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Abstract

We study the travel time needed to pick n items in a paternoster, operating
under the m-step strategy. This means that the paternoster chooses the shortest
route among the ones that change direction only once, and after collecting at most
m items. For random pick positions, we find the distribution and moments of the
travel time, provided n > 2m + 1. It appears that, already for m = 2, the m-step
strategy is very close to optimal, and better than the Nearest Item heuristic.

1 Introduction

A paternoster, or carousel system, is a computer controlled warehousing system consisting
of a large number of shelves or drawers rotating in a closed loop in either direction. Such
systems are mostly used for storage and retrieval of small and medium sized goods. The
picker has a fixed position in front of the paternoster, which rotates the required items
to the picker. The advantage of such systems is that the picker has time for sorting,
packing, labeling etc., while the paternoster is rotating. For a recent review of literature
on paternosters, as part of a general overview of planning and control of warehousing
systems, the reader is referred to Van den Berg [3].

An important performance characteristic is the total time needed to pick a list of items.
It consists of the pure pick time and the rotation or travel time. Clearly, only the latter
depends on the pick strategy. In this paper we study so-called m-step strategies: the
paternoster chooses the shortest route among the ones that change direction only once,
and only do so after collecting no more than m items. These strategies are closely related
to the optimal strategy, i.e., the one minimizing the travel time. Bartoldi and Platzman [2]
show that it is never optimal to turn more than once. Hence, if n denotes the number of
items to be picked, then the optimal strategy is an (n — 1)-step strategy.

For randomly distributed pick positions, Rouwenhorst et al. [10] analysed the m-step
strategy for m < 2. Their results indicate that these strategies perform very well. In this
paper we derive, for any m > 0, explicit expressions for the distribution and all moments
of the travel time under the m-step strategy, provided 2m + 1 < n. The analysis is based
on probabilistic arguments, in particular on properties of exponentials.



The performance of m-step strategies will be compared with the performance of the
optimal pick strategy. Numerical results show that, already for small values of m, the
performance of the m-step strategy is very close to optimal. In fact, with high probability,
the optimal strategy coincides with the 2-step strategy. Furthermore, m-step strategies
are compared with the Nearest Item (NI) heuristic, where the next item to be picked is
always the nearest one. The NI heuristic is frequently used in practice, and its statistical
properties have been investigated by Litvak et al. [5, 6]. It appears that, already for m = 2,
the m-step strategy performs better than the NI heuristic.

This paper is organized as follows. In the next section we describe the model and
introduce some notation. The m-step strategy is analyzed in Section 3. In this section we
first prove that the travel time under the m-step strategy can be expressed as the maximum
of two sums of spacings, provided 2m+1 < n. This representation is exploited in Section 4
to show that the travel time is distributed as a probabilistic mixture of sums of spacings.
In Section 5 we derive closed-form expressions for the moments of the travel time. Then,
in Section 6 we compare the performance of m-step strategies with the performance of
the optimal strategy and the NI heuristic. Finally, Section 7 is devoted to comments and
conclusions.

2 Paternoster model

Following Bartoldi and Platzman [2] and Rouwenhorst et al. [10] we represent a paternoster
as a circle of length 1 (see Figure 1).

Figure 1: Paternoster model.

Let Uy = 0 be the picker’s starting point, and let the random variables U;, where
1 =1,2,...,n, denote the position of the ith item. We assume that the random variables
Uy, i=1,2,...,n, are independent and uniformly distributed on [0,1). Set U,; = 1. Let
Uy, Uy, - - -, Ung1) be the order statistics of Uy, Uy, ... ,Uy41. Then the picker’s starting
point and the positions of the n items partition the circle into n + 1 uniform spacings

Dz':U(i)_U(i—l), 1<:<n+1. (1)



Throughout this paper we will use the following relation between uniform spacings and
exponentials (cf. Pyke [8, 9]). Let X, X5,... be ii.d. exponentials with mean 1, and
denote
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Then
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i.e., the spacings are distributed as normalized exponentials.

We assume that the paternoster rotates at unit speed, and that the acceleration and
deceleration time of the paternoster is negligible. So the travel distance can be identified
with the travel time. Further, for ease of presentation, we do as if the picker travels to the
items, instead of the other way around. This completes the model description. In the next
section we will analyze the travel time of the picker under the m-step strategy.

3 The m-step strategy

We assume that the picker operates under the m-step strategy: he chooses the shortest
route among the routes that turn only once, and only turn when no more than m steps
have been done. Clearly, there are 2(m + 1) possible routes (see Figure 1); the ones that
end in clockwise direction, i.e.,

Dy + D3+ -+ Dpy,

2D, + D3 + Dy + -+ + Dy,

(3)
2Dy +2Dy+ -+ 2Dy 1+ Dy + Do + - -+ + Dy,

9D1 + 2Dy + -+ + 2Dy 1 + 2Dy, + Dyuio + Dipss + -+ - + Dy,

and, symmetrically, the other ones that end in counterclockwise direction,

D,+D,_1+---+ D,

2Dpi1+ Dy 1 +Dyo+ -+ Dy,

e (4)
2Dyt 4 2D, + -+ + 2Dy + Dyt + Dy + - + D1,

2Dy + 2Dy + - -+ 2Dp g3 +2D0 o+ Dy oy + Dy gy 1+ -+ Dy

Under the m-step strategy, the picker chooses the shortest of the 2(m + 1) routes (3)—(4).
Let the random variable T,gm) denote the travel time under the m-step strategy, needed to



pick n items. Then, by definition,
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where in the last expression we take ”H . Dy = 1 outside the external minimum. This
expressmn suggests an alternative 1nterpretat10n for the m-step strategy. Clearly, D; —
S, "Dy is a gain in travel time obtained by skipping the spacing D; and going back
instead. Under the m-step strategy the picker skips the spacing that pr0v1des the largest
possible gain.

Bartoldi and Platzman [2] proved that the optimal route never allows more than one
turn, and thus it is an m-step strategy with m = n — 1. However, we only consider
the case 2m 4+ 1 < n. In the analysis of Tém) it appears to be crucial that the spacings
Dy, Dy, ..., Dy, whose coefficients vary (-1, 0 or 1) in the first internal maximum of the
last expression in (5), do not participate in the second internal maximum. This implies
that n—m+1>m+1,or2m+1 < n.

Below we establish an elegant representation of the travel time. This representation
will be used in the next section to derive the distribution of the travel time. Let us rewrite
(5) using (2):

1
Tém)gl— max{ max {X; —S;1}, max {X,io; (5’n+1—Sn+2j)}} (6)

n+l 1<5<m+1 1<5<m+1

By exploiting properties of exponentials, we will reduce the two internal maxima in (6) to
two sums of exponentials. First, we establish a preliminary result for the term

max {X; — S;j_1}. (7)

In fact, this is a special case of Theorem 3.4 in Litvak [4].

Lemma 3.1 Foranym=1,2,...,

m—+1
d 1
e P P o
]:

Proof. The proofis by induction. Let us assume that for some i = 2,... ,m+1, expression
(7) is distributed as

i—1
1
maX{Z i — v, max X — S 1}} (8)

J=1



So the maximum of the first i —1 terms in (7) is distributed as a sum of exponentials. This
trivially holds for i = 2. Now it suffices to show that if it holds for ¢, then it is also valid
for i + 1. In order to do it we rewrite (8) as

1
max{z 207 — . z<rfi%§+1 X = jl}}
1—1
1
- { X{ZQZ J—1X Xi = Si- }’i+1r<nj%)7§1+1{Xj_ jl}}
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i—1
T ;¥-+nmx{0;¥ X },HﬁgyaH{X}— jl}},@)

j=1
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j=1
where ¢; = 27/(27 — 1), j > 1. Then, as in [5, 4], we use conditioning on the random
events

Eir = [aaXi+coXo+ -+ cignXpm1 < X

<Ci_le+Ci_2X2—|—"'—|—Ci_ka], 1 Skéi—l;

Eii = [ Xi+cio2Xo+- -+ X1 <X
Given event B, where £ = 1,2,... 4, the random variables X, X5,... can be replaced
in the following way:
1

Xj = 7)/} + ]-[k:j}YlH»l; 1<53< mln{k,z — 1},
Ci—j+ 1
Xj=Yj, k<j<i (10)
min{k,i—1}
Xi= ), it e=aYs X =Y, >0
=1
where Y1,Y5,... are independent exponentials with mean 1. This follows by observing

that min{X;, ¢;_;X,} is an exponential with mean ¢;_;/(c;_; + 1) and the overshoot of the
bigger term is again an exponential with the same mean. For more detail see [5]. Under
event E;, where k =1,2,... 4, we have

-1

Z X —i—maX{O X; — icl _j } (11)

Jj=1 j=1
min{k,i—1} 1 i1 1
R =R e D S = L Zzz G
J= j=
Also, we obtain
—Z( L >Y+§Y — V4 Y44 Y (12)
B j i+1 = 11 2T i-
= Ci—j +1 Ci—j +1 J ik J



Here ¢y = 0. Substituting (10) into (9) and using (11) and (12) it follows that, under event
E; i, expression (9) reduces to

— X
2=+l — 177 ip1<<m1

Jj=1

max{iéy ma {Yj—(Y1+Y2+---+Yj_1)}} (13)

for any £ =1,2,...,7. Hence, the induction statement now immediately follows from the
law of total probability and the identical joint distribution of X;’s and Y;’s. This completes
the proof of the lemma. O

Clearly, given an event E; ; we know whether the ith term in (7) is bigger than the first
i — 1 terms or not. On the other hand, (7) is always distributed as (13) under any event
E;. So the events E;; do not provide information on the distribution of the maximum
of the first i, nor of all m + 1 terms in (7). Hence, we may conclude that the events A;
defined as

A; = argmax{Xj—Sjl}:i], i=1,2,...,

1<j<i
have the following properties; result (iii) in the corollary follows from

ool 1
Pr(4;) =Pr(E;;) =] ST = T (14)

J=1

Corollary 3.2
(1) The events Ay, A, ... are independent;
(i7) The distribution of (7) is independent of the events A;, i=1,... ,m+1;

(iid) Pr(4;) =1/(21—1), i=1,2,....

We now proceed with (6). To reduce the first internal maximum in (6) to a sum of
exponentials, we can repeat the arguments in the proof of Lemma 3.1. Note that in the
induction step we only affect the random variables Xy, ..., X,,.1 by conditioning on the
random events E; j (see (10)). Their sum (see (12)) as well as the other random variables
Xmi2y- -+, Xpy1 remain unaltered. Hence, during the induction, we only change (7) and
do not affect the ‘structure’ of the remaining terms in (6). Note that we will loose this
property as soon as m + 1 > n — m. In this case replacements (10) will change not only
(7), but also the other internal maximum in (6).

Once we have reduced the first internal maximum to a sum of exponentials, we can use
the same arguments to also reduce the second internal maximum in (6), finally yielding
the following theorem.



Theorem 3.3 For any m =0,1,...;n>2m+ 1,

. 1 m-+1 m—+1
TT(Lm) =1— 5 max {Z a;l1+2 j Z G j n+2—j} ) (15)
j=1

n+1
where
a;=2"—1, j>0.

In the remainder of this section we derive the distribution of the random variable K}[”)
defined as the number of steps before the picker turns, when collecting n items under the
m-step strategy. By symmetry, the probability that the route under the m-step strategy
ends in clockwise direction is equal to 1/2. From (6) we see that the event A; means that,
among the routes ending in clockwise direction, the route with i—1 steps before a turn (i.e.,
the route skipping the spacing D;) is better than any of the routes with j —1 < i — 1 steps
before a turn. Since the events A;, ¢ = 1,...,m + 1, do not provide information on the
distribution of the two internal maxima in the last expression of (6), they are independent

of the event that the route under the m-step strategy ends in clockwise direction. Hence,
we obtain

m+1 m+1
Pr (Kém) = k) = (Ak+1 ﬂ A) = Pr (Ak+1) H Pr (A

i=k+2 i=k+2
1 m+1 2Z B 2 2m—k 1
= 9kl _ H 9 _1  omtl_q1 okt _ gk-m’ 0<k<m,
i=k+2

where the factor 2 in (16) takes into account the completely symmetrical event that the
route under the m-step strategy ends in counterclockwise direction. Our findings are
summarized in the following theorem.

Theorem 3.4 For any m satisfying 2m + 1 < n,

1

PI'(K = k) W,

k=0,1,...,m

4 Distribution of the travel time

We will now use Theorem 3.3 to prove that T,Em)

of spacings. Let us first consider

m+1 m+1
-1 -1
max E :am+2—jXJ" E :am+2—an+2—j : (16)

can be expressed as a probabilistic mixture
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Figure 2: Markov chain interpretation of the maximum of two sums of exponentials.

Below we argue that this random variable is distributed as a probabilistic mixture of sums
of 2(m + 1) exponentials. This will be explained via the paths of the Markov chain in
Figure 2. The states are the grid points (z,y) where 0 < y < 2z < m + 1. From a state
(z,y) with 0 < y < x it is possible to make a transition to (x — 1,y) with probability
az/(az +ay), and to (z,y — 1) with probability a,/(a; + a,). From states on the horizontal
axis and the diagonal, only one transition is possible. State (0,0) is absorbing. For this
Markov chain we consider the paths, that start in (m + 1,m + 1) and eventually end in
(0,0), and show that these paths generate sums of exponentials representing maximum
(16).

Starting from state (m + 1, m + 1), we compare the terms a,_nlJrle and a,_nlJranH in
(16). Without loss of generality we assume [a;,} X; > a;}; X, 1], Then a,} X, is
distributed as (2am+1)_1Xn+1, and we can take it outside the maximum, reducing the
second sum by one term. Further, due to the memory-less property of exponentials, the
overshoot of a,; X; is independent of X1, and it has the same distribution as a'; X.
Hence, the first sum in (16) remains the same, and therefore expression (16) is distributed
as

m+1 m+1
(2ams1) " Xps1 + max {Z T eN ) amﬁrQ_anHj} : (17)
7=1 7j=2

So, the transition from (m + 1,m + 1) to (m + 1,m) can be interpreted as a transition
from (16) to (17). By leaving state (m + 1, m + 1) we have taken the term (2a,,11) ' X, 1
outside the maximum. Now we are at (m + 1, m), and we compare a,_nlJrle and a, ' X,.
If the event [a;';X; > a;'X,] takes place, then we take (@11 + a,)~' X, outside the
maximum, and thus we reduce the second sum by one term again. Given [, X; < a;;' X,,]
(the probability of this event is apy1/(Gms1 + am)), We take the term (41 + a,,) 7' X
outside the maximum, and we reduce the first sum by one term. Hence, leaving (m + 1, m)
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we always get an exponential with mean (a1 + ap) ' outside the maximum. With
probability a,,/(ams1 + am) we make a transition to (m + 1,m — 1), where the terms
a,_n1+1X1 and a;' | X,,_; are to be compared, and otherwise we move to (m,m), where we
have to compare the terms a,' X, and a,,' X,.

We proceed in this way traveling from (m + 1, m + 1) to (0,0), without crossing the
diagonal. Every time we leave a state (z,y), we get an exponential with mean (a, +a,) "
outside the maximum. A transition to (z,y—1) means that the second sum in the maximum
has been reduced by the first term; a transition to (x — 1,y) means the same for the first
sum.
Let L denote the set of states visited along a path from (m+1,m+ 1) to (1,0), and let
Pr(L) be the probability of this path, i.e., the product of the probabilities of each transition
in path L. Then it is clear, from the exposition above, that along path L, maximum (16)
becomes a linear combination of exponentials with coefficients (a, +a,) !, (z,y) € L. For
example, path L, in Figure 2 generates the sum

m+1 m+1

-1 -1
E :am+2—ij+ E (Ams1 + Gmga—j) Xnyoj.
7j=1 7j=1

The probability that maximum (16) is distributed as the sum above is the product of
transition probabilities

Am 1 1

Uyl + O Qg1 + Q1 Qg1 + 1

One can also say that path L; corresponds to the event

m+1
—1 -1
i1 X1 > E ST CRE

j=1
We can conclude that, with probability Pr(L), maximum (16) is distributed as the sum

Sy = Y (art+a,) ' Xow,

(z,y)eL

Note that each path goes through the states (m+1,m+1), (m+ 1,m) and (1,0). Hence,
S(L) always includes exponentials with coefficients (2a,,11)™", (@11 + a,,)~" and 1.

It is readily verified that, just as in the derivation of Theorem 3.3, conditioning on path
L does not alter the sum S,, ;1. For example, after the first transition from (m+1,m+1) to
(m—+1,m), thus under event [a,'; X; > a'; X,41], we replace the X;’s by Y;’s as follows:

1 Xn1 = (20m11) ™ You; a1 X1 = (2am41) ™ Yo + a5, Y55
X]:)/ﬁ ]%lan—i_la

where Y},Y5, ... are i.i.d. exponentials with mean 1. Since X; + X,,1; = Y} + Y, (cf.
(12)), the sum S, 41 remains Y7 +Y5+-- -+ Y, 1. Renaming again the Y;’s by X,’s, we can

9



repeat this procedure in the second transition, and so on. Hence, from Theorem 3.3 and

(2), we obtain that, with probability Pr(L), the random variable 1 — 7™ is distributed as

T(L)= 3 (4 +a,) Doy
(zy)eL

This is summarized in the following theorem, where £(m) is the set of all paths from
(m+1,m+1) to (1,0).

Theorem 4.1 For any m > 0 and any n > 2m + 1,

Pr(T{™ < t)= > Pr(L)Pr(1-T(L) <t). (18)

LeL(m)

Remark 4.2 It is well-known (see, for example, Yaglom and Yaglom [11], problem 83a)
that the cardinality of £(m) is a Catalan number, i.e.,

o) = o (7 r ). (19)

m+2\m+1

For more detail on lattice path counting and various applications we refer to the book of
Mohanty [7].

Remark 4.3 The probability Pr(L) is maximal for the path passing through all states on
the diagonal, i.e., path Ly in Figure 2. To prove this, we consider two possible ways to
reach state (z,y) from (z+ 1,y + 1); see Figure 3. For x = y route (a) is not possible. For

(x, y+1) (z+1,y+1) (z+1,y+1)

(@) (2,9) (2+1,9)

€Y (b)
Figure 3: Two possible ways from (z + 1,y + 1) to (x,y).

x > y the probability of the (a)-route is

2:1:+1_1 2y+1_1 2m+1_1
2x+1+2y+1_2.2x+2y+1_2’ x>y+1; 2x+1+2y+1_2'

1, z=y+1,

which is obviously larger than the probability of the (b)-route, given by
2y+1 -1 2w+1 -1
Qe+l L utl — 2 el 4oy — 9

Hence, for = > y, replacing the (b)-route by the (a)-route always gives a more likely path.
Thus, the probability of path L; in Figure 2 is the smallest, and the probability of the
path Ly is the biggest.
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To obtain a tractable expression for (18), first note that

1 =T(L)=Di+Dy+ -+ Dny1 — Y ag', Deyy,
(z,y)eL

where a(;,) = az+a,. So, 1=T(L) is a linear combination of n+1 spacings; actually, only of
n spacings, because a1,y = 1, and thus D; vanishes. Then a closed-form expression for the
right-hand side of (18) straightforwardly follows from Theorem 2 of Ali and Obaidullah [1].
This yields, for any L € £(m),

n CL(II, "
Pr (1 — T(L) < 75) = Z (a(;p,y)t — Q(zy) T 1)+ H ﬁ, (20)
(CE,y)GL (z!,y')eL (‘1" Y ) (CE,y)
(z',y")#(z,y)
t <1,

Pr(1-T(L)<t) = 1, t>1.
Here t, =t,if t > 0, and ¢, = 0, otherwise.

Example 4.4 We will derive the distributions of the travel time for the 0-, 1- and 2-step
strategies using Figure 4, where we display a(, ) at every state (x,y), z,y =0,1,2,3, and
the transition probabilities at the arrows.

14
1
6 7/10
{10
1 3/10
2/ 3 78
8
4
1 va vs
1 1 1
0 1 3 7

Figure 4: Tllustration for the analysis of 0-, 1- and 2-step strategies.

Let us first consider the 0O-step strategy, also known as the Shorter Direction (SD)
heuristic described in [2, 10, 6]. Under the SD heuristic the picker is not allowed to turn;
he chooses the shortest of two possible routes. In Figure 4 there is only one possible path
from (1,1) to (0,0). Hence, the travel time under the SD heuristic satisfies

1
Téo) 21— max{Dy, D,1} L1 Dy — §D2 (21)

with

Pr(T0 <t)=2t"-(2t—1)7, 0<¢t<1.
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Under the 1-step strategy the picker chooses the best of 4 routes. As we can see in
Figure 4, there are two possible paths from (2,2) to (0,0), thus for n > 3 the travel time

T,gl) is distributed as:

1 1 1
L= Dy = 5D, = Dy — =Dy with probability (w.p.) 3/4, (22)
1 1 1
1—Dy—-Dy—~-D3— =D p. 1/4.
1= 3D Da— b w1/
Then
M) n_ 9 n w3 no 1 n
Pr(T\V <t) = 3t} — Z(275 —1)7 — (3t —2)1 + 5(475 —3)n — Z(6t —5)",
0<t<l.

Finally, for n > 5, the travel time under the 2-step strategy is distributed as a mixture
of 5 sums of spacings, corresponding to the 5 paths from (3,3) to (0,0). From Figure 4 it

is clear that T,EZ) is distributed as:

1—171—%1)2 ipg éD4—1—10D5 11417 w.p%-%,
1-D, — ;DZ iD?, éD4 1101)5 1141)6 w.p&-%,
RN O S ' N ' NS TS R
Coboplp s lp g LR
N O S 7 N ' N X
It then follows that, for 0 < ¢ <1,
Pr(T\? <t) = gt"—f—Z(zt—l) z(3t—2)ﬁ+fz(4t—3) g—i(6t—5)ﬁ
+ Z(?t—6)+—%(8t—7) 372(1015—9) ;—4(1415—13)1

5 Moments of the travel time

In this section we shall calculate, for any path L, the moments of T(L). From these
moments we can obtain, by virtue of Theorem 4.1, the corresponding moments for the
travel time 7\™. For the kth moment of T'(L) we obtain

k

1
p(rwr) - e[| Caoe) | =7 X I b

(z,y)eL seskam 4220 (zy)EL
k1+ko+-+kom o=k
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where we used a well-known formula

kl!kg! NN k2m+2!n!
E (D’“D’” . .ka“) - .

The first two moments of T'(L) are given by

1 -1
E(T(L)) = — > agt,
(z,y)eL

9 1 ) -1
E(TWF) = Gipmrn | 2 %nt | 2 %

(z,y)eL (z,y)€L

2

Example 5.1 The mean and variance of the travel time for the 0-, 1- and 2-step strategies
can readily be derived from (21)—(23). For the 0-step strategy we obtain

oy 3 o2\ n?—1/2
B = 1-goy E(@Y)) =m0y
1 on—4
4 (n+12n+2)

Var (Téo)) =

and the 1-step strategy gives

15 > 144n? — 1080 — 97
1 1

E(TV) = 1-—— E((Tp)): :
8(n+1) 144(n+1)(n +2)
5  15ln— 254

576 (n+1)%(n+2)’

which is valid for n > 3. For the 2-step strategy we confine ourselves to the mean travel
time only, yielding

n): —m, n > 5. (24)

Of course, it holds that E(T,EU)) > E(T,El)) > E(T,EZ)), n > 5.

6 Performance evaluation

In this section we present numerical results on the performance of the m-step strategy, and
we compare it with the performance of the optimal pick strategy and the NI heuristic.

In Table 1 we list the mean and standard deviation of the travel time under the m-step
strategy for various values of m and n, and we compare them with the ones for the optimal
pick strategy and the NT heuristic. The random variables T?F” and TN! denote the travel
time under the optimal strategy and the NI heuristic, respectively. For each n, the results
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for the optimal strategy have been obtained from a simulation of 10°® trials; for the NI
heuristic we have (see [6, 5])

2 1
E(T)Y) = 1-
(L") S P NOTR
1 4n 8 1 n 1
Var (T}) = = T3 - -
ar (T.") W+UW+2)<3 37 2 T3 34%J

Hence, from (24), we can immediately conclude that
E(T?) <E(TY), n>5.

Thus, already for m = 2, the m-step strategy outperforms the NI heuristic.

ET™) oT™) | BE(TOFT) o(TOFT) | B(TNY) o(TNY)

n o m n
5 0 0.750 0.144 0.659 0.123 0.672 0.128
1 0.688 0.131
2 0.663 0.123
10 0 0.864 0.089 0.805 0.083 0.818 0.086
1 0.830 0.087
2 0.816 0.085
3 0.810 0.084
4 0.807 0.083
20 O 0.929 0.050 0.897 0.049 0.905 0.050
1 0.911 0.050
2 0.904 0.049
3 0.900 0.049
4 0.899 0.049
) 0.898 0.049
6 0.898 0.049

Table 1: Mean and standard deviation of the travel time.

The results in Table 1 show that, indeed, already for small values of m the performance
of the m-step strategy is very close to optimal. This is not only valid for the mean and
standard deviation of the travel time; it is also true for the distribution. This is demon-
strated in Figure 5, where we display for n = 10 the complementary distribution function
of the travel time for the optimal and NI strategy, and the 0-, 1-, 2- and 4-step strategy.
The distribution function for the optimal strategy has been obtained from a simulation of
10° trials; the one for the NT strategy has been calculated exactly (see Theorem 3 in [5]).

The results suggest that, if the picker turns under the optimal strategy, then it is very
likely that he does so after collecting a small number of items. In other words, already for
small values of m, the optimal strategy will coincide with the m-step strategy with high
probability. This is also confirmed by the results listed in Table 2. For various values of
n, we estimated from a simulation of 10° trials, the probability that the picker, operating
under the optimal strategy, will turn after collecting m items, m =0,1,...,5. Here m =0
means that the picker does not turn.
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Figure 5: The complementary distribution function of the travel time.

From Table 2 one can see that the probability that the optimal route turns after &
steps converges to 1/2F1 when n goes to infinity. This is proved below. Let KT be the
number of steps before the picker turns under the optimal strategy for n items. Then the
following assertion holds.

Theorem 6.1 For any fized k,

lim Pr (K7™ = k) = ST

Proof. First note that under event [K9FT < m] the optimal streategy and the m-
step strategy prescribe the same picking sequence. Hence, for any fixed £ < m, event

0 1 2 3 4 5
3 | 0.646 0.291 0.062
5 | 0.558 0.277 0.124 0.037 0.004
8 10516 0.259 0.129 0.062 0.026 0.008
10 | 0.506 0.254 0.127 0.063 0.030 0.013
151 0501 0.251 0.126 0.062 0.031 0.016
20 | 0.499 0.250 0.125 0.062 0.031 0.016

Table 2: Probability that the picker, collecting a list of n items under the optimal strategy,
will turn after m steps.
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[KOTT = k] occurs if and only if (i) the optimal route turns after at most m steps, and (ii)
the route under the m-step strategy turns after exactly k& steps. Hence, for 0 < k& < m;
2m+1 <n,

Pr (K™ =k) — Pr (K" >m) <Pr(K{"" =k) <Pr (K™ =k). (25)

By letting both m and n go to infinity such that the inequality 2m + 1 < n is always
satisfied, we obtain from Theorem 3.4 that

. . 1
i Pr (R = 8) = oL 26)
2m+1<n

Further, by using (14), we get

Pr(KP" >m) < 2-Pr(U Ai>
i=m-+2
n i—1 4

=2 ) Pr(d) | Pr(4) < 5op—

1=m-+2 j=m+2
yielding

lim Pr (K" >m) =0. (27)
2m+1<n

Now the statement of the theorem directly follows from (25)-(27). 0

7 Conclusion

In this paper we studied the performance of so-called m-step strategies for order picking in
paternosters. For uniformly distributed pick positions we found the distribution and the
moments of the travel time needed to pick n items. The method presented in this paper is
only applied to the case 2m + 1 < n. In principle the method also works for larger values
of m, but then the resulting expressions will become essentially more complicated.

We have seen that, already for small values of m, the performance of m-step strategies is
very close to optimal. In practice, the NI heuristic is frequently used for order picking. Our
analysis showed that the 2-step strategy on average performs better than the NI heuristic,
and it may be even easier to implement.

For the optimal route we derived the probability of turning after k£ steps, as the number
of items to be picked tends to infinity. However, the complete characterization of the distri-
bution or the moments of the travel time under the optimal strategy remains a challenging
open problem.
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