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Abstract

We consider two-queue polling models with a special feature that
a timer mechanism is employed at ()1: whenever the server polls @1
and finds it empty, it activates a timer and remains dormant, waiting
for the first arrival. If such an arrival occurs before the timer expires,
a busy period starts in accordance with ()1’s service discipline. How-
ever, if the timer is shorter than the interarrival time to @)1, the server
does not wait any more and switches back to Q5. We consider three
configurations: (i) @1 is controlled by the 1-limited protocol while Q-
is served exhaustively. (ii) @)1 employs the exhaustive regime while Q2
follows the 1-limited procedure. (iii) Both queues are served exhaus-
tively. In all cases, we assume Poisson arrivals and allow general service
and switchover time distributions. Our main results include the queue
length distributions at polling instants, the waiting time distributions
and the distribution of the total workload in the system.

KEYWORDS: TWO QUEUES, ALTERNATING SERVICE, POLLING, 1-LIMITED,
EXHAUSTIVE, TIMER, PATIENT SERVER.

1 Introduction

A single server attends two queues, denoted Q1 and @2, by alternating its

service among them. The service discipline in each queue is either 1-limited
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or exhaustive. However, regardless of its specific regime, ()1 exercises an
extra priority over (5 by virtue of a timer mechanism, operating as follows.
Whenever the server polls Q1 and finds it empty, it activates a timer and
remains dormant, waiting for the first arrival. If such an arrival occurs
before the timer expires, a busy period starts in accordance with (1’s service
discipline. However, if the timer is shorter than the interarrival time to @)1,
the server does not wait any more and switches back to Q. This 'wait
and see’ policy is common in human behaviour and is employed in many
real-life operations (road traffic intersections; a machine that can process
several classes of jobs, requiring change-over times between classes for tool
switching; etc.). In spite of its importance, it has been studied only recently
[9] in the context of a single queue with vacations. A variant of this 'wait
and see’ policy is studied in Pekéz [21], where during a visit to a queue
and after the queue becomes empty, the server always stays idle there for a
deterministic amount of time.

In this work we extend the analysis of [9] to two-queue polling mod-
els in which the server exercises the wait option in ()1. We consider three
configurations: (i) @7 is controlled by the 1-limited protocol while Q5 is
served exhaustively. (ii) Q1 employs the exhaustive regime while @, follows
the 1-limited procedure. (iii) Both queues are served exhaustively. In all
cases, we assume that customers arrive at the queues according to inde-
pendent Poisson processes, with service requests that are independent and
follow general distributions. We consider both zero and nonzero switchover
times; in the latter case, their distributions are general. Our main results
include the queue length distributions at polling instants, the waiting time
distributions and the distribution of the total workload in the system.

Let us briefly review the relevant literature; for extensive surveys on
polling systems the reader is referred to Takagi [24, 25] and Yechiali [27].

Two-queue alternating-service systems without timers have been treated by



many authors in the literature, under various assumptions on their operating
schemes. Avi-Itzhak, Maxwell and Miller [1] were the first to study such a
configuration, assuming the exhaustive service discipline in each queue and
zero switchover times. They derived the mean queue size and expected wait-
ing time, as well as the first two moments of the busy period, in each queue.
Takécs [23] studied the same model, obtaining Laplace-Stieltjes transforms
(LST) and probability generating functions (PGF) of key variables. Neuts
and Yadin [19] extended the analysis to transient behaviour of the system.
Eisenberg [11] investigated the same model but with nonzero change-over
times.

The two-queue polling model with exhaustive service at one queue and 1-
limited service at the other queue has been analysed in detail by Groenendijk
[15] and Ibe [17]. Ozawa [20] obtained the mean waiting times for the
extension from 1-limited to K-limited. The two-queue polling model with
1-limited service at both queues is intrinsically more difficult than those
with exhaustive service at both queues or those with exhaustive service at
one queue and 1-limited at the other. The joint queue length distribution
at both 1-limited queues can be obtained via a translation to a boundary
value problem (see e.g. Boxma and Groenendijk [6]), but extension of the
results to more than two queues seems out of reach.

Instead of timers, additional priorities can also be implemented using
thresholds. Threshold service disciplines, where ()1 is served exhaustively
while (5 is served only until either the work there is completed or the queue
size in the other (‘primary’) queue reaches a given threshold, were studied
by Lee [18], Boxma, Koole and Mitrani [7, 8] and Boxma and Down [4].
In [7] the service times are exponentially distributed and services at Q)5 are
preemptively interrupted when the threshold at @; is reached, while in [8]
the service process at ()2 is nonpreemptively interrupted when the threshold

at )1 is reached. [4] extends the analysis in [8] to the case where service



times are generally distributed, and treats both cases of zero and nonzero
switchover times. Exact expressions for the joint queue-length distributions
at customer departure epochs and for the steady-state queue length and
sojourn time distributions are derived. Lee [18] deals with a similar model
and gives light and heavy traffic analyses.

Eliazar and Yechiali [13] recently studied a communication multiplexer
problem, analyzing it as two alternating queues with dependent randomly-
timed gated regime [12]. The primary queue is served exhaustively, whereas
the duration of time the server resides in the secondary queue is determined
by the dynamic evolution in ;. They derived numerous performance mea-
sures, each expressed as a function of an undetermined PGF of the number
of messages at polling instants of ()2, and obtained explicit approximated
values for all performance measures that depend on the above PGF.

The paper is organized in the following way. Section 2 contains a detailed
model description. In Section 3 we study queue lengths and derive multi-
dimensional PGFs of the system’s state at polling instants, from which we
calculate the corresponding means. The case of exhaustive service at both
queues leads to a PGF that involves an infinite product; its convergence is
discussed in an appendix. In Section 4 we calculate the LST of the work-
load in the system, derive decomposition results and obtain expressions for
pseudoconservation laws, from which mean waiting times are determined.
Waiting time distributions are considered in Section 5. Various possible

extensions are mentioned in Section 6.

2 Model Description and Notation

We consider a polling system consisting of two queues }1 and Q2 with
infinite buffer capacity each, attended by a single server that alternates be-
tween the queues. Customers arrive at @);, ¢ = 1,2, according to a Poisson

process {A;(t), t > 0} with intensity A;, and require a service time B; with



distribution B;(+), mean f;, second moment ,BZ-(Z), and Laplace-Stieltjes trans-
form Bj;(-). Successive i.i.d. service times are denoted by By, k = 1,2, ...,
1 = 1,2. A similar notation is used for other random variables to be intro-
duced below. Let A = A; + Ay denote the total arrival rate, p; = A;3; the
traffic intensity at @;, and p = p; + p2 the total traffic intensity. By B(-)

we denote the service time distribution of an arbitrary (arriving) customer:

A1 Ao
B(t) = ———— By (¢t ——— Bs(t).
() A+ Ao 1()+>\1+>\2 2()

Customers at (); have some priority in the sense that on finding @)
empty the server waits there for a pre-specified duration of time 7' (which
may be random or constant and which we call a timer), hoping for an arrival
during that time. If the timer expires before an arrival occurs, the server
switches to Q2. We consider both zero and nonzero switchover times. In
the latter case, switching from @; to the other queue, ¢ = 1,2, takes a
random duration D; with distribution D;(-), mean d; and LST D;(-); d =
dy + dy. We deal with several service disciplines at the two queues, namely,
the exhaustive, 1-limited and gated regimes. In the exhaustive regime, the
server keeps serving a queue until it is empty, i.e., if at the beginning of
service at (2; the number of jobs is X > 0, the server stays there X regular
busy periods of an M/G/1 queue having Poisson arrival rate A; and service
requirements B;. For the 1-limited policy, at most one customer is served,
whereas in the gated discipline exactly those customers are served which are
present upon the server’s polling instant of the queue.

In this paper we restrict ourselves to the stationary situation. The sta-
bility condition depends on the chosen service disciplines. We will discuss
them at the appropriate places, and refer to Borovkov [2] and Fricker and
Jaibi [14] for extensive discussions of stability conditions in polling systems.

Let Xij be the number of customers at @; when Q; is polled (i.e., is
visited by the server), with joint probability generating function Fj(z1, 2z3) =
IEJ[zf(’1 zg(?] Let I A; be the interarrival time at @1, M; = min{IA;,T} with



LST M;(-) and mean EM; = a1/)\;, where a; = P(IA; <T) =1-T(\1),
where T'(-) denotes the LST of T'. Moreover,

[zfl(Bi)z;z»(Bi)] = Bi(M(1—21) + (1 — 22));
[24P9229) = D (1= 22) 4+ M1 = 22)

filz) = 0:(Nj(1=2)), i,j=1,2,i#j,2>0,

where éz() is the LST of a generic busy period 6; at @Q;, i = 1,2, with mean
E0; = B3;/(1 — p;) and E(6?) = ﬁi@)/(l — pi)3. Tt should be noted that fi(z)
is the PGF of the number of arrivals at Qs during one generic busy period

at ()1, while fo(z) has a similar probabilistic interpretation:
fi(z) = B0V, fo(z) = B[N O], (1)

Finally, define the cycle time C as the time between two successive
polling instants by the server of J1. By an easy balance argument, the

mean cycle time is

EC = (d + EMP(X]{ =0))/(1 —p). (2)

3 Queue Lengths

In this section we construct the evolution equations for the queue lengths
at polling instants for various combinations of service disciplines at the two
queues. We consider the following combinations: (i) Q) follows the 1-limited
rule while @2 is controlled by the exhaustive regime. (ii) @) is served ex-
haustively while Q2 employs the 1-limited policy. (iii) Both queues operate
under the exhaustive regime. Recall that the timer is initiated only if @), is
empty at a polling instant. Based on the evolution equations we derive the

PGF’s of the queue lengths for each combination.



3.1 (@: 1-limited; ()>: exhaustive

In this model, though customers at (); have some priority reflected by the
timer at ()1, there is a certain trade-off for this preference by serving at most
one customer during the course of a server’s visit to Q1.

The stability condition in this case must be the same as in the 1-
limited /exhaustive polling model without a timer [15, 17], namely p+A1d <
1. We refrain from a proof (for proof techniques, see [2, 14]). An intuitive
argument is the following. Since (); can serve at most one customer per cy-
cle, the bottleneck is at ()1, and the stability condition is \{IEC < 1, where
IEC is given by (2). However, given that 1 is in heavy traffic, the server
never finds ()1 empty, and thus we get indeed p + \1d < 1.

The evolution equations for the queue lengths at polling instants are

given by
X3
X! = X3+ 413 0) + Au(D2),
k=1
*Xl2 = AZ(DQ)a

X! — X{— 1+ A1(By) + A1(Dy), if X{ >0,
2 AL (B)I(TA; <T)+ A(Dy), if X{ =0,

X? + Ay(By) + Az(Dy), if X! >0,
X2 4+ Ag(My) + Ay(B)I(IA; <T) + Ax(Dy), if X{ =0,
(4)
)

where T(A

I(IA; <T) are dependent. From this we obtain the generating functions

is the indicator function of the event A. Note that M; and
X! x?
Fi(z1,29) = ]E[z1 2 ]

X
[ X24+A1(0 2, 021)1(X2>0)+ A1 (Do)
1

=E|z 2(D2)}

A
2
Dy ) (B[N ER B gxz s ] + B[ 103 = 0)])

= DZ(Zl,ZQ)([FQ(ZI,éQ(}\l(]_ — Zl))) — FQ(Zl,O)] + FQ(Zl,O))
= Dy(21,22) Fa(21, f2(21)) , (3)



and

X! x2
Fy(z1,29) = ]E[z1 2 29 2}
_ ]E[ (X —14+A1(B1))I(X[>0)+A1(B1)I(I A1 <T)I(X|=0)+A1(D1)

y ZX12+A2(Bl)I(X11 >0)+(A2(M1)+A2(B1)I(T Ay gT))I(Xll:U)+A2(D1)]
2

1 X! x2
= DI(ZI,ZQ)(Bl(Zl,ZQ) o ]E[zl Lzg! ]I(X11 > 0)]
4R [zfll(Bl)I(IAlgT) Z§%+A2(M1)+A2(BI)I(IA1ST) (X} = 0)])
Fy(z1, 20) — F1(0, 22)

21

= Dl(zl,ZQ) (Bl(zl,ZQ) + FI(OaZQ) T(zlv'z?)) ) (4)

where
(21, 22) = ]E[ZlAl(Bl)I(IAlST)Zé‘lz(Ml)-FAz(Bl)I(IAlST)]

is a known function that can be specified explicitly for given distributions
of By and T'. With
c1 = F5(0,02(\)) (5)
we have from (3)
F1(0,22) = ¢1 D9(0, z2) , (6)
and thus substituting (3) into (4) yields

Dy (21, 22) Da(z1, 22) Bi(z1, 22)
al

1 Do(0, 22) D (21, 22) (r(e1, 2) — %11@)) (7)

Fy(z1, 22) = Fa(z1, f2(21))

(6) can be easily interpreted. @1 is empty at its polling instant, and there
were no arrivals afterwards. @, was left empty (exhaustive service), so the
only customers present at ()2 are those who arrived during the switchover

time. Putting 29 = fo(21) in (7) and solving for Fy(z1, fo(21)) gives

Fy(z1, f2(21)) =

01D2(07fz(zl))Dl(Zhf2(z1))(217“(21,f2(z1)) - Bl(z17f2(21)))

- 21 — D1 (21, fa(21))Da(21, fo(21))Bi(21, f2(21)) -8

8



Therefore, by plugging (8) into (3) and (7), respectively, we finally get

Fy(z1, 22) = c1D1 (21, fa(z1))D2(21, 22) D2 (0, f2(21))

% 217'(21,f2(21)) _Bl(zlaf2(zl)) (9)
z1 — D1(21, fa(21)) D2(21, f2(21)) B1(21, fa(21))

and

Fy(z1,22) =
01D2(0afz(zl))Dl(Zl,f2(21))(217“(21,f2(21)) - Bl(zlafz(zl)))

z1 — D1(z1, fa(21)) D2(21, f2(21)) B1(21, f2(21))
o Dy (21, z2) Do (21, 22) B1(21, 22)
21

By (2, 2’2))

+c1D5(0, 22) D1 (21, 22) (T(zlaz2) - “

(10)

and it remains to determine the constant c¢;. To this end we put z;1 = 29 =1

in (9) to obtain

1= F(1,1)

: z17(21, f2(21)) — Bi(21, f2(21))
= D20 1) A% z1 — Di(21, f2(21)) Da(21, f2(21)) Bi(21, f2(21))
1+ A (AEOIEM; — (1 —a1)(MoTEO, + 1)51)
1— )\1()\2E02 + 1)(d1 +dy + ﬁl)
L—p+MpBM +aipr ¢ Da(M) 1 —p+ A\ plEM,;
1—p—>\1d ].—p—)qd ’

= ¢1Dy(\)

= ¢1Dy(\)

where we employed I’Hospital’s rule for the lim operation, used

dilei (zhf?(zl)) Ll:l = Adi/(1 = p2),
diZlBl (zl,fQ(zl))Ll:l = M B/ (1= py)

and a; = \{IEM;. Finally,
1—p—Xid
Dy(\1) (1 —p+ )\IPEMI)

(11)

Ccl1 =



Remark 3.1 Notice that ¢; > 0 since the stability condition p + Ad < 1
holds. A more direct approach to determine ci, which exploits the 1-limited
protocol at Q1, is the following. Since in steady-state the mean number of
arrivals per cycle at one of the queues equals the mean number of services

there, we have

MIEC = E[number of services at Q1 per cycle]
= 0 - IP(noservice) + 1 - P(thereis aservice)

=P(X] >0)+P(X{ =0,TA, <T)=1-P(X{ =0)(1 —ay) .

Now, by substituting the value of IEC from (2) in the left-hand-side of the
above, solving for P(X{ = 0), using (6) with 2 = 1, and recalling that
D5(0,1) = Do(\y), we get (11). Notice also that F1(0,1) = P(X} = 0) and
thus

1—p—d
P(X} =0) = Pl
1= p+ MpEM,;

(12)

Now, the PGF’s of X} and X2 (i = 1,2) are given by, respectively,
X! X?
Efz ] = Fi(=1,1) , B[5 ] = Fi(1,2),
from which, by differentiation, we obtain after a lengthy calculation

d
quﬂ:azﬂuhn
M(d+EM(1—Mid) B+ a6

L—p+MpEM;  2(1—p2)(1—p—Aid)

A ﬁ B P2 Djy(\) B
+u—pga—p—xﬂ)<2 +5”> AHf4n<EﬂM) &

z1=1

_)\1p(d+]EM1(1 —)qd)) )\1,0]EM1
1 —p+ \MpEM; 1 —p+ MpEM;
Atppa EMY Ai(d + pEM,)

+ )
2(1 —p2)(1 —p+ AipIEM;) 1 —p+ \pEM,;

10



and
(d+IEM; (1 — \id))(1 — p2)

1L —p+ MpIEM,;

where the latter one is also easily obtained directly from the evolution equa-

E[Xg] =X (14)
tions or by the following argument: due to exhaustive service at Qo, X2

is the number of arrivals to ()2 during the total switchover time and the

server’s stay at 1. Thus,
E[X3] = X (d+AP(X] > 0) + (BM, + a1 8)P(X] =0)),

which coincides with (14), after substituting the expression for P(X{ = 0)
given in(12).

To obtain (13), we have used that EM; — [(°te M!dP(T < t) =
MIEM?2 /2, which follows from

oo
EM, = / e MUP(T > t)dt
0

and
[oe]
EM? = / 266 MUP(T > t)dt .
0

Remark 3.2 The case of zero switchover times causes no difficulty as it
does in some other polling models. This is due to the presence of the timer.
Thus, for zero switchover times all expressions above simplify by setting

D;(-) =1 and d; = 0. In particular,

_ 1—-p
 1—p+ MpEM;’

c1 = F(0,1) =P(X] =0)

Note that in this case X? = 0 due to exhaustive service at Qo and therefore

Fi(z1,29) is constant in z,.

3.2 (;: exhaustive; (0»: 1-limited

We now consider the case of exhaustive service at Q1 and 1-limited service

at Q2. As before, the timer is at Q1. That is, Q1 gets an extra priority over

11



Q2 by exercising the timer procedure when () is empty, in addition to its
being served exhaustively.

Since (Y2 can serve at most one customer per cycle, the stability condition
in this case is M JEC < 1, where IEC is given by (2). When @5 is in heavy
traffic, i.e., there is one service at Q2 in each cycle, then the term P(X{ =
0) in (2) becomes D;(A;)Da(A;)B2(A1). Indeed, Q; is left behind empty
because of the exhaustive service discipline, and Dy (X;)Da(A;)Ba();) is the
probability that there is no arrival at ()1 in the subsequent switchovers and
servcie at Q2. Then the stability condition A2IEC < 1 reduces to p + Aod +
M IEM;Di (A1) Da(A)Ba(A) < 1.

The evolution equations of the queue lengths at polling instants for this

model are given by

x1 _ § X5+ Ai(B2) + Ai(Dy) , if X5 >0,
L7 X5+ A(Ds) if X2 =0,
x2 _ § X5 =14 Ag(By) + Ap(Dy) , if X3 >0,
L] 42(D2) if X3 =0,
X21 = Al(Dl)a
2 Xi oyl
X2 = {X1 t+ As (S 01k ) + Aa(Dr) if X} >0,
XP + Az(My) + A2(01)I(TA; < T) + Az(Dy) , if X{ = 0.
From this we obtain the generating functions
Fy(z1,22) = D1(21, 22) [F1 (fl(ZZ),Z2) + F1(0, z2) (h(22) — 1)] ; (15)
where

h(ZQ) = IE[ZSZ(M1)+A2(91)I(IA1§T):| ’

and

F z ,Z —F 2 ,0
Fi(z1,22) :D2(Z1,Z2)[B2(21,z2) 2(21 2)z2 2(21,0)

Note that h(-) cannot be factorized since M; and I(IA; < T) are dependent.
Substituting (15) into (16) yields

+ Fy(1,0)] . (16)

D1 (z1, 22)D2(21,22)Ba(21, 22)
2z

Fi(z1,22) = Fi(f1(22), 22)

12



D (21, 22)Da(21, 22) Ba(21, 22)

+ F1 (0, Zg)(h(Zg) — ].)

z2
+02D1(21,0)D2(2’1,2’2)(1 — %12’22)) , (17)
where
e = F1(01(X2),0) + F1(0,0)(h(0) — 1)
and

h(0) = P(A2(M1) + A2(61)1(1A, <T) =0).

Put z; = fi1(#2) in (17) and solve for F(f1(z2), z2) to get

B Dy(f1(22), 22)
Fi(fi(22),22) = 29 — D1(f1(22), 22) Do (f1(22), 22) Ba(f1(22), 22) *

< {F1(0,22) (1(22) — 1) D1 (f1(22), 22) Ba(f1(22), 22)
+esD1(f1(22), 0) (22 — Ba(fi(22), 22)) | - (18)

We use the following shorthand notation, for z = 1, 2:

D; = Di(z1,29);
D; = Di(fi(22),22);
By = By(21,2);
By = Ba(fi(22), 22)

Plugging (18) into (17) then yields
F1(0,29)(h(z2) = 1) o o o A A
Fi(z1,22) = 2 — DiD5BS D1 DyBy + coD1(21,0)D2(1 — By/22)
N caD1(f1(22),0)D3(1 — B3 /22)
29 — DI D3B3

Setting z; = 0 in (19) gives, for z9 # 0,

DyDsBs . (19)

C2
2 — DiD3B; — (h(z2) — 1)Di* Dy By'

X {D1(0,0)D§*(1 — By"/22)(22 — D1 D3 By)

FI(OaZQ) =

+ Di(f1(20),0)D3(1 — B3/2)Di* Dy* B' }, (20)

13



where D = D;(0,22), ¢ = 1,2, and B3* = By(0,22). Now, (19) gives
Fi(z1,22), while Fy(z1,29) follows from (15) and (18). Further, from (15)
we get cg = F5(21,0)/D1(21,0). In order to determine this constant we put
z1 =z = 1 in (19). Since D;(1,1) = B2(1,1) =1, i = 1,2, we thus get
1=F(1,1) = hm Fi(1,29)
2o—1
L ) h(z) —1
= 2121311 F1(0, z2) zlzlgnl DD DID3 B}
D3 . z9 — B;

im —2 s s R

Remember that fi(1) = 1. According to (20),

hm F1(0 2,’2) = CQDI()\)DQ()\l)

29—1
i — DiD;B; . 2y — B3*
% zhgl — D*D*B h _ sk YRk Tk lim ———
27 22 1D3Bs — (h(z2) — 1)D*D3*B3* 22—1 29
~ . 29 — BX)D1 (A1) D2(A) Bo(\
+ coD1(\g) lim (DQ*D*BZ’Z 1(A1) D2 (A1) f*( 1*)* .
z2—1 29 — 1Yo DBy — (h(ZQ) — I)Dl l)2 B2

Thus, by using 'Hospital’s rule,

F1(0,1)
— CZ-DI(A)[)Q(AI) (1 - >‘2(>‘1E01 + 1)(d + BZ))(]' - B2(>‘1))
1= (ME6 +1)(d+ /32) hN( )D1 (A1) D2(A1) B2 (A1)
+ CQDl()\Q) (1 - >‘2(>‘1E01 + ]-)/82) (>‘ )~D (>‘1)~-BQ(>‘1)~ (22)
1 —X(MIEf; 4+ 1)(d + B2) — A/(1) ()q)Dg()\l)Bg()\l)
— oD Di(N)(1 = p—dod)(1 = By(M)) + Di(M)D1(A2) Ba(M)(1 — p)
= C2 2()\1) .
1-— p— )\2d - )\gEMl 1()\1)D2(>\1)B2(>\1)
Further,
lim h(ZQ) —1 o )\Q(EMl + a1]E91) o Mo IEM; (23)
w29 — DID5Bs 1= X(MEfO +1)(d+B) 1—p—Aod
and
lim 29 — B; 1— )\2(}\1E01 + l)ﬁg . 1—p (24)

231 25 — DIDEBE 1= Ma(MEO + )(d+ B2)  1—p—dod’

14



Thus, we finally get from (21), (22), (23) and (24):

_ 1= p—ad = EMDi(\)Ds(M)Ba (M)
AEM Dy (A)Da(M)(1 — Ba(A1)) + (1 — p)Di(A2)

C2 (25)

Remark 3.3 Notice that co > 0 since the stability condition IEC < 1
holds. Again, exploiting the 1-limited service yields a more direct approach

to determine ca. We have

MIEC = E[number of services at Qg per cycle]
= 1-IP(thereisaservice) = IP(X2 > 0) .

Now, substituting (2) and using (15) with z1 =1, zo = 0, and (22) to express
P(X2? = 0) and P(X] = 0) in terms of c2, respectively, yields (25).

Fi(z1,29) is determined by substituting the value of co into (19) and
(20) and then substituting (20) into (19). F5(z1,22) is then determined
from (15), (18) and (20). Queue length moments can now be obtained in a

similar manner as in Subsection 3.1.

Remark 3.4 As before, for zero switchover times all expressions simplify

by setting D;(-) =1 and d; = 0. In particular,

1-— P — )\2EM1B2(>\1)

co=P(X2=0)= E :
1-— P — AQ]EMI(BQ(}\l) - 1)

3.3 Exhaustive regime in both queues

In this section both @)1 and ()2 are assumed to be served exhaustively and,
as before, the timer is at Q1. It is easily seen that the stability condition now
is p1 + p2 < 1. For the system under consideration the evolution equations

of the queue lengths at polling instants are given by
Xy = Ai(D1), X7 =As(Dy),
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X7
X! = X3+ 413 0u) + Ar(D2)
k=1

1
X2 {X% + 45 (S 01e) + Ao(D1), X! 0,
X2+ Ay(My) + As(0))T(TA; < T) + As(Dy), XL =0.

From this we obtain the generating functions
Fi(z1,22) = Da(21,22) Fo (2’1, f2(21)) , (26)
and
Fy(21,2) = D1 (21,20) [Fi (1(22),22) = F1(0, 22) + Fi (0, 20) h(22) |, (27)
where, as before,
h(z) = ]E[z;lQ(Ml)JrAz(Ql)I(IAlgT)] ‘

With the notation

k(ZQ) = h(ZQ) —1 )
9(22) = O2(M (1= fi(=))) = Folfi(22)) , (28)

substituting (26) into (27) yields

Fy(21,22) = Di(21,22) Da(f1(22), 22) F2 (f1(z2),g(zQ))
+D1(Z1, Z2) DQ(O, 22) F2 (0, ég()\l)) k(ZQ) .

With

D(z1,22) = Di(21, 22) D2(f1(22), 22) ,
E(ZI,ZQ) = DI(ZI,ZQ) DQ(O,ZQ) k‘(ZQ) ,

and
C3 = F2 (0, éQ(}\l)) 5 (29)
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we get by iteration

Fy(z1,22) = D(z1,29) B (fa(22),9(22)) + €3 B(z1, 2)
= D(21,2%) D(fi(22),9(22)) Fo(f1(9(22)), 9(9(22)))
+c3 D(z17z2)E(f1(Z2)ag(z2)) + c3 E(21,22) ,

and, after K steps,

Fy(z1, 22)

K-1
= D(z1,2) I D(fi(9™ (22)), %D (22)) Bo(f1(9"(20), 9"V (22))
k=0

K-1 k—1

+¢3 D(z1,22) Y B(fi(9™ (22)), 9% (22)) TT D(fi(9(22)), 9V (20))

k=0 7=0
+c3 E(Zl, 2’2) ,

where
9= =z, ¢M(2) =g(¢" V(2), k>1.
Letting K — oo (for convergence of the infinite product and sum see the
Appendix) gives
Fy(z1, 22)
o0

= D(z1,22) [T D(f1(g™ (22)), 9% (22)) x Fo(f1(9°9(22)), 9 (22) )

k=0

+ 3 D(21,22) i E(f1(g™ (22)), 9% (22)) TI D(f1(9Y)(22)), 9V (22))

k=0 7=0
+ C3 E(Zl, 22) . (30)

By definition

and thus



which is solved by ¢(>) = 1. Since 0, ()q(l - fl(:zs))) is a convex function of

x with

= \Ef - \IEO, = )\, B2 g 2l

<1
1 —po 1—p1

8%62 (M= fi(2))

=1
under the stability condition p; + p3 < 1, there is no other solution. There-
fore, with F5(1,1) = 1, (30) reduces to

File1,2) = D(e1o2) L D(f1(g™® (22)), 6% 22))

k=0
00 k—1
+ es D(z1,20) 3 B (fi(g®(22)), 6% (20)) TT D(f1(97(22)), 91 (20))
k=0 j=0
+ ¢3 BE(21,22) (31)

and it remains to determine the constant c3. To this end we put z; = 0 and

25 = 03(\1) in (31) (cf. (29)) and solve for ¢3. This yields

s = D(0,2) T[ D(f1(e™ (2)),6% () x [1 - B(0,2) - D(0,2)
k=0

oo

k—1
x 3 B(fi(g™(2)), 6% () TT D(1(99(2)), 9+ (2))]
j=0

-1

' z2=02(\1)

4 Total Workload and a Pseudoconservation Law

We now investigate the total workload in the system. We show that the
amount of work in the system can be decomposed into the amount of work in
the ’corresponding’ M /G /1 model (the model without timer and switchover
times) and the amount of work in the system at an arbitrary epoch in a non-
serving interval, i.e. in a timer period or a switchover period. The fact that
the total workload can also be expressed in terms of mean waiting times then
allows us to obtain a pseudoconservation law for the mean waiting times,

i.e., an exact expression for a particular weighted sum of the mean waiting
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times at Q1 and ()9. It should be noted that the results obtained in this

section hold for general service disciplines and a timer at Q.

Zero switchover times

We first consider the case of zero switchover times but a nonzero timer.
Then, whenever the system is empty, the server stays at (; waiting. Indeed,
if there are no arrivals, neither to ()1 nor to )9, while the timer at () is
active, then, after expiration of the timer, the server switches to Q2 and
immediately back to (J1, where a new timer starts.

In order to derive the LST ¢(s) = [;° e *¥dV (y) of the (total) workload
distribution V'(-) with density v(-) we use the argument that in steady state
the probability for downcrossing a level z is the same as that for upcrossing
it. In our model a downcrossing is only possible if the timer is off. Denoting

vo(x) = %]P(V < z,timeron), we get

xT
o(@) = vo(z) = A [ (1= Bla—y)avV(). (32)
Multiplying both sides of (32) by e ¥ and integrating over the positive
real line yields, by taking into account that V(0) = P(V = 0) = P(V =
0, timer on),
o(s) — E[e*SV]I(timer on)]
o x
= [T [T (1= Bl —)dVi) do = pAuls) ols).
where (.(s) is the LST of the residual service time distribution B.(z) =

Jo (1= B(y))dy/B with 8 = (A1 + A2f2)/A. Thus,

o(s) = %5’:(8) ]E[e_sv| timer on] , (33)

since, with zero switchover times, IP(timeron) = 1 — p. From (33) we im-

mediately get the following work decomposition:
d
V= VM/G/I + V|timeron ) (34)
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where Vjr/q/1 denotes a random variable having the stationary distribu-
tion of the workload in an M/G/1 queue with arrival rate A and service
time distribution B(-) having LST (1 — p)/(1 — pfe(s)), see Cohen [10], and
V|timeron 18 @ random variable, independent of Ve having the station-
ary distribution of the workload in our model given that the timer at @1 is
active.

When the timer starts, )1 is empty whereas in Q)2 the workload consists
of the unfinished work left behind when the server leaves this queue. More-
over, while the timer is active there are apparently only arrivals to Q2. When
the timer is on, as soon as there is an arrival at (1 or the timer expires,
whichever occurs first, the timer is switched off. Since {V'|timeron(t), ¢ > 0}

(1)

is a regenerative process, we get for its LST, with M’ denoting the amount

of unfinished work left by the server at Q;,

M
]E(efsV\timeron) — ]E;'M ]E/ ! e*SV‘timeron(t)dt
1

(1) A2(t)
= E [ (M > t)e S0 +2020 Bawlqy
JEM1 ;1> e

_ M( )
_ E?ES 2 /OOIP(MI > t)e—/\2(1*52(5))t dt

su{ 1 — M (A2(1 — Ba(s)))

= Be EM A (1 — £2(s))

(35)

From (34) and (35) we get

RPN (1), p2EM?
EV = EVM/G/I + EV|timeron = 2Z(1 — ,03 + EM 2EM1 .
In the special case of a timer that is exponentially distributed with parameter
¢, we get
_ops D
]E(efsv‘timeron) — ]Ee SMZ (5 + A1)
&+ A1+ A2(1 — Ba(s))

and

72 282

(1) P2
+EMs" +
2(1-p) 2

EV = —_—.
£+ M\
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Also, for any service regime

2 2 )
EV = Z B; E[number of customers waiting at Q;] + Z Di glﬁ
i=1 i=1 i
2 2 5(2)
=Y pEW; + > X Z2 , (36)
i=1 i=1

where the last equality follows from Little’s law and W; denotes the sta-
tionary waiting time at ;. Therefore, for zero switchover times we get the

following pseudoconservation law:

2
S i = 0 Zia 8
i=1 1=p 2

po EM
2EM,

+ EMY +

Nonzero switchover times

We now turn to the case of nonzero switchover times, in which the (total)
workload is not decreasing both when the timer is active as well as when the

server is switching. Therefore, with v,(z) = %]P(V < z, server switches),

(@) = vo(a) —vsla) =X [ (1= Blo =)V (y).

Analogous to the case of zero switchover times we get
o(s) =V (0) — []E(e*SV]I(timer on)) — IP(V = 0, timer on)]
~[B(e*V W(switeh)) — P(V = 0, switch)| = pBe(s)p(s) -

Since V(0) = IP(V = 0, timer on) + IP(V = 0, switch), we have
(s) = E(e *V I(timeron)) + E(e~*Y I (switch))
7 1= pPB.(5)
L—p —sV s
= —————{IE(e " |timer on
1 = pfe(s) { . )

+IE(e*Y |switch)

IP(timer on)

IP(timer on or switch)
IP(switch) }
IP(timer on or switch)

1—p

= m{qE(e—svmmer on) + (1 — Q)]E(e_sv|switch)} ’
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where ¢ = IP(timeron)/IP(timeronorswitch). Thus, the following work
decomposition holds:

d
V=Vwen+Y,

with Vis/q/1 and Y independent and Y is specified by P(Y = Vtimeron) =
g =1-—PY = Vl]switen)- We now compute IE(V|imeron) and IE(V |switch)-
When the timer starts, (J1 is empty. Now, other than before, in Q)2 the
workload consists of the unfinished work MQ(I) left behind when the server
leaves this queue as well as the work that has arrived during the switchover
from @2 to Q1. Note that this is not an ordinary switchover time Do, but
has to be conditioned on the event that there are no arrivals to }; during
this period. Therefore,
Jo© pate™ ' dDy(t) | pyEMY

JoT e MtdDo (1) 2IEM,

_ mul) - p2Dy(M\1) | oMY ,
DQ()\l) 2IEJ]Ml

E(V |timeron) = EMY +

(37)

where Dy(\;) = %[)2(3)‘8:)‘1. The first two terms on the right hand side
of (37) represent the workload at the instant when the timer starts, which
consists of the unfinished work left behind at ()2 and of the arriving work to
Q2 during the switchover Dy, given that there are no arrivals to )1 during
that time. The third term arises since work increases at (Js at rate ps. We
now compute E(V|switeh) = (11EWV|p,) + p2IE(Vp,))/P(switch), where
p; = d;i/IEC is the probability that the server is switching from @; to the
other queue, i = 1,2, and V|p, denotes the workload at an arbitrary epoch
in such a switchover. At the beginning of the switchover period from ) to
(22, the total workload consists of the work left at ()1, if there is any left, the
work at Q2 that has been left there on the server’s departure from @2, the
work that has arrived to Q2 during the switchover time Dy from Q3 to Qq,

and the work that has arrived to Q)2 during the server’s stay at ()1, where
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the mean of this stay is given by p;IEC + IEM;IP(X{ = 0). Thus,

E(V|p,) = EMY + EMY + pydy

d+EMP(X{ =0) 1 pIED?
EMP(X; =0 .
+p201 1=, + p2 EM P (X )+2]ED1
Similarly,
E(V|p,) = EMY + EMY + p1d
(Vip,) 1t 2 T pid1
d+TEMP(X=0 ED?
+p1p2 1P ( 1 ) P 2
1— P 2ED2
With

_ EMP(X}=0)
1= AT EMP(X] = 0)
and (1 — ¢)/IP(switch) = 1/IP(timer on or switch) = 1/(1 — p) we finally get

EV = ]EVM/G/l + qEV [timeron + (1 — @) BV [switch

_ X oS n EM;P(X{ = 0) (]EM(I) ~ paDh(\) PZEM12)
2(1 — p) d+TEMP(X} =0) 2 Ds(\) 2IEM,

d o 0 pd?
EM" + EM.
+d+]EM1]P(X11 :0)( e )+ 2(d + EMP(X{ = 0))
EMP(X] =0) d 5, &,
dipy + =0 38
J+EM P =0) 72 T 3= 2 il (38)

For T' = 0, i.e., when the server does not wait for an arrival at ()1, the above
result coincides with the well-known result, see e.g. [5]. Combining (38) and

(36) we obtain the following result.

Theorem 4.1 (Pseudoconservation Law) In the 2-queue polling system un-

der consideration with nonzero switchover times and with a timer at QQq,

2 2 (2)
il
i=1 L=pim 2
EMP(X] =0) (]EM(I) _ p2D5 (M) P21EM12)

d+EMP(X} =0) 2 Ds(\) 2IEM;
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d
I EMP(X =0)

EM,P(X} = 0) d 5 =
—— 1?7 39
d+EMmmG=mlm+%Lwﬂp Z?J (39)

pd?
2(d + EM P(X] = 0))

(BMm" + EMY) +

Note that the terms IEMi(l) (the amount of unfinished work left by the server
at ;) depend on the service discipline at ); and can thus only be determined

after specifying the service discipline at ();. For exhaustive service at @,
for example, ]EMi(l) = 0.

Corollary 4.1 For I-limited service at Q1 and exhaustive service at Qo, we

have
1—p—Xd
P1 %Ewl + pQ]EWZ
p sz@”+ EM,; (1 — p— \id) (mEM?_mDﬂM»
—-piD 2 (1 —p)(d+EM (1 —Xd)\ 2EM, Ds(\)
L p(L = p+ M pEM;)d?)
].—,0 2(1—p)(d+EM1(1—>\1d))

EM; (1 —p— Aid) d 2
=)+ EM(L—na) ™ T 21—y s ;p?] :

Proof The server can only leave unfinished work at 1 if on departure he has
just completed serving a customer, which happens with probability A\ IEC.
The amount of work left behind then consists of the work that has arrived

during this customer’s sojourn time at ¢);. Thus,

EM®Y = MECp (EW, + 51)

d+EM (1 — \d)
— EW, +
Y apEM, MY

o d+EM (1 - \d)
AL ¥ MpEM,;

where we have used IP(X{ = 0) = ﬁ%, which is obtained from (6)
with zo = 1 and (11). Since IEMQ(I) = 0, the assertion now immediately

follows from Theorem 4.1. O
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5 Waiting Times

In general, it is difficult to calculate closed form expressions for the mean
waiting times at isolated queues in a polling system. Then, the pseudo-
conservation law is often the only exact information on waiting times that
can be obtained. However, if the scheduling discipline is not too compli-
cated, explicit expressions for the mean waiting times are available; this is
for example the case in the three models of Section 3.

We now specify the service disciplines at the two queues to be 1-limited
at 1 and exhaustive at Qs as in Section 3.1. For this model we are able
to derive the LST of the stationary waiting times W; and Ws. Taking
derivatives we also obtain explicit expressions for the mean waiting times
EW; and EWs.

Let X; denote the number of customers at ); at the beginning of a
serving interval at @; (exercising the timer at () is considered as a non-
serving period), and let Y; denote the number of customers at the end of a

visit of the server at ();. Then the LST of W; are given by, see e.g. [3],
ooan (mpds B[ s/00)"] ~ B[~ s/A) ]
s —Xi(1 — Bjs(s)) (EX; — EY;)s/\;

In (40), the first factor is the LST of the stationary waiting time W; in the

(40)

corresponding M /G /1-model. For arbitrary service discipline at Q1 we have
X, = X{I(X] >0)+ I(X] =0)I(IA;, <T)
and therefore
E[z*'] = Fi(2,1) + a,P(X{ = 0)(z — 1)

and EX; = EX] + a;IP(X{ = 0). Further, since Y = X1 — A;(Dy),

E[z"] = 7;;?((2 11))
FI(Z, ].) - F1(0, 1)

z

= Bi(A1(1 —2)) + F1(0,1) (a1 Bi(M(1 —2) +1—ay) ,
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where in the last step we have used (4), and
EY; = EX] — (1 - F1(0,1)) + p1(1 — F1(0,1)) + pra1 F1(0,1) .

Thus, with s = A (1 — 2),

Fle X1 0-W] — Fi(z,1) — F1(0,1) a1 F1(0,1) ‘
z(l_F1(071)+alFl(071)) 1_F1(071)+a1F1(071)
(41)
Similarly, with Xo = X2 and Y5 = 0,
]E[e—M(l_Z)W?] _ 1— P2 1-— FQ(laZ) (42)

EX? By(Mo(1—2))— 2z
Now the mean waiting times can be calculated from (41) and (42) by taking
derivatives. Together with the expressions in (13) and (14) for the mean
queue lengths IEX| and IEXZ under the 1-limited discipline at @1 and the
exhaustive discipline at ()2 we obtain

1 d
EW, = — —F —A1(1—2)W
! A dz [e ] z=1

i 1—p+ A\pEM; EX! _ d+ pEEM;
M Md+MEM (1—XMd) ' Ad+MEM, (1 — \d)
A1f1§2) + >\25§2)
2(1 — p2)(1 — p — Aid)
1 — p+ \pIEM,; 1 d® +26,d
1—po 1—p—X\id 2(d +EM; (1 - \d))
(1 —p+ MpEM) (Dé(h) Ca) L
)\1(d+EM1(1 —)qd))(l —p2) D2(>\1) A1
pEM, P2 pEM?

+ + , 43
)\1(d+EM1(1—>\1d)) 1—po 2(d+EM1(1—>\1d)) ( )
and
L d o a—am
EW2 - )\2 dZE[e ] z=1
_ ALY + 0088 1—p+ MpEM, d? +28,d
2(1 — p2) 1— p 2(d + EM, (1 — \d))
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1—p—Xd (13'20\1)
d+EM; (1 —Xid))(1 = p2) \Dy()\)
l—p-—d)(1+pm) EM;}

" (d+EM1(1 — )\1(1))(1 — p2) 2 (44)

+ ( —d1)(51—]EM1(1+P1))

and for 7' = 0 this coincides with the known results for the model without

timer, see e.g. [17] or [15], p.105.

6 Conclusions

The results of this paper may be generalized in several directions. Firstly, the
analysis in Subsection 3.3 may be extended to the case of service disciplines
at @1 and @ that are of a branching type as studied by Resing [22]. This
class includes not only the exhaustive and gated service disciplines, but also
more general disciplines that allow the joint queue length process to be a
multi-type branching process.

Secondly, the analysis in Subsection 3.3 may be further extended to the
case of N > 2 queues, but with a timer mechanism at only one queue. On
the other hand, we see major problems in extending our results to cases
where there are timers at more than one queue. It is also challenging to
study the models of Subsections 3.1 and 3.2 when the exhaustive service
discipline is replaced by the gated discipline. To the best of our knowledge,
the analysis of the ordinary two-queue polling model (without a timer) with

one gated queue and one 1-limited queue is still open.

Appendix

In this appendix we consider the convergence of the infinite product appear-
ing in (30). For this purpose, it is useful first to discuss the probabilistic
meaning of the function g(z) defined in (28). It follows from g(z) = fa(f1(2))
and (1) that

gz) = B0t ), (45)
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where 01 1,01 2, ... denote successive “busy periods” in 1 under the exhaus-
tive regime. In words: ¢(z) is the PGF of the “offspring” O of one customer
K in Q2. K can be seen to generate one busy period 2 in ()3, consisting
of K’s service time plus the service times of all customers in ()2 who have
arrived during K'’s service, plus the service times of all customers in Q2 who
have arrived during those services, etc. Now consider all arrivals A;(62) in
Q1 during that busy period 5. Each of them in due time, i.e. when being
served, generates a “busy period” in @)1 in the same way as our customer K
in ()2, and these busy periods are independent. Finally, consider all arrivals
in Q2 during those busy periods in Q1. Together, those arrivals in Q2 con-
stitute the offspring O. One can view this offspring process as a branching
process. In particular, g¥)(z) is the PGF of the number of k-th generation
offspring in Qs of customer K, with g(z) = g™")(2) the PGF of the num-
ber of first-generation offspring. Because E[0] = -2~ < 1 since the
stability condition p; + p2 < 1 holds, this branching process extinguishes
with probability one (cf. [16], Theorem 6.1 of Chapter 1), and for |z| < 1,
limy,_, 009 (2) = 1 (see also below (30)).

Let us now consider the infinite product
1P = [ D(f1(g™(22)), 9%V (22)), (46)
k=0

appearing in (30). The term ) 72, ?;é in (30) can be handled in a similar
way. We shall prove that the infinite product IP converges if p; +py < 1 (if
the product of the first n terms tends to zero for n tending to infinity, 1P
is said to diverge to zero). For simplicity, in the remainder of this proof z is
taken to be real, —1 < z < 1. According to the theory of infinite products,
cf. Chapter 1 of [26], IP converges iff

o0

> [ = D(fi(9"(22)), "D ()] < co. (47)
k=0
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Using that 1 —e™ < z for > 0, it follows that

1 — D(z1,22) = 1 — D1(z1, 22) Da(f1(22), 22)
/ / —(Ar(1—z1)4+ A2 (1 zz))tf(/\l(lffl(zz))+/\2(1fz2))“} dDy(t)dDo(u)

S d1[>\1(1 — Z1) + )\2(1 — z2)] + d2[>\1(1 — fl(ZQ)) + )\2(1 - 22)]
Hence,

L= D(f1(g™ (22)), 9"+ (22))
< dia(l = f1(g™ (22)) + Ao(1 = g*F D (20))]
+ da[M (1= f1(g* ) (22)) + Aa(1 = g¥ D (22))]. (48)

k+1 _ A (k
We now prove that 0 < 1—g( )(z) <R[l g )( )], with R := —%T% <
1:

0<1—g*+h(z) = /00[1 _ efz\l(lffl(g(k)(Z)))t]d]p(92 < t)
0

< MEG[1 - f1(g®)(2))]
< MEOMEN[L - g™ (2)] = R[1 - ¢¥(2)].  (49)

Further, from the last but one step in (49), we also have
0< 1= filg™(2)) < MEGR[L - g* 7 (2)]. (50)

Combining (48), (49) and (50), it follows that the terms in the sum in (47)
decrease at a rate of at least R. Hence we may conclude that this sum

converges, so that IP < oc.
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