVRGTAMNPVDHPHGGGEGRNFG—-KHPVT—---PWGVQTKGKK
yeast IGVIAGGGRVDKPLLKAGRAFHKYRLKRNSWPKTRGVAMNPVDHPHGGGNHQHIGKASTISR-GAVSGQKAGLIA
arcfu IGVVAGGGRTDKPFVKAGKKYHKMKSKAAKWPRVRGVAMNAVDHPFGGGKHQHVGKPKTVSR-NAPPGRKVGSIA
aaaaaaaaaaaaaa
—————————————— | |-- block 10 ———————-——
ecoli TRSNKRTDKFIVRRRSK—-—--———-—
yeast ARRTGLLRGSQKTQD--—--—-—-—-
arcfu ARRTGVRR-————————————————

Figure 3.1. Multiple alignment for three representive sequences in the L2 family
and four important blocks defined in Table 3.1. ‘a’ is used to mark the important
‘a’ blocks (sites) defined in Table 3.2. Here ecoli: E.coli; yeast: Saccaromyces

cere.; arcfu: Arch. fulgidus. The same designations are used in Figure 3.2.

ecoli MSLSTEATAKIVSEFGRDAND TG
yeast MGRMHSAGKGISSSAIPYSRNAPAWFKLSSESVIEQIVKYARKGLTPSQIGVLLRDAHGVTQARVITG——-—-———
arcfu MARIHARRRGKSGSKRIYRDSPPEWVDMSPEEVEKKVLELYNEGYEPSMIGMILRDRYGIPSVKQVTG—-————-

* %k

|-—- block 3 —————- | I
ecoli —————————————- STEVQVALLTAQINHLQGHFAEHKKDHHSRRGLLRMVSQRRKLLDYLKRKDVA-———RYTQ
yeast NKIMRILKSNGLAPEIPEDLYYLIKKAVSVRKHLERNRKDKDAKFRLILIESRIHRLARYYRTVAVLPPNWKYES
arcfu KKIQKILKEHGVEIKYPEDLKALIKKALKLRAHLEVHRKDKHNRRGLQLIEAKIWRLSSYYKEKGVLPADWKYNP
| * * *x block 7 -—————-—- *ok—————— | | ——-

ecoli LIERLGLRR-
yeast ATASALVN--
arcfu DRLKIEISK-

block 9 -|

Figure 3.2. Multiple alignment for the three representive sequences in the S15
family and the important blocks defined in Table 3.3. * is used to mark the

important blocks (sites) defined in Table 3.4.

theth MSTKNAKPKKEAQRRPSRKAKVKATLGEFDLRDYRN-VEVLKRFLSETGKILPRR
hpylo MERKRYSKRYCKYTEAKISFIDYKD-LDMLKHTLSERYKIMPRR
mgen MMINKEQDLNQLETNQEQSVEQNQTDEKRKPKPNFKRAKKYCRFCAIGQLRIDFIDDLEAIKRFLSPYAKINPRR

I——aaaaaaaaaaa 3% 3k >k 3k ok ok ok 3k k ok 3k k ok ok ok k ok 3k k k k %k k
theth RTGLSGKEQRILAKTIKRARILGLLPFTEKLVRK——————-—
hpylo LTGNSKKWQERVEVAIKRARHMALIPYIVDRKKVVDSPFKQH
mgen ITGNCNMHQRHVANALKRARYLALVPFIKD-—--—-———=-—

*%%%% block 2 *kokokk —— |

Figure 3.3. Multiple alignment for the three representive sequences in the S18
family and the important blocks defined in Table 3.5. * (or a) is used to mark
important blocks (sites) defined in Table 3.6. Here theth: Thermus thermophilus;
hpylo: Heli. pylori; mgen: M. genitalium.

13



Table 3.1 Analysis of IC for L2 by Method 2 with ¢o = 4.5

i L AIC, S orm | I, AICr S rs

1 20 1094 020 7.97 |7 151 1.384 553 146
2 45 1366 614 199 |8 240 1.780 011 6.5
3 77 1453 0.4 460 |9 256 1692 024 523

4 116 1.832 0.15 6.66 |10®° 280 2294 025 5.66
121 1.382 997 793 |11 317 1335 0.09 6.47
6° 141 1.833 0.19 1273 |12 324 1230 4.35

|on

Gap blocks are in bold type and underlined.

® The blocks have a AICr; value larger than 1.720 (25 % of the largest

AICr; among those with S; < 1).

Table 3.2 Analysis of IC for L2 by Method 1 with a = 0.2

7 li AICTl Sl T | 7 li AICTI Sl T

1 29 1094 020 7.9%8 |19 185 1.832 173 4.26

2 45 1366 6.15 250 |20° 198 1.880 042 5.11
3 58 1378 034 521 |21 204 1.073 041 5.22
4 63 1330 086 496 |22° 210 1.873 0.74 4.12
5 75 1578 045 332 |23* 213 2230 1.23 3.36
6 80 1.654 126 523 |24®° 225 1775 036 3.09
7% 84 1785 167 404 |25 240 1631 032 4.21
8 91 1.203 039 424 |26° 251 1933 047 5.82
9® 100 1.703 043 3.75 |27 256 1.152 281 6.54
10° 102 3.170 323 359 |28 262 2168 0.58 2.96
11 108 2.082 0.68 3.50 |29 267 2792 1.0l 3.54
12 116 1.895 049 832 [30° 271 3.055 170 6.19
13 121 1384 981 119 |31 276 2044 266 5.61
14 125 1594 0.95 478 |32 287 1317 0.28 4.18
15° 130 2194 0.89 290 |33t 292 1.822 0.99 4.96
16° 141 1.758 030 12.6 |34 301 1.535 0.34 4.05
17 151 1382 552 145 |35 317 1097 039 9.74
18 180 1.873 0.24 442 |36 324 1.230 435

Gap blocks are in bold type and underlined.

¢ The non gap blocks with S; > 1.

® The blocks have a AICT; value larger than 1.643 ( 25% of the largest

AICr; among those with S; < 1).
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Table 3.3 Analysis of IC for S15 by Method 2 with ¢ = 4.5

i L AICr S r  |i L AlCm S rs
1 15 0895 1.04 503 |6 89 0.886 1.09  23.7
2 35 0756 059 147 |7° 142 188 027 7.1l
3* 56 1533 032 102 |8 146 1.147 214 473
4 66 0832 077 710 |9 160 1.527 0.21

5 68 2.870 293 114 |

Gap blocks are in bold type and underlined.

¢ The non gap blocks with S; > 1.

® The blocks have a AICT; value larger than 1.379 (25 % of the largest

AICr; among those with S; < 1).

Table 3.4 Analysis of IC for S15 by Method 2 with ¢ = 3.5

i L AICr:  Si o i I, AICr Si i
1 15 089 104 503 |19 114 213 7.32 12.2
2 35 076 059 156 |20° 115 349 oo 7.8
3 55 144 036 36 |21 117 179 539 7.3
4 57 206 184 42 |22 118 230 oo 109
5 66 08 079 68 |23 120 179 618 8.2
6 68 287 293 242 |24 121 250 oo 14.0
7 75 101 261 38 |25 123 203 869 50
8 89 083 059 105 |26 125 127 507 43

94 203 1.09 42 |27 127 224 214 6.7
10 99 1.90 121 43 |28 131 184 374 119
11 101  1.26 327 86 |20 133 200 11.9 165
12 102 243 oo 83 |30 134 113 oo 95
13 104 125 356 7.5 |31° 136 267 873 110
14 105 188 oo 51 |32 139 126 346 6.6
15 107 157 1.87 4.0 |33 140 167 oo 44
16~ 109 2.88 286 4.6 |34 142 145 1.99 7.1
17 111  1.24 320 96 |35 146 115 214 47
18 112 265 oo 108 |36 160 152 0.1

Gap blocks are in bold type and underlined.

* The blocks have a AICr; value larger than 2.62 (25% of the largest

AICr; among those non gap blocks.
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Table 3.5 Analysis of IC for S18 by Method 2 with ¢y = 4.5

i l; AICT; Si T
1 31 0.751  1.08 24.50
2 105 1.828 0.16 15.71
3 117 0910 3.27

Table 3.6 Analysis of IC for S18 by Method 2 with ¢o = 3.3

i L AICr  Si v | I, AICy; S ri
1 26 0790 180 134 |7° 80 2069 026 3.42
2 34 068 051 690 |8 96 1.180 043  3.89
3¢ 41 1153 198 427 [9°* 101 2408 1.29 3.81
4° 45 1962 157 405 |10 105 1.607 091 154
5 52 1.223 055 422 |11 117 0910 3.27

6° 57 2268 0.87 412 |

Gap blocks are in bold type and underlined.

¢ The non gap blocks with §; > 1.

* The blocks have a AICr; value larger than 1.701 (25% of the largest

AIC7; among those non gap blocks.
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