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Abstract

The problem of inferring haplotype pairs directly from the unphased genotype data is crucial in a
number of haplotype analyses such as association study and linkage disequilibrium mapping for diploid
populations. In literature there are mainly two popular approaches to this problem. One is what called
maximum resolution approach and another is the EM algorithm based on the genotype likelihood. In
this paper we intend to improve these two different approaches by introducing a general complete-
data-likelihood framework. Based on this framework, we develop two kinds of estimators, namely, the
maximum profile-likelihood (MPL) and Bayesian estimators. We demonstrate that under certain condi-
tions, the MPL estimator will attain a maximum resolution. This implies under certain condition, when
the maximum resolution is unique, the maximum resolution estimator is also a MPL estimator. On the
other hand, the genotype likelihood based EM estimator is simply the maximum marginal-likelihood
estimator of haplotype frequencies. As an alternative to the coalescent model based estimator (Stephens,
Smith and Donnelly, 2001), we introduce the minimum evolution estimator. We solve the optimization
problems arising from our procedures by using the evolutionary Monte Carlo (EMC) algorithm, a recent
developed Markov chain Monte Carlo algorithm. Our approaches are tested on some real and simulated
data sets. Interestingly, for the African-American substance-dependent data set, using our procedures
we obtain almost the same substance-dependent haplotype group as that in Hoehe et al.(2000) although
these procedures may give different haplotype assignments. Overall our procedures have the following
advantages over the existing estimators: (1) As an improvement on the maximum resolution algorithm,
our procedures can take into account the count and structual information of the genotypes; (2) unlike
the EM algorithm, our procedures allow one to handle the genotypes with a large number of amibiguous
loci by directly estimating the values of ambiguous loci rather than the frequencies of all possible hap-
lotypes; (3) our minimum evolution estimator allows one to use the phylogenetic information from the
data without assuming a coalescent model.

Key words: Haplotype reconstruction, profile likelihood, genotypes, multiple SNPs, and Markov chain
Monte Carlo.
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1 Introduction

An entire human genomic reference sequence has been released recently. It is now known that individual
humans differ from one another by about one base pair per thousand. These differences, called single nu-
cleotide polymorphisms (SNPs), are believed to closely link to the human genetic bases. Recently, more than
1.4 million SNPs have been mapped in the human reference sequence. To turn this new genomic information
into an engine of pharmaceutical discovery, one of the next genomics efforts will focus on exploring and
using DNA sequence (or genetic) variations relative to this genomic sequence, among individuals and be-
tween human populations (see Baltimore, 2001; The Genome International Sequencing Consortium, 2001).
The particular combination of such variants presented in some defined regions or sites is often described
by a haplotype. Haplotype based genome-wide association and linkage studies are becoming increasingly
important in understanding the history and organization of the human genome, as well as in uncovering
and analyzing candidate genomic regions related to complex disease. See Clark et al. (1998); Nickerson et
al.(1998); Kruglyak (1999); McPeek and Strahs (1999); Service et al. (1999); Bonnen et al. (2000); Davidson,
2000; Hoehe et al. (2000); Lam et al. (2000); Liu et al. (2000); Templeton et al. (2000); Fallin et al. (2001),
Pritchard (2001), Rannala and Reeve (2001), and among others. In particular, a recent study showed that
some complex diseases are correlated to grouping and interaction of several SNPs, rather than any individual
SNP (Drysdale et al., 2000). This is because even if each SNP may only contribute a small amount to the
phenotypes in these diseases, the joint contribution of multiple SNPs can be still significant. A strategy for
searching for genetic variants of small effect is therefore essential, and association studies are seen to address
this need.

In diploid organism there are two haplotypes for each individual at the region of interest, because there
are two (not completely identical ) copies of each chromosome. For a large scale screen of dipliod populations,
it is not feasible to examine two copies of this region separately to obtain the haplotype pair. So often only
certain mixtures of these haplotype pairs, called unphased genotypes, are available. This phase information
can be established by genotyping the family members of each individual. But for many cases, these family
members are simply not available or not enough to solve the ambiguity completely (see, e.g., Hodge, Boehnke
and Spence, 1999). There are also other experimental methods such as long-range allele-specific PCR, (Clark
et al., 1998). Unfortunately these methods are often cost-prohibitive for a large scale screen of populations.
To overcome these difficulties, in the last decade, several methods have been proposed for the inference of
haplotypes from unphased genotype data. Two of them are now popular. One is now called the maximum
resolution approach (Clark, 1990; Gusfield, 2000). The other is the EM approach based on the likelihood of
unphased genotype data (Excoffier and Slatkin, 1995; Hawley and Kidd, 1995; Long et al., 1995; Hoehe et
al., 2000). The first approach is motivated by the fact that, for any haplotype that is common enough that
homozygotes can be found in the sample, the sample is expected to have several heterozygotes bearing one
copy of that haplotype (Clark et al., 1998). This approach, restricted to haplotypes of biallelic sites, focus
on the estimation of haplotype pairs instead of haplotype frequencies. It has not taken full advantage of the
count information (i.e. the information from the repeated observations) on some genotypes. In contrast,
the second approach has a clear statistical background and is not restricted to biallelic allels. It first uses
the EM algorithm to estimate haplotype frequencies, then assigns the individual a haplotype pair with the
highest frequency among all the possible pairs consistent with the genotype. Although there are several
Monte Carlo studies to indicate that both methods are promising (Clark, 1990; Fallin and Schork, 2000),



Stephens, Smith and Donnelly (2001) showed that the EM can outperform the maximum resolution method
under a coalescent model. It is not surprising because the latter has ignored the count information. For the
African-American substance-dependent data (Hoehe et al., 2000), we found the EM and maximum resolution
methods may give some different haplotype assignments. Naturally we ask whether this affects the conclusion
of the followed haplotype based statistical analysis.

In an effort to address these issues, Stephens, Smith and Donnelly (2001) presented a new statistical
method by assuming a coalescent model for the underlying haplotypes. Here, in the same spirit and under
the minimal model assumption of Hardy-Weinberg equilibrium, we try to improve the maximum resolution
method using the count information of some genotypes. For this purpose, we introduce a joint likelihood
for the phases of genotypes as well as for the haplotype frequencies. We point out that both the maximum
resolution and EM approaches have close connections to this new framework. Relying on this framework,
two alternative haplotype estimation procedures are presented in this paper. The first one is on the basis
of a profile likelihood derived from the above joint likelihood. This profile likelihood usually assigns the
relatively higher likelihood to the haplotype which appear in both homozygotes and heterozygotes. Unlike
the EM approach, in our procedure we give our attention directly to the haplotype assignment rather than
to the haplotype frequencies. We show that under certain condition, the maximum resolution estimator
can be simply derived from our procedure. However, the ideas of the maximum resolution and the profile
likelihood are essentially different. The profile likelihood intends to identify as many older haplotypes hidden
in genotypes as possible, whereas the maximum resolution trys to find the maximum number of descendants
from the initial known haplotyes. To introduce our second procedure, we develop a Bayesian model. In this
framework, the EM haplotype frequency estimator is simply the mode of the marginal posterior distribution
of all possible haplotype frequencies. In the same spirit, in our second procedure we estimate the genotype
phases by the mode of their marginal joint posterior distribution. We also present a method to incorporate
prior information into the MPL estimators. Finally, as an alternative to the coalescent method of Stephens,
Smith and Donnelly (2001), we introduce a minimum evolution procedure which is based on an implicit
assumption about evolution, namely that evolutionary change is rare. In this procedure, we intend to find
a haplotype assignment which has a minimum length of its phylogenetic tree.

The optimization problems arising from our procedures are very hard. We solve these computational
problems using the evolutionary Monte Carlo (EMC) algorithm, a recent developed Markov chain Monte
Carlo algorithm. Our procedures are tested on some real and simulated data sets. We conclude from these
studies that our procedures have the following advantages over the existing ones: (1) As an improvement
on the maximum resolution algorithm, our procedures can take into account the count and structural infor-
mation of the genotypes; (2) unlike the EM, our procedures allow one to handle the genotypes with a large
number of amibiguous loci by directly estimating the values of ambiguous loci rather than the frequencies of
all possible haplotypes; (3) in addition, the minimum evolution approach allows one to use the phylogenetic

information without assuming a coalescent model.



2 Haplotype reconstruction

2.1 Notations

Suppose that we are interested in a region of u sites specified by a reference allelic vector (r1,72, -, ry,)?.
Each allele r, is a marker (with a single or several DNA base pairs) in the reference genomic sequence. For
example, for the SNP case, r, is a single DNA base pair. For diploid populations, each individual has two
copies of this region. These copies have their own allelic vectors, say, H(") = (hgv), XN hgff)))T, v=12 We
call these vectors the genetic haplotype vectors. For simplicity, we assume these sites are all biallelic. Then,
given the reference haplotype vector, the genetic haplotype vectors of each individual can be simply expressed
as two zero-one vectors. In these vectors, a site has 0 and 1 according to whether its genetic haplotype is
identical with or different from the reference. Hereafter we call these zero-one vectors the haplotype vectors
or simply haplotypes. For the ease of notation, we use the same symbols H(?) to represent these new vectors.
As we pointed out before, in practice, for each individual, we may observe only the mixture of its genetic
haplotype pair, namely, the genetic genotype vector G = (g1,92,-*+,9m)”, in the sense that we don’t know
which copy of the region each g; comes from. Similarly, given the reference haplotype vector, each genotype
vector can be transformed into a vector with components 0,1 and 2. Here, a site has 0, 1 and 2, according
to whether on this site the haplotype pair is homozygous and identical with the reference, or homozygous
but different from the reference, or heterozygous. Here, we call this new vector the genotype vector (or
simply genotype) and denote it by the same symbol G. A genotype vector with h heterozygous sites has
2h=1 possible decompositions into pairs of haplotype vectors, say Hg §= (Hé )], H(Q)) ,j=1---,2"1 1In
particular, a genotype vector G with at most one heterozygous site can be decoded directly. Let a denote
a 2h—l.dimentional vector taking values in {e; : j = 1,---,2""1} where e; is the 2"~!-dimensional unit
vector with all components being 0 except the j-th. Let a = e; if we assign the haplotype pair Hg ; to G.
Sometimes we denote e; simply by j. We call a the phase (parameter) of G. Note that the underlying phase
is often unknown.

Suppose that we have an independent genotype sample G = (G4, -,Gy,) of size n. Assume that G; has
¢; possible haplotype decompositions, namely, the set H; = {( l(]l),H(Q)) :j=1,---,¢}, and the phase
a;. Suppose that {HZ(]U) v =1,2;5=1,---,¢;i = 1,---,n} has only kq different haplotype vectors, say,
{Hor : k =1,---,ko}. Then, given G, under the assumption of Hardy-Weinberg equilibrium, we have the
“complete-data likelihood”

L(G|p,a) H H P
i=1j=1
where a = (a1, +,a,)T, p = (p1,p2,-**,Pk,)" is the population frequency vector of {Hoy : k=1, ko};
and pi; = p} if H}) = HY = Hoy, and py; = 2pypy if Hy) = Hoy, HY) = Ho and k # I. A simple

calculation shows that it is proportional to the product
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where §(-) is the indicator of a set. Obviously, 21130:1 s = 2n. Furthermore, we have the marginal likelihood
of p

n

L@Gp)=[[{ D>, pwpw} (2.1)

=1 (Hyi,Hz2)EH;

where pg, and pg, are the population frequencies of H; and Hs, respectively.

2.2 EM approach

The EM approach is an algorithm of attempting to find p that maximizes the marginal likelihood (2.1). It
reconstructs haplotype pairs by choosing the most probable ones, given the genotype data and the estimated
population haplotype frequencies p. Here, we often assume that individuals with the same genotype also
have the same underlying haplotype pairs (Excoffier and Slatkin, 1995).

As pointed out in Stephen, Smith and Donnelly (2001), to implement the EM algorithm, we need to store
the haplotype frequency variables for every possible haplotype in the sample. A genotype with k& ambiguous
loci has 2¢~1 possible decompositions. This implies that the storage requirement increases exponentially with
the number of ambiguous loci. We must impose the limit on the number of ambiguous loci in practice. For
example, K. Rohde and R. Fiirst in their webservice (http://made.bioinf.mdc-berlin.de) imposed limits of 30
and 10 on the numbers of loci and ambiguous loci in each genotype, respectively. The other shortcoming in
this algorithm is that the resulting estimator is a local minimum which may strongly depend on the starting

point.

2.3 Maximum resolution approach

Clark (1990) proposed an algorithm for the haplotype assignment, which includes two steps: First form
the initial set of the haplotypes from the “self-resolved” genotypes (i.e., those genotypes with at most one
heterozygous position). Then, choose a known haplotype at time to see whether any of the unresolved
genotypes is a mixture of a known haplotype with a complementary haplotype, and if it is the case, update
the known haplotype set by adding in the complementary haplotype. Repeat this procedure until all the
unresolved genotypes are resloved or no further genotypes can be resolved. Obviously the solution depends
on the order in which the known haplotypes are chosen in the second step. The larger the number of resolved
ambiguous genotypes (i.e. the resolution), the better the solution is. Gusfield (2000) presented a maximum
resolution algorithm based on linear programming.

To address the possible way for improving this method, we consider the following examples.

Example 2.1 Suppose that we have four different genotypes 000,001,022 and 220, two of which are am-
biguous.

Obviously, there are two solutions which attain the mazimum resolution: one is {(000,000), (001,001),
(011,000), (110,000)}; the other is {(000,000), (001,001), (010, 001), (100,010)}. When the optimal solution

is not unique, which one is better?

Example 2.2 Suppose that we have four different genotypes 0001,1001,2201, and 1122 with counts (i.e.,
multiplicities) 1, n2(> 1), 1 and 1, respectively.



Using the mazimum resolution approach, we obtain a unique optimal solution {(0001,0001), (1001, 1001),
(1101,0001), (1101,1110)} in which 1001 has no heterozygous descendant. Here we first take {0001,1001}
as the initial known haplotype set, from which we choose 0001 for resolving 2201. Then update the known
haplotype set by adding in the complementary haplotype 1101. Finally 1122 is resolved by 1101. Note that
the count information is completely ignored in this algorithm. This is in contradiction with the rationale
of the approach mentioned in the Introduction. For example, set no = 10, then the haplotype 1001 already
has a much higher frequency than the other known haplotype in the initial haplotype set, 0001. According
to the coalescent theory in population genetics, the expected rank of a haplotype by age is the same as the
rank by its frequency, and older haplotypes will tend to have more mutational connections than younger
ones (see, e.g., Posada and Crandall, 2001). This implies that 2201 is more probably resolved by 1001 than
by 0001 according to the rationale of the maximum resolution. However, choosing 1001, we fail to resolve
all genotypes according to the Clark concept. Now the question here is of whether the maximum resolution

concept is reasonable when the repeated observations are available.

2.4 Profile likelihood approach

To address the issues arising from the previous subsections, in this subsection we first propose the maximum
likelihood (ML) estimator (p,a) on the basis of the complete-data-likelihood. Then we show how the
haplotype can be reconstructed from this ML estimator.

By definition, the maximum likelihood estimator of (p,a), namely, (p,a) is that value of (p,a) that
maximizes L(G|p,a). To simplify the computation, we further assume that G comprises m different geno-
types with the counts nq,- - -, n,,, respectively. All possible haplotype pair decompositions of these different
genotypes are denoted by 7Y = 1,2,j=1,---,¢&,, respectively for u = 1,---,m. In Appendix (1) , we

uj ?

prove the following proposition.
Proposition 2.1 The ML estimator assigns the same haplotype pairs to identical genotype observations.

Intuitively, this is reasonable because we have only the genotype information and we are unable to
distinguish the underlying haplotype pairs for two individuals of the same genotypes. This simple property
substantially reduces the search space of a and leads to the following simple scheme to calculate the ML
estimator.

First, let a be the vector of the phase parameters for m different genotype vectors. Define the profile
log-likelihood of a by

kg ~ ~

~ Sk Sk
(G E — log —
(Gla) o Pt 2n & 2n

where

m Gy 2

Se=5k(8) = Y > > nudu (A = Hop) (2:2)

u=l1 j=1v=1
is a linear function of a. Obviously, /(G|a) is covex in a.
Let a be that value of & that maximizes the foregoing profile likelihood. Then the ML estimator a can
be expressed as a; = ay, for Zfz_ol ne <i< Y/ one, u=1--,m. Moreover, for k =1, -, ko, substituting

Ay, w =1,---,m, into 5, we have 5, and p, = 5 /2n.



Now the haplotype pairs can be reconstructed from the above phase estimator as follows. Given m
haplotype sets {(ﬁ(l)

wi ,flg-)) gy =1,--,é,}, u =1,---,m, for (j1, --,jm) (called an assignment), we
calculate §j through counting the times that Hgg appears in the set of I—~I(1) I—~I(2)

WJu? T U ?
i)
each pair (H,;,,

u = 1,---,m, with
]ng)u) being repeated n, times. This is similar to the what called gene-counting method
(Excoffier and Slatkin, 1995). Then we calculate the profile log-likelihood for assignment (ji,- -, jm)

ko -~ -
GBI, +-1m) = 3 L log 3F (2.3)
Note that —I(G|(j1,---,Jm)) is just an entropy. We look for an optimal assignment in the sense that it
maximizes the above profile log-likelihood or minimizes the above entropy. The corresponding haplotype
estimator is called the maximum profile likelihood (MPL) estimator.

To justify the advantage of our procedure over the maximum resolution method, we apply our procedure
to Examples 2.1 and 2.2.

Ezample 2.1 (continued). Suppose that these four genotypes have the counts ni(> 1), 1, 1, and 1,
respectively. Let pi,---,pg be the population frequencies of 000,001,011,010,110 and 100, respectively.
Then for n; = 1 and 3, the MPL assignment (1,1,1,1) (which stands for the set of haplotype pairs
{(000,000), (001,001), (011,000), (110,000)}) is unique. For ny = 1, we have p; = 1/2, p» = 1/4, p3 = 1/8,
ps =0, p5 = 1/8, and ps = 0. For n; = 3, we have p; = 2/3, po = 1/6, ps = 1/12, p, =0, p5 = 1/12, and
peg = 0. The PL method can solve the problem mentioned in the last subsection. Furthermore the solutions
are consistent with those derived from the EM algorithm of Hoehe et al. (2000).

Ezample 2.2 (continued). Similar to Example 2.1, if n, = 1, the MPL assignment is (1,1,1,1) (i.e.,
{(0001,0001), (1001,1001), (1101,0001), (1101,1110)}), which also attains the maximum resolution. How-
ever, if ny = 10, then there are two MPL assignments, (1,1,2,1) and (1,1,2,2) (i.e., the sets {(0001,0001),
(1001,1001), (1001,0101),(1111,1100)} and {(0001,0001), (1001, 1001), (1001,0101), (1110,1101)}). Both have
not attained the maximum resolution. This is not surprising because the haplotype 1001 has a greater fre-
quency than 0001. The solutions are also consistent with those from the EM algorithm.

From the above two examples, we see that the PL method intends to choose the haplotypes with higher
frequecies to resolve the unsolved genotypes. This is consistent with the principle of population genetics.
Therefore, the criterion of maximum resolution may be not reasonable when there exist multiple counts.
Example 2.2 also indicates that if the MPL estimator is not a solution of the maximum resolution, the
solution could be not unique.

To conclude this section, we show that there is a close connection between the maximum resolution
method and our method if all genotypes have a single count. Note that Gusfield (2000) showed the com-
putation of the maximum resolution estimator is NP hard. This together with the following proposition
implies the computation of the MPL estimator is also NP hard. We begin with some notations. Following
Gusfield (2000), we say that a haplotype H; can resolve a genotype G if there is another haplotype Hs that
can combine with H; to form G. H; and H» are called resolved haplotypes. For a genotype A, let H(A)
denote the set of the haplotypes derived from all possible haplotype pairs of A. Suppose that we have a
genotype sample, in which ¢; different genotypes are completely homozygous (i.e., no heterozygous site), to
different haplotypes have a single heterozygous site, and t3 different haplotypes have 2 or more heterozygous
sites. These three groups are denoted by sets Gi, G and Gg, respectively. As pointed out before, the
haplotype pairs for the genotypes in the first two sets can be directly resolved. The sets of these haplotypes



are denoted by H(G1) and H(G-), respectively. Let Ho denote the set of the current resolved haplotypes.
Let G denote the current unresolved genotype vectors. Fill a prelimary list of haplotypes, for example, by
setting Hy = H(G1 UG») and Gy = G3. Then screen Gg for a A € Gg which can be resolved by a H; € Hp.
Let (Hy, Hs) be the corresponding haplotype pair assigned to A. Update Hy and Gy by adding Hs to Hy
and removing A from Gg. Repeat this procedure until there is no resolvable genotype in Gy or Gy is empty.
Apply the above procedure repeatedly until there is no resolvable genotype in Gg. The final Gy is called the
‘orphan’ set. Clearly the final Gy depends on the order in which genotypes in G2 and Gg are called. The
maximum resolution algorithm attempts to minimize the number of the remain ‘orphans’.

We show the following proposition in Appendix 2.

Proposition 2.2 Under the following conditions, attaining a maximum resolution is a necessary condition

for an assignment being a MPL estimator.

(C1) G3 can be resolved completely by applying the above inference procedure;

(C2) for any A € G; U Gy U Gg, any haplotype from H(A) can only resolve one of the remaining
genotypes in Gs.

We use Example 2.2 to help readers to grasp the main idea of the above proposition. In Example 2.2, we
have two different assignments, (1,1,1,1) and (1,1,2,1). The first one divides the assigned haplotypes into
two groups, {(100,100)} and {(000, 000), (110,000), (110,111)} with the profile log-likelihood {2/8log(2/8) +
3/8log(3/8)+2/81log(2/8)+1/81log(1/8)} = —1.3208. The second one splits the assigned haplotypes into three
groups, {(000,000)}, {(100, 100), (100,010)} and {(110,111)} with the profile log-likelihood {2/8log(2/8) +
3/81og(3/8) + 3/8log(1/8)} = —1.494. The second one has an ‘orphan’ group which decreases the profile-
likelihood. In this example, the maximum resolution assignment is unique and thus is a MPL estimator.
However, it is possible that a maximum resolution is not a MPL estimator. For instance, in Example 2.1,
(1,1,2,2) is a maximum resolution assignment, but not a MPL estimator. The condition (C1) can not be
further relaxed in general. The examples in Subsection 3.2 will show that if the condition (C1) doesn’t hold,

the MPL and maximum resolution estimators can be completely different.

2.5 Bayesian approach

In light of (5.2), we start with the joint likelihood Hk . #(8) where Sr(a) is defined in (2.2). We adopt
H o DR ! and Hu:l 1/é, as the priors for the haplotype frequencies and phase parameters respectively,

where a; > 0,1 < k < kg are some prespecified constants. Then the posterior distribution of (p,a) is

p(p,alG) = Dy H gt (2.4)
where
DOZDO ZZ Hk 1 a(]l,"‘,'].m))+ak) )
1 ju=1 (5k(a(jn, -+, im)) + o))
Here I'(+) is a Gamma function, a(ji,- -+, jm) = (a1, - ,am)T and a, is a é,-dimensional unit vector with

all components being zero except the j,th. The marginal posterior distribution of p is

o i i ﬁpik(am,---,y’m))wk—l

u=1 j,=1 k=1



which, when all a, = 1, is proportinal to the genotype likelihood (see, e.g., Excoffier and Slatkin, 1995), on
which the EM haplotype frequency estimator is based. This implies that this EM estimator is just the mode
of the marginal posterior distribution of p. Similarly, we have the following marginal posterior distribution

for a, namely,

LTI, D(Ek(@lin, v dm)) + )
Do T(2n + 342, ax))

ko
. Sp(a) + ag
exp {;(sk(a) + ag) log 72 S } (2.5)

p(alG) =

X

Its mode, say a,, can be used as a phase estimator. In particular, we can write

ko 3 j
° TGe(@ly, -, im)) + ax)
— r=L : ’
a, = argmaxqj, .. j D20+ 5 ax)
k=1

The last term in (2.5) can be viewed as a way to incorporate the prior information into the PL estimator.
For this purpose, we note that for each fixed a, (2.4) gives the following Bayesian haplotype frequency

estimator (i.e., the mean of the posterior distribution)

Si(@) +ou Sk(a) +ag r
2n+2md’ ’ 2n+2md

Substituting this estimator into (2.4) leads to the last term in (2.5). So we have the following modification
of the profile likelihood (2.3),

)+« Sip(a) +a
> )

Now a new phase estimator can be simply produced by maximizing this new likelihood.

We specify the constants ay, kK =1,-- -, kg, by the following way.

We first assign the same weight 2d to the m observed different genotypes (see Subsection 2.1), where
d is constant with a default value 1. Assume that the m genotypes are equally important and that the
phases of these genotypes are unknown. Then, the structures of these genotypes imply that the importance
of each candidate haplotype in different genotypes should be different. So, for each of these genotype, we
distribute the weight 2d equally to all its candidate haplotype vectors. Then for k = 1,---, kg, let a;, be the
summation of all the weights we put on the haplotype Hor which appears in n candidate haplotype sets,
Hi, i = 1,---,n mentioned in Subsection 2.1. These constants are called the pseudo-counts. For instance,
for Example 2.1, letting d = 1, we have the pseudo-counts (3,5/2,1/2,1,1/2,1/2) for 000,001,011,010,110
and 100, respectively.

Note that these pseudo-counts yield a prior haplotype frequency estimator, namely, (a;/2md,
ag, /2md)T. A prior phase estimator is obtained simply by assigning each individual a haplotype pair with
the highest prior frequency among all the possible candidate haplotype pairs.

2.6 Minimum evolution approach

Note that very recently Stephens, Smith and Donnelly (2001) developed a parametric method for recon-

structing haplotypes in that the underlying haplotypes are assumed to follow a coalescent model. Here we

10



instead model the haplotype structure by a phylogenetic tree. We try to find a haplotype assignment with
a minimum length of its phylogenetic tree.

For each feasible haplotype assignment, we build a phylogenetic tree for its associated haplotypes, termed
a feasible tree. Then, we select an optimal tree according to its length (i.e., the sum of all branch lengths).
To reduce the burden of computation, we adopt a modified UPGMA procedure to build the tree. Similarly,
we can also use the neighbour-joining procedure. See Page and Holmes (1998) for the introduction of the
UPGMA procedure. In theory, the other tree building methods can be applied here. But these methods
are often extremely time demanding. In our procedure, we use a new distance for haplotypes, termed
the information distance (Zhang and Vingron, 2001). More specifically, we first calculate the pairwise
percentage identities for m different haplotypes, say ¢;;, 1 < 4,7 < m. Then we define the distance between

the ith and jth haplotypes by the information distance between the probability vectors (g1, -, qim)? and

(qjh T qjm)Ta namely,

d(i,j) = Z qilog(qi/qgijye) + (1 —qi)log((1 — qi) /(1 — agij3.k)
k=1

+> qilog(qi/agin) + (1 — ¢;) log((L — q;)/(1 = qqijy.e))
k=1
where qy; ;1,1 is the average of ¢;; and g;i. The advantage of this new distance over the traditional Hemming
distance is when comparing two haplotypes, we use not only the similarity between them but also their
similarities to the other haplotypes. This point has been justified by Zhang and Vingron (2001). In our

procedure we also adopt a weighted arithmetic average distance for the cluster pair, C; and C;, namely

1
d(cl) CJ) = Z Sky Sk d(klv k2)
ZkleCi Skl Ek2€c]‘ 8k2 k1ECi,k2€C'j
by taking account of the multiple count information, where s, is the count of the kth haplotype. It is easily

seen in d(C;, C;) that the higher the count of a haplotype, the larger weight this haplotype will have.

2.7 Computation

Note that according to (2.5), the Bayesian estimator can be approximated by the minimum of (2.6), which
is very similar to (2.3). This means that we only need to solve the problem of how to calculate the MPL
and minimum evolution estimators. The computation includes two steps. First, for a haplotype assignment
we calculate the objective function (the profile likelihood in the MPL case and the length of the associated
tree in the minimum evolution case). Then we optimize this function with respect to the assignment.

We begin with m different genotypes G4, ---,G,, with vy, ---, v, ambiguous loci, repectively. As stated
before, although the EM approach does use the count information, it is limited by the requirement of storing
2k=1 variables for each genotype with k ambiguous loci. In contrast, for the PL and minimum evolution
approaches, we only need to optimize an objective function with Y ;- (v; — 1) variables. Of course, this
advantage can not be fully taken if we for example use [(G|a) as the objective function directly. We need
to reexpress [(Gla) as a function with the > (v; — 1) ambiguous loci as variables. For this purpose, let
z denote a y..-, (v; — 1) dimensional variable in which each component takes value of 0 or 1. From z, we
can construct the haplotype pair (Hi;, H;) for each G4, i = 1,---,m as follows: All resolved positions of

G; are set the same in both Hy; and Hs;. The first ambiguous position of G; is set 1 and 0 in H;; and
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Hs;, respectively. The remains of ambiguous positions of G; are set zg, 11, *, 2k, +v; -1, respectively in Hi;,
where k; = 23;11 (vj — 1). The ambiguous positions of G; are set in H»; to the opposite of the entry in Hy;.
This implies that there is one-by-one correspondence between z and the assignment (ji,---,7m) in (2.3).
Moreover, for each z, we identify the different haplotypes and calculate their counts from these Hy;, Ho;,
i = 1,---,m. Then, the profile log-likelihood in (2.3) can be written in the form [(G|z), a function of z.
Now the optimal assignment can be obtained by maximizing I(G|z). Although, compared with the original
optimization problem, the number of the operational variables are significantly reduced, the new one is still
a very hard optimization problem in a high dimensional space. In particular, the new objective function
[(G|z) with many subtle local maxima is no longer a convex function. Here, we apply a recently developed
MCMC algorithm, called the evolutionary Monte Carlo (Liang and Wong, 2000), to solve the problem.
The evolutionary Monte Carlo algorithm works by simulating a population of Markov chains in parallel,
where a different temperature is attached to each chain. The population is updated by mutation, crossover
and exchange operators, and the updates are accepted or rejected according to the Metropolis rule. More
specifically, given the current population Z = {z;,---,zy} and a temperature ladder t = {¢1,---,tn}, we

construct a Boltzmann distribution for the population Z by

N
f(Z) x exp{=_1(Glz;)/t:}.

i=1

We sample the next population by the following two steps: (1). Apply the mutation or the crossover operator
to Z with probability p,, and 1 — py,, respectively. (2). Exchange z; with z; for N pairs (i, j) with ¢ being
sampled uniformly on {1,---,N} and j = i = 1 with probability w(z;|z;), where w(zi+1|z;) = w(z;-1|z;)
= 0.5 and w(zz|z1) = w(zy—_1|zn) = 1. The details of these operators can be found in Appendix 3. In this
paper, we set t; = t, — (tp, —t;)i/N, i =1,---, N, where t;, and ¢; are the highest and lowest temperatures,
respectively. As in Liang and Wong (2000), we choose t, and #; such that Var(l(G|z;))(t, — t;)> = O(1) or
simply by checking whether the overall acceptance rates of mutation, crossover and exchange operations are
around 0.50.

3 Applications

3.1 Substance-dependent individuals and controls

To test a potential role of the human p opioid receptor gene (OPRM1) in substance dependence, Hoehe
et al.(2000) analyzed all known functionally relevant regions of this prime candidate gene by multiplex
sequence comparison in 172 African-American cases and controls. They obtained 172 genotypes on 25
variable positions in this gene, in which using the EM method they predicted 52 different haplotypes. These
haplotypes were classified by similarity clustering into two functionally related groups, one of which is
associated with substance dependence. The haplotype reconstruction is crucial in this analysis. As pointed
out in Example 2.2, the haplotype reconstructions based on the maximum resolution, EM or PL may be
not unique. Naturally we are concerned with how large these different haplotype assignments affect on
the conclusion made in Hoehe et al.(2000). In our opinion, this practical issue can not be fully answered
by comparing the error rates of these methods for a genotype data set with known haplotypes which are
simulated from a coalescent model. This is because we do not know the model which the real data really

come from.
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To this end, we first apply the PL approach to this data set. Note that the z for this data set is
196—variate. After several preliminary trials, we decide to choose the population size N = 20, the highest
and lowest temperatures, ¢, = 0.02 and ¢; = 0.001, and the mutation and crossover parameters, p,, = 0.2,
po = 0.004, p; = 0.008 and p» = 0.01 in our algorithm. According to Liang and Wong (2000), the convergence
of the Markov chains can be diagnosed using the Gelman-Rubin statistic (Gelman and Rubin, 1992). The
first 1000 iterations are discarded as initial “burn-in” iterations. Then we make M = 10° iterations, a long
run to get enough samples for inferring the maximum value of the profile log-likelihood I(G|z). Note that
the overall acceptance rates of mutation, crossover and exchange operations are 0.584974, 0.365175, and
0.598087. In each iteration, we get a population in which the last sample is kept for the optimization task.
This leads to M = 10° samples of [(G|z), say [(G|z1), - ,[(G|zar). The EMC sampled maximum is defined
as argmaxy, [(G|zg).

Table 3.1 presents the haplotypes with counts reconstructed from the 172 genotypes. Figure 3.1 (a) and
(b) show two hierarchical clusterings for these haplotypes using the information distance with and without
weighting. Note that these results are independent of the initial haplotype population in the algorithm.
Interestingly, comparing Table 3.1 and Figure 3.1 with Table 2 and Figure 4 in Hoehe et al. (2000), we can
see that only 46 haplotypes are predicted here, 6 less than that of Hoehe et al. (2000). But surprisingly these
haplotypes can still be classified into two groups: group one {27, 35,36, 37,38, 39,40,41, 42,43, 44,45, 46},
group two made up by the remaining haplotypes. Group one is almost same as the substance-dependent
group in Hoehe et al. (2000) in the following sense: both have 13 members, of which 11 haplotypes are
common; both are significantly more frequent in substance-dependent individuals; and both have the same
characteristic pattern of sequence variants. Note that the weighting in the information distance has some
effects only on the tree structure of the second group (see the two trees in Figure 3.1).

It is easy to see that both our solution and that of Hoehe et al. (2000) attain the maximum resolution. In
fact, we have found several other solutions which also attain the maximum resolution. But we do not know
how many different solutions of the maximum resolution may exist. This makes the maximum resolution
approach difficult to be used in this data set.

We then apply the Bayesian maximum posterior estimator defined by minimizing (2.6) to this data. The
prior ay, k = 1,---, kg are specified following the scheme in Subsection 2.5. Fortunately, the solution is the
same as what is derived from the PL approach.

Finally, to employ the minimum evolution approach, we choose the population size N = 20, the high-
est and lowest temperatures, ¢, = 0.02 and ¢; = 0.001, and the mutation and crossover parameters,
Pm = 0.2, pp = 0.004, p; = 0.008 and p» = 0.01 in our minimum evolution algorithm. We make
M = 8 x 10° iterations. The overall acceptance rates of mutation, crossover and exchange operations
are 0.192804, 0.129297, and 0.591254. This results in 52 different haplotypes listed in Table 3.2. The den-
drogram based our modified UPGMA clustering is presented in Figure 3.2. These haplotypes can be divided
into two groups. Group one is dominated by the haplotypes of substance-dependent individuals in the
sense that it is made up of three subgroups: (A) {32, 34,37, 38,46, 52}; (B) {22, 26, 33, 36,42, 43,48, 50}; and
(C) {9,18,20,21,27,28,29,31,35,44,45,47,49,51}. Subgroup (A) contains only haplotypes of substance-
dependent individuals only. These six haplotypes feature the same constellation of five polymorphic sites as
in Hoehe et al. (2000). With one exception Subgroup (B) contains only haplotypes of substance-dependent
individuals. With four exception Subgroup (C) also contains only haplotypes of substance-dependent indi-

viduals. However, both Subgroups (B) and (C) present some different patterns from Subgroup (A). Group
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two corresponds to a mixture of cases and controls.
In summary, the above analyses convince us that a same pattern features with 5 conserved heterozygous
polymorphic sites can be derived from the EM, PL, Bayesian, and minimum evolution approaches. The

minimum evolution approach also suggests the other patterns.

3.2 Simulated data sets

In this subsection, we test our method on a randomly generated data of up to 50 genotypes, 10 initially
resolved and 40 ambiguous, each containing 15 loci. Gusfield (2000) used this data set to test his maximum
resolution algorithm under more extreme conditions than one would expect in realistic data. Here, different
from him, we use this data set to show how large the difference between the maximum resolution and our
proposal is under some extreme conditions. This implies that the more genotypes should be sampled when
the genotypes can be not fully resolved completely by the maximum resolution.

We first assume that all the genotypes are single. Gusfield (2000) showed that only 26 genotypes can
be resolved by the maximum resolution algorithm. In contrast, our procedure resolves all genotypes. The
dimension of z in our algorithm is 268. We choose the population size N = 20, the highest and lowest
temperatures, t; = 0.008 and ¢; = 0.0004, and the mutation and crossover parameters, p,, = 0.2, po = 0.001,
p1 = 0.002, po = 0.004 in our algorithm. As before, the first 1000 iterations are discarded as initial “burn-
in” iterations. Then similar to the last subsection, we make M = 3 x 10° iterations to get a simulated
maximum. The overall acceptance rates of mutation, crossover and exchange operations are 0.606994,
0.53044, and 0.555151. 63 different haplotypes are predicted. Table 3.3 shows these haplotypes with their
counts. The result is quite different from Gusfield (2000). This convinces us that our procedure and the
maximum resolution algorithm could give totally different results when the genotypes can not be resolved
completely according to the Clark’s rule.

To see the influence of the mutiple counts on the haplotype reconstruction, we then consider the same
genotypes as above but with multiple counts as shown in Table 3.3. To apply our algorithm, we choose the
population size N = 20, the higest and lowest temperatures, t;, = 0.003, ; = 0.00015, and the mutation and
crossover parameters p,, = 0.2, pp = 0.001, p; = 0.002, po = 0.004. As before, after 1000 initial “burn-in”
iterations, we make M = 3 x 106 iterations to get a simulated maximum. The overall acceptance rates of
mutation, crossover and exchange operations are 0.430877, 0.501228, and 0.517761.

Table 3.5 shows the haplotypes with their counts reconstructed from the genotypes. 63 different haplo-
types are predicted. The result is quite different from the case where all these genotypes are single. This
implies the multiple count information does have a big effect on the haplotype reconstruction. Note the
result is again different from the maximum resolution estimator.

In Tables 3.6 and 3.7 we show the difference between the PL and minimum evolution approaches by a
simulated genotype data set. Table 3.6 shows this data set and the haplotypes derived by the minimum
evolution approach. For comparison, in Table 3.7 we give the haplotypes derived from the same genotypes
as in Table 3.6 relying on the PL approach. Note that the difference is obivious because Table 3.6 gives 29
different haplotypes while Table 3.7 presents only 20 different haplotypes. Note that for this data set we
set the highest and lowest temperatures, t;, = 0.08 and ¢; = 0.004; and p,, = 0.2, pg = 0.002, p; = 0.002,
p2 = 0.008 in our algorithm.
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4 Discussions

Reconstructing haplotypes from genotypes is a basic step in any large scale screens of human populations for
significant DNA polymorphisms. We have introduced three new statistical approaches for haplotype recon-
struction, termed the profile likelihood, Bayesian and minimum evolution approaches. Like the maximum
resolution and EM methods, these new approaches are nonparametric in that we have used the minimum
model assumption of Hardy-Weinberg equilibrium of the underlying haplotype populations. Our procedures
have two advantages over the maximum resolution or EM methods: (1) Unlike the maximum resolution
approach, we take into account both the multiple count information and certain structual information of
genotypes via the complete-data likelihood, the prior specification and the mimimum evolution principle; (2)
in contrast to the EM method, our procedures can reconstruct haplotypes from heavily ambiguous genotypes
with the help of the evolutionary Monte Carlo algorithm. Unlike the EM algorithm, our evolutionary Monte
Carlo algorithm intend to find a global maximum. Of course, we should expect some similarity between the
profile likelihood and EM methods because both methods stem from the same complete-data likelihood. We
also find the following unexpected connection between the profile likelihood and the maximum resolution
methods. Under a certain condition, the profile likelihood estimator is consistent with that derived from
the maximum resolution method. According to our limited experiences, this could be true even under the
more general condition where all the genotypes can be completely resolved and the solution of the maximum
resolution is unique. As shown in Figure 2 of Stephen, Smith and Donnelly (2001), in reality, the above
condition may be not true and then we have a difficulty getting the the maximum resolution algorithm to
consistently provide a unique solution.

The time for calculating the PL and Bayesian estimators is varied from several minutes to several hours
depending on the complexity of the data. However, the calculation of the minimum evolution estimator is
very time-demanding. It may need several days if you want to get a good solution. So if the data under
investigation come from a coalescent model approximately, it is better to use the coalescent approach of
Stephens, Smith and Donnelly (2000).

In literature, there simply do not exist enough real data sets, with known haplotypes, to allow sensible
statistical comparisons of different methods (Stephens, Smith and Donnelly, 2000). When we tackle the
real data, it seems better to apply all current available methods to avoid the possible bias from any single
method.

We have applied our procedures to both some real and simulated data sets. For the genotypes of African-
American substance-dependent individuals and controls, via the PL and Bayesian approaches, we obtained
46 haplotypes, 6 fewer than those obtained by the EM method (Hoehe, et al., 2000). Fortunately, these
haplotypes can be classified into two groups, one of which is mainly from substance dependent individuals
and is almost the same as that obtained in Hoehe et al. (2000). A similar result is derived by the minimum
evolution approach. Thus, our analysis further support the main result of Hoehe et al. (2000).

To conclude this section, we note that although in this paper we discuss only the haplotypes of biallelic
loci, both our methods and algorithm can be easily extended to cope with other types of loci like microsatellite
loci. It is also straightforward to modify our methods to allow them to deal with missing genotype data in

some individuals at some loci.
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5 Appendices

(1). Proof of Proposition 2.1. Note that, given p, L(G|p,a) attains the maximum L(G|p,a(p)) at
a = a(p) with
a; = ay, = el (5.1)

Ju

for 21‘:_01 ne <i< Yo, 1 <u<m, where ng =0, j; = argmax;p;;. (5.1) means that given p, we
should assign the same haplotype pairs to identical genotype observations. This implies that L(B|p,a(p))

is proportional to HZO:1 pzz, which is less than

where

Thus, for a positive constant dy,

<
rgfg{ L(G|p,a) < mgx max L(G|p,a)

kO gk §k
< d a — 5.2
< do max II <2n> (5.2)
k=1
where $i, is defined by replacing ay,; by aGuj, and ai,---,a,, are the phase parameters for the m different

genotype vectors. This completes the proof.

(2). Proof of Proposition 2.2. It is obvious that any scheme of haplotype pair assignment can only
divides the assigned haplotypes of G; U Gs U G3 into the four kinds of possible groups, say, F1, Fa, F3 and
F4. There is no common haplotype between any two of these groups. See the example presented at the end
of Subsection 2.4. F; has a single element from Gi; F5 has three elements, among which two are from G,
and the remaining is from Go; F3 of size f3 includes one element from G; and the others from Gg; and Fy
of size f4 is a subset of Gs. Suppose for each k = 1,2, 3,4, there are d; Fi-type groups. Fy4 is an unresolved

(orphan) group. Then the corresponding profile log-likelihood is equal to

2d; 2 2ds 3
{5, log g, + 5, los 5

ds 3 di(fs—1) 2

+ %log%—k o log%
ds 1 de(fs— 1) 2 2dy 1
—log — + ———2log— + — log —
+ 2n Og2n+ 2n Og2n+ 2n Og2n}
2d d -1 d -1 2
_ ( 1 +d3(fzs = 1) +du(fs )log—
2n 2n
2ds + d3 3 ds + 2d, 1
22 T B o= 4+ BT g —
+ 2n Og2n+ 2n Oan}

which attains the minimum when dy = 0 and the above assumptions (C1) and (C2) hold. This implies that
a necessary condition for an assignment being a MPL estimator is that there is no unresolved group.
(3). The mutation, crossover and exchange operators. Note that in the mutation operator in our

algorithm, a new vector y is generated by randomly selecting a member, say zj, from the population Z and
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by randomly mutating some components of z; from 0 to 1 or from 1 to 0. Z is replaced by the proposed
population Y = {zy,---,y, - -,zn} with probability min{1,r,,}, where r,, is the Metropolis-Hastings ratio,
rm = f(Y)/f(Z). In the crossover operator, a new pair of vectors, say y;,y;, are two “offspring” of a
pair z;,z; (i # j) selected from Z according to a roulette wheel procedure. See Liang and Wong (2000)
for the details. Z is updated by the proposal population Y = {z,--,y;,--,¥;, -, 2N} with probability

min{1,r,,} where r,, is the Metropolis-Hastings ratio,

TPy, y)IY)
" f(Z)P((zi,25)|Z)

where

P((2i,2)|Z) o< exp{l(Glz;)/t:} + exp{l(G]z;)/t;}
P((y,y)IY)  ocexp{l(Gly;)/ti} + exp{l(Gly;)/;}.

In the exchange operator, we change the order of two randomly selected z; and z; (without changing the

order of ¢; and ¢;) with probability min{1,r.}, where

re = exp{(=1(Glz:) + (Glz;))(1/t; — 1/1;)}.
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Table 3.1. Haplotypes reconstructed from African-American substance-dependent

individuals and controls predicted by the PL approach

Counts

Cases Controls

0000000000000000000000000
0000000000000000000000100
0000000000000000000100000
0000000000000000001000000
0000000000000000010000000
0000000000000000010000010
0000000000000000100000000
0000000000000001000000100
0000000000000010000000000
0000000000000010000000010
0000000000000010000010001
0000000000000010010000000
0000000000010000010000000
0000000000010001000000100
0000000000010010000010001
0000000000100000000000000
0000000000100000100000000
0000000000100100000000000
0000000000100100000000100
0000000010000010000000000
0000000100000000000000100
0000001000000000000000100
0000001000100010000000000
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Cases Controls

0001000000000000010000000
0001000000000010010010000
0010000100000010000010000
0010100000001000000000000
0100000000000000000000000
0100000000000000000100000
0100000000000001000000100
0100000000100000000000000
0100000000100010000010001
0100000010100010000000000
0100000100000000000000100
1010100000001010000000000
1010100000001010000000100
1010100000001010000001000
1010100000001010000100000
1010100000011010000001000
1010100001001010000100000
1010101000001010000000000
1010110000001010000001000
1010110000001010000010001
1010110000011010000001000
1010110100001010000010000
1010110000001010000000000

Counts
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Table 3.2. Haplotypes reconstructed from African-American substance-dependent

individuals and controls predicted by the PL approach

Counts

Cases Controls

0000000000000000000000000
0000000000000000000000100
0000000000000000000100000
0000000000000000001000000
0000000000000000010000000
0000000000000000100000100
0000000000000001000000100
0000000000000010000000000
0000000000000010000010001
0000000000000010010000000
0000000000010000010000000
0000000000010000000000100
0000000000100000000000000
0000000000100100000000100
0000000010000010000000000
0000000100000000000000100
0000001000000000000000100
0000001000100010000000000
0001000000000000010000000
0001000000000010000010000
0010000100000010000010000
0010100000001000000000000
0100000000000000000000000
0100000000000000000000100
0100000000100000000000000
1000100000001000000000100
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Cases Controls

1000000000001010000000100
1000000000000010000001100
1000000000001010000100000
1000000000000010010000000
1000001000001010000000000
1010100000000010000001000
1010000000001000000000001
1000110000000000000001000
1000100000010010000000000
1010010000000000000000100
1010110000001010000001000
1010110000001010000010001
0000000000000000000000110
0000000000000100010000000
0010000000000010000000000
0010100000000000000000100
0010100000011000000000000
0010000001000010000100000
0000010000001000000000000
0010010000000010000001000
0000110000000010000010100
0010000000001011000000100
0000010000001010000000000
0010010000001000000001100
0000100100001010000010000
1010110000001010000000000

Counts
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(b)

Figure 3.1. Dendrogram of the haplotypes in Table 3.1 based on the UPGMA clustering procedure
according to the information distance (a) without weighting and (b) with weighting. Tips 1, 2, ...,
46 represent 46 haplotypes in Table 3.1. The lengths of trees (a) and (b) are 1.4262205 and
1.706099 respectively.
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Figure 3.2. Dendrogram of the haplotypes in Table 3.2 based on the UPGMA clustering procedure
according to the information distance with weighting. Tips 1, 2, ..., 52 represent 52 haplotypes in
Table 3.2. The length of the tree is 1.382733.
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Table 3.3. Simulated genotypes

Genotypes

Counts

Cases Controls

Genotypes

Counts

Cases Controls
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100011000010110
000010101010010
010000011000011
001001110111010
000001110010101
011011101111001
010011101011000
110100111011010
101101010101001
110001011100101
020021212012122
221022002222202
212210202112022
201202222012021
220202122212121
110220111102212
022212202212022
012210020210220
022112010022201
111002020210210
021212102001221
222112122210011
221121112222122
220222022202022
202211212222000

221012002222210
212110111201110
220121211211222
211212000120222
122121222002222
222000100122021
022022002201102
202221022220020
212200222001021
222112022222212
121202222102110
201002222222000
222100222201211
202112122202220
222212022021222
112120202212020
222221001022001
102222202220200
221222020020220
212212111101020
122120202112021
021121122011012
022010202222222
100211222220221
212220122120012
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Table 3.4. Haplotypes reconstructed from the genotypes in Table 3.2

when all the counts of the cases are set 1 and all the counts

of the controls are set 0

Haplotypes

Counts

Cases Controls

Haplotypes

Counts

Cases Controls

© 0 N O O P> W N =
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100011000010110
000010101010010
010000011000011
001001110111010
000001110010101
011011101111001
010011101011000
110100111011010
101101010101001
110001011100101
010011011011110
101001001010000
110110101111001
101000010010001
110100101111111
110110111101110
011010000110010
010110010011001
111001010110110
011111100001011
100111110110011
101111110000110
100111000101000
101011010100000
101011001001110
110101011111111
111111000100101
110101001001001
110000100111001
011010000101101
110100101001011
111110001011111

111001000101110
111110000010010
110111111101000
011111110011010
110000111100011
001101101011011
000111101011001
010110010010100
001111010000101
111000000010010
001010101001101
011110101010011
011101111111101
000111111011000
011110111001110
001000100100011
000001001001100
000111010100010
011000010001001
101100111100110
001000110101000
001100010101111
000110101101000
110100101111000
001011001010001
100110100100100
001001010000100
011010111101010
101100000110011
100011001000101
011110100110010
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Table 3.5. Haplotypes reconstructed from the genotypes with counts in Table 3.2

Haplotypes

Counts

Cases Controls

Haplotypes

Counts

Cases Controls
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100011000010110
000010101010010
010000011000011
001001110111010
000001110010101
011011101111001
010011101011000
110100111011010
101101010101001
110001011100101
010011011011110
101001001010000
110110101111001
101000011010001
110100101111111
110110111101110
011111000111001
011010000110010
010110010011001
111001010110110
011010101001111
101110110010011
101101111100110
100111000101000
101011010100000
101011001001110
110101011111111
111111000100101
111101110001110
101000100101001
011010000101101
110100000001011

-
N
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111110001010010
111000000101110
100110100100100
100111001000001
111000000010010
111110111101000
011111111011010
111110111100010
001101100011011
110000111100011
010110010010100
001111010000101
001111100001001
010111101110011
011111110011101
000111111011000
011110111001110
010000100110011
000001001001100
000101001010010
011000111001001
000111010101111
001000110101000
001100111101111
001111111001010
110100100111000
011001001011001
001111010000100
010011111101010
101100000110011
100011110110111

W b R, R, WO Rr W, E,WW W e

[
(¢

W B Bk R N B B, O O B O
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Table 3.6. A simulated genotype data set and the haplotypes

reconstructed from this data set by the tree approach

Haplotype pairs

Haplotype 1

Haplotype 2
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16

020021212012122
221022002222202
220202122212121
022212202212022
220222022202022
122121222002222
022022002201102
202221022220020
212200222001021
222112022222212
201002222222000
222100222201211
202112122202220
222212022021222
102222202220200
022010202222222

010001011011100
111001000011000
100000110111101
011010100010000
100111000001001
110101010000001
011011000101101
100111011110000
111000011001011
111110010000110
101000001010000
110100101101011
101111101001110
110011000001110
101100000110100
010010100011010

000011110010111
001010001100101
010101101010111
000111001111011
010000011100010
101111101001110
000000001001100
001001000000010
010100100001001
000111001111011
001001110101000
001100010001111
000110110100000
001110011011001
100011101000000
001010001100101
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Table 3.7. The haplotypes reconstructed from the same data set as
in Table 3.6 by the PL approach

Haplotype pairs

Haplotype 1

Haplotype 2
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16

020021212012122
221022002222202
220202122212121
022212202212022
220222022202022
122121222002222
022022002201102
202221022220020
212200222001021
222112022222212
201002222222000
222100222201211
202112122202220
222212022021222
102222202220200
022010202222222

010001111010111
101001001110000
100100100111101
011111000011001
100011001100000
110111100001110
011010000001101
101001001110000
111000101001001
111110001111111
101001001110000
101100101101111
100110100000100
100111011011010
101001001110000
011010000001101

000011010011100
011010000001101
010001111010111
000010101110010
010100010001011
101101011000001
000001001101100
000111010000010
010100010001011
000111010000010
001000110001000
010100010001011
001111111101010
011010000001101
100110100000100
000010101110010
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