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Abstract

Ergodicity and mixing properties with respect to the product measure for a class of skew
products are discussed. We prove that the properties ergodic, weakly mixing, or strongly
mixing, are passed on from the transformation in the base to the skew product provided that
the semigroup of transformations in the fibre fulfills a suitable mixing conditions.

We study the convergence of ergodic theorems along skew products for the case when the
transformation in the base is ergodic, and when it is periodic. Under suitable conditions,
we show uniform convergence with respect to the first parameter, and L'-convergence with

respect to the second parameter. A P-a.s. version is derived as well.

1 Introduction

Two measure-preserving transformations on different probability spaces may be joined to form
a measure-preserving transformation of the product space, by letting each one act on its own
component. They can also be linked by letting the transformation in the the second argument
depend on the value of the first argument. The resulting transformation is called a skew product of

transformations. The independent transformation is called the base, the dependent one the fibre.

Ergodicity, and other mixing properties of skew products with respect to the product measure,
have been studied by a number of authors. The case of a Bernoulli-shift in the base and an ergodic
transformation in the fibre was introduced by Kakutani [17]. He showed that the skew product
is ergodic if and only if the transformation in the fibre is ergodic. Other mixing properties were
investigated, e.g., by Meilijson [20], den Hollander and Keane [10], den Hollander [9], and Georgii
[14]. Adler and Shields (cf. [1] and [2]) consider a translation on the torus for the fibre. Anzai [3]
introduced skew products of two translations on the torus, and derived a criteria for ergodicity.
Furstenberg [12] studied unique ergodicity. Zhang [25] investigated this for a translation on a
higher dimensional torus in the fibre. A torus translations in the base can also be combined with
the translation on R by the value of a real function of the argument in the base. Skew products

of this type are called real extensions of torus translations, and they were explored in Oren [22],

Hellekalek and Larcher [15], [16], and Pask [23].

The class of skew products investigated in this paper is given by

S(t,w) = (7(t), Ouyw) (te MweQ), (1)
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where 7 is an ergodic transformation on a probability space (M, B, i), (0x)rex is a mixing semi-
group of measure-preserving transformations on (2, F, P), and x is a K-valued B-measurable

function on M.

Such a skew product occurs naturally in the following example: Consider a Z*indexed random
field P, i.e., a stationary probability measure on 2 = TZ2, where T is some suitable state space.
Let A € [0, 1] be the line with slope A and y-intercept ¢, and let Ly ,(2) = (z,[Az +1]) (2 € Z) be

its approximation in the lattice Z?2. Look at the ergodic averages
1 n
=~ fenm) (e (2)
i=1

of a function f € £1(Q2, F, P) along this lattice approximation. Ergodic averages of this type are

the key in the proof of a directional Shannon-MacMillan theorem for a ZXindexed random field
(cf. [6], [7]).

What can we say about P-almost sure or £!(P)-convergence of the sequence (2)?7 To make
this problem accessible to ergodic theorems we have to find a transformation which captures the
stair climbing pattern along the lattice approximation of the line. If the slope is rational, the steps
become periodic, and we proceed by combining a finite number of different transformations. In
the case of an irrational slope, this method fails. Here, we need to keep track not only of the
integer part but also of the fractional part {\z + ¢} in each step. This suggests the skew-product
transformation

S(t,w) = (T)\(t), 79(1,[>\z+t])w) (teT,we ),

where T is the one-dimensional torus, equipped with the Borel o-algebra and the Haar measure,

and 7y is the translation by A.

The first natural question i1s about conditions for the skew product to be ergodic. Applying
a standard ergodic theorem would then yield convergence to a constant. However; this shows
convergence for almost all but not for all t € T, and we want the sequence (2) to converge for any

t € T. Further considerations regarding sure convergence with respect to ¢ are needed.

Inspired by the above example, this paper deals with the following two questions: Is the skew
product (1) ergodic with respect to the product measure?, and Can we prove, under suitable
conditions, that the convergence of the ergodic averages along the skew product is uniform with

respect to the first parameter?

The answer to the first question is summarized the results in Theorem 2.5. Under suitable
mixing conditions ((C1) and (C2)) we prove that the properties ergodic, weakly mixing, or strongly
mixing, are passed on from the transformation in the base to the skew product. As an explicit
example we study the case when P is a random field and (6 )¢k is a group of shift transformations.
In this case, (C2) can be insured by assuming tail-trivial for P and a growth condition for the

sequence (Y_r_ ko Ti)neN (see Corollary 2.6).

To tackle our second question, we combine two different methods: in the first component we
follow the lines of Weyl’s and Oxtoby’s theorems; and for the second component we use techniques

inspired by ergodic theorems along subsequences.

Recall Weyl’s classical theorem: The ergodic averages of continuous functions along transla-

tions modulo 1 by an irrational number converge uniformly. Oxtoby proved that this holds for



all uniquely ergodic transformations. Weyl’s theorem can actually be extended to the class of
Riemann-integrable functions, and in Corollary 4.8 we are able to extend Oxtoby’s statement to

this class as well.

Fixing the first component in our skew product, we obtain an ergodic average along a sub-
sequence. Almost-sure convergence in ergodic theorems along subsequences turned out to be a
very subtle question (cf. [4] for an overview), but convergence in £! was established under fairly
convenient conditions by Blum and Hanson [5]. Extending their theorem to the d-parameter case,
and combining it with the uniform-convergence results for the first parameter, we obtain Theorem
4.13. It states uniform convergence in the first and £!(P)-convergence in the second component,
provided that 7 is continuous and uniquely ergodic, P is strongly mixing, and a certain technical
condition on & holds. Finally, Theorem 4.15 is a result about uniform convergence in the first,
and almost-sure convergence in the second component. The proof is based on an Arzela-Ascoli ap-
proach, introduced by Krengel in his short proof of Weyl’s theorem (cf. Theorem 2.6 from Chapter
1 of [19]).

Maker (cf. Theorem 7.4 in Chapter 1 of [19]) replaced the function in Birkhoft’s ergodic theorem
by an approximating sequence of functions. The same can be done for the ergodic theorems for
skew products mentioned above, and for the uniform convergence result 4.13. Since the statements

and proofs are rather straight forward extensions of what is presented here, we refer the reader to

the Corollaries 2.2.3,2.2.4, 2.2.10, 2.3.1, and 2.3.15 in [6] for details.

Ouline of the paper: The next section starts out reviewing some basic mixing properties
and defining the class of skew products considered in this paper. Then, we give the result on
ergodicity and mixing properties of the skew product with respect to the product measure. We
have a closer look on the case when the second transformation is a shift operator for a random field.
Section 3 discusses ergodic theorems along skew products in the case when the first transformation
is ergodic, and in the case when it i1s periodic. Our results about uniform convergence with repect
to the first component can be found in the last section. It begins with a closer look on Weyl type
theorems, and on ergodic theorems along subsequences. We conclude by applying our results to
Example (2).

2 Definition and mixing properties

In this paper, T is a measure-preserving transformation on a probability space (M, B, u). Let
(Q, F, P) be another probability space. The product measure P := ;1 ® P is a probability measure
of the product space Q := M x Q furnished with the product o-algebra F := B F. Let (gk)keNg be
a semigroup of measure-preserving transformations on (2, F, P), i.e., each of the transformations

preserves the measure P,
0o =1d, and 0y o 0; = Oy for all k,1 € N (3)

(gk)kezg is called a d-parameter group if (gk)keNg is a semigroup and 6_; = Hk_l for all k € Z%
The following two examples will be used frequently in our settings. To simplify the notation, the

two-parameter case is given here; the generalization to d parameters is obvious.

Example 2.1. Let o and 03 be measure-preserving transformations on (€2, F, P). Assume further



that they commute, i.e., o1 0 03 = 03 0 1. Then

O, = 0ok for k= (kW E®) e N2 (4)

defines a two-paramter semigroup (gk)keNg of measure-preserving transformations on (2, F, P).

Requiring in addition that o7 and o5 are invertible this construction extends to a two-paramter

group (0 )rez2.

To define the skew product, we still need a function that controls the action of the group or
semigroup on w € €2, depending on ¢ € M. Let k be a B-measurable function on M with values in
K. Then

S(t,w) = (7(1), Octyw) (teMweQ),

defines a skew product on the product space. In particular, chosing x = k¢ for some kg € K yields
the uncoupled product of 7 and fi,. Obviously, S is measurable with respect to the product o-

algebra F, and it preserves the product measure P.

Defining

The following two properties can be shown easily by induction:

Entm (t) = kn(8) + £m (77 (1)) for all n, m € Ny, (7)
J(n—1) N
Kin(t) = Z Kp o T (1) for all j,n € Ng. (8)
i=0

In Example 2.1 we obtain

n=1 (1)(;¢ n=1 (2)( ¢
I L (9)

The rest of this section is devoted to of ergodicity and mixing properties of the skew product.
First, we recall the definitions of ergodicity and mixing properties which will be used (for instance,
cf. [24]). A measure-preserving transformation ¢ on (2, F, P) is called ergodic with respect to P

if P is trivial on the o-algebra
J={AeF|oc'A= A} (10)

of o-invariant sets. In this case, we also say that P is ergodic with respect to o. If P is the only
invariant measure with respect to o it 1s called uniquely ergodic. Ergodicity is equivalent to the

mixing property

n—1
LS p(ane ) - P(4) P(B)| 2250 forall 4, B e F. (11)
n =0

A classical example is the translation on the torus by an irrational number.



Example 2.2. Let T := R/Z be the one-dimensional torus equipped with the Borel o-algebra B
and the Lebesgue measure u. Then the translation by A modulo 1,

™n: T —T

t —t+Amodl,

defines a p-invariant transformation on T, which is uniquely ergodic, if A is irrational and which
is periodic if A is rational. We will often use the notation {z} for the fractional part of x; in
particular, 7 () = {t + A}.

Under which conditions can we prove ergodicity of S with respect to P? Note that, by a simple
projection argument, the ergodicity of 7 is necessary. Remember that the uncoupled product of
two ergodic transformations need not be ergodic. However, it can be shown that the product is
ergodic whenever one of the transformations is ergodic and the other one is weakly mixing (cf.
[19]). Recall some definitions for mixing properties for (semi-)groups of transformations. || - ||

denotes the maximum norm on K = N¢ or K = Z¢ respectively.

Definition 2.3. A (semi-)group of measure-preserving transformations (0 )xex on (2, F, P) is

called weakly mixing with respect to P, if

n—1
lZ|P(AOHng)—P(A)P(B)|m>O for all A,B € F. (12)
n =0
It 1s called strongly mixing with respect to P, if
P(ANn6;'B) — P(A) P(B) =20 forall A,B € F. (13)

To make the skew product an ergodic transformation we have to think about assumptions which
bring into play the function . In [11], N. Friedman introduced the notation of weakly mizing along

a sequence for transformations, which we translate here to the d-parameter (semi-)group.

Definition 2.4. A (semi-)group (0 )ner of measure-preserving transformations on (2, F, P), is
called weakly mixing along the K-valued sequence (kn)nen with respect to P, if

n—1
n—00

%Z|P(Aﬁ€,;13) - P(A)P(B)| ——0  foral A BEF. (14)

i=0

J. Aaronson suggested to extend the question about ergodicity to further mixing properties of
the skew product, and the results are summarized in the next theorem. We will make use of two

conditions:

(C1) (Ox)kex is weakly mixing along the sequence (ky,(2))nen for p-almost all ¢ € M.

(C2) (Ok)kex is strongly mixing and (kn, (2))nen goes to infinity for p-almost all ¢t € M.

Obviously, (C2) implies (C1).

Theorem 2.5. Assume condition (C1) and that T is ergodic with respect to p then S is ergodic
with respect to P.



Assume condition (C1) and that T is weakly mizving with respect to p then S is weakly mizing

with respect to P.

Assume condition (C2) and that T is strongly mizing with respect to p then S is weakly mizing
with respect to P.

Proof. We begin with the ergodicity. Assume condition (C1) and let 7 be ergodic with respect
to p. We will show that for all bounded F-measurable functions F and G

n
1 n—o0 —

_Z/ FoS(tw) G(t,w)dP ——TF -
MxQ

Q)

’
n <
i=1

where

F:/ F(t,w)dP and é:/ G(t,w)dP.
M X2 M X2

By (11), this implies ergodicity. Tt is sufficient to show this for functions which are products of

functions on the factors, 1.e.,
F(t,w) = f(t)®(w) and G(t,w) = g(t)T(w), (15)

where f and g are bounded B-measurable functions on M and ® and ¥ are bounded F-measurable

functions on Q. The general case follows by approximation. For the product functions we have,
F=f-® and G=7-9,

with

We obtain

12/ Fosi(t,w).(;(w)dp_ﬁé‘
niT JMxQ

%Z /MXQ f(Ti(t))q)(gn,(t)(w))g(t)\lf(w) dP—F-®-5-¥

55%;;Z%mfﬁﬂﬂmw@wmm@wa)—ﬂ”@»ﬂﬂiidﬁ‘ (19)
+%i(&mﬂﬂmwwf—f@¢i@~ a7
The term (16) can be bo:nded by
%é;u@fﬁ%»ﬂﬂ(A@WMWWDWWMP—5~@)ML
and further, using ||Z._ lloo for the supremum norm, by
el 23] [ 00w i - 5] (19

i=1

This goes to 0 by the mixing condition (C1). The expression (17) is smaller than

S [ s oo dn - T3] 18115



which goes to 0 by the ergodicity of 7.

Now assume that 7 is weakly mixing. Restricting again to the class of product functions (15),

we have to show that

1 n

w2
=1

goes to 0 as n goes to infinity. Similar to the estimates in (16), (17) and (18), we obtain the bound

| [ 5 @00 a0 dpdi - Fod 5

n

1
il llloe >

i=1

| @)y ip -3

FEW)g(t)du — F-G| | @10,

By the mixing condition (C1) and the fact that 7 is weakly mixing, this goes to 0.

Finally, for the proof of strong mixing, assume condition (C2) and that 7 is strongly mixing.

We proceed as in the proof of weak mixing, but do not average. [l

This section concludes with a closer look at the case when the transformations are induced
by shifts. Let T be a finite set, and Q = T, For any subset J of Z% let F; denote the o-
algebra generated by all projections w — w(j) with j € J, and let F := Fya. Consider the shift

transformations (¥, ), cga on Q, le.,
O ()(j) =w(i+v) (G €Z9. (19)

Let P be a random field, i.e., a measure on (€2, F) which is invariant with respect to ¥, for all
v € Z%. The tail field is the o-algebra

T = ﬂ fzd\v,
V CZ9 finite
P is called tail-trivial if it fulfills a 0-1 law on 7. For vy, vs € Z¢, 8, := ﬁ’jil) o 79’;;2) (k € Z4) defines

a measure preserving group of transformations as explained in Example 2.1.

Corollary 2.6. Let vi and vy be linear independent vectors in Z%. Assume that P is tail-trivial
and that the sequence (||ffn (t)||)nEN goes to infinity for p-almost allt € M.
Then, when T 1s ergodic, weakly mizing or strongly mizing with respect to u, S is ergodic, weakly

mizing or strongly mizing with repect to P, respectively.

Proof. We are going to show condition (C2). Define the boxes {v € Z4 | vl < n} (n €N), and
let B € Fy, for some finite subset J of Z¢. Then there is an m € N such that J C V. Setting
m(n) = nﬁf)(t) o —|—K?£12)(t) va we observe that the translated sets B —m(n) are contained in Vni(n),
where m(n) = (m(n) — 2m) Vv 0. For any A € F we obtain

|P(AnG; ) B) - P(4) P(B)]|
= [P(An 0O oy O B) _ p(a) P(B)]

= |P<Aﬂ ﬁ;é)(t)v1+n£f)(t)v23) - P(‘A) P<B) |
sup |P(AOC')—P(A)P(C')|. (20)

CEFany,, (1,

IA



By the assumptions on v1, v2 and &, ||m(n)]|| goes to infinity. By Proposition 7.9 in [13] tail-triviality
is equivalent to short-range correlations, 1.e.,

n—od

sup | P(ANC)—P(A)PC)| ——0. (21)
CETZd\Vn
Applying this to (20) concludes the proof. O

3 Ergodic theorems with skew products

Applying Birkhoft’s ergodic theorems to the skew-product transformation S yields, for any function
Fell(@Q7,P)

- Z F(r W) 2 BRI (22)

P-almost surely and in El(?), where 7 is the o-algebra of all S-invariant sets in . We study this
limit more closely. Two different cases will be discussed: when the transformation 7 is periodic

and when it is ergodic.
Begin with the latter case. Summarizing (22) and Theorem 2.5 leads to

Theorem 3.1. Assume that T is ergodic with respect to p and that the condition (C1) is fullfilled.
Then for any function F € LY (Q, F, P),

n—1
% SOF(F (1), 0, 0)w) —— E[F)
1=0

P-almost surely and in L' (P).

We shall illustrate the theorem with two examples.

Example 3.2. (Shifts in the fibre)
Consider the situation of Corollary 2.6, and suppose that 7 is ergodic with respect to u. Then by
Theorem 3.1, for any function F € £LY(Q, F, P),

n—o00 R
2z ZF ), 9 ) >v1+n£f><t>v2> —— B[F]

P-almost surely and in £!(P).

Example 3.3. (Irrational translation on the torus in the base)

Let 7 be the translation on the torus defined in Example 2.2. Suppose that A is irrational. Then
7y is ergodic. Choose (01 )iex and & for which the condition (C1) from the last section holds. Then
by Theorem 2.5, S is ergodic as well, and Theorem 3.1 tells us that for any integrable function ¥
on (TxQ,BeF, pe P),

-1
i n— 00 1

1 S F(t+id mod 1,0, yw) —— [ E[F(t,-)]dt (23)
n

i=0 0

for @ P-almost all (t,w) € T x Q and in LY (T x Q,B® F,u® P).



Let us now consider the case of 7 periodic, i.e., where 7¢ =1Id for some ¢ € N. To see how this

differs from the ergodic case, we calculate the iterates of the skew product explicitely.

Lemma 3.4. Assume that 7 is periodic with ¢ € N. Then for all j € Z and allv € {0,1,...,q— 1},

(i) Kjgro(t) = jrq(t) + 0 () forallt e M,
g J
(i) Ousprnity = (0uy) ©0ney  forallw Q.

(11i) STtV (¢, w) = (T”(t), Ox, (1) © (H,Qq(t))jw) for allt € M and all w € Q.

Proof. By (8) and the periodicity of 7, kj4 = jk,. Applying (7) and the periodicity again yields
(). The second statement (ii) is an immediate consequence of (i) and (3). To prove (iii), obtain
by (6) that S74(t,w) = (qu‘l'”, H,Qjﬁy(t)w), and apply (i), (i), and the periodicity of r. O

The ergodic theorem for our skew product in the case when 7 is periodic has the following form.

Theorem 3.5. Assume T is periodic with period ¢ € N, and F € L£L*(Q, F, P). Denote by J; the

o-algebra of 0, (1)-invariant sets in F. Then

n—1

LS P 1), 00, 0) leZE o) ],

n-
1=0

for p-almost all t € M, and for P-almost all w € Q and in L*(P). If Ok, (1) is ergodic with respect
to P for p-almost all t € M, then the limit simplifies to

1]
=D E[F(r(), )]
q r=0
Proof. Due to (6) we have
1 n—1 ) 1 n—1 )
AnF::g;F(TZ(t),Hm(t)w) = g;FoSZ (n € N). (24)

The first step in proving the theorem is to show that we can restrict ourselves to a subsequence of
the form (mq)men. Any n € N can be represented as n = mg+v, withm € Nand v € {0,1,...,¢—1},
and we may break down A, F' to

mq mqg—1 1 mqg+r—1
A F = FoS 4+ — FOSZ)
mq+1/<mq Z myq Z

1=0 i=mgq
Since
m mqg+r—1 N
m (o]
T 1 and — Y Fos 50
mq + v Pl

our question of the limit behavior of (24) reduces to the study of the limit along the subsequence.

For mg instead of n in (24) we get for the ergodic averages

1q—1 1 m—1 )
ISP
= 7=0

q v=0
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Thus we need only to show that for every v € {0,1,...,9— 1},
1 m-l gpy M y
LS pasinns 22 B (1), 00,00(00) 0]
7=0

For v € {0,1,...,q — 1} fixed define

— %mz_: Fogiaty,

By Lemma 3.4, the identity

H

m—

AW F =

m

1
— F(r () o (gralt)yi

LY o (1))

7=0

holds for all t € M and w € Q. For py-almost all t € M fixed, we can define an F-measurable trans-
formationon (2, F, P) by ¥, := 0, _(;), and an LY(Q, F, P)— function by ft(y)(w) = F(T”(t), H,Qy(t)w)

(w € Q). Now the ergodic averages A%)F(t, -) take the form

H

m—

ft(y o 79‘7

SIH

7=0

Applying Birkhoft’s ergodic theorem we get

lim AYF(t,) = E[f 7] = E[F (7 (1), 00, 0)()) | 7]

m— 00

P-almost surely and in £(P). Combining this with the preceding considerations yields the desired
result. In the ergodic case, J; is trivial, and the last expression reduces to E[F (T” (), H,Qy(t)())].

Then the last statement of the theorem follows from the invariance of P under 6. O

Example 3.6. (Rational translation on the torus in the base)
Given the conditions of Example 3.3, but with A a rationalnumber. There is a unique representation
A= ’q—’, where p € Z,q € N, and p and ¢ have no common divisor. Then 7 is periodic with period
q and respects the partition [0, ;), [; 3), . [%1, 1) of T,i.e., for every v € {1,...,g— 1} there is a
ve{l,...,qg— 1} such that , ([&== 1,:)):[”;,%).

Assume that, for P-almost all w € , F(-,w) is a step function with respect to the above
partition. Then the limit in Theorem 3.5 can be rewritten as

11

Y Bl 0.19] = [ Bl a= [ e ja

q =0
and if P is ergodic with respect to 0,
12

S EIP(0.0] = [ Bl @) d = [ B

=0
4 Uniform convergence

In addition to the assumptions at the beginning of Section 2 we suppose that M is a compact

separable metric space endowed with metric d, and B is the Borel o-algebra on M for the topology
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induced by d. In the last section we investigated ergodic theorems for the skew product S(¢,w) =
(7(t),0x(t)) on the product space (Q, F, P), and we obtained

n—1
Jim = ZZ;F ), Os,0) = BIFITNE,w),

where the convergence was in £!(P) or P-almost surely.

This section addresses the question of sure convergence with respect to the first parameter.
Recall that the convergence of ergodic averages need not be true everywhere, even if we are
in a compact topological space and both the transformation and the function are continuous.
This may be seen in simple examples, such as the Bernoulli shift: Consider the space {0, 1},
with o-algebra A = ©72,0({0}), and measure y = @52, %(do + 61). Define a transformation on
{0, 13N by T'(ty,t2,15,...) = (t2,t3,14,...), for t = (t1,12,3,...) € {0, 1}V. The function f given by
fti,ta,ts,...) = t1 for (t1,t2,13,...) € {0,1}" is bounded and measurable with respect to .A. By
Birkhoft’s ergodic theorem we obtain

n—1

7 _ 1 N
nlgr;o - Z FoT'( =3 for p-almost all ¢t € {0, 1},

while for ¢t = (0,0,0,...) this limit is 0.

Which conditions guarantee sure convergence in the first parameter? We will be asking a little

more than this, namely about uniform convergence in t. We are interested in results of the type

n—1
! S F(F (1), 65, 0)w) —— E[FIJ)(t,w)  uniformly in ¢ € M (25)
n

i=0

in £1(P). To put it another way, we ask that

—0. (26)
ci(p)

lim sup
n—r 00 tEM

S P @), 000) - BT

In addition, we investigate whether (25) may take place P-almost surely, i.e., for P-almost all
w € Q,

n—1

lim sup 1 Z F(ri(t), 0, (yw) — E[F|T](t, w)

n—r 00 tEM n i—o

—0. (27)

Again, we consider two different cases: when 7 is periodic and when it is ergodic. The first case
is simple. Establishing an ergodic theorem along the orbits of the skew product, was just a matter
of rearranging the sum according to the periodic structure and then applying a classical ergodic
theorem only to the second component (see proof of Theorem 3.5). As to the questions about sure

and uniform convergence we obtain

Corollary 4.1. Let T be periodic with ¢ € N. Assume F € LY(Q, F, P) such that F(t,-), Fy;(t,-) €
LYQ,F, P) forallt € M. Then

- Z F(r'(t), 0x,0) ) o, Z E[F 0o, () )|$] uniformly int € M
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P-a.s. and in L' (P), where J; denotes the o-algebra of Ok, (t)-tnvariant sets in F.

If P us ergodic with respect to 0, (1) the limit simplifies to

The ergodic case is more delicate. We begin with a more careful investigation of ergodic
theorems on the single spaces (M, B, p) and (2, F, P). Later, these results will be used to tackle
the ergodic theorems for the skew product. With regard to the first component, where the space
is assumed to be compact and metrizable, we recall some results about uniform convergence. In
these theorems the transformation and the function are both subject to continuity assumptions.
With an eye toward later applications we also ask for uniform convergence within the class of

Riemann-integrable functions.

Ignoring the first component of the skew product we end up with an ergodic average along
subsequences. We therefore derive a d-parameter group version of Blum and Hanson’s £P-ergodic
theorem along subsequences. Coming back to the ergodic averages of the skew product, we first
study the LP-convergence. The result in Theorem 4.13 is a consequence of the one-dimensional
case and a condition on the coupling sequence (£ (t))nen, uniformly in ¢. The last part of this
section addresses the question of P-almost sure convergence can take place uniformly in ¢ € M.

The result in Theorem 4.15 requires equicontinuity of the sequence of ergodic averages.

The classical example for an ergodic theorem that gives a statement about uniform convergence
is a theorem of Weyl. We will recall the one-dimensional version here. The metric space is here
the torus T, with metric d(s,t) := |s —t| (s,t € T), and 7 the translation on T by A (see Example
2.2).

Theorem 4.2. (Weyl) Let A be an irrational number and f a continuous function on T. Then

n—1 1
1 . n—oo
— E for; o, f(t)dt uniformly. (28)
n < 0

1=0

To prove Weyl’s theorem, Krengel (cf. Theorem 2.6 in Paragraph 1.2.3 in [19]) uses an Arzela-

Ascoli technique which we will make use of at the end of this section.

Theorem 4.3. (Krengel) Let 7: M — M be continuous, and assume that f is a function on M,
such that the functions

n—1
1 :
—ZfOTZ (n €N) (29)
n i=0
are equicontinuous on M. Then
n—1
1 . n—00 .
—ZforZ — E[f|TJ] uniformly,
n
i=0

where J denotes the o-algebra of T-invariant sets.

Together with the following Lemma this yields Weyl’s theorem.
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Lemma 4.4. Let f be a continous function on M, and 7 : M — M Lipschitz-continuous with

Lipschitz constant ¢ < 1. Then the functions in (29) are equicontinuous on M.

Proof. We have to show that for every ¢ > 0 there is a > 0 such that for all n € IN and all
s, t € M with d(s,t) <4

1
n

)~ S0 < (30)

Fix ¢ > 0. We will show that there is a § > 0, such that |f(r(s)) — f(TZ(t))| < ¢ for all d(s,t) < 4.
Since M is compact, f must be uniformly continuous, i.e., there is a § > 0 such that for all 2,y € M
with d(#,y) < d we have |f(2) — f(y)| < . By assumption, d(7(s), 7(t)) < c¢d(s,t) for all s,t € M,
and therefore, d(7i(s), 7%(t)) < ¢! d(s,t) < d(s,t) for all s, € M, and for all i € N. O

We shall ask whether we could replace the assumption of continuity of the function f in Weyl’s
theorem by a weaker condition. It is certainly not true for all measurable functions, which can be
seen in a simple example: Fix tg € T. Its orbit under 7 is the set O := {7"(¢g)|n € Ny }. Defining

the function f := 1p, we obtain

n—1
.1 i —
nh_}n(}o - ;:0 loor'(t) =1 forallte O,

but fol lo(t) dt = 0, which shows that (28) is wrong for f.

The Lebesgue measure is the only probability measure on (T, ), which is invariant with respect

to 7y. This observation yields to the following

Definition 4.5. A continuous transformation T of a compact metrizable space is called uniquely

ergodic if it has only one invariant Borel measure.

It can be shown that this measure must be ergodic, which implies that the ergodic averages
of an integrable function converge almost surely to a constant. An extensive discussion of the
connections between unique ergodicity and the uniform convergence for continuous functions can
be found, for instance, in Chapter 4.1.e. of [18] or Theorem 6.19 in [24]. In particular, there is the

following

Theorem 4.6. (Oztoby) Let 7 : M — M be continuous and uniquely ergodic with invariant

measure p. Then for any continuous function f on M,

n—1
1 . n—00
- Z for ;) fdu uniformly.
s M

The converse need not be true unless further conditions are imposed, such as topological tran-
sitivity of 7 or constancy of the limit. Below Theorem 2.7 in Chapter 1 of [19], Krengel mentions
that Weyl’s theorem is somtimes spelled out for to the class of Riemann-integrable functions. Ac-
tually, it was proved by de Bruijn and Post [8] that the function is Riemann-integrable if and only
if the convergence is uniform. This also follows from our next proposition. We ask the following
question: Considering uniform convergence of the ergodic averages along a continuous transforma-
tion on a compact real intervall, can we pass automatically from the class of continuous functions

to the class of functions which are integrable in the sense of Riemann?
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Proposition 4.7. Let a,b € R, a < b, it a measure on ([a,b], B([a,b])) which is absolutely con-
tinuous with respect to Lebesque measure, with a continuous density. Let T : [a,b] — [a,b] be

continuous. Assume that for any continuous function [ on [a,b]
1 n-l . n—0o b )
— Z for' —— / fdp uniformly. (31)
n i=0 @

Then the convergence holds as well for any function which is integrable in the sense of Riemann.

Proof. With no loss of generality we can assume that u is the Lebesgue measure on M, and that

= [0, 1]. The first step is to construct a sequence of functions (An, )men on [0, 1] such that

hm, is continuous on [0, 1] and hy, > f for all m € I, (32)
1 1
and lim P dit :/ fdt. (33)
Consider the partition of [0,1] which is given by A; = [=2, L) for i = 1,. — 1l and A, =
[mT_l, 1]. Since f is Riemann-integrable on [0, 1], there is a constant ¢ > 0 and a sequence of step

functions on [0, 1),
=> all1a,(t) (meN)
i=1

with |a£,i)| <cforie{l,..,m},méeN, for which

fm > fforall m € N and lim fm dt = / fdt. (34)
m—00
A slight modification,
oy < ol — el = ) e = e ) e (1)
" fm (1) otherwise,

defines a sequence (A, )men that fulfills the two conditions of (32). As for the request (33), we

first observe

[ ) = sttt

Il
iPM:
N
P
3| 3
|
3M|H

o

O

(VAN
i1z
o

3o

3

[\

o

3

3

3e

In the same way, we construct a sequence of functions (¢m)men on [0, 1] such that

gm is continuous on [0, 1] and g,, < f for all m € N (35)
1 1
and lim G dt :/ fdt. (36)

Foralln e Nyme N, and t € [0, 1]

n—1 n—1 n—1

1 ; 1 : 1 :

= gmoT (1) <= () <= hmorti(t
ni:og OT()_nizofOT()_nizo OT()
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Fix § > 0. By (36) and (33) we can find m € I large enough such that

1 1 $ 1 $ 1
/gmdt</ fdt+ = and / fdt——</ ho, dt.
0 0 2 0 2 0

Since g, and hy, are continuous, assumption (31) tells us that there is an ng € N such that for all
n >ng and s € [0, 1],

n—1

/1 dt 6<1§ Z’()</1 dt+6
_ 22 o 2

and

1 s 1 , 1 )
B di—> < =N "h,ori(s) < | hy,dt+>.
/0 2‘71; OT(S)—/O *3

Putting all these inequalities together yields

n—1

1 1 . 1
[ra—s<tY sore)< [ paes

i=0

for all n > ng and for all s € [0, 1], and the assertion of the corolary follows by taking § to 0. O

Applying the last Proposition to the situation of Theorem 4.6 we obtain

Corollary 4.8. Let a,b € R, a < b, and 7 : [a,b] — [a,b] continuous and uniquely ergodic with
wnvariant measure . Assume that p s absolutely continuous with respect to Lebesque measure, with

a continuous density. Then for any function f on M which is integrable in the sense of Riemann,
1 n-l . n—oo 1 )
- Z for' —— fdpu uniformly.
n < 0
1=0

Remember that the goal of this section was to understand the different modes of convergence
of the ergodic averages of a function F' on the product space along the orbits of the skew product
transformation. We asked about uniform convergence with respect to the first component and £!-
convergence with respect to the second. The above discussion tells us something about the uniform
convergence with respect to the first parameter. Now we turn to the second parameter. Choosing
for F' a function which is constant in ¢ brings us back again to a one-dimensional situation: Fix ¢ €
M. Defining a function on 2 by f(w) := F(f,w) reduces the ergodic averages to % E?:_Ol f(H,h(t)w),

which we can view as a sort of ergodic average along the subsequence (%;(t));en. Concerning £P-

convergence of classical ergodic averages along subsequences, there is the following characterization.

Theorem 4.9. (Blum & Hanson) Let T' be a transformation on (2, F). Suppose that T is invertible
and that both, T and T~ preserve P. Then P is strongly mizing with respect to T if and only if
for all p, 1 < p < oo, every strictly increasing sequence (m;);en of integers, and every function

feLrQr, P,

n—1
%Zfon’ PTEEL) O in £P(P).
i=0

The key to the proof is the following
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Lemma 4.10. Under the assumptions of Theorem 4.9 and supposing that P is strongly mizing
with respect to T we have for all A€ F

1n_1 L Moo ] 9
SN Lot I pa)y o £2(P),
n

i=0

for every strictly increasing sequence (k;)iex.

It remains to ask how we can carry over Blum and Hanson’s theorem to the case of a d-parameter
group of transformations (#),cza, instead of iterates of a transformations 7. What we need is a
condition on the Z%valued sequence (k;);eny which replaces the strict monotonicity imposed on
(m;)ien. With an eye toward later applications on the product space we generalize the result
further by admitting a whole family of sequences and showing that the £2-convergence takes place
uniformly over this family. Recall that || - || denotes the maximum norm in Z%. The analogue of

Lemma 4.10 is the following

Lemma 4.11. Assume that P is strongly mizing with respect to (6x)pega, and let (ky (1)) nen (t € I)

be a family of sequences with values in Z%, for which for all m € N,

.1 .
Jim 5 sup [{1 <5 < n ki) = k@)l < m}| = 0. (37)
Then for all A € F,
n-l 2 n—0co
sup —Zleﬁk(t)—P(A) —0
el |1 555 L2(P)

1 n—1 9
;ZUO% ) — P(A)
=0 c2(P)
1 n—1
- / n2 Z (La 00,y — P(A))(La 0 b1y — P(A)) dP
2 7,7=0
1 n—1
BEX [/ (La 0 Ok La © 00y ) AP — P(A)/ (14 0 Ok,0y + 14 0 0, (1)) P + P(A)
ij=0 L/8 Q
1 n—1
“= X (P(H;ll(t)Amel;l(t)A) N P(A)Z)’
2,]=

The last term may be bound by

n—1
1 _
<3 > ‘P<9k,1(t)—kj(t)AmA> - P(A)2‘~ (38)
7,7=0
since, by (3), P(Gl;l(t)Aﬂﬁgjl(t)A) = P(Hk_ll(t)_kj(t)AﬂA). It remains to show that the upper bound

38 converges to 0. Fix € > 0. Due to the mixing condition (13) there is an m € N such that

‘P(a,;l(t)_kj(t)A N A) - P(A)z‘ < % for all k € Z2 with || k;(t) — k;(8)]] > m,
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and
‘P(Hk‘lA nA) - P(A)z‘ < % for all k € Z2 with ||k]| > m,
and by assumption (37) there is a ng € N such that

izsup {1 <id,j<nl|lki(t) — k;@)|| < m}| < S foralln > ng.
n tel 2

Applying the last two inequalities to (38) yields for all n > ng

2

n—1
1
sup||— 1la06 — P(A
te]? n’ ZZ:; AT 4) £2(Q,F,P)
1 —1 2
< Zsup > 1{||kl<t>—kj<t>||5m}‘P(%,@)_kj(ty‘l NA) - P(4) ‘
tel gy j<n—1
1 -1 2
tozsup S Lgpo-koiism [ PO AN A) = P(4)?]
N7 tel goiljin—1
< isup {1 <i, g <n|llki(t) — ki (1)) < m}|+ 12
n? ter == J - nZ 2
< g,
and the assertion of the lemma follows by letting £ to 0. O

Theorem 4.12. Assume that P is strongly mizing with respect to (6x)peza, and let (ky(t))nen be

a family of sequences with values in Z2, for which for all m € N,

lim — sup [{1 < i,j < n| lki(t) - k; (O] < m}| = 0.
tel

n—o00 1N

Then for 1 < p < oo and for any f € LP(Q, F, P),

1n—1 ey 00
SS  Fobiu ——5 P(A)  in LP(P). (39)
n i=0

Proof. As an immediate consequence of the preceeding lemma we get for any simple function g

on (£, F)
1n—1 n—00 . 9
g;gogk,(t)—>E[g] in £7(P),

as n goes to infinity. By a standard argument (for instance, Lemma 4 in [5]), this convergence
holds as well in £P(P), for 1 < p < co. Finally, for any function f in £?(P), decomposition into
positive and negative parts, £P (P)-approximation by simple functions, and monotone convergence

yields (39). O

Having studied the first and the second parameter separately, we now go back to the product

space. Recall that P is the product measure and x,, = S gKo© e

Theorem 4.13. Let 7 : M — M be continuous and uniquely ergodic, and suppose that P is
strongly mizing with respect to (Ok)peza. Let k : M — Z% be B-measurable such that,

n—oo N2

lim o sup [{1< .7 < n | lsi(0) = s (O] < m}| =0 (10)
teM
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for all m € N. Let be 1 < p < oco. Then for every F-measurable function F on Q such that
supsen F'(t, ) s in LP(Q, F, P) and F(-,w) is continuous on M for P-almost every w,

1 . n—oo )
=~ F((1).0n) ) —— E[F] in £2(P), (41)
untformly int € M.

Proof. We first prove the theorem in the case when F' is the indicator of a set of the form U x A,
where U is the intersection of finitely many metric balls in M or their complements, and A € F.
By (6), the expression

1n—1

=D P (0,05 )~ BLF]

(42)

L2(P)

then transforms to

— ZO/ Lo (T () Lo (77 (1)) La (04, (0yw) La (Ox, (0yw) P(dw)

n—1

L ﬂ(U)p(m[/QlU( )14 (0, (1) Pld)

n? £
1,j=0

(43)
—l—/ﬂlU(Tj(t))lA(Hnj(t)w)P(dw)

+ u(U) P(A)°.

A) = P(H;l(t)_nj(t)A N A), the first addend equals
1 n—1

= 3 O ()P0 AN A).

7,7=0

-1 -1
By P(67,AN0;",

It may be replaced by

nz Z Ly (7 () Lu (77 (1) P(4)?, (44)

1,j=0

without affecting the asymptotic behavior of (43) for n going to infinity: We may bound

= > (PO (P ) (PO} AN A) — P(4)?)

<53 ‘P(G;l(t)_nj(t)AmA) . P(A)z‘. (45)

Now, we argue as in the second part of the proof of Lemma 4.11, replacing the sequence (k;)ien
by (%4(t))ien, and using assumption (40) instead of (37). This we prove that the difference created
by the change (44) converges to 0 uniformly with respect to ¢.

Since the term in the rectangular brackets in the second addend in (43) equals 1y (7% (2)) P(A) +
1y (77 (t))P(A), the whole expression simplifies to

LS (0 010 0) — ) (10 0) + 10 (9 (0) + 0)?) PLAY,

1,j=0
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which can be further reduced to
1 n—1 ) 2
(22w o) - o)) Py
=0

Since 7 is uniquely ergodic and p(8U) = 0, Corollary 4.1.14 in [18] tells us that

n—1
1 . n (o]
- E Lo (' (1)) e, w(T) uniformly in ¢,
n

=0

which concludes the first part of the proof. To pass from L£?-convergence to general L7, use again

a standard argument (for instance, Lemma 4 in [5]).

Now we let F' be a general function, satisfying the conditions of the theorem. We need to find
for every positive € a sequence of metric balls U; € M and A; € F, with real numbers a; such that,
for allt € M, ||F(¢,-) — I(t,")||, < &, where

n

I=> ailyxa,- (46)

i=1
It will then follow that
1 n—1 1 n—1
— ZF(TZ(t),HR,(t) )= = I(7(), 05,0 )
i iz Lr(P)
1 n—1
<= N FE0 00y ) = 1m0, 0| oy
i=0
1 n—1
~n ;”F(Ti(t)a ) = I(m(t), )Hﬁp(P)
<e€

For w €  and ¢ > 0, let §(c,w) be the modulus of continuity for the function F(-,w). Define
the sets

My, = sup{w | |F(t,w)| < k} and Di(e) ={w|d(l/k,w) <e} (keN).
teM
Then the sequence of functions

Fi(w) := sup |F|p(t,w)1Dk(€/4)cuM£ (k € N).
teM

is bounded by sup,cys [F|P(t,w), which is integrable, and converges to 0 for every w. By the
bounded convergence theorem, the integral of Fj converges to 0 as k goes to infinity. Choose a k
such that [ Fj P(dw) < (¢/2)P. Since M is compact, we may find a finite sequence ¢1,...,¢, € M
such that the balls of radius 1/k around these centers cover M. We also define a sequence of real
numbers —k —1 = sg < - - < s, = k such that the difference between any two successive elements
is less than /8. Now we define a collection of sets U; ; and A; ; indexed by » x #'. We start with
U; ; as the ball of radius 1/k around ¢;, and then remove the intersections, so that the U; ; is the
same for all j, and running through 1 < ¢ < r yields a disjoint cover of M. The sets A;; are
defined by

A= {w | sj_1 < F(ti,w) < sj} N Dy (=/8) N M.
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Let a; ; = s;. We throw in one additional product set, Uy = M and Ay = Dy(e/8)° U M} with
ap = 0, and define the simple function 7(¢,w) as indicated in (46). Then for any ¢ € M,

HF(t, ) I(t, .)‘

Lp

1/p
) = (/ |F(t,w) — I(t,W)|p1Dk(a/8) 1Mk P(dw))

+ (/Fk(w)P(dw))l/p.

We already assumed (in defining k) that the second term is smaller than £/2. For every ¢, there is
a unique pair 7, j such that t € U; ; and w € A; ;. By construction, I(¢,w) = s;, so the integrand
in the first term is bounded by

WIF(t;,w) — F(t,w)|[ +2°|F(ti,w) — s5;|".

This in turn is bounded by 2P (¢/4)F < (£/2)?, since w is not in Ay and d(¢;,1) < 1/k, completing
the proof. O

Proposition 4.7 yields the following version for functions which are integrable in the sense of

Riemann.

Corollary 4.14. Let a,b € R, a < b, and 7 : [a,b] — [a,b] be continuous and uniquely ergodic
with invariant measure p, and assume that p s absolutely continuous with respect to Lebesque
measure, with continuous density. For P and k assume the same as in Theorem 4.13. Let F' €
LP([a,b] x Q,B® F, P) be Riemann-integrable with respect to the first variable. Then we have

n—1

LY PG 0. 0n0 ) ~ L)

= 0.
Lr(P)

lim sup
n—r 00 tEM

The last part of this section addresses the question of whether P-almost sure convergence of
the ergodic averages of a function F' on the product space M x  may take place uniformly with
respect to the first variable. In contrast to the previously discussed case of £!(P)-convergence,
further conditions on F' are needed. P-almost sure convergence of ergodic theorems is a very subtle
question. Bellow and Losert’s article [4] gives an overview of the results and open questions in this
field. To get a first impression, choose a function F' which is constant in w. This brings us back
to the beginning of this section, and Theorem 4.3 suggests that we would need an equicontinuity

assumption in t. Further, we need an additional assumption on the measure.

Theorem 4.15. Let p be a T-invariant measure on (M, B), such that any non-empty open subset
Uof M has w(U) > 0. Let 7 : M — M be continuous and F' a function on M x §, for which
F(t,-) € LYP) for all t € M, and the sequence of functions

(% iF(r%),en,(.)w))

15 equicontinuous on M, for all w € Q. Then

neN

n—r 00
sup —0 (47)

teM

S P @) 01 00) ~ FLPAT 0

for P-almost all w € Q.
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Proof. We may assume without loss of generality that E[F|J] = 0. The general case can be
reduced to this by subtracting E[F|J] on both sides and making use of the invariance of E[F|J]
under S.

The first step is to construct a countable dense set My C M and a set Ny C € with P(N;) =0
such that

n—1
1 ,
— E FoS'(t,w) —0 for allt € My and all w € 2\ Ny. (48)
n

i=0

Since M is compact, the conditions on F assure that F € L£Y(Q,F, P), and therefore by (22)
there is a set My C M with p(M;) = 1 such that for any ¢ € M; there is a set N(t) C Q with
P(N(t)) =0 and

n—1
1 .
— E FoS'(t,w) —0 for all w € Q\ N(¢).
n

i=0

Ml is dense in M because its complement has measure zero with respect to g and therefore, by
assumption, contains no nonempty open subsets. Since M is separable we can find a countable
dense subset C' C M, and because Ml is dense in M, we can approximate any € (' by a sequence
(a;(2));jen with a;(z) € M, for all j € N. Then

M, = U U a;(x) and Ny = U N(¥)
zeC jeN teM,

define a countable dense subset M; of M and a subset Ny of ©, which fulfills (48). This accomplishes
the first step.

For the next step, chose s € M and fix € > 0. By equicontinuity, there is a set Ny C Q with
P(Np) =0 and a d > 0 such that for all »,t € M with d(r,t) < ¢

< for all n € N and all w € Q\ Np. (49)

N &y

n—1
lZ:Foé’i(7“,(.u) — FoSi(t,w)
n

i=0

Define N := Ny U Ny and fix w € 2\ N. Since M; is dense in M we can find a ¢t € M; with
d(s,t) < 6, and by (48) there is an n; € N such that

< for all n > ny.

N &y

1 n—1
- F i
HZZ_; 0 S'(s,w)

Combining the last two inequalities leads to

<e for all n > n; and all w € Q\ N,

1n—1
—) FoSi(t
nz_; o S (t,w)

and letting ¢ go to 0 yields

n—1
. 1 i _
nh_}n(}o - Z FoS'(s,w)=0 for P-almost all w € . (50)

1=0

To obtain uniform convergence with respect to the first variable, we use a standard compactness

argument. Since M is compact, it can be covered by a finite number m of d-neighborhoods in M,
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which centers are denoted by si,...,sm. Applying the reasoning of the last step to each of the

$1, ..., 8m we can find ng € N such that

< forall n > ng, ke {1,..., K}, and w € 2\ N.

NN

1 n—1 )

-~ Z F oS (sg,w)
1=0

For an arbitrary s € M there exist k € {1, ..., K'} such that d(s, sy) < d, and by (49) we obtain

1
— <%forallnEN and all w € @\ N.
n

n—1
ZFoSi(s,w) — F oS (sg,w)
i=0

Finally, the desired convergence (47) follows by the last two inequalities, and by letting € go to
0. O

We conclude the paper with the results to the example mentioned in the introduction.

Example 4.16. (Ergodic averages of a random field along the lattice approxzimation of a line)
Let Ly +(2) = (z,[Az + t]) (# € Z) be the approximation of the line with slope A and y-intercept ¢
by the lattice Z2. In (2) we were wondering about convergence of the ergodic averages of a function
of a Z*indexed random field along this lattice approximation. The problem can be treated by the
theory developed in this paper.

Consider the situation of Corollary 2.6, and let 7, be the translation on the torus defined in
Example 2.2. Set k(¢) := (1,[t + A]). The following lemma shows that the corresponding skew

product captures the lattice approximation of the line.

Lemma 4.17. The iterates of the transformation Sy(a,w) = (ma(a), 0(1 [a4rpw) (¢ € M,w € Q)
are given by S (a,w) = ({a + nA}, HLa(n)w) for all n € Ny.

Proof. We have S§ (a,w) = (73! (a), 0x, (a)w), Where &, = Z?:_Ol kot It is easy to see that 70 (a) =
{a+nA}. It remains to show that «,(a) = (n, L o(n)) for all a € T. For the first component this is
obvious. For the second component it follows by induction: It is trivial for n = 0. For the step from
n to n+ 1 we obtain “5124)-1@) = nﬁf)(a) + &3t (a)) = Ly a(n) + [ (a) + A], and the claim follows
from [t (a)+A] = [a+nA—[a+nA]+A] = —[a+nA]+[a+ (n+1)A] = =Ly s(n)+ Lra(n+1). O

Let f € £, F, P). We want to apply the ergodic theorems on the product space to the
function F(t,w) := f(w) (w € Q), for some t € M.

Let A be irrational. Then 7y is ergodic. Since ||£,(t)|| > n, the sequence tends to infinity as
n goes to infinity. As a special case of the strong 0-1 law, P fulfills a 0-1 law on the tail field.
Corollary 2.6 with v; = (1,0) and ve = (0, 1) implies the ergodicity of the skew product Sy. Tt
remains to check condition (40). We have ||x;(t) — «;(t)|| > ||i — j||, and
.1 . .
lim §|{1§z,j§n||z—j|§m}|:0

n—od

for all m € N. This implies condition (40), and by Theorem 4.13 we have the following result:

n—1 1
%;f@h,t) [ e

in £1(P), uniformly in all ¢ € M. Note that the limit does not depend on ¢, the y-intersect of the

approximated line.
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In the case when A is rational, 7 is periodic, and a corresponding result follows immediately
from Theorem 3.5 (cf. Example 3.6).
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