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1 Introduction

In this paper several results concerning the periodic points of 1-norm non-
expansive maps will be presented. In particular, we will examine the set
R(n), which consists of integers p ≥ 1 such that there exist a 1-norm non-
expansive map f : Rn → R

n and a periodic point of f of minimal period p.
The principal problem is to find a characterization of the set R(n) in terms
of arithmetical and combinatorial constraints. This problem was posed in
[12, Section 4]. We shall present here a significant step towards such a char-
acterization. In fact, we shall introduce for each n ∈ N a set T (n) that is
determined by arithmetical and combinatorial constraints only, and prove
that R(n) ⊂ T (n) for all n ∈ N. Moreover, we will see that R(n) = T (n)
for n = 1, 2, 3, 6, 7, and 10, but it remains an open problem whether the sets
R(n) and T (n) are equal for all n ∈ N.

Pioneering research on the periodic points of 1-norm nonexpansive maps
was done by Akcoglu and Krengel. In [1] they examined the asymptotic
behaviour of diffusion processes on a finite state space that can be modelled
by 1-norm nonexpansive maps. As a result they showed that the asymptotic
behaviour of such processes is periodic. Indeed they proved the following
general theorem concerning the iterative behaviour of 1-norm nonexpansive
maps.

Theorem 1.1 (cf. [1]) Let D be a closed subset of Rn and let f : D → D
be a 1-norm nonexpansive map. If there exists x′ ∈ D such that (‖fk(x′)‖1)k
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remains bounded, then for each x ∈ D there exist an integer px = p ≥ 1 and
a periodic point ξx = ξ ∈ D of f of minimal period p such that (fkp(x))k

converges to ξ.

In subsequent work [7] Misiurewicz showed that for each x ∈ D the
integer px in Theorem 1.1 is at most n!2m, where m = 2n. Furthermore,
Weller generalized in [17] Theorem 1.1 to norms on Rn for which the unit
ball is a polyhedron: examples of such norms are the 1-norm and the sup-
norm. Thereafter various upper bounds for the integer px for maps that are
nonexpansive in a polyhedral norm were derived in [2], [4], [5], [6], [8], [14],
and [16].

As there exists an a priori upper bound for the integer px in Theorem
1.1 that only depends on the dimension of the ambient space, the set of
integers p ≥ 1 for which there exist a 1-norm nonexpansive map f : D → D,
with D ⊂ R

n, and a periodic point ξ ∈ D of f of minimal period p, is finite.
It is an interesting problem to determine this finite set for a given domain
D ⊂ R

n explicitly.
Motivated by the models of diffusion on a finite state space one has

examined in [9], [11], [12], [13], and [14] the set P ∗(n), which consists of
integers p ≥ 1 for which there exist a 1-norm nonexpansive map f : Kn →
K

n, with f(0) = 0, and a periodic point of f of minimal period p. Here
K

n denotes the positive cone in R
n. Surprisingly the set P ∗(n) can be

completely characterized by arithmetical and combinatorial constraints. In
fact, it is shown in [11] and [12] together that P ∗(n) is precisely the set of
possible periods of an admissible array on n symbols, where an admissible
array is defined as follows:

Definition 1.1 Let (L, <) be a finite totally ordered set and let Σ be a set
with n elements. For each i ∈ L let ϑi : Z → Σ be a map. The sequence
ϑ = (ϑi : Z → Σ | i ∈ L) is called an admissible array on n symbols if the
maps ϑi satisfy the following properties:

(i) For each i ∈ L there exists an integer pi with 1 ≤ pi ≤ n such that the
map ϑi : Z→ Σ is periodic with period pi and moreover ϑi(s) 6= ϑi(t)
for each 1 ≤ s < t ≤ pi.

(ii) If m1 < m2 < . . . < mr+1 is an increasing sequence of distinct points
in L and

ϑmi(si) = ϑmi+1(ti) for 1 ≤ i ≤ r,
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then
r∑

i=1

(ti − si) 6≡ 0 mod ρ, where ρ = gcd({pmi : 1 ≤ i ≤ r + 1}).

Here gcd(S) denotes the greatest common divisor of the elements of the set
S. The period of an admissible array ϑ = (ϑi : Z→ Σ | i ∈ L) is said to be
lcm({pi : i ∈ L}), that is the least common multiple of the integers pi with
i ∈ L. Therefore, if one defines for each n ∈ N:

Q(n) = {p ∈ N : p is the period of an admissible array on n symbols},
(1)

then the characterization of the set P ∗(n) can be stated as follows:

Theorem 1.2 (cf. [12], Theorem 3.1) P ∗(n) = Q(n) for all n ∈ N.

In this paper we are interested in a characterization (in terms of arith-
metical and combinatorial constraints) of the set R(n), which consists of the
possible minimal periods of periodic points of 1-norm nonexpansive maps
f : Rn → R

n. It has been proved in [15] that R(n) ⊂ P ∗(2n), so that by
Theorem 1.2 the following inclusion holds:

Theorem 1.3 (cf. [12], Theorem 4.1) R(n) ⊂ Q(2n) for all n ∈ N.

It is expected however, that the sets R(n) and Q(2n) are not equal for general
n ∈ N. In particular, if n = 3 it can be shown that Q(6) = {1, 2, 3, 4, 5, 6, 12}
(see [13]) and that {1, 2, 3, 4, 5, 6} ⊂ R(3), but it is conjectured in [12, page
171] that 12 is not in R(3).

We will introduce for each n ∈ N a set T (n) that determined by arith-
metical and combinatorial constraints only, and it will be proved that R(n) ⊂
T (n) ⊂ Q(2n) for each n ∈ N. The inclusion R(n) ⊂ T (n) is a significant
sharpening of the inclusion in Theorem 1.3. Moreover we will see that
R(n) = T (n) for n = 1, 2, 3, 4, 6, 7, and 10, but it remains open whether the
two set are equal for all n ∈ N. By using this equality the set R(n) can be
determined explicitly for n = 1, 2, 3, 4, 6, 7, and 10. As a result we obtain
the equality R(3) = {1, 2, 3, 4, 5, 6}, which proves the conjecture in [12, page
171].
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2 Main theorem

Before we state the main theorem we recall several definitions. On Rn the
1-norm is defined by

‖x‖1 =
n∑

i=1

|xi| for x = (x1, . . . , xn).

A map f : D → R
m, with D ⊂ R

n, is said to be 1-norm nonexpansive or
simply 1-nonexpansive if

‖f(x)− f(y)‖1 ≤ ‖x− y‖1 for all x, y ∈ D. (2)

If equality holds in (2) for every x and y in D, then f is called a 1-isometry.
A point x ∈ D is called a periodic point of f : D → D if f q(x) = x for

some integer q > 0, and q is called a period of x. The smallest such q > 0 is
called the minimal period of x.

On Rn a partial ordering ≤ is defined by x ≤ y if xi ≤ yi for i = 1, . . . , n.
We say that x < y if x ≤ y and x 6= y. The positive cone in Rn is said to
be Kn = {x ∈ R

n : x ≥ 0}. Further for each x, y ∈ R
n we let x ∨ y

denote the least upper bound of x and y in Rn, so (x ∨ y)i = max{xi, yi}
for i = 1, . . . , n. Similarly, x ∧ y denotes the greatest lower bound of x and
y in Rn, so (x ∧ y)i = min{xi, yi} for i = 1, . . . , n. A map f : D → R

m,
with D ⊂ R

n, is called order-preserving if f(x) ≤ f(y) for all x, y ∈ D with
x ≤ y.

Several sets of integers occur frequently in the exposition and for conve-
nience we list them in the following definition.

Definition 2.1 For each n ∈ N:

(i) R(n) is said to be the set of integers p ≥ 1 such that there exist a
1-nonexpansive map f : Rn → R

n and a periodic point of f of minimal
period p.

(ii) P ∗(n) is said to be the set of integers p ≥ 1 such that there exist a
1-nonexpansive map f : Kn → K

n, with f(0) = 0, and a periodic
point of minimal period p.

To state the main theorem the idea of a strongly admissible array on
2n symbols is needed. However, before a definition of a strongly admissible
array can be given a piece of notation is required. If a ∈ {1, 2, . . . , 2n}, then
we write a+ = a + n if 1 ≤ a ≤ n, and a+ = a− n if n + 1 ≤ a ≤ 2n.
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Definition 2.2 Let (L, <) be a finite totally ordered set and let Σ =
{1, 2, . . . , 2n}. Assume that ϑ = (ϑi : Z → Σ | i ∈ L) is an admissible
array on 2n symbols, and let pi be the period of ϑi for i ∈ L. We call ϑ a
strongly admissible array on 2n symbols if the maps ϑi satisfy:

(i) If m1, m2 are distinct elements of L and ϑm1(s) = ϑm2(t)
+, then

t− s 6≡ 0 mod π, where π = gcd({pm1 , pm2}).

(ii) Let m1 < m2 < . . . < mr+1 be an increasing sequence of distinct
points in L. If

ϑmi(si) = ϑmi+1(ti) for 1 ≤ i ≤ r

and ϑm1(u) = ϑmr+1(v)+, then

r∑
i=1

(ti − si) 6≡ (v − u) mod ρ, where ρ = gcd({pmi : 1 ≤ i ≤ r + 1}).

Again the period of a strongly admissible array ϑ = (ϑi : Z → Σ | i ∈ L) is
said to be lcm({pi : i ∈ L}). Now for each n ∈ N we define

T (n) = {p ≥ 1 : p is the period of a strongly admissible array
on 2n symbols}, (3)

and we state the main theorem as follows:

Theorem 2.1 R(n) ⊂ T (n) for all n ∈ N.

It is clear from the definition of T (n) that T (n) ⊂ Q(2n), and moreover it
will be shown that T (n) is strictly smaller than Q(2n) for all n ≥ 3, so that
Theorem 2.1 is a sharpening of the inclusion R(n) ⊂ Q(2n) in Theorem 1.3.

The proof of Theorem 2.1 is based on the following ideas. For every
p ∈ R(n) there exist a 1-nonexpansive map f : K2n → K

2n, with f(0) = 0,
and a periodic point ξ ∈ K

2n of f of minimal period p. This follows (as
we will see in Section 3) from the proof of the inclusion R(n) ⊂ P ∗(2n).
It turns out that ξ is in a set S ⊂ K

2n that is left invariant by f , and for
each (x, y) ∈ S, with x, y ∈ K

n, one has that x ∧ y = 0. This geometric
property of the points f j(ξ), where 0 ≤ j < p, is used to prove that the
admissible array that can be associated with the periodic point ξ of f is in
fact a strongly admissible array on 2n symbols.
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The remainder of the paper is organized as follows: In Section 3 we recall
some results from the literature that are used in the proof of Theorem 2.1. In
particular, the ideas behind the inclusions R(n) ⊂ P ∗(2n) and P ∗(n) ⊂ Q(n)
are discussed. Subsequently the proof of Theorem 2.1 is given in Section 4.
In Section 5 several properties of strongly admissible arrays are derived.
These properties are then used in Section 6 to make several remarks about
the optimality of the upper estimate T (n) for R(n). The final section is used
for a discussion of several open problems and some concluding remarks.

3 Background material

In this section results from [11] and [14] by Nussbaum and Scheutzow are
recalled. These results are needed for the proof of Theorem 2.1. The bigger
part of the section is devoted to the ideas behind the proof of the inclusion
P ∗(n) ⊂ Q(n). But we start by discussing a relation between the sets R(n)
and P ∗(n).

3.1 Relation with nonnegative 1-nonexpansive maps

It is shown in [15], but also in [10, Example 3], that R(n) ⊂ P ∗(2n) for
all n ≥ 1. The proof of this inclusion will be important in the sequel and
therefore we discuss it in detail here.

Theorem 3.1 (cf. [15]) R(n) ⊂ P ∗(2n) for all n ∈ N.

Proof. Let p ∈ R(n). By definition there exist a 1-nonexpansive map f :
R

n → R
n and a periodic point ξ ∈ Rn of f of minimal period p.

First it is shown that f has a fixed point. Put S = {f j(ξ) : 0 ≤ j < p}
and let d = max{‖x − y‖1 : x, y ∈ S}. For each x ∈ Rn let B(x, d) denote
the closed ball with radius d around x and put D = ∩x∈SB(x, d). Clearly
S ⊂ D, so that D is a nonempty, convex, and compact subset of Rn. As f
is 1-nonexpansive f [B(x, d)] ⊂ B(f(x), d) for each x ∈ S. Combining this
with f [S] = S yields f [D] ⊂ D. Now by application of the Brouwer fixed
point theorem f has a fixed point, say x∗ ∈ Rn.

Proceed by defining a map f∗ : Rn → R
n by f∗(x) = f(x + x∗)− x∗ for

x ∈ Rn. The map f∗ is 1-nonexpansive, f∗(0) = 0, and ξ − x∗ is a periodic
point of f∗ of minimal period p.

Let E2n ⊂ K
2n be defined by E2n = {(x, y) ∈ Kn ×Kn : x ∧ y = 0} and

consider the 1-isometry J : Rn → E
2n given by J(x) = (x ∨ 0, (−x) ∨ 0) for

x ∈ Rn. Since J is onto it has an inverse J−1 : E2n → R
n and J−1 is also
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a 1-isometry. Now let g : E2n → E
2n be given by g(z) = (J ◦ f∗ ◦ J−1)(z)

for z ∈ E
2n. The map g is by construction 1-nonexpansive and g(0) = 0.

Moreover, J(ξ − x∗) ∈ E2n is a periodic point of g of minimal period p.
Now we arrive at the final step in the proof. Define R : K2n → E

2n by

R((x, y)) = (x− (x ∧ y), y − (x ∧ y)) for x, y ∈ Kn. (4)

It is not hard to verify that R is 1-nonexpansive, and R(z) = z for all
z ∈ E2n. Using the map R we finally define h : K2n → K

2n by

h(z) = (J ◦ f∗ ◦ J−1 ◦R)(z) for z ∈ K2n. (5)

By construction, h is 1-nonexpansive and h(0) = 0. As R(z) = z for all
z ∈ E2n, we find that J(ξ − x∗) ∈ E2n is a periodic point of h of minimal
period p. Therefore p ∈ P ∗(2n) and this proves the theorem. 2

From the proof of Theorem 3.1 we can extract the following assertion.

Corollary 3.1 For each p ∈ R(n) there exist a 1-nonexpansive map f :
K

2n → K
2n, with f(0) = 0, and a periodic point ξ ∈ K2n of f of minimal

period p. Moreover, for each 0 ≤ j < p the point f j(ξ) is in E2n = {(x, y) ∈
K

n ×Kn : x ∧ y = 0}.

3.2 Periods of nonnegative 1-nonexpansive maps

The set P ∗(n) has been studied intensively in [1], [9], [11], [12], [13], and [14].
As a major result it is shown in [11] and [12] together that P ∗(n) = Q(n) for
all n ≥ 1. Here Q(n) is the set of periods of admissible arrays on n symbols,
as defined in (1). The main objective of this subsection is to explain the
ideas behind the proof of the inclusion P ∗(n) ⊂ Q(n). We begin by collecting
several definitions.

A set V ⊂ R
n is called a lower semilattice if x ∈ V and y ∈ V implies

x ∧ y ∈ V . For S ⊂ R
n there exists a minimal (in the sense of inclusion)

lower semilattice VS ⊃ S. The set VS will be called the lower semilattice
generated by S. Remark that if S is finite, so is VS . If V ⊂ R

n is a lower
semilattice and g : V → V is such that

g(x ∧ y) = g(x) ∧ g(y) for all x, y ∈ V,

then g is called a lower semilattice homomorphism.
If V ⊂ R

n is a lower semilattice and g : V → V is a lower semilattice
homomorphism, then x, y ∈ V and x ≤ y implies g(x) = g(x ∧ y) = g(x) ∧
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g(y), so that g(x) ≤ g(y). Thus, every lower semilattice homomorphism
is order preseving. Furthermore, if ξ ∈ V is a periodic point of a lower
semilattice homomorphism g : V → V of minimal period p, and U is the
lower semilattice generated by {gj(ξ) : 0 ≤ j < p}, then gp(x) = x for all
x ∈ U , and g[U ] = U . Therefore, the restriction of g to U is a bijective lower
semilattice homomorphism, with inverse g−1 = gp−1. Using these definitions
and remarks we can now state the following theorem (see [14, Lemma 3.2]).

Theorem 3.2 Let f : Kn → K
n be a 1-nonexpansive map, f(0) = 0, and

ξ ∈ Kn be a periodic point of f of minimal period p. Let V ⊂ K
n denote the

lower semilattice generated by {f j(ξ) : 0 ≤ j < p} and let g = f|V . Then
the map g is a lower semilattice homomorphism that maps V onto itself.

Theorem 3.2 plays a key role in the proof of the inclusion P ∗(n) ⊂ Q(n)
and it motivates a further analysis of homomorphisms on a finite lower
semilattice.

Let V be a finite lower semilattice in Rn and let A ⊂ V . If there exists
β ∈ V such that α ≤ β for each α ∈ A, we say that A is bounded above in V ,
and β is called an upper bound of A in V . Lower bounds can be defined in
the same manner (with ≥ in place of ≤). If A is bounded above in V , then
there exists a unique α ∈ V upper bound of A in V such that γ < α implies
γ is not an upper bound of A in V . The element α ∈ V will be called the
supremum of A in V and we write α = supV (A). Analogously we define the
infimum of A in V , denoted infV (A), to be the unique lower bound α ∈ V
of A such that no β > α is a lower bound of A in V . Since V ⊂ R

n we
see that α =

∧
{a : a ∈ A} is the infimum of A in V . Furthermore, if A is

bounded above in V and we let

BA = {b ∈ V : b is an upper bound of A in V },

then supV (A) = infV (BA).
For each x ∈ V the height of x in V , denoted hV (x), is defined by

hV (x) = sup{k ≥ 0 : there exist y0, . . . , yk ∈ V such that

yk = x and yj < yj+1 for 0 ≤ j < k} < ∞. (6)

If no y ∈ V exists with y < x, then we put hV (x) = 0. Note that there is
only one element in V with hV (x) = 0, namely infV (V ). For every x ∈ V
we define Sx = {y ∈ V : y < x}. An element x ∈ V is called irreducible in
V if either Sx is empty or

x > supV (Sx). (7)
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If x ∈ V is irreducible in V , Sx is nonempty, and z denotes the supV (Sx),
then we define IV (x) by

IV (x) = {i : xi > zi}. (8)

In case Sx is empty, that is to say x is the infimum of V , then we put
IV (x) = {1, 2, . . . , n}. Remark that if x ∈ V is irreducible in V , Sx is
nonempty, and x̄ denotes the infimum of V , then

xi > x̄i for all i ∈ IV (x). (9)

In relation with these definitions there is a relevant result of Scheutzow
[14, Lemma 3.2]. A proof of this version of the lemma can be found in [11,
Lemma 1.1].

Lemma 3.1 Let j ∈ Z, let V be a finite lower semilattice in R
n, and let

f : V → V be a one-to-one lower semilattice homomorphism of V onto
itself. If y ∈ V and f j(y) 6= y, then y and f j(y) are incomparable, and
hV (y) = hV (f j(y)), where hV (·) is the height function given in (6). If y is
irreducible in V , then f j(y) is irreducible in V . If η ∈ V and ζ ∈ V are not
comparable, and η and ζ are irreducible in V , then

IV (η) ∩ IV (ζ) = ∅. (10)

If y ∈ V is irreducible in V and y is a periodic point of f of minimal period
p, then 1 ≤ p ≤ n.

We now give a technical definition. This definition forms the base from
which an admisssible array can be constructed.

Definition 3.1 Let W be a lower semilattice in R
n, let g : W → W be

a lower semilattice homomorphism, and let ξ ∈ W be a periodic point of
g of minimal period p. Let V denote the lower semilattice generated by
{gj(ξ) : j ≥ 0} and f = g|V . A finite sequence (yi)m

i=1 ⊂ V is called a
complete sequence for ξ, if it satisfies:

(i) For i = 1, . . . ,m we have yi ≤ ξ.

(ii) For i = 1, . . . ,m the element yi is irreducible in V .

(iii) If pi denotes the minimal period of yi under f , then p = lcm({pi : 1 ≤
i ≤ m}).

(iv) For 1 ≤ i < m we have hV (yi) ≤ hV (yi+1), where hV (·) is the height
function given by equation (6).
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(v) For 1 ≤ i < j ≤ m, the sets {fk(yi) : k ≥ 0} and {fk(yj) : k ≥ 0} are
disjoint.

(vi) For 1 ≤ i < j ≤ m, the elements yi and yj are not comparable.

The following result says that every periodic point of a lower semilattice
homomorphism has a complete sequence (see [11, Proposition 1.1]).

Proposition 3.1 If W is a lower semilattice in Rn, g : W → W is a lower
semilattice homomorphism, and ξ ∈ W is a periodic point of g, then there
exists a complete sequence for ξ.

From a complete sequence one can now construct an admissible array.
Let W be a lower semilattice in Rn and let g : W → W be a lower semilattice
homomorphism. Suppose that ξ ∈ W is a periodic point of g of minimal
period p. Let V denote the lower semilattice generated by {gj(ξ) : j ≥ 0}
and put f = g|V . Now by Proposition 3.1 there exists a complete sequence
(yi)m

i=1 ⊂ V for ξ. It follows from property (ii) in Definition 3.1 and Lemma
3.1 that f j(yi) is irreducible in V for 1 ≤ i ≤ m and j ∈ Z. Therefore the
set IV (f j(yi)) (as defined in (8)) is nonempty for 1 ≤ i ≤ m and j ∈ Z.
Let pi denote the minimal period of yi under f . Select for i = 1, . . . ,m
and j = 0, . . . , pi − 1 an integer aij ∈ IV (f j(yi)). Furthermore, define for
i = 1, . . . ,m and general j ∈ Z the integer aij by

aij = aik, where 0 ≤ k < pi and j ≡ k mod pi.

The semi-infinite matrix (aij), where i = 1, . . . ,m and j ∈ Z, is called an
array of ξ. Now one can prove the following connection with the admissible
arrays on n symbols (see [11, Propostion 1.2]).

Proposition 3.2 Let W be a lower semilattice in R
n, g : W → W be a

lower semilattice homomorphism, and ξ ∈ W be a periodic point of g of
minimal period p. Let (aij), where i = 1, . . . , m and j ∈ Z, be an array
of ξ. Further, let L = {1, . . . ,m} be equipped with the usual ordering and
Σ = {1, 2, . . . , n}. If ϑ = (ϑi : Z→ Σ | i ∈ L) is defined by

ϑi(j) = aij for i ∈ L and j ∈ Z,

then ϑ is an admissible array on n symbols of period p.

A combination of Theorem 3.2, Proposition 3.1, and Proposition 3.2
yields the inclusion P ∗(n) ⊂ Q(n) for all n ∈ N. The other inclusion Q(n) ⊂
P ∗(n) is proved in [12].
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Now let us go back to the set R(n). From Corollary 3.1 it follows that
for every p ∈ R(n) there exist a 1-nonexpansive map f : K2n → K

2n,
with f(0) = 0, and a periodic point ξ ∈ K

2n of f of minimal period p.
Furthermore, f j(ξ) is in E2n for each 0 ≤ j < p, so that the lower semilattice
generated by {f j(ξ) : 0 ≤ j < p} is contained in E2n. This follows from the
fact that E2n is itself a lower semilattice. Therefore it makes sense (in the
light of the results in this section) to study the arrays of periodic points of
lower semilattice homomorphisms g : W → W with W ⊂ E

2n.

4 Proof of the main theorem

In this section we prove the main result: Theorem 2.1. The principal idea
is to show that the arrays of periodic points of lower semillatice homomor-
phisms g : W → W , with W ⊂ E

2n, give rise to strongly admissible arrays
on 2n symbols.

Proposition 4.1 Let W be a lower semilattice in E
2n, g : W → W be a

lower semilattice homomorphism, and ξ ∈ W be a periodic point of g of
minimal period p. Let (aij), where 1 ≤ i ≤ m and j ∈ Z, be an array
of ξ. Further, let L = {1, . . . ,m} be equipped with the usual ordering and
Σ = {1, . . . , 2n}. If ϑ = (ϑi : Z→ Σ | i ∈ L) is defined by

ϑi(j) = aij for i ∈ L and j ∈ Z,

then ϑ is a strongly admissible array on 2n symbols of period p.

Proof. Let W be a lower semilattice in E2n, g : W → W be a lower semilat-
tice homomorphism, and ξ ∈ W be a periodic point of g of minimal period p.
Furthermore, let V denote the lower semilattice generated by {gj(ξ) : j ≥ 0}
and f = g|V . Suppose that (aij), where 1 ≤ i ≤ m and j ∈ Z, is an array
of ξ. Let (yi)m

i=1 ⊂ V be a complete sequence for ξ that induces the array
(aij). For i = 1, . . . ,m let pi denote the minimal period of yi under f , so
p = lcm({pi : 1 ≤ i ≤ m}) by property (iii) in Definition 3.1. Further,
put Σ = {1, 2, . . . , 2n} and let L = {1, . . . ,m} be equipped with the usual
ordering. Assume that ϑ = (ϑi : Z→ Σ | i ∈ L) is defined by

ϑi(j) = aij for i ∈ L and j ∈ Z.

By construction we have that ϑi(j) = aij ∈ IV (f j(yi)) for i = 1, . . . , m and
j ∈ Z. Moreover it follows from Proposition 3.2 that ϑ is an admissible
array on 2n symbols. As ϑi has period pi for 1 ≤ i ≤ m and p = lcm({pi :
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1 ≤ i ≤ m}) the admissible array has period p. Therefore it suffices to show
that the maps ϑi with i ∈ L, satisfy the two properties in Definition 2.2.
For both properties we will give an argument by contradiction. Let us start
with the first one.

Suppose that there exist s, t ∈ Z and distinct m1,m2 ∈ L such that
ϑm1(s) = ϑm2(t)

+ and (t−s) ≡ 0 mod π, where π = gcd({pm1 , pm2}). As a
first step it is shown that there exists w ∈ Z such that ϑm1(w) = ϑm2(w)+.

From (t − s) ≡ 0 mod π it follows that there exists an integer q such
that (t − s) − qπ = 0. Furthermore, since π = gcd({pm1 , pm2}) there exist
k1, k2 ∈ Z such that k1pm1 + k2pm2 = π. Therefore we obtain that

(t− s)− q(k1pm1 + k2pm2) = 0. (11)

Now we put w = s + qk1pm1 . As ϑm1 and ϑm2 have period pm1 and pm2

respectively, we have that ϑm1(k) = ϑm1(k+pm1) and ϑm2(k) = ϑm2(k+pm2)
for all k ∈ Z. Therefore (11) gives ϑm1(w) = ϑm2(w)+.

To continue the proof remark that

ϑm1(w) ∈ IV (fw(ym1)) and ϑm2(w) ∈ IV (fw(ym2)). (12)

It follows from property (i) in Definition 3.1 that ym1 ≤ ξ and ym2 ≤ ξ. As
f is a lower semilattice homomorphism it is order preserving on V , so that

fw(ym1) ≤ fw(ξ) and fw(ym2) ≤ fw(ξ). (13)

Let x̄ = infV (V ). Since V is a subset of E2n it follows that x̄ ≥ 0. In
combination with (9), (12) and (13) this gives:

0 ≤ x̄ϑm1(w) < fw(ym1)ϑm1 (w) ≤ fw(ξ)ϑm1 (w) (14)

and

0 ≤ x̄ϑm2 (w) < fw(ym2)ϑm2(w) ≤ fw(ξ)ϑm2(w). (15)

The equality ϑm1(w) = ϑm2(w)+ together with (14) and (15) imply

fw(ξ)ϑm2 (w)+ · fw(ξ)ϑm2 (w) > 0.

This, however, contradicts the fact that f j(ξ) ∈ E2n for every j ∈ Z.
To show the second property, let m1 < m2 < . . . < mr+1 be an increasing

sequence of (r + 1) distinct elements in L such that

ϑmi(si) = ϑmi+1(ti) for 1 ≤ i ≤ r,

12



and assume that there exist u, v ∈ Z such that ϑm1(u) = ϑmr+1(v)+. Fur-
ther, suppose by way of contradiction that

r∑
i=1

(ti − si) ≡ (v − u) mod ρ, where ρ = gcd({pmi : i ∈ L}).

From elementary properties of the greatest common divisor it follows that

ρ =
r+1∑
i=1

Aipmi for certain integers A1, A2, . . . , Ar+1.

Therefore there exist integers B1, B2, . . . , Br+1 such that

r∑
i=1

(ti − si)−
r+1∑
i=1

Bipmi = v − u. (16)

Let ηi = fsi(ymi) and ζi = f ti(ymi+1) for all i = 1, . . . , r. Property (ii)
and (v) in Definition 3.1 imply that ηi, ζi are irreducible in V , and ηi 6= ζi

for 1 ≤ i ≤ r. As ϑmi(si) = ϑmi+1(ti), it follows that IV (ηi) and IV (ζi)
have a nonempty intersection. Therefore, we can conclude from Lemma 3.1
that ηi and ζi are comparable for 1 ≤ i ≤ r. Since mi < mi+1 we obtain by
property (iv) of Definition 3.1 that hV (ηi) ≤ hV (ζi), and hence ηi < ζi for
1 ≤ i ≤ r.

Using the fact that f j is order preserving on V for each j ∈ Z, and
fBipmi (ymi) = ymi now gives:

ymi < f (ti−si)−Bipmi (ymi+1). (17)

By repeatedly applying (17) and recalling that f j is order preserving on V
for each j ∈ Z we obtain:

ym1 < fν(ymr+1), where ν =
r∑

i=1

(ti − si)−
r∑

i=1

Bipmi . (18)

Let µ = −Br+1pmr+1 and remark that fµ(ymr+1) = ymr+1 . It then follows
from a combination of (16) and (18) that

ym1 < fν+µ(ymr+1) = fv−u(ymr+1),

and therefore

fu(ym1) < fv(ymr+1). (19)
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On the other hand, as ϑm1(u) ∈ IV (fu(ym1)) and ϑmr+1(v) ∈ IV (fv(ymr+1))
we can apply (9) and observe that

0 < fu(ym1)ϑm1 (u) and 0 < fv(ymr+1)ϑmr+1 (v). (20)

Since fv(ymr+1) is an element of E2n, the last inequality in (20) implies that

fv(ymr+1)ϑmr+1 (v)+ = 0. (21)

If we now use the assumption that ϑm1(u) = ϑmr+1(v)+, then it follows from
(20) and (21) that

0 = fv(ymr+1)ϑm1 (u) < fu(ym1)ϑm1 (u).

This contradicts inequality (19), and therefore the second property holds.
2

Using this proposition we can now prove Theorem 2.1.
Proof. [Proof of Theorem 2.1.] To prove the inclusion R(n) ⊂ T (n) for

all n ∈ N, we take p ∈ R(n). By Corollary 3.1 there exist a 1-nonexpansive
map f : K2n → K

2n, with f(0) = 0, and a periodic point ξ ∈ K
2n of f

of minimal period p. Moreover f j(ξ) ∈ E
2n for each 0 ≤ j < p. Let W

be the lower semilattice generated by {f j(ξ) : 0 ≤ j < p} and let g be
the restriction of f to W . As f j(ξ) is in E2n for each 0 ≤ j < p, and E2n

is a lower semilattice: W ⊂ E
2n. Further, by Theorem 3.2 the map g is a

lower semillatice homomorphism that maps W onto itself, and ξ is a periodic
point of g of minimal period p. Therefore we can apply Proposition 4.1 to
conclude that p is the period of a strongly admissible array on 2n symbols,
and this proves the inclusion R(n) ⊂ T (n). 2

Now that we know that the set T (n) is an upper estimate of the set R(n)
it is natural to ask how well T (n) approximates R(n). To get an idea one
can compute the set T (n) and then one can try to find for each p ∈ T (n) a 1-
nonexpansive map f : Rn → R

n, that has a periodic point of minimal period
p. As the definition of a strongly admissible array is rather complicated, it
is difficult to compute the set T (n). In the next section we discuss several
properties of strongly admissible arrays that will help us to determine T (n)
for small n.

5 Properties of strongly admissible arrays

We begin by introducing some notation. Let Σ = {1, . . . , 2n} and ϑ : Z→ Σ
be a map. Then we define R(ϑ) = {ϑ(s) : s ∈ Z}, and for every U ⊂ Σ we
write U+ = {u+ : u ∈ U} and U = U ∪ U+.

14



To facilitate the analysis of the set T (n) we shall write it in a different
way, and therefore the following concept is introduced.

Definition 5.1 Let S = {qi : i = 1, . . . , m} be a set of distinct integers
between 1 and 2n. The set S is called strongly array admissible for 2n, if
there exist a totally ordered set (L,<) of m elements, a strongly admissible
array ϑ = (ϑi : Z → Σ | i ∈ L) on 2n symbols, where ϑi has period say pi

for i ∈ L, and there exists a one-to-one map σ of {1, 2, . . . ,m} onto L such
that qi = pσ(i) for each 1 ≤ i ≤ m.

Furthermore, a set S ⊂ {1, 2, . . . , 2n} is called minimal strongly array ad-
missible for 2n, if S is strongly array admissible for 2n, and for each S′ ⊂ S
with S′ 6= S we have that lcm(S′) < lcm(S). Let (L, <) be a finite totally
ordered set and L′ be a subset of L with the ordering inherited from L. Now
observe that if ϑ = (ϑi : Z → Σ | i ∈ L) is a strongly admissible array on
2n symbols, then ϑ′ = (ϑi : Z → Σ | i ∈ L′) is also a strongly admissible
array on 2n symbols. The array ϑ′ is called a subarray of ϑ. By using this
observation it is not hard to verify that

T (n) = {lcm(S) : S is strongly array admissible for 2n}
= {lcm(S) : S is minimal strongly array admissible for 2n}.

Let us now prove the first property.

Lemma 5.1 Suppose that (ϑi : Z → Σ | i ∈ L) is a strongly admissible
array on 2n symbols, and let pi denote the period of ϑi for each i ∈ L. If
there exist distinct i, j ∈ L such that gcd({pi, pj}) = 1, then

R(ϑi) ∩R(ϑj) = ∅.

Proof. Let ϑ = (ϑi : Z→ {1, . . . , 2n} | i ∈ L) be a strongly admissible array
on 2n symbols and let pi denote the period of ϑi for each i ∈ L. Suppose
there exist distinct i, j ∈ L such that gcd({pi, pj}) = 1, and assume by way
of contradiction that

R(ϑi) ∩R(ϑj) 6= ∅. (22)

Then there exist s, t ∈ Z such that ϑi(s) = ϑj(t) or ϑi(s) = ϑj(t)+. Put
ρ = gcd({pi, pj}). As ρ = 1 we have that t − s ≡ 0 mod ρ. However, if
ϑi(s) = ϑj(t) this contradicts property (ii) in Definition 1.1. On the other
hand if ϑi(s) = ϑj(t)+, then it contradicts property (i) in Definition 2.2.
Therefore the intersection in (22) is empty. 2

This lemma has the following consequence.
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Corollary 5.1 If S ⊂ {1, 2, . . . , 2n} and there exist distinct p1, . . . , pk ∈ S
such that gcd({pi, pj}) = 1 for 1 ≤ i < j ≤ k and

k∑
i=1

2
⌈pi

2

⌉
> 2n,

then S is not strongly array admissible for 2n. Here dae denotes the smallest
integer k with a ≤ k.

Proof. Suppose to the contrary that S ⊂ {1, 2, . . . , 2n} is strongly array
admissible for 2n and let p1, . . . , pk ∈ S be such that gcd({pi, pj}) = 1 for
1 ≤ i < j ≤ k and

k∑
i=1

2
⌈pi

2

⌉
> 2n.

Hence there exists a strongly admissible array (ϑi : Z→ {1, . . . , 2n} | i ∈ L)
on 2n symbols such that after a possible renaming of the elements of L the
map ϑi has period pi for 1 ≤ i ≤ k. From Lemma 5.1 it follows that

2n <
k∑

i=1

2
⌈pi

2

⌉
≤

k∑
i=1

∣∣∣ R(ϑi)
∣∣∣ =

∣∣∣ k⋃
i=1

R(ϑi)
∣∣∣ ≤ 2n,

which is clearly a contradiction. 2

By using this corollary one can show that T (n) is strictly smaller that
Q(2n) for each n ≥ 4. Indeed, for each n ≥ 4 there exist integers n1, n2 ∈ N,
with n1 > 1 and n2 > 1, such that n1 +n2 = 2n and gcd({n1, n2}) = 1. If n
is even one can take n1 = n− 1 and n2 = n+1, and if n is odd one can take
n1 = n−2 and n2 = n+2. It is easy to see that lcm({n1, n2}) ∈ Q(2n), but
as n1 and n2 are both odd it follows from Corollary 5.1 that lcm({n1, n2})
is not in T (n).

Another property is the following.

Lemma 5.2 If S ⊂ {1, 2, . . . , 2n} and there exist distinct p1, p2 ∈ S with
p1 + p2 > 2n and gcd({p1, p2}) = 2, then S is not strongly array admissible
for 2n.

Proof. Suppose to the contrary that S ⊂ {1, 2, . . . , 2n} is strongly ar-
ray admissible for 2n, and assume that p1, p2 ∈ S distinct are such that
gcd({p1, p2}) = 2 and p1 + p2 > 2n. Let L = {1, 2} be equipped with the
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usual ordering. Then there exists a strongly admissible array (ϑi | i ∈ L) on
2n symbols such that ϑ1 and ϑ2 have period p1 and p2 respectively.

For each i ∈ L and k ∈ {1, . . . , n} let Rk(ϑi) = {m ∈ R(ϑi) : m =
k or m = k+}. As

n∑
k=1

|Rk(ϑ1)|+ |Rk(ϑ2)| = |R(ϑ1)|+ |R(ϑ2)| = p1 + p2 > 2n,

there exists k ∈ {1, . . . , n} such that |Rk(ϑ1)|+ |Rk(ϑ1)| ≥ 3. Therefore one
can find k′ ∈ {1, 2, . . . , 2n} and s, t, u ∈ Z such that

k′ = ϑ1(s) = ϑ1(t)+ = ϑ2(u) or k′ = ϑ2(s) = ϑ2(t)+ = ϑ1(u).

Suppose that we are in the first case. Since gcd({p1, p2}) = 2 property
(i) in Definition 2.2 yields that u − t 6≡ 0 mod 2. Likewise property (ii) in
Definition 1.1 yields that u− s 6≡ 0 mod 2. Hence u− t ≡ u− s ≡ 1 mod 2,
which contradicts property (ii) in Definition 2.2. Analogously one can derive
a contradiction in the second case. Thus, we conclude that S is not strongly
array admissible for 2n. 2

A similar result is the following.

Lemma 5.3 If S ⊂ {1, 2, . . . , 2n} and there exist distinct p1, p2 ∈ S with
p1 + p2 > 3n and gcd({p1, p2}) = 3, then S is not strongly array admissible
for 2n.

Proof. Suppose to the contrary that S ⊂ {1, 2, . . . , 2n} is strongly array
admissible for 2n, and assume that there are distinct p1, p2 ∈ S such that
gcd({p1, p2}) = 3 and p1 + p2 > 3n. Let L = {1, 2} be equipped with the
usual ordering. Then there exists a strongly admissible array (ϑi | i ∈ L) on
2n symbols such that ϑ1 and ϑ2 have period p1 and p2 respectively.

For each i ∈ L and k ∈ {1, . . . , n} let Rk(ϑi) = {m ∈ R(ϑi) : m =
k or m = k+}. As

n∑
k=1

|Rk(ϑ1)|+ |Rk(ϑ2)| = |R(ϑ1)|+ |R(ϑ2)| = p1 + p2 > 3n,

there exists k ∈ {1, . . . , n} such that |Rk(ϑ1)|+ |Rk(ϑ2)| = 4. This implies
that there exist s, t, v, w ∈ Z such that ϑ1(s) = ϑ1(t)+ = ϑ2(v) = ϑ2(w)+.

It follows from Property (ii) in Definition 1.1 that

v − s 6≡ 0 mod 3 and w − t 6≡ 0 mod 3. (23)
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Similarly, property (i) in Definition 2.2 yields that

w − s 6≡ 0 mod 3 and v − t 6≡ 0 mod 3. (24)

Moreover property (ii) in Definition 2.2 implies: v − s 6≡ w − s mod 3 and
w − t 6≡ w − s mod 3, so that (23) and (24) yield v − s ≡ w − t mod 3.

Now there are two cases, namely v − s ≡ 1 mod 3 and v − s ≡ 2 mod 3.
In the first case we have that v − t ≡ (v − s) − (w − s) + (w − t) ≡ 1 −
2 + 1 ≡ 0 mod 3, which contradicts (24). Likewise, v − s ≡ 2 mod 3 implies
v − t ≡ (v − s) − (w − s) + (w − t) ≡ 2 − 1 + 2 ≡ 0 mod 3, which again
contradicts (24). Thus S is not strongly array admissible for 2n. 2

More properties of this type can be found in [3, Section 3.5] by the
author. Let us now use the results from this section to make several remarks
concerning the optimality of the upper estimate T (n) for R(n).

6 Remarks concerning the optimality of the esti-
mate

A detailed analysis of how well T (n) approximates R(n) for 1 ≤ n ≤ 10
is given by the author in [3, Section 3.6]. In this section we will shortly
discuss the results from that work. It is not hard to see that R(1) = T (1) =
Q(2) = {1, 2} and that R(2) = T (2) = Q(4) = {1, 2, 3, 4} (cf. [3, Section
3.6]). However, if the dimension is 3 some more work is needed.

Theorem 6.1 R(3) = T (3) = {1, 2, 3, 4, 5, 6}.

Proof. It is shown in [3, Section 3.5] that {1, 2, 3, 4, 5, 6} ⊂ R(3). Further-
more one can find in [13] that Q(6) = {1, 2, 3, 4, 5, 6, 12}. As R(3) ⊂ T (3) ⊂
Q(6) it suffices to show that 12 is not in T (3).

Remark that there are only two candidate minimal strongly array admis-
sible sets for 6 that will give period 12, namely S1 = {3, 4} and S2 = {4, 6}.
The set S1 is not strongly array admissible for 6 by Corollary 5.1. Lemma
5.2 yields that S2 is not strongly array admissible for 6. Hence 12 /∈ T (3),
so that R(3) = T (3) = {1, 2, 3, 4, 5, 6}. 2

This proves the conjecture in [12, page 171]. Let us now discuss the case
n = 4.

Theorem 6.2 R(4) = T (4) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12}.
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Proof. In [13] we find Q(8) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 24}. Further-
more it is shown in [3, Section 3.5] that {1, 2, 3, 4, 5, 6, 7, 8, 10, 12} ⊂ R(4).
Since R(4) ⊂ T (4) ⊂ Q(8) it is sufficient to show that 15 and 24 are both
not in T (4).

To obtain period 15 there is precisely one candidate minimal strongly
array admissible set for 8, namely S = {3, 5}. It follows from Corollary 5.1
however, that S is not strongly array admissible for 8.

Now consider period 24. In this case there are two candidate sets,
namely S1 = {3, 8} and S2 = {6, 8}. The set S1 is not strongly ar-
ray admissible for 8 by Corollary 5.1. It follows from Lemma 5.2 that
S2 is not strongly array admissible for 8. Therefore we conclude that
R(4) = T (4) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 12}. 2

A similar analysis can be used for the dimensions 5 ≤ n ≤ 10. The
results are summarized in the following theorem. For a proof we refer the
reader to [3, Section 3.6].

Theorem 6.3 The following assertions are true:

(1) R(n) = T (n) for n = 1, 2, 3, 4, 6, 7, 10.

(2) T (5) \ {18} ⊂ R(5) ⊂ T (5).

(3) T (8) \ {90} ⊂ R(8) ⊂ T (8).

(4) T (9) \ {126} ⊂ R(9) ⊂ T (9).

For 1 ≤ n ≤ 10 a complete list of the elements of the set T (n) is given at the
end of the paper in Table 1. From Theorem 6.3 it follows that up to n = 10
the set R(n) is completely determined with the exception of three integers:
18, 90, and 126. Let us take a closer look at these integers.

To generate period 18 in T (5) there are two candidate minimal strongly
array admissible sets, namely S1 = {2, 9} and S2 = {6, 9}. By using Corol-
lary 5.1 we see that S2 is actually the only possible set. An example of a
strongly admissible array on 10 symbols (ϑi : Z → {1, . . . , 10} | i = 1, 2),
where ϑ1 and ϑ2 have period 9 and 6 respectively, can be given as follows. Let
L = {1, 2} be equipped with the usual ordering and let ϑ1 : Z→ {1, . . . , 10}
be defined by

s : 0 1 2 3 4 5 6 7 8
ϑ1(s) : 10 1 2 3 4 5 7 8 9
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and for general s ∈ Z let ϑ1(s) = ϑ1(s∗), where 0 ≤ s∗ < 9 and s ≡ s∗ mod 9.
The map ϑ2 : Z→ {1, . . . , 10} is defined as follows:

s : 0 1 2 3 4 5
ϑ2(s) : 1 2 3 4 5 6

and for general s ∈ Z we let ϑ2(s) = ϑ2(s∗), where 0 ≤ s∗ < 6 and s ≡
s∗ mod 6.

These observations have the following consequence. If there exists a
lower semilattice homomorphism f : V → V , with V ⊂ E

10, which has
a periodic point ξ of minimal period 18, then every complete sequence for
ξ contains two points that have minimal period 6 and 9 under f . For the
periods 90 and 126 one can also prove that they both have a unique minimal
strongly array admissible set namely: {5, 6, 9} and {6, 7, 9}, respectively.

7 Concluding remarks

In this paper we have introduced a set T (n), for n ∈ N, that is determined
by arithmetical and combinatorial constraints. As a main result we proved
in Theorem 2.1 that R(n) ⊂ T (n) for all n ∈ N. After a further analysis of
the set T (n) we were able to show that R(n) = T (n) for n = 1, 2, 3, 4, 6, 7,
and 10 (see Theorem 6.3). For all other n ∈ N however, it remains unknown
if the sets R(n) and T (n) are equal.

problem 7.1 Decide whether R(n) = T (n) for all n ∈ N.

To obtain the set R(n) up to n = 10 it suffices to know if 18 ∈ R(5),
90 ∈ R(8), and 126 ∈ R(9) (see Theorem 6.3). As 5 ∈ R(3) and 7 ∈ R(4)
we see that 18 ∈ R(5) implies 90 ∈ R(8) and 126 ∈ R(9). This gives some
extra motivation to decide whether or not 18 is in R(5).

A combination of Corollary 3.1 and Theorem 3.2 yields that for each
p ∈ R(n) there exist a lower semilattice V ⊂ E

2n and a lower semilattice
homomorphism g : V → V , which has a periodic point of minimal period p.
Therefore, if Q∗(E2n) denotes the set of possible minimal periods of periodic
points of lower semilattice homomorphisms g : V → V with V ⊂ E

2n, then
R(n) ⊂ Q∗(E2n). From Proposition 4.1 it follows that

R(n) ⊂ Q∗(E2n) ⊂ T (n) for all n ∈ N. (25)

A more philosophical problem would be to find out if one of the inclusions
in (25) can be replaced by an equality. In particular, it would be interesting
to know if 18 ∈ Q∗(E10).
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Table 1: The elements of T (n) for 1 ≤ n ≤ 10.
n Elements of T (n)
1 1, 2
2 1, 2, 3, 4
3 1, 2, 3, 4, 5, 6
4 1, 2, 3, 4, 5, 6, 7, 8, 10, 12
5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20
6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 20, 21, 24, 28, 30
7 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 21, 22, 24,

28, 30, 35, 36, 40, 42, 60
8 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22,

24, 26, 28, 30, 33, 35, 36, 40, 42, 44, 45, 48, 56, 60, 70, 84, 90
9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21,

22, 24, 26, 28, 30, 33, 35, 36, 39, 40, 42, 44, 45, 48, 52, 55, 56,
60, 63, 66, 70, 72, 84, 90, 105, 120, 126, 140

10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 39, 40, 42, 44, 45, 48, 52,
55, 56, 60, 63, 65, 66, 70, 72, 77, 78, 80, 84, 88, 90, 105, 110,
120, 126, 132, 140, 168, 180, 210
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