Report 2001-025
Routing in Queues
with Delayed Information
N. Litvak and U. Yechiali
ISSN 1389-2355

Routing in Queues with Delayed Information

Nelly Litvak
EURANDOM, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

litvak@eurandom.tue.nl

Uri Yechiali

Dept. of Statistics and Operations Research, School of Mathematical Sciences,
Tel-Aviv University, Tel-Aviv 69978, Israel

uriy@post.tau.ac.il

August 6, 2001

Abstract

A controller of a ¢-channel queueing system assigns arriving messages to the var-
ious routes (servers). Information on service completions reaches the controller only
after some (random or constant) delay. For such an M/M/c-type system we consider
two possible routing strategies by the controller: (i) holding jobs in a common buffer
and assigning awaiting jobs to idle servers only when the information on service com-
pletion is fully obtained, or (ii) dispatching jobs to the various channels immediately
upon their arrival. We show that, under the first strategy, the delays on information
can be interpreted as servers’ vacations, and, as long as the mean delay is below a
calculated threshold, this strategy is superior. If information is delayed on arrival
instants, rather than on service completions, the delays can be viewed as preliminary
service. Such an interpretation leads to a generalization of a decomposition-type
result, obtained by Altman, Kofman and Yechiali, regarding the system’s queue-size.

Keywords: Multiple-server queues, Routing, Delayed information, Vacation models,
Decormposition

1 Introduction

Analysis and control of queueing systems with delayed information, either on service com-
pletions or on arrivals, are complex issues that have been studied very little in the literature
(see e.g. [1], [4]). These issues are crucial in high-speed communication networks where
routing decisions have to be made based on delayed information on the actual state of

down-stream nodes. The lack of full information makes the problem of optimal routing of
packets, among various possible channels, extremely difficult.

Consider a system with c parallel channels (routes, links) and a controller. Variable-
length messages (jobs) arrive randomly and the controller has to route (assign) them to
the various channels. There are two basic possible allocation procedures: either the con-
troller holds a common buffer for all arriving messages, dispatching them, one at a time,
to the various channels, whenever the procedure calls for; or the controller routes each
message, immediately upon its arrival, to some selected queue. In the latter case the rout-
ing mechanism could follow any rule, such as shortest queue, minimum expected waiting
time, random assignment or cyclic (round-robin) allocation. Clearly, the second procedure
implies that every channel maintains a separate buffer for its own queueing messages (jobs).

If the controller has full information on the state of each channel (server), than holding
a central single buffer for all queues and assigning a job to a server as soon as the latter
becomes available, is the best policy in terms of minimizing waiting times and queue
lengths. However, if the information about the actual state of each queue reaches the
controller only after some considerable delay, then the problem of optimal assignment of
jobs to the various queues becomes much more complex.

Suppose, indeed, that the information about each service completion reaches the con-
troller only after some random delay. Then one can think of two possible routing policies.
The first is to hold all arriving messages in a single common buffer and forward a message
to a server (channel) only when the controller knows for sure that the server is free. This
procedure implies that there are no separate buffers for the individual servers and that
each arriving message will be assigned to a server only after an additional random delay,
which clearly increases waiting times of the messages (jobs). The alternative policy for the
controller is to assign jobs to the various queues ’blindly’, as soon as they arrive, without
fully knowing the state of each server. In such a case he can assign them either randomly,
or by using a round-robin (cyclic) procedure. The cyclic procedure has been shown to be
much better than the (independent and) uniform random assignment in terms of minimiz-
ing waiting times (see e.g. [8]). Another random assignment method is advocated in (4].
The procedure studied there is, giving the delayed information on the queue size of each of
the ¢ servers, the router, upon each arrival of a new job, selects randomly two out of the
¢ processors, and dispatches the newly arriving job to the least {delayed-known) loaded
processor among the two. By applying a fluid-limit approach, leading to a deterministic
model corresponding to the limiting system as ¢ — oo it is demonstrated, via simulations,
that ”the strategy ... performs well under a large range of system parameters”.

In this work we’ll mainly analyze the first policy (i.e. holding all arriving jobs in a
common buffer), which heavily depends on the delays in obtaining information on service
completions. We will show that when the mean delay of obtaining that information is
below a threshold value, this policy is better than the second one (i.e. assigning the jobs
‘blindly’), thus partially answering the question of efficient routing when information on
service completions is delayed.

The motivation for that first policy stems from the following observation. Consider a
G1/M/c queueing system with i.i.d. inter-arrival times T having probability distribution

2

function (p.d.f.) G,(t) = P(T < t) with mean E(T) = 1/\. Service times B are i.i.d. with
exponential p.d.f. and mean E(B) = 1/u. The system is stable iff p = A/(cu) < 1. Call
this configuration ’system-1’. Suppose that system-1 has to be partitioned into c separate
(probabilistically identical) queues, each forming a Go/M/1 queue with i.i.d. inter-arrival
times X having p.d.f. G»(t} = P(X < t) and mean F(X) = ¢/A. Call this configuration
'system-2’. Clearly, the traffic intensity for each separate queue in system-2 is p = (A/c)/p,
and system-2 is stable iff p < 1, similarly to system-1. The method by which X is generated
from T could be either a probabilistic assignment, by which a newly arrived customer is
routed to queue i (2 = 1,2, ..., ¢) with probability 1/c, or a cyclic (round-robin) mechanism
by which the (kc + i)-th arrival is assigned to queue ¢ (¥ = 0,1,...). It is important
to indicate that in system-1 there is a single common buffer where all arriving jobs are
accumulated and from which, having full information on the state of each server (busy or
idle), the controller assigns jobs to free servers; whereas in system-2 there are ¢ separate
queues and the controller, regardless of whether or not he maintains real-time information
on the various queue sizes or the state of each individual server, assigns each new arrival
to a channel as soon as the job arrives.

Denote by FE[W;] the mean waiting (queueing) time in system-1, and by E[W2] the
corresponding value in system-2. Let r{p} = E[W,l/E[W;]. Then it has been shown in
(8] that for G; belonging to the family of I'(n, An) distributions (i.e. Erlang (Gamma)
p.d.f. with n exponential phases, each having mean 1/{An)), the ratio r(p) possesses the
following properties:

(1) r{p) is a monotone decreasing function of p, 0 < p < 1.

(2) For a probabilistic assignment, r(p) tends to infinity as p approaches 0, and

‘l’i_gr}r(p) =[Ren—n+1)/[n+1].

(3) For a cyclic (round-robin) assignment

o
lim (p) = e(e))",

whereas

}Ji_:}r}r(p) = [cn + 1)/[n + 1].

That is, under probabilistic (random) assignment, the smallest value of r(p) is (1) = ¢
(n = 1, T exponential), while 7{(1) — 2¢ — 1 when T becomes a deterministic random
variable (n = o). However, for any n, r(0) = co. Under the cyclic assignment r{0) = c(c!)
for n = 1 (T exponential) and is approaching infinity as n becomes large (T deterministic),
whereas r(1) = [c + 1]/2 for n = 1, while r(1) = ¢ for n = o0.

To summarize, for the family of Erlang inter-arrival distributions, the mean waiting time
of an individual job in system-2 is at least [¢ + 1]/2 times larger than its corresponding

3

waiting time in system-1. Indeed, a much smaller mean waiting time for individual jobs
can be achieved if information on the system’s state is available when assigning them to
Servers.

Now, consider the situation where information about each service completion does not
reach the controller instantaneously, as it is assumed in most queueing models, but rather
after some random delay. The controller then faces the dichotomy of either to assign each
new message, 'blindly’, as soon as it arrives, to one of the routes (employing a probabilistic
or cyclic procedure), or holding the jobs in a common buffer, waiting for the delayed
information on service completions to arrive, and only then to assign jobs to ’starving’
servers.

As indicated above, we’ll show that, as long as the mean delay of information on
service completions is below a threshold value 1/+*, it is better to hold jobs in a common
buffer until full information is attained, and only then to route them to non-busy servers.
This policy, imitating the multi-server queue with a common buffer and full information
on system’s state, leads to a special vacation model where each server, after completing
serving a job, takes a random-length vacation.

Thus, we present in Section 2 an M/M/c-type queueing model where each server, after
every service completion, takes an exponentially distributed vacation. In Section 3 we
present two methods of analysis for this model: (1) we use a (partial) generating functions
approach (see e.g. Mitrany and Avi-Itzhak [3], Levy and Yechiali [2]) which requires finding
roots of a polynomial in order to be able to calculate the (two-dimensional) steady-state
probabilities; (2} we employ Neuts’s [5] matrix-geometric formulation, which also requires
numerical calculation of a matrix R, which is the solution of a quadratic matrix equation
in R.

For calculation purposes, however, we use in Section 4 an approximation formula for
calculating mean queue size and waiting times and derive a threshold value such that, if
the mean delay is below that value, it is better to wait for the delayed information to
arrive, before routing jobs to various channels, rather than routing them, as soon as they
arrive, but with lack of information on system’s state. We then extend the calculations to
the case where the delay is deterministic and calculate the threshold value for this case as
well. Finally, in Section 5, we briefly discuss some issues regarding delayed information on
arrivals.

2 The model

Consider an M /M /c - type queuneing system with ¢ parallel servers, each capable of serving
jobs at a rate of u jobs per unit time. There is a common buffer from which the controller
dispatches waiting jobs to servers. Such an assignment is performed only after the controller
obtains information that the designated server is free and idle. However, contrary to
the classical M/M/c queue where information on service completions becomes available
instantaneously, in our case this information is delayed. We assume that the length of the
delay is an exponentially distributed random variable with mean 1/. For the controller,

the server becomes available only when the delay is over. This state of affairs leads to a
two-dimensional Birth-and Death process as follows. We interpret the delay of information
on service completion as a vacation: following each service completion of a job, the server
takes an exponentially distributed (with mean 1/-) vacation, at the termination of which
it becomes available again. We say that a server is ’operative’ if it is not on vacation.
The present model differs from that of Levy and Yechiali [2] in that in the latter a server
takes a vacation only when the common buffer is empty, whereas in our case a server takes
a vacation after each service completion, regardless of whether the common buffer is empty

or not.
It readily follows that the stability condition for that model is

= ’\(2‘—""7) <1 (1)
T

Condition (1) says that for each server the mean inter-arrival time c¢/A should be greater
than the quantity 1/u+1/7, which can be interpreted as the mean duration of a generalized
service time being composed of two consecutive stages: service and vacation.

Let p;, be the steady-state probability that there are j operative servers and n jobs in
the system. Then, for j = 0,1,...,c, the balance equations are given by

A+ (c=)y +nulpjn = (n+ Dppjrinn + Apja-1 +{c = J + 1)ypj10, 7 <,
A+ (c =)y +iulpin = G+ Dpjsiner + Ajac1 + (€= 5+ Vpje1n, 223 (2)

Here p; 1 =0 and p_1n = Peyi,n = 0 for all » > 0.
To find the steady-state probabilities we have to solve equations (2).

3 Analysis

3.1 Analysis via generating functions
For j =0,1,...,c define the (partial} generating function
o0
=D _Pin?".
n=0
Then, multiplying every equation of (2) by 2" and summing over n, we obtain

M1 =2) + (e = d)y + 31 G;(2) = (§ + Duz" Gy (2) + (e = § + 1)7Gja(2)

7
+ Z J—n)upjaz” — 2 Y (G- n+ Depiaa” (3)
n=0

n=0

o

Set

bo(2) = —up1o;
j=1 i
bi(z) =2 _(j — n)upjad” ~ Y (j —n+ Dppjmpa”, 1<j<e—1;

n=0 n=0
c—1

be(z) = Z(C — N)Penz”

n=0

and

fiG)=zA1-z)+{c—jdyv+jnu], 0<ji<ec-1

fe(z) = A1 = 2} + cp.

Also, define the matrix A(z) and the vectors b(z) and g(z) as

[fol2) —u 0 0 0 0 0

—cyz f1(z) 2¢O 0 0 0

Alz) = 0 —(C—:l)vz szZ) —?u 0 0 0
(:) O 0 O —2vz fea(z) —cu

0 0 0 0 0 -y fol2)

b(z) = (bo(2), b1(2), - .. ,be(2))T

9(2) = (Go(2), Gr(2), .. , Ge(2))" -

Then (3) becomes: A(z)g(z) = b(2).

To obtain G,(z) we use Cramer’s rule and write |A(2)|G;(z) = |4;(2)|, 0 £ j < ¢,
where |A| is the determinant of the matrix A4, and A;(z) is a matrix obtained from A(z) by
replacing the jth column by b(z). It follows that the functions G;(2) are expressed in terms
of ¢(c + 1)/2 unknown probabilities p;,, 0 < n < j < ¢, appearing in the expressions for
b;(z). From the first part of (2) we have c(c —1)/2 linear equations for those probabilities,
needing additional (¢(c¢+ 1)/2 — ¢(c — 1)/2) = ¢ equations. Those can be found by using
the following theorem.

Theorem 3.1 For any ¢ = 2cy, ¢ = 2¢y + 1, where ¢y > 0, the polynomial |A(2)| has a
root of multiplicity co at zo = 0 and ezactly ¢ — ¢y roots in (0,1).

Proof. Let go(z) = 1, and define the minors of the diagonal of A(z), starting from the
lower right-hand side corner, as follows:

0l = £, mz) = | T e wnl@) =M@ @

3 ey

6

The polynomials ¢;(z), 0 < j < ¢+ 1, satisfy the following equations:

Q1(z) = fc(Z)QD(Z),
a2(2) = ferr(2)q (2} — cpy, (5)
Grr1(2) = for(2)qr(2) — k(e — k + Dpyzgea(2), 2<k<ec

From (4), (5) we see that

(a) go(z) has no roots;
(b) gx(z), where k > 1, is a polynomial of degree 2k — 1;

(¢) gi(z) and ge41(2) have no joint roots in (0, c0), because, if they do have such a joint
root, then it is also a root of gx_1(2), ge—2(2), . .. ,q{2), but go(2) possesses no roots;

(d) ¢:1(0) >0, ¢2(0) <O;

(¢) qu+1(2) and gor42(2), where I > 1, have a root z = 0 of multiplicity [; the [-th
derivative of go141(2) at z = 0 has a sign (—1)'; the Ith derivative of ga42(z) at 2 =0
has a sign (—=1)*1;

(f) if 2/ > 0 is a root of gx(z), then gr41(z') and ge_;(2") are opposite in sign to each
other;

(8) a(1) = (tu)/(c = k);
(h) the sign of g,(00) is (—1)*.

Let us now subsequently consider the roots of g, (2}, ¢2(2), - - -, ge+1(2). Obviously, ¢:(z)
only has the root zy; = 1+ cu/A > 1. Further, ¢2(0) = —cuy <0, g2(1) > 0, g2(211) <0,
g2(00) > 0, and thus g»(2) has roots zo; € (0,1), 222 € (1,21,1) and 223 € (21,1, 00). There
are no other roots, because gs(z) is of degree 3. Similarly, ¢3(z) is of degree 5, it has a
root zp = 0, a 00t z3; € (22,1,1), and there are also three other roots: 232 € (1, z2,2),
z33 € (22,2,22,3), 234 € (22,3,00). Now, Q'4(0) = 0, Q’4(+0) > 0, (14(23,1) < 0, Q4(1) > 0.
Hence, there are roots zp = 0, 241 € (0,23,) and zs2 € (23.1,1). Also, g4(z) has four other
rots in (1,00). Proceeding further, we see that g..1(z), whose degree is 2¢ + 1, has a root
of multiplicity ¢o at zp = 0, roots 2,414 € (0,1),{ =1,2,... ,¢— co, and ¢+ 1 other roots
n (1,00). This completes the proof. O

Now, from Theorem 3.1 we have

d* .
E!;IAJ(Z)l —020, 0<j<¢ 1 <k<ec—1, (6)
|4j(zen)] =0, 0<j<e 1<I<c—qp. (7)

The normalizing condition is

St

For 0 < j < ¢, equations (6), as well as equations (7), differ only by a constant multiplier.
Hence, equations (6)-(8) give exactly the c¢ additional equations needed for a complete

solution of the set (2).

3.2 Matrix-geometric approach

Following 5, Section 6.3], we construct a quasi birth-and-death process with generator Q

given by
[Aoo Apn 0
Ao Ay Arp
= Ac oo Acan Ac-ap
Ac—l,O Ac—l,l Ac—1,2
Az Ay Ao
A, A

The square blocks of dimension (¢ + 1) x {c + 1) are defined as

A= (e—iyy, 0<i=h<q,
(Aop)ip = 4§ (c— i), 0<i=h-1<ec-1,
0, otherwise;
AO,I = A1.2 - ... = Ac—1,2 = Ay = dlag{,\,)\’ . ’/\};
min(i,n), 0<h=i—-1<c¢c-1,
(Ano)in = { g) otherwise forlsn<g
-A—{c—1)y—-pmin(i,n), 0<i=h<gc,
(An1);p = 4§ (e—19), 0<i=h-1ZLc—-1,
0, otherwise,
Ay = Aco;
Al - Ac,l'

forl1<n<cg

Here (A);n for 0 < i,h < ¢ is the element of the ¢th row and Ath column of the matrix A.

The matrix @@ = Ap + A; + A3 is the generator of the classical machine repair model
with u as a breakdown rate:

—cy cy 0 0 0 0 0
g —{c=Dy—p (c— 1)y 0 0 0 0
0 2u —(c=2)y-2u (c—2)y ... 0 0 0
0 0 0 0 coe fle=Dp —y—(c—=Dpu v
| 0 0 0 0 0 cu —cp |

In such a machine repair model each server is considered, independently, as alternating
between two phases: service (mean 1/u) and breakdown, or vacation (mean 1/v). Let
7w = (m,m1,...,M:) be a stationary vector of the matrix @, i.e. 7#Q = 0, where 0 =
(0,0,...,0). In that machine repair model 7; is the stationary probability that there are j
operative servers. In the case that vacations start after each service completion, 7; can be
interpreted as a stationary probability that there are j operative servers given that there
are ¢ or more jobs in the system. It is readily seen that

()) ()

Substituting this expression in the stability condition from {5, p. 83]

wAqze > TApe,
where € = (1,1,...,1)7, we again yield (1) since
c C
. oy
wApe = A m;i=A and wAze= i = .
0 Z i 2 Z)U’J J ,Y_'_‘u

4=0 =0
Now let p, = (Pons Piny -+ »Pen). Then
Pn=DPe1 Bt n>c-1.

Here R is a minimal solution of the matrix quadratic equation R24, + RA, + Ay = 0.
The vectors pg, Pi1, - .., Pe—1 can be found from

PoAop + P14 =0,
PoAor + P11 + PaAsg =0,
Pr-14n-12 + PrnAln1 + Pry1dnt10=0, 2<n<c—-1

4 Mean queue length

The mean queue size is given by E[L,] = 302 . (n — ¢)p.a, Where pn = 3 5 o Pjn-
Using the results of Section 3, the values of p;» can be calculated in two ways, following
Sections 3.1 or 3.2, respectively. By Section 3.1 one has to first obtain the values of
¢(c+1)/2 unknown probabilities p; (for 0 < n < j < ¢) and then calculate the quantities
P = 2 j=qPjn- By Section 3.2 one has to first calculate numerically the matrix R and
then the vectors po, Pi,--- » Pe—1, a5 well as p, = Pe1 B¢t for n > ¢ — 1, from which
P.n = DPn-€ are obtained. However, in both cases £ [L,] is calculated numerically only after
some truncating on n.

We use, instead, a more direct approximation method as follows. As mentioned earlier,
our model, where every server takes vacation after each service completion, can be inter-
preted as an M/G/c queue with a generalized service time S composed of two consecutive
phases - actual service B and vacation V. Thus, in order to calculate E{L,) we use a
two-moment approximation (see Tijms (7, p. 297]):

B (L] = (1 - &) B [Ly(det)] + GAE [Ly(exp)), (9)

where & = Var[S])/E?[S] is the variation coefficient of the generalized service time § =
B + V; E[Ly(exp)] is the mean queue size in a M/M/c queue with arrival rate A and
mean service time E[S], and E [L,(det)] is the corresponding mean for an M/D/c queue
for which we use Cosmetatos approximation

E [L,(det)] ~ E [L2%(det)] = %ﬁE (Ly(exp)].-

Here

V4 +5¢c—2
16pc

and p = AE[S]/c. Further, for the M/M/c queue with mean service time E[S] we have

B=1+(1-p)(c-1)

B [Ly(exp)] = -2 p,

~d{1-p)
where
-1 -1
(cp)* (ep)
Po = Z T
L:O k! c(l—p)
For exponential service times and vacation durations, where E[S] = 1/u + 1/y and

Var[S] = 1/u? + 1/4?, we get ¢k = (v2 + u?)/(y + w)*. This enables us to write the right-
hand side of equation (9) as a function of p and the ratio E[V]/E[B] = (1/7)/(1/n) = n/:

E [Le?] = E [L2%(exponential delay)] = (1 + %) [% g+1+ %] E [Ly(exp)]. (10)

10

Another approximation for the mean queue size in M/G/c system is given by Nozaki
and Ross [6] as follows:

L g (L, (M/M(S))] = 12

E L (M/G(S)/c}] = E [Ly(exp)] .

Clearly, for E[V] = 1/v = 0 we readily obtain, for both approximations, the classical
M /M /c queue with arrival rate A, mean service time E[S] = 1/u and utilization factor
po = A/(cp). Note that if ¢z < 1, then the Cosmetatos approximation gives higher E [L%P]
values than the Nozaki-Ross approximation, and vice versa. This follows since 8 > 1. Note
also that, when ¢ = 1, 8 = 1, making the two approximations equal.

To ensure stability, condition (1) requires that the ratio p/v must be smaller than a
critical value

erit _ l_po.

y
u/ o

Moreover, for fixed u, £ [Lg””] increases with p/-.

Let us now compare system-1, where the controller assigns a newly arrived job to a
server only (and immediately) after the former obtains the (delayed) information that the
server has completed serving an earlier job, with system-2, where the controller assigns
jobs to servers ‘blindly’, as soon as they arrive, following the round-robin procedure. In
the latter case there are c separate sub-systems, each being an E./M/1 queue with mean
arrival rate A\/c, mean service time 1/u and pg = A/(cu). The mean queueing time is given
by (see [8])

(0

E[W (FE., /M) = ——,
where a is the unique root in (0, 1) of the equation

2= (M(u(1 = 2) + X)° = (cpo/ (L — 2 + cpo))”

Thus, the mean queue length for each individual queue is

Po¥
1-—

EILy(Bo/M/1)) = S [W,(Eo/M/1)} =

It follows that the total mean queue size among all ¢ separate queues is

E [Ly{cyclic)] = lc!ioi :

Since, for any ¢ > 1, the value E [L,(cyclic)] is greater than E [L,(M/M/c)] with the same
po (see [8]), there exists a threshold value p/y* € (0, u/7"™) such that E [LP] becomes
equal to E [L,{cyclic)]. Thus, as long as u/y < p/7*, it is better to keep all arriving jobs

11

in a common buffer and operate the system by using the delayed information on service
completions, rather than to assign arriving jobs ‘blindly’, immediately upon arrival, to the
various servers, even if it is done in a cyclic manner. However, if p/y > p/v*, then the
delays are too long, and it is better to have a separate buffer for each server and assign
new jobs to the various servers following the round-robin procedure, without waiting for
the delayed information to arrive.

In Table 1 below we give the values of pu/v*, for some different values of py and c.
Since c% < 1 when the delay is exponential (or deterministic), we use the two-moment
approximation (9} for calculations. The results show that, for example, if pg = 0.8 then,
for stability, we must have E[V] = 1/y < 1/9%* = 0.25(1/p) = 0.25E[B], while, for
¢ = 10, as long as 1/y < 1/y" = 0.1934(1/y), it is preferred to operate the system by
using the delayed information. It is seen that, for a given value of po, /" increases with
growing numbers of servers and that, for fixed ¢, /7" decreases when py increases.

Table 1. Threshold values i/v* when delays are exponential

po=0.2 E[L,(M/M]/c)] 0.05 0.0167 0.0062 0.0096 0.00001
/it =4 E[L,(cyclic)] 0.05 00414 0.0376 0.0353 0.0376
ElV|/E[B]=p/y* 0 04263 06781 1.0332 15723
po =05 E[L (M/M]/c)] 0.5 0.3333 0.2368 0.1304 0.0361
u/yeit =1 E[Ly(cyclic)] 0.5 0.6180 0.7406 0.9905 1.6232
)y 0 02190 0.3373 04769 0.6411
po =08 E|L,(M/M/c)) 32 28444 25888 22170 1.6367
u/7et =025 E[L,(cyclic)] 32 45564 59026 8.6090 15.3782
)y 0 00744 0.1128 0.1534 0.1934
po =109 E[Ly(M/M/c)] 8.1 76737 7.3535 6.8624 6.0186
/¥t = 0.1111 E[L,(cyclic)] 8.1 11.8589 15.6188 23.1394 41.9425
w/y 0 00352 00531 00715 0.0888

In fact, the above calculations can be extended to the case where the delay V is deter-
ministic with V = E[V] = 1/7. In such a case E[S] = 1/u+ 1/, as before, but Var[S] =
1/p2. This implies that ¢% = (1+u/7) 2 and 1 —c% = (1+p/7)"2 (2u/v + (14/7)?). Thus,
equation (9) leads to

-2 1 9
E [L;”’(deterministic delay)] = (1 + g) [(E + 2%) 8+ 1] E [Ly{exp)].
Y

It follows that (see (10})
E L% (exponential delay)] — E [Li?P(deterministic delay)]

- (2) (- e

Table 2 below gives, similarly to Table 1, values of p/y* for various combinations of pg
and ¢. It is seen that p/v* in Table 2 is slightly bigger than in Table 1, but the difference
decreases when pg increases.

Table 2. Threshold values u/v* when delays are deterministic

po=0.2 e/ 0 0.4532 0.7199 1.0877 1.6341
#/,ycnt =4

Po = 0.5 ,u/'y* 0 0.2256 0.3487 0.4924 0.6581
plymt =1

Po = 0.8 u/y* 0 0.0747 0.1134 0.1541 0.1942
p/yt =0.25

po = 0.9 u/y* 0 0.0353 0.0532 0.0716 0.0889

w/ye# = 0.1111

5 Delayed information on arrivals

In this section we discuss general queueing systems where information on arrivals, rather
than on service completions, is delayed. We consider an arbitrary structure of arrival flow
and arbitrary service discipline. Furthermore, we don’t specify the number of servers or
the distribution of the service times. It is assumed that the delays are independent and are
all distributed as some random variable 7. The control policy is such that a job is routed
to a server only when the controller knows for sure that the common buffer, which holds
all arriving messages, is not empty.

Altman, Kofman and Yechiali [1] studied a queue length process {X,}, n = —-K,-K+
1,...,-1,0,1,..., in a discrete-time single-server queue, satisfying the conditions above.
They considered a stationary process {Y,} of batch arrivals (Y, is the number of jobs
arriving at time slot n) and arbitrary service times. For such a system they proved that if
information on arrivals is delayed by K slots, then

K
X, 2 X0+ Z Yairk, (11)

=1

13

amvals> > bufferj——)[servej depature>

Figure 1: A delayed information on arrivals can be seen as a 'preliminary’ service.

where {X°}, n=0,1,..., is the queue length process corresponding to no delay on arrival

information (K=0), and X_g L X9. To explain formula (11) on an intuitive level as well,
the authors point out that the delays of information on arrivals may be looked upon as
extra server’s vacations, since the server may stay idle even if there are jobs present in the
buffer. This observation is still true for more general systems with delayed information on
arrivals. Thus, once again, there exists a strong connection between models with server’s
vacations and models with delayed information.

However, for delayed information on arrivals, the interpretation via vacation model is
not that natural as for delayed information on service completions. For example, for the
system studied in [1] the description of the analogous vacation model may read as follows:
"The server takes a vacation at time n if the buffer became empty at time n— K. The server
becomes available again at time n+ 1, if the first arrival after time n — K occurred at time
n — K +1”. Within such a vacation model formula (11) expresses a direct decomposition,
where the first term of the right-hand side is the queue length in the beginning of an
arbitrary time slot in the system without vacations, and the second term is the queue
length at the beginning of an arbitrary non-serving slot. Yet, this formula is still not very
intuitive, and formally it requires a proof, which is of the same difficulty as the direct proof
for the system with delayed information.

Using the general model, we propose another outlook of delayed information on arrivals:
when a job arrives to the buffer, the controller does not know about its existence during
some random delay. When the delay is over, the controller recognizes the job, and operates
as if this job has just arrived. From the point of view of the controller, this system differs
from the system without delayed information only by the characteristics of the arrival flow.
Thus, if each delay equals the same given constant K, than the controller observes the same
arrival flow, shifted by K time units. Actually, the controller may have no idea about the
delays. However, in reality, the delays dictate that new arrivals have to waste additional
time, hanging in the system, causing an increased queue length.

This situation can be better visualized with the aid of Figure 1. A new job first arrives
to a 'preliminary’ queue with infinite number of servers and immediately gets served, where
its service time is distributed as 7. Completing this delay, the job immediately proceeds
to the main queue which is the same as our original system, but without delays (and, of

14

course, with a modified structure of the arrival flow). The queue length in the original
system with delayed information equals the number of jobs in the first queue in Figure 1
plus the buffer content of the second queue. In general, such a tandem queueing system may
not allow an explicit probabilistic analysis. Nevertheless, result (11) follows immediately
from the above interpretation. One just has to note that, at the beginning of a time slot n,
the number of jobs in the first queue is Zfil Yo_1_k4i, and the arrival flow to the second
queue is the same as the original one, shifted by K slots.

Acknowledgement

We would like to acknowledge Daniel Kofman for discussions that motivated this work.

References

[1] E. Altman, D. Kofman and U. Yechiali, Discrete time queues with delayed information,
Queueing Systems 19 (1995) 361-376.

[2] Y. Levy and U. Yechiali, An M/M/s queue with server’s vacations, INFOR 14 (1976)
153-163.

(3] L.L. Mitrany and B. Avi-Itzhak, A many server queue with service interruptions, Oper.
Res. 16 (1968) 628-638.

[4] M. Mitzenmacher, How useful is old information, IEEE Trans. Parallel Distrib. Systems
11 (2000) 6-20.

[5] M.F. Neuts, Matriz-geometric Solutions in Stochastic Models - An Algorithmic Ap-
proach, Johns Hopkins, Baltimore, 1981.

[6] S.A. Nozaki and S.M. Ross, Approximation in finite capacity multi-server queues with
Poisson arrivals, J. Appl. Prob. 15 {1978) 826-834.

[7] H.C. Tijms, Stochastic Models: an Algorithmic Approach, Wiley, 1994.

[8] U. Yechiali, On the relative waiting times in the GI/M/s and the GI/M/1 queueing
systems, Oper. Res. Quart. 28 (1977) 325-337.

	025-report deel 1.pdf
	025-report deel 2

