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Abstract

Broadie and Glasserman �����a� proposed a simulation�based method using a stochastic

mesh for pricing high�dimensional American options� Based on simulated states of the assets

underlying the option at each exercise opportunity	 the stochastic mesh method produces an

estimator of the option value at each sampled state� We derive an asymptotic bound on the

probability of error of the mesh estimator	 where both the error and the probability bound

are decreasing to zero as the sample size increases	 implying that the estimator converges in

probability to the option price� We include the empirical performance of the mesh estimator

for the test problems in Broadie and Glasserman �����a� and 
nd that it has large bias that

decays very slowly with the sample size	 suggesting that in applications it will most likely

be necessary to employ variance�reduced variants of the mesh estimator�

� Introduction

In the 
nancial markets	 sophisticated	 complex products are continuously o�ered and traded�

The complexity of these instruments has been steadily increasing	 and this trend seems likely

to continue	 as institutions wish to hedge against more re
ned and more numerous risks� For

example	 a portfolio manager who wishes to hedge	 i�e�	 reduce the risk in a position in tech�



nology stocks	 no longer has to buy a portfolio of options on individual stocks� He can

instead buy a basket option	 i�e�	 an option on an appropriate technology index or even a

customized option tailored to his individual holdings	 risk preferences	 and time frame�

There are many 
nancial products whose values depend on more than one underlying

asset� Examples include basket options �options on the average of several underlying assets�	

out�performance options �options on the maximum of several assets�	 spread options �options

on the di�erence between two assets�	 and quantos �options whose payo� is adjusted by some

stochastic variable	 typically an exchange rate�� Even when there is a single underlying asset	

there is trend towards models with multiple stochastic factors �sources of uncertainty�	 e�g�	

single�asset model with stochastic volatility� In addition	 multi�factor models are gaining

more acceptance and use for modeling interest rates	 where models with two to four factors

are common and models with up to ten factors are being tested �Broadie and Glasserman

����c�� As computing power is steadily increasing	 multi�factor option�pricing models are

likely to become more prevalent�

Pricing and hedging options �European or American� using multi�factor models is a dif�


cult task� Especially for American options	 which allow early exercise	 analytical formulas

for pricing are rarely available� Various deterministic numerical techniques are used	 for ex�

ample the the numerical solution of the appropriate partial di�erential equation� numerical

solution of the corresponding partial di�erential equation� However	 such methods require

work that grows exponentially in the number of state variables� This work requirement

renders these methods ine�ective when the state space dimension is higher than three or

four�

Monte Carlo simulation techniques are conceptually simple	 yet powerful in addressing op�

tion pricing problems of great complexity	 whether the complexity arises from the stochastic

process driving the assets	 the structure of the payo� �path�dependent�	 or the early exercise

features �American�� Until recently	 the prevailing opinion was that American options could

�



not be handled using Monte Carlo simulation� Recent developments	 however	 have started

to pave the way for estimating American option prices via Monte Carlo methods�

Barraquand and Martineau ����
� proposed an algorithm that only approximately solves

the American option pricing problem� They partition the state space of stochastic factors

into a tractable number of cells and compute an approximately optimal exercise policy that

is constant over each cell� Although this method is fast	 it yields an estimate that does not

necessarily converge to the true price as work increases� Broadie and Glasserman �����b�

were the 
rst to develop a simulation procedure that yields provably convergent estimates

for American option prices	 clearly an attractive theoretical property� Their method is based

on a simulated tree of the state variables� The main drawback of their method is that the

work is exponential in the number of exercise opportunities� For a comprehensive review

of the literature in Monte Carlo methods for Pricing American Options	 see Broadie and

Glasserman �����c��

An important method developed recently for valuing American options via simulation

is the stochastic mesh method �Broadie and Glasserman ����a�	 henceforth referred to as

BG����a� The stochastic mesh method begins by generating a number b of randomly sam�

pled states of the stochastic factors underlying the option at each exercise opportunity� Based

on this sample	 the mesh estimator of the option value at each sampled state is computed

�a full description is deferred until Section ����� The authors also propose a path estimator	

obtained by simulating paths of the stochastic factors underlying the options and estimating

an approximate exercise policy based on the mesh values� see BG����a for more details�

It is shown that the mesh and path estimators are biased high and low	 respectively� In

addition	 under certain technical assumptions	 it is shown that both estimators converge �in

a well�de
ned sense� to the true option value as the sample size	 i	e� the number of sampled

states	 goes to in
nity�

In this paper we derive an asymptotic bound on the probability of error of the mesh

�



estimator� Both the error and the bound on the probability of error are functions of the

sample size b	 and the probability bound is valid only asymptotically as b grows large� We

also present empirical results on the estimator�s behavior on the test problems in Broadie

and Glasserman �����a��

This paper is organized as follows� Section � contains brief background on the problem

of pricing American options and a description of the stochastic mesh method� Section �

contains our main theoretical result	 namely a bound on the probability of error of the mesh

estimator as the number b of states sampled at each stage grows large� In Section � we

present computational results on the test problems in Broadie and Glasserman �����a�	 and

Section 
 contains a summary of our conclusions�

� Background

��� American Option Pricing

Let St denote the vector of stochastic factors underlying the option	 modeled as a Markov

process on Rd with discrete�time parameter t � �� �� �� ���� T� The argument t indexes the

set of times when the option is exerciseable	 also called exercise opportunities or simply

stages� Let h�t� x� denote the payo� to the option holder from exercise at time t in state x	

discounted to time � with the possibly stochastic discount factor recorded in x� This view

of h�t� x� as the discounted�to�time�� payo� is adopted to simplify the notation and does not

reduce the generality of the method�

By the dynamic programming principle	 the option value can be written as follows�

q�t� x� � h�t� x�� for t � T� all x

� maxfh�t� x�� c�t� x�g for � � t � T � �� all x

where

c�t� x� � E�q�t � �� St���jSt � x� ���

�



is called the continuation value at �t� x�� equal to the value of the option �discounted to

time �� when it is not exercised at �time	 state� pair �t� x�� It is well�known from arbitrage

pricing theory that the arbitrare�free price of the option is obtained when the conditional

expectation in ��� is taken with respect to the risk�neutral measure	 de
ned as the measure

that makes the value of any tradeable security	 discounted to time �	 a martingale� Given

the known state of S� at time �	 say x��the option�pricing problem is to compute q��� x���

��� The Stochastic Mesh Method

In reviewing the method	 we follow BG����a� The mesh method generates a stochasticmesh

of sample states fSj
t g� j � �� �� ���� b for each t � �� ���� T� For notational convenience	 we

de
ne b nonrandom mesh points at stage �	 Sj
� � x�� j � �� �� ���� b� For t � �� �� ���� T� let gt���

denote the probability density from which the points fSj
t g

b
j�� are sampled �to be speci
ed

later�	 and let ft�x� �� denote the consitional risk�neutral density of St�� given St � x� �We

assume throughout the paper the existence of such densities�� The Broadie�Glasserman

mesh estimator is calculated as a backward recursion for t � T� T � �� ���� � �

bqH�T� Sj
T � � h�T� Sj

T �� for j � �� �� ���� b ���

bqH�t� Sj
T � � maxfh�t� Sj

t ��bc�t� Sj
t �g for t � T � �� T � �� ����� j � �� �� ���� b� ���

where the estimate of the continuation value function bc�t� x� is
bc�t� x� �� bX

j��

bqH�t � �� Sj
t��� � ft�x� S

j
t���

gt���S
j
t���

���

Note that in ���	 the point Sj
t�� is weighed by the likelihood ratio ft�x� S

j
t����gt���S

j
t����

In BG����a	 it is argued that the choice of sampling densities gt����� is crucial to the

success of the method� and the choice recommended by the authors is as follows� We

simulate independently b paths of St starting from x� at time � and let Sj
t denote the state

of the j�th path at time t� and then we �forget� the path to which a point belongs� This






is called by the authors the strati�ed implementation� For any t� j	 we call the ordered pair

�Sj
t � S

j
t��� a parent and child	 respectively�

We clarify some distributional properties of the strati
ed implementation� Let � be a

random permutation of the integers in f�� �� ���� bg chosen with equal probability from all

possible such permutations	 and let Ft be the ��
eld Ft � ��S�
t � S

�
t � ���� S

b
t �� Then

Conditional on Ft� fS
����
t�� � S

����
t�� � ���� S

��b�
t�� g

i�d�
� gt����� ��

�

b

bX
i��

ft�S
i
t � �� �
�

where
i�d�
� means �are identically distributed with density����� Note that the density gt����� is

de
ned conditionally on Ft� Also note that fS
����
t�� 	S

����
t�� 	���	S

��b�
t�� g are conditionally dependent

random vectors� On the other hand	 the points fS�
t��	S

�
t��	���	S

b
t��g are conditionally inde�

pendent but not identically distributed� they are unconditionally independent and identically

distributed�

� Convergence in Probability

Under an assumption on the 
niteness of a certain moment	 we will show that the estimator

bqH with the strati
ed implementation converges in probability to q when b��� moreover	

we provide a bound on the probability of error of bqH 	 where both the error and the bound

on the probability on error depend on the sample size b�

For the strati
ed implementation	 we observe that

bc�t� x� �� �

b

bX
j��

bqH�t� �� S
��j�
t�� � � ft�x� S

��j�
t�� �

gt���S
��j�
t�� �

�
�

b

bX
j��

bqH�t � �� Sj
t��� � ft�x� S

j
t���

gt���S
j
t���

The 
rst equality is the de
nition of the continuation value function in the strati
ed im�

plementation� The second equality follows from the invariance of the sum over permutations

of the fS�
t��	S

�
t��	���	S

b
t��g� and this observation will be essential in proving our convergence

result�

We require the following moment assumptions	 where S�
t 	S

�
t 	S

	
t denote paths which are

independent of each other and have the distribution of St conditioned under S� � x�	 and
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where C is a constant that will appear on the probability bound�

E

�
max

t���r�T
fh
�r� S�

r �g

�
� C�� for each t � f�� �� �� ���� T � �g ���

E

�
max

t���r�T
fh
�r� S�

r �g �
f

t �S

�
t � S

�
t���

f

t �S

	
t � S

�
t���

�
� C�� for each t � f�� �� �� ���� T � �g ���

E

�
max

t���r�T
fh
�r� S�

r �g �
f

t �S

�
t � S

�
t���

f

t �S

	
t � S

�
t���

�
�� for each t � f�� �� �� ���� T � �g ���

E

�
f

t �S

�
t � S

�
t���

f

t �S

	
t � S

�
t���

�
� C�� for each t � f�� �� �� ���� T � �g ���

E

�
f

t �S

�
t � S

�
t���

f

t �S

	
t � S

�
t���

�
�� for each t � f�� �� �� ���� T � �g ����

Theorem �� Suppose the mesh paths fSj
t g

b
j�� are generated independently with Sj

� ��

for all j � f�� �� ���� bg� where x� � Rd is known at time �� Under assumptions 

�	
����

P

�
jbqH��� x��� q��� x��j 	 �� �

�

b�
�T � �

�
�

�CT

�
b��
�
�O�b�	� for any � 	 � and � � 
 � ����

Proof� We start with a few de
nitions� Let

�c�t� x� ��
�

b

bX
j��

q�t � �� Sj
t���f�x� S

j
t���

gt���S
j
t���

In other words �c��t� x� is the natural estimate we would make of c�t� x� if q�t � �� �� was

known �which of course is not the case�� Fix � 	 � and � � 
 � ���	 and de
ne the events

EI�t� �

�
� � j�c�t� Sj

t ����� c�t� Sj
t ����j �

�

b�
for all j � f�� �� ���� bg

�
����

�



and

EII�t� �

�
� �

�����
�
�

b

bX
j��

ft�S
i
t � S

j
t���

gt���S
j
t���

���

	
� �

����� � �

b�
for all j � f�� �� ���� bg



where � denotes a generic point in the sample space� Finally	 let EI be the event that

E��I�t� holds for each t � f�� �� �� ���� T � �g	 i�e�	 EI �� 
t�����������T��EI�t�� Similarly	 de
ne

EII � 
t�����������T��EII�t��

Claim �� If events EI and EII both hold	 then jbqH��� x��� q��� x��j � �� � �
b�
�T � ��

Proof of Claim �� The proof is by a recursive argument going backwards in time� We

start by showing how an error bound that holds uniformly over all estimates at time t � �

can be iterated backwards in time� Fix � 	 � and suppose that for some t �� � t � T � ��

the error of the estimates at the forward points satis
es

jbqH�t � �� Sj
t���� q�t � �� Sj

t���j � � for all j � f�� �� ���� bg� ����

Then

jbc�t� x� � �c�t� x�j �
�

b

�����
bX

j��

bqH�t � �� Sj
t��� � ft�x� S

j
t���

gt���S
j
t���

�
bX

j��

q�t� �� Sj
t��� � ft�x� S

j
t���

gt���S
j
t���

�����
�

�

b

�����
bX

j��

�bqH�t� �� Sj
t���� q�t� �� Sj

t���
�
� ft�x� S

j
t���

gt���S
j
t���

�����
�

�

b

bX
j��

ft�x� S
j
t���

gt���S
j
t���

� ��� �
�

b�
� for all x � fS�

t � S
�
t � ��� S

b
t g� ����

where the last inequality follows since EII holds� So if ���� holds	 then the error of bqH at

stage t �� � t � T � �� can be bound uniformly as follows���bqH�t� Sj
t �� q�t� Sj

t �
�� �

��maxfh�t� Sj
t ��bc�t� Sj

t �g �maxfh�t� Sj
t �� c�t� S

j
t �g
��

�
��bc�t� Sj

t �� c�t� Sj
t �
��

�
��bc�t� Sj

t �� �c�t� Sj
t �
�� � ���c�t� Sj

t �� c�t� Sj
t �
��

� ��� �
�

b�
� �

�

b�
for all j � f�� �� ���� bg ����

�



where in the last inequality we used the bound ���� and the de
nition �����

Now the recursive bounding is as follows� We start the error bounding with the special

case t � T ��	 where we observe that bc�T ��� Sj
T���� �c�T ��� Sj

T��� � � for all j�and so the

de
nition of the event EI�T � �� implies that ���� holds for t � T � � with � � �� Iterating

the bounding argument in ���� with t � T � �� T � �� ���� �	 we get

jbqH��� x�� � q��� x��j �
�

b�

T��X
j��

�� �
�

b�
�j

�
�

b�
�� � �

b�
�T � �

� � �
b�
� �

� �� �
�

b�
�T � �

which completes the proof of Claim ��

Letting E be the event that jbqH��� x�� � q��� x��j � �� � �
b�
�T � �� we have just proven

that E � EI 
 EII � Letting Ac denote the complement of the event A� we have P �Ec� �

P �Ec
I� � P �Ec

II �� To complete the proof	 we need to show that P �Ec
I � �

	CT
��b����

� O�b�	�

and P �Ec
II � �

	CT
��b����

�O�b�	��

We 
rst obtain the upper bound for P �Ec
I �� De
ne the event

EI�t� i� �

�
� � j�c��t� S

i
t����� c�t� Si

t����j �
�

b�

�
Recall that EI � 
T��

t�� EI�t� � 
T��
t�� 


b
i�� EI�t� i�	 so

P �Ec
I � � �T��

t�� �
b
i��P �Ec

I �t� i�� � �T��
t�� bP �Ec

I�t� ����

since ffSi
t � fS

j
t g

b
j��g

b
i�� are identically distributed� We will show that

P �Ec
I �t� ��� �

�C

�
b��
�
�O�b�	� for all t � f�� �� ���� T � �g ��
�

which then proves that P �Ec
I� �

	CT
��b����

�

The key for proving that �c��t� S
�
t � � c�t� S�

t � is small with high probability as b � � is

that it can be written as the sum of b random variables which conditionally have mean �

and are independent�

�



Claim �� �c�t� S�
t �� c�t� S�

t � �
�
b

Pb
j��Z

j�t�	 where

Zj�t� ��
q�t� �� Sj

t��� � f�S
�
t � S

j
t���

gt���S
j
t���

�E�
q�t � �� Sj

t��� � f�S
�
t � S

j
t���

gt���S
j
t���

jFt�� j � �� �� ���� b�

where Ft denotes the ��
eld Ft � ��Si
sji � f�� �� ���� bg� s � f�� �� ���� tg��

Proof of Claim ��

�

b

bX
j��

Zj�t� �
�

b

bX
j��

�
q�t � �� Sj

t��� � f�S
�
t � S

j
t���

gt���S
j
t���

�E�
q�t � �� Sj

t��� � f�S
�
t � S

j
t���

gt���S
j
t���

jFt�

	

� �c�t� S�
t ��E�

�

b

bX
j��

q�t � �� Sj
t��� � f�S

�
t � S

j
t���

gt���S
j
t���

jFt�

� �c�t� S�
t ��E�

�

b

bX
j��

q�t � �� S
��j�
t�� � � f�S

�
t � S

��j�
t�� �

gt���S
��j�
t�� �

jFt�

� �c�t� S�
t ��E�

q�t � �� X� � f�S�
t � X�

gt���X�
jFt�

where X represents a random variable which is obtained by choosing one of the points

S�
t��� S

�
t��� ��� S

b
t�� at random with equal probability� The key behind the third step is the

invariance of the sum inside the expectation with respect to permutations of the fSj
t��g

b
j���

The conditional distribution of X when conditioned under Ft has the density gt����� in �
�	

so the second term in the last expression is simply a measure transformed expectation	 and

thus

E�
q�t� �� X� � f�S�

t � X�

gt���X�
jFt� � E�q�t � �� S�

t����jFt� � c�t� S�
t �

which completes the proof of Claim ��

Conditioned under Ft the fZ
j�t�gbj�� have mean � and are independent� We will exploit

this observation to obtain a su�cient probability bound on their average� First	 we need

two lemmas�

Lemma �� Suppose Y is a nonnegative random variable with E�Y 
� � �� Then

E��Y � E�Y jF ��
� � �E�Y 
�� where F is an arbitrary �	�eld�

��



Proof�

E��Y � E�Y jF ��
� � E
�
Y 
 � �Y 	E�Y jF � � �Y �E��Y jF �� �Y E	�Y jF � �E
�Y jF �

�
� E�Y 
� � �E�Y �E��Y jF �� � E�E
�Y jF ��

� E�Y 
� � �
p
E�Y 
�

p
E�E
�Y jF �� � E�E�Y 
jF ��

� �E�Y 
� � �
p
E�Y 
�

p
E�Y 
�

� �E�Y 
��

In the second step	 we dropped nonpositive random variables from the expectation� In

the third step	 we used the Cauchy�Schwartz inequality for the secod term and Jensen�s

inequality for the third term	 and in the fourth step we used again Jensen�s inequality inside

the second square root�

Lemma �� Let F denote an arbitrary �	�eld� and let Z�� Z�� ���� Zb be random variables

which� conditional on F have mean �� are conditionally independent of each other� and such

that E�Z

� � � � and E�Z


j � � C for each j �� �� where all expectations are unconditional�

and C is a constant� Then

P



�

b
jZ� � Z� � ���� Zbj 	 �

�
�

�C

b��

�O�b�	� uniformly in � 	 ��

Proof�

P



�

b
jZ� � Z� � ���� Zbj 	 �

�
� P



�

b

jZ� � Z� � ���� Zbj


 	 �

�

�
E��Z� � Z� � ���� Zb�


�

b
�

����

where we used Markov�s inequality� NowE��Z��Z������Zb�
� � �E�E�Zj�Zj�Zj�Zj� jF ���where

the four indices are ranging independently from � to b� Since E�Zj� jF � � �� the conditional

independence of the Z �s implies that the summand vanishes if there is one index di�erent

from the three others� This leaves terms of the form E�E�Z

j�
jF ��� of which there are b� and

terms of the form E�E�Z�
j�
Z�

j�
jF �� for j� �� j�	 of which there are �b�b���� For each of the two

��



di�erent forms	 the number of terms with any index equal to � is O�b��� of the total number

of such terms	 and so the 
niteness of E�Z

� � implies that the relative contribution of these

terms to the total is O�b���� Now focusing on terms where all indices are di�erent than �	 we

have E�E�Z

j�
jF �� � E�Z


j�
� � C� and E�E�Z�

j�
Z�

j�
jF �� � E�Z�

j�
Z�

j�
� �

q
E�Z


j�
�
q
E�Z


j�
� � C�

Hence

E��Z� � Z� � ���� Zb�

� � bC�� �O�b���� � �b�b� ��C�� �O�b����

� �b�C �O�b��

which completes the proof of Lemma ��

Applying Lemma � with Y �
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Now by Jensen�s inequality	 for any x�� x�� ���� xb 	 � we have that
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� C for all t � f�� �� �� ���� T � �g�

An analogous argument combined with assumption ��� shows that E��Z��t��
� � � for all

��



t� Now applying Lemma � with Zj � Zj�t�	 F � Ft and � � �
b�
	 we have

P �Ec
I �t� ��� � P �j�c�t� S�

t �� c�t� S�
t �j 	

�

b�
�

� P

������
bX

j��

Zj�t�

����� 	 �

b�

	

�
�C

�
b��
�
�O�b�	� for each t � f�� �� ���� T � �g

as claimed in ��
�	 which completes the proof that P �Ec
I� �

	CT
��b����

�O�b�	��

The probability bound P �Ec
II � �

	CT
��b����

� O�b�	� is proved by noting that Ec
II can be

written as an event of the form Ec
I for the special function q��� �� � �	 and assumptions

��� and ���� will serve in place of ��� and ���	 respectively� This completes the proof of

Theorem ��

The following result shows that the rate of convergence may be sharpened using moments

of order higher than � as we did in assumptions ���������

Theorem �� Suppose the mesh paths fSj
t g

b
j�� are generated independently with Sj

� � x�

for all j � f�� �� ���� bg� where x� � Rd is the known state at time �� Under assumptions 

�	


��� where we replace the power � by the power � and let C� be the corresponding constant �

P

�
jbqH��� x��� q��� x��j 	 �� �

�

b�
�T � �

�
�

�
��C�T

��b����
�O�b��� for any � 	 � and � � 
 � 
���

Sketch of Proof� One can show that P �Ec
I �t� ��� �

��
�C�

��b����
� O�b��� using Markov�s

inequality with power � and a result analogous to Lemma � using the �th power for bounding�

The other steps in the proof are as in Theorem ��

� Computational Results

We report empirical results on the performance of the mesh estimator on the test problems

in BG����a� Under the risk�neutral measure	 the n assets are independent	 and each follows

��



a geometric Brownian motion process�

dSt�k� � St�k���r � ��dt� �dWt�k��� k � �� � � � � n�

where Wt�k�� k � �� � � � � n are independent Brownian motions	 r is the riskless interest rate	

� is the divident rate	 and � is a volatility parameter� Exercise opportunities occur at the

set of calendar times ti � iT�d� i � �� � � � � d	 where T is the calendar option expiration time	

so that i is the equivalent of t of the previous sections	 ans d is the equivalent of T of the

previous sections� Under the risk�neutral measure	 the random variables log�Sti�k��Sti���k��

for k � �� � � � � n are independent and normally distributed with mean �r���������ti� ti���

and variance ���ti � ti����

Tables ��� contain results for a call option on the maximum of the assets with payo�

equal to max fmax��k�n ST �k��K� �g and parameters n � 
	 r � ���
	 � � ���	 � � ���	

K � ���	 T � �	 and d � �	 �	 and �	 respectively� Tables ��
 contain results for a call option

on the geometric average of the assets with payo� equal to max
n
�
Qn

k�� ST �k��
�

n �K� �
o
and

parameters n � 
 and � assets respectively	 r � ����	 � � ���
	 � � ���	 K � ���	 T � �	 and

d � ��� Within each table	 the two panels contain results for out�of�the�money and in�the

money cases	 speci
cally with So�k� � x�� k � �� � � � � n	 where x� � �� and ���	 respectively�

Within each panel	 we set the mesh size b to the values ���	 ���	 ���	 and ����� The

column labeled �CPU� measures CPU time in seconds per replication of bqH on a SUN Ultra


 workstation� Our performance measures are the relative bias �RB�	 relative standard error

�RSE�	 and relative root mean square error �RRMSE� of bqH	 de
ned as the bias	 standard

error	 and root mean square error �RMSE� divided by the true option value	 respectively� We

approximated the true option values using the results in BG����a as follows� For the max

option	 we used the most accurate estimates in that paper	 which have a relative error less

than ���
� with ��� con
dence� For the geometric average option	 the values are calculated

from a single�asset binomial tree	 presumably with negligible error� These approximated

�true� option values are listed in the bottom of each table� The estimates cRB	 dRSE	 and
��



Table �� Max Option on Five Assets	 d � ��

x� b CPU cRB dRSE �RRMSE

�� ��� ��� ����
 ����� �����

��� ��� ����� ���
� �����

��� ���� ����� ����� �����

���� ���� ����� ����� �����

��� ��� ��� ����� ����� ���



��� ��� ����
 ����� �����

��� ���� ����� ����� �����

���� ���� ���
� ����
 ���
�

The true option values for the cases x� � �� and ��� are

������ and �
���
	 respectively�

�RRMSE in these tables are based on �� independent replications of bqH �
It is obvious that the mesh estimator is highly positively biased	 with bias being the

dominant factor in the estimator�s overall error	 as measured by RRMSE� The bias decays

quite slowly in the range of sample sizes tested here� As expected from our theoretical

result	 the RRMSE is increasing fast with the number of exercise opportunities� This is not

surprising in view of Theorem �	 which shows a geometric growth of the estimator�s error

bound with the number of exercise opportunities�

� Conclusion

We have derived a bound on the probability of error of the mesh estimator of Broadie and

Glasserman �����a� for pricing American options as the number b of states sampled at

each stage grows� Both the estimate�s error and the bound on the probability of error are

decreasing to � as b grows� The constant C appearing in the probability of error involves

the fourth moment of the likelihood ratio of ��step transition densities between a parent and

�




Table �� Max Option on Five Assets	 d � ��

x� b CPU cRB dRSE �RRMSE

�� ��� ��� ����� ����� �����

��� ���� ����� ����� �����

��� ���� ����� ����� �����

���� �
��
 ����� ����� �����

��� ��� ��� ����� ����� �����

��� ���� ����� ����� �����

��� ���� ���
� ����� ���
�

���� �
��
 ����� ����� �����

The true option values for the cases x� � �� and ��� are

������ and ������	 respectively�

Table �� Max Option on Five Assets	 d � ��

x� b CPU cRB dRSE �RRMSE
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� ����� ��
��

��� �
�� ��
�� ����� ��
�


��� ���� ����� ����� �����

���� ����� ����� ����� �����

��� ��� ��� ��

� ����� ��

�

��� �
�
 ��
�� ����� ��
�


��� ���� ����
 ����� �����

���� ����� ����� ����� �����

The true option values for the cases x� � �� and ��� are

����
� and ������	 respectively�

��



Table �� Geometric Average Option on Five Assets	 d � ���

x� b CPU cRB dRSE �RRMSE

�� ��� ���� ����� ����� �����

��� ���� ����� ����� �����

��� ���� ��
�� ����� �����

���� ����� ����� ����� ��
��

��� ��� ���� ��
�� ����� ��
��

��� ���� ����� ����� �����

��� ���� ����� ����� �����

���� ����� ����� ����� �����

The true option values for the cases x� � �� and ��� are

����� and ������	 respectively�

Table 
� Geometric Average Option on Seven Assets	 d � ���

x� b CPU cRB dRSE �RRMSE

�� ��� �
�� ����� ����� �����

��� ���
 ����
 ����� �����

��� ����� ����
 ����� �����

���� ����� ����� ����� �����

��� ��� �
�� ����� ����� �����

��� ���� ���

 ����� ���
�

��� ����� ����� ����� �����

���� ��
�� ����� ����� �����

The true option values for the cases x� � �� and ��� are

����� and ������	 respectively�

��



a non�child to another non�parent and the same child multiplied by the maximum future

payo� over a path that starts at the child� Our computational experience with the mesh

estimator shows very poor behavior	 speci
cally very large positive bias� In view of our

theoretical result	 we conclude that for the speci
c problems studied	 the constant C is very

large� This obervation is consistent with the experience of many researchers that likelihood

ratios are often highly variable random variables�
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