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Abstract

Kesten [11] noticed that the scenery reconstruction method proposed by Matzinger [16]
relies heavily on the skip-free property of the random walk. He asked if one can still recon-
struct an i.i.d. scenery seen along the path of a non-skip-free random walk. In this article, we
positively answer this question. We prove that if there are enough colors and if the random
walk is recurrent with at most bounded jumps, and if it can reach every integer, then one
can almost surely reconstruct almost every scenery up to translations and reflections. Our
reconstruction method works if there are more colors in the scenery than possible single steps
for the random walk.
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1 Introduction and Result

A (one dimensional) scenery is a coloring £ of the integers Z with Cy colors {1,... ,Cy}. Two
sceneries &, ¢ are called equivalent, § ~ £, if one of them is obtained from the other by a
translation or reflection. Let (S(¢))¢>0 be a recurrent random walk on the integers. Observing
the scenery ¢ along the path of this random walk, one sees the color £(S(t)) at time ¢. The
scenery reconstruction problem is concerned with trying to retrieve the scenery &, given only
the sequence of observations x := (£(S(t)))e>0. Quite obviously retrieving a scenery can only
work up to equivalence. Work on the scenery reconstruction problem started by Kesten’s ques-
tion, whether one can recognize a single defect in a random scenery. Kesten [10] answered this
question in the affirmative in the case of four colors. He takes the colors to be i.i.d. uniformly
distributed. In his Ph.D. thesis [16], see also [17] and [19], Matzinger proved that typical scener-
ies can be reconstructed: He takes the sceneries as independent uniformly distributed random
variables, too. He showed that almost every scenery can be almost surely reconstructed. In [11],
Kesten noticed that this proof in [16] heavily relies on the skip-free property of the random walk.
He asked whether the result might still hold in the case of a random walk with jumps. This
article gives a positive answer to Kesten’s question: If the random walk can reach every integer
with positive probability and is recurrent with bounded jumps, and if there are strictly more
colors than possible single steps for the random walk, then one can almost surely reconstruct
almost every scenery up to equivalence.

More formally: Let C = {1,... ,Cp} denote the set of colors. Let u be a probability measure
over Z supported over a finite set M := suppp C Z. With respect to a probability measure
P, let S = (S(k))ken be a random walk starting in the origin and with independent increments
having the distribution p. We assume that F[S(1)] = 0; thus S is recurrent. Furthermore we
assume that supp p has the greatest common divisor 1, thus S can reach every z € Z with
positive probability. Let £ = (£(j));jez be a family of i.i.d. random variables, independent of S,
uniformly distributed over C. We prove:

Theorem 1.1 If |C| > | M|, then there exists a measurable map A : CN — C% such that
PlA(x) = ¢] = 1. (1.1)

Research on random sceneries started by work by Keane and den Hollander [9], [3]. They
thoroughly investigated ergodic properties of a color record seen along a random walk. These
questions were motivated among others by the work of Kalikow [8] and den Hollander, Steif [2],
in ergodic theory.

A preform of the scenery reconstruction problem is the problem of distinguishing two given
sceneries. It has been investigated by Benjamini and Kesten in [1] and [10]. Howard in a series of
articles [7], [6], [5] also contributed to this area; see below. The scenery distinguishing problem
is the following: Given two different sceneries ¢, & and observations (£(S(5))) j>0, where € equals
either ¢ or &', the question is: Can we distinguish whether £ = £ or £ = ¢? Benjamini and
Kesten [1] showed that one can almost surely distinguish almost all pairs of sceneries &, &', if
they are drawn independently with i.i.d. entries. Their result even holds in the two dimensional
case. This result is not beaten by a reconstruction result: the reconstruction method in two
dimensions by Lowe and Matzinger [15] holds only when we have many colors. When ¢ and



¢’ differ in precisely one point, the distinguishing problem was examined by Kesten [10] and
Howard [5]. Kesten proved that almost all pairs of those sceneries (£,¢’) can be distinguished in
the 5-color case. He assumes the sceneries to be i.i.d. Howard proved that all periodic sceneries
can be distinguished.

As mentioned above, it is in general not possible to reconstruct &; one can at most expect a
reconstruction up to equivalence. As a matter of fact, even this is impossible: By a theorem of
Lindenstrauss [13], there exist non-equivalent sceneries that cannot be distinguished. Of course,
they also cannot get reconstructed.

For sceneries that can be reconstructed Benjamini asked whether the reconstruction works
also in polynomial time. This question was positively answered by Matzinger [18] in the case of a
two color scenery and a simple random walk with holding. Lowe and Matzinger [14] proved that
reconstruction works in many cases even if the scenery is not i.i.d., but has some correlations.
For the setting of our article den Hollander asked if the finite bound on the length of the jumps
is necessary for scenery reconstruction.

In a way a result by Lenstra and Matzinger complements the present paper. If the random
walk might jump more than distance 1 only with very small probability and if the tail of the
distribution of the jumps decays sufficiently fast, Lenstra and Matzinger [12] proved that scenery
reconstruction is still possible.

Let us explain how this article is organized. In order to avoid getting lost among the many
details of the rather complex proof, this article is ordered in a “top-down” approach: In order to
show the global structure of the reconstruction procedure in a compact but formal way, we start
with a section called “Skeleton”. This section collects the main theorems and main definitions
of the reconstruction method, using “lower level” procedures as black boxes. In the “Skeleton”
section, we only show how these theorems fit together to yield a proof of the reconstruction
theorem 1.1; all proofs of the “ingredient” theorems are postponed to later sections. Although
this approach is more abstract than a “bottom-up” structure would be, we hope that it allows
the reader to more quickly see the global structure.

Overview on some steps for the reconstruction procedure The reconstruction starts
with an ergodicity argument: It suffices to consider only sceneries which produce a very untypical
initial piece of observations; in particular we may condition on a large but finite initial piece
of the observations to be constant. We apply a reconstruction procedure, which works only in
this untypical situation, again and again to the observations with larger and larger initial pieces
dropped, disregarding all instances that do not produce the prescribed “untypical” outcome.
Finally we will see even the prescribed “untypical situation” sufficiently frequent to successfully
reconstruct the scenery. The “untypical initial piece” serves to identify locations close to the
origin at later times again, at least up to a certain time horizon.

The reconstruction procedure consists in a hierarchy of partial reconstruction procedures;
these try to reconstruct larger and larger pieces of the scenery around the origin. The hierarchy
of partial reconstruction procedures is defined recursively.

To reconstruct a large piece in the (m + 1)st hierarchical level, we need some information
where the random walker is located while producing its color records. This information is



encoded in stopping times, which stop the random walk with high probability sufficiently close
to the origin, at least up to a certain time horizon.

The stopping times for the (m + 1)st hierarchical level are built using the mth level partial
reconstruction procedure: Given a reconstructed piece around the origin from the mth level, one
starts the whole mth level partial reconstruction procedure again at a later “candidate time”.
Whenever the piece of scenery obtained in this way has a sufficiently high overlap with the
reconstructed piece around the origin, then one has a high chance that the random walk is close
to the origin at the “candidate time”.

The global structure of this recursive construction is formally described in the “Skeleton”
Sections 3 and 4, and we prove in Sections 7 and 8 that the stopping times fulfill their specifi-
cation.

The heart of the reconstruction procedure, i.e. the construction of the partial reconstruction
algorithm given the stopping times, is described in Section 5 and proven to be correct in Section
6. Roughly speaking, to reconstruct a piece of scenery of size 2", we collect a “puzzle” of words
of size proportional to n, i.e. logarithmically in the size of the piece to be reconstructed. The
puzzle contains (with high probability) all correct subwords of the given size in the “true” piece
of scenery to be reconstructed, but also some “garbage” words. We play a kind of puzzle game
with these pieces: starting with seed words, we reconstruct larger and larger pieces by adjoining
more and more pieces of the puzzle that fit to the growing piece.

Although the actual construction is much more complicated than the idea described now,
let us describe an (over)simplified version of how to collect pieces in the puzzle: Suppose we
have two “characteristic signals” A and B in the scenery, which occur only once in the scenery.
Suppose that the distance between A and B is a multiple of the maximal step size I_, of the
random walk to the right. Then we can almost surely identify the whole “ladder” word read
while stepping from A to B with step size [_, as follows: Look at all occurrences of A and B in
the color record with minimal distance. The words occurring in the color record between those
A and B should (a.s.) be always the same in the whole record, and it is the “ladder” word we
are looking for. Of course, by ergodicity there are almost surely no (bounded) signals A and B
in the scenery that occur only once; this is why the simple idea described here cannot be applied
without considerable refinement.

The “pieces of puzzle” obtained are [_,-spaced pieces; not pieces with spacing 1. This is
why our puzzle game leads to reconstructions of modulo classes of the scenery modulo [_,
only. In order to successfully reconstruct the whole scenery, we need to arrange these modulo
classes correctly, using some “neighborship” relation between pieces of the puzzle. Unfortunately,
the correct arrangement of modulo classes is a technically intricate step in the reconstruction
procedure.

2 Some notation

We collect some globally used nonstandard notations and conventions in this section.

Sets, functions, and integers: For functions f and sets D the notation f[D means the
restriction of f to the set D. D need not be contained in the domain of f; thus f[D is defined
on D Ndomain(f). If f and g are functions, the notation f C g means that f is a restriction
of g; this notation is consistent with the set theoretic definition of functions. By convention,



0 € N. The integer part of a real number r is denoted by |r| := max{z € Z | z < r}; similarly
[r] :==min{z € Z|z>r}.

Integer intervals: Unless explicitly stated otherwise, intervals are taken over the integers,
eg. [a,b)={n€Z : a<n<b}, |a,bj={n €Z : a <n <b}. Given a fixed number Cy, we
define the set of colors C := [1,Cy] = {1,...,Co}, |C| = Cp.

In the rest of this section I will denote an arbitrary subset of Z unless otherwise specified.

Sceneries and equivalence: By definition, a scenery is an element of CZ. If I C Z, then the
elements of C! are called pieces of scenery. The length |C| of a piece of scenery ¢ € C! is the
cardinality || of its index set. (™ := ({_;)ie_s denotes the reflection of a piece of scenery ¢ € C!
at the origin. Two pieces of scenery ¢ € Z! and ¢’ € Z!" are called strongly equivalent, ( = ¢/,
if ¢ is obtained by some translation of (', i.e. I' = I + b for some b € Z, and ¢ = (¢/;)ier- €
and ¢’ are called equivalent, ( ~ (', if ¢ is obtained by some translation or reflection of ¢/, i.e.
I' = al +b for some a € {1}, b€ Z, and ¢ = (();,)ier- T :Z — Z, T(z) = az + b, denotes
this translation or reflection, then T'[¢] := ¢’ denotes the transport of ¢’ by T’; the same notation
is used for the domains: T'[I] = I'. By definition, { < ¢’ means that ¢ = ¢'[J for some J C I'. If
additionally such a subset J C I” and its reading direction (i.e. either ¢ = ¢'[J or ¢ = (¢'[J)7)
is unique, we write ¢ <1 ¢’. Similarly ¢ C ¢’ (in words: “C occurs in (") means that ¢ = ¢'[J
for some J C I’

Words: The elements of C* := |J,cnC" = Upnen C10-m=1} are called words (over C). We
identify C with C'. The concatenation of two words w; € C" and wy € C™ is denoted by
wiwe € CMT™,

Probability distributions: The law of a random variable X with respect to a probability
measure P is denoted by £Lp(X). The n-fold convolution of a probability distribution p over R
is denoted by p*™.

Random sceneries and random walks: As mentioned before, let p be a probability measure
over Z supported over a finite set M = suppu C Z. Let Qo C ZN denote the set of all paths
with starting point S(0) = 0 and jump sizes S(t + 1) — S(t) € M, t € N. Let Qy denote the
law of a random walk S = (S(k))reny with start in 0 € Z and with independent increments
having the distribution p. Furthermore, let £ = (§;);cz be a family of i.i.d. random variables,
independent of S, with uniform distribution £(§;) = v over C. We realize (£, 5) as canonical
projections of Q = C% x Qy endowed with its canonical product o-algebra and the probability
measure P := % ® Q. (The restriction of the random walk paths not to have forbidden jumps
even on null sets is technically convenient.) We assume that E[S(1) — S(0)] = 0 (k € N);
thus S is recurrent. Furthermore we assume that supp o has the greatest common divisor 1,
thus S eventually reaches every z € Z with probability one. For fixed sceneries ¢ € CZ, we set
P¢ := ¢ ® Qo, where ¢ denotes the Dirac measure at . Thus P is the “canonical” version of
the conditioned probability P[ - £]. We use the notations P: and P[ - |£] as synonyms; i.e. we
will never work with a different version of the conditioned measure P[- |£] than P.



Filtrations: We define the filtration F := (Fp)nen, Fn := 0(&, (S(K))k=0,.. n) over Q. We
further introduce the filtration G := (G, )nen over CN, where G, is the o-algebra generated by
the projection map CN — Cl% v — x[[0, n].

Observations of the scenery along the random walk and shifts: Let x = (xn)nen ==
(£5(n))nen. We sometimes write simply x = £ o.5; this is to be understood in the sense y(w) =
§(w) o S(w) for all w € Q. Let H = (Hp)nen, Hn := 0(x,0 < k < n) denote the filtration
obtained by observing the scenery along initial pieces of the random walk. We define the shift
operations 0 : CN — CN, (xn)nen — (Xnt1)nen, and © : Q — Q, (£,8) — ((€n+s01))nezs (S(k +
1) = S(1))ken); thus x o ©® = 6 o x. Intuitively, © spatially shifts both the scenery and the
random walk by the location S(1) of the random walk after one step, and it drops the first time
step. One observes £ ~ £ 0 ©.

Admissible paths: A piece of path 7 = (m;);e; € Z! over an integer interval I is called
admissible if w41 —m € M for all {i,i + 1} C I. For finite I # 0, Tmins and Tmaxs are
called starting point and end point of 7, respectively. We set TimeShift(n) := (m;—1)icr+1. By
definition, the length |7| of the path 7 is the cardinality |I|. For x,t > 0 let AdPaths(z,t) denote

the set of all admissible pieces of path 7 € [—x, z][t],

Ladder intervals and ladder paths: Let [, := max M, [ := |min M|; thus [_, and [ are
the maximal possible jump sizes of S to the right and to the left, respectively. We abbreviate
| ;== max{l_,,l_} and h := [|[M|. By definition, d-spaced intervals (d € N) are sets of the form
IN(a+dZ) with a bounded interval I and a modulo class a+dZ € Z/dZ. [_,-spaced intervals are
also called right ladder intervals. Similarly, l._-spaced intervals are called left ladder intervals.
By definition, a right ladder path is a piece of path that steps through the points of some right
ladder interval in increasing order. Similarly, a left ladder path is a piece of path that steps
through the points of some left ladder interval in decreasing order.

Reading words from pieces of sceneries: For I = {ip,... i1} CZ with ip < ... <ip_1
and a piece of scenery ¢ € CI, we define (_, := ({;, )k=0... n—1 € C" and {— = ({i,,_,_, Jk=0.... n—1 €
C™; thus (_, and (. are the words obtained by reading ¢ from the left to the right and from the
right to the left, respectively. The right ladder word of a scenery £ over a right ladder interval 1
is defined to be ({[I)_; similarly one defines left ladder words (£[J).— over left ladder intervals
J.

2.1 Conventions concerning constants

Four fixed “sufficiently large” positive integer parameters ca, c¢1, a, and ng globally play a role.
The meaning of these parameters is explained below at the location of their occurrence; at this
point we only describe their mutual dependence:

e ¢y € N is chosen first sufficiently large; say co > c¢3(|CJ, p).
e Then c; € 2N is chosen to be even and sufficiently large; say c1 > ™ (co, [C|, 1).

min(

e Then « € N is chosen to be sufficiently large; say a > o™ (¢cq,|C|, p).



e Finally ng € 2N is chosen to be even and sufficiently large; say ng > n2"(c1, a, |C|, ).

We do not specify explicitly here how large the allowed lower bounds cg®, ¢ o™i and

n{)nin actually need to be; but we emphasize that the constructions below will work if they are
sufficiently large.

All other positive constants are denoted by “c¢;” with a counting index ¢ > 2; they keep their
meaning globally during the whole article. Unless explicitly stated otherwise, these constants
may depend only on the number of colors |C| and on the jump distribution p of the random
walk; in particular they may depend on the upper bound [ of the jump size, but not on nyg.

3 Skeleton of the Reconstruction Procedure

Our first “ingredient” theorem reduces the problem of almost surely reconstructing sceneries to
the following simpler one: We only need to find an auxiliary reconstruction procedure A which
may fail to give an answer, and it may sometimes even give the wrong answer, if only giving
the correct answer is more probable than giving a wrong one. Roughly speaking, we apply the
auxiliary reconstruction procedure Ag repeatedly to the observations with initial pieces dropped,
taking the answer of the majority as our result; here ergodicity of the observations plays a key
role.

Theorem 3.1 If there exists a measurable map Agp : CN — C» U {fail} with

P[Ag(x) # fail, Ap(x) =~ £] > P[Ap(x) # fail, Ap(x) # ¢, (3.1)

then there exists a measurable map A : CN — C% such that
PlAG) ~ € =1 (3.2)

The auxiliary reconstruction procedure Ap gives the output “fail” if one does not see a long
block of 1’s in the initial piece of the observations. Thus failure of Ap is a very frequent event;
however, non-failure still occurs with a positive but small probability, and conditioned on this
event the most probable answer will be the correct one. Roughly speaking, when we apply Ap
again and again to the observations with initial pieces dropped, we will finally see sufficiently
many long blocks of 1’s to make the whole procedure work correctly.

The required long block of 1’s in the initial piece should have length n2° for some sufficiently
large but fixed even number ny € 2N. The parameter ng, which parametrizes the size of this
required block, is chosen fixed but large enough (see Subsection 2.1).

Definition 3.2 With the abbreviation J; = [—2In3°,2in2°], we define the following events:

Eg(k) = {xpn=1foralln <k} forkeN, (3.3)
. o There is an integer interval Jo C Jy with |Jo| > né such that
BigBlock = {f[]o = (1)jes, is a constant piece of scenery with value 1. |~ (3-4)

Let Pg denote the image of the conditioned law P|[-|Eg(n3®)] with respect to the shift on’.
Furthermore, we define the conditioned law

P := Pg[-|BigBlock]. (3.5)



The event Eg(n2’) occurs when we see a large block of 1’s in an initial piece of the observations,
while BigBlock occurs when there is a large block of 1’s close to the origin in the (unobservable)
real scenery £. The next lemma tells us that such a large block in the real scenery is very

probable whenever we see a large initial block of 1’s in the observations:
12

Lemma 3.3 There exists c3 > 0 such that P [BigBlock] > 1 —e™%"0".

We describe the intuitive meaning of P: After having seen a large initial block of 1’s in the
observations, we drop this initial piece and take the present point as our new starting point.
Since then a large block of 1’s close to the origin in the unobservable real scenery £ is typical, it
does not change much when we even condition on this (unobservable) event.

Almost all the proofs using the measure P will not explicitly use its definition (3.5), but only
the following properties of P (and ng):

Lemma 3.4 The probability measure P fulfills:
1. € and S are independent with respect to P;
2. The common distributions of (S, £[(Z\Jy)) with respect to P and with respect to P coincide.
3. With respect to P, the restriction £[Jy is independent of E[(Z\ J1).
4. P[BigBlock] = 1.

The next theorem shows that whenever we have a reconstruction procedure A’ that works
sufficiently probably with respect to the modified measure P, then there exists the auxiliary
reconstruction procedure Ap that we needed above:

Theorem 3.5 Assume that there exists a measurable map A’ : CN — C% with

- 2

PG ~E > 2 (3.6
Then there exists a measurable map Ag : CY — C% U {fail} such that

P[Ag(x) # fail, Ap(x) =~ £] > P[Ap(x) # fail, Ap(x) % &]. (3.7)

The reconstruction function A’ required by the last theorem is built by putting together a
hierarchy of partial reconstruction algorithms A™, m > 1. The partial reconstruction algorithms
A™ try to reconstruct longer and longer pieces around the origin; the relevant length scale in
the m-th hierarchy is given by 2" where n,, is defined as follows:

Definition 3.6 We define recursively a sequence (np,)men: no was already chosen above; we
set

Ny = 20V7m] (3.8)

The partial reconstruction algorithms may sometimes, but not too frequently, give the wrong
answer:



Theorem 3.7 Assume that there exists a sequence (A™),>1 of measurable maps A™ : CN —
Cl=52"m 52" sych that

~ 1
PlUE <5, (3.9)
where
E™ = {¢[[-2", 2" < AT(x) < €][-9 - 27,9 - 2]}, (3.10)
Then there exists a measurable map A’ : CN — C? such that the following holds :
PlA(x) = ¢ > % (3.11)

Before describing it formally, let us intuitively explain how the hierarchy of partial recon-
struction algorithms A™ is constructed: The A™ are built recursively in a “zig-zag” way simul-
taneously with a hierarchy of stopping times:

These stopping times have the task to estimate times when the random walk S' is sufficiently
close back to the origin, at least up to a certain time horizon. For this estimation, one may
use only an initial piece of the color record x. To find “higher level” stopping times, we try to
reconstruct a piece of scenery both at the present candidate location and at the starting point,
using a “lower level” partial reconstruction algorithm. If the two obtained pieces of scenery have
a high overlap with each other, then there is a good chance that the candidate location and the
starting point are close to each other. This is the “zig” part of the “zig-zag” recursion.

The “zag” part of the recursion uses the stopping times as follows to construct a “higher
level” partial reconstruction algorithm A™: Whenever the stopping times indicate that one
might be sufficiently close to the origin, one collects “typical signals” which one expects to be
characteristic of the local environment in the scenery. The data obtained in this way are then
matched together similarly to playing a puzzle game. This procedure is the heart of the whole
reconstruction method.

To get the whole construction started, one needs some initial stopping times which indicate
that one might be sufficiently close to the origin. A simple way to get such times is the following:
Whenever one observes a sufficiently long block of 1’s in the color record, then one has a high
chance to be close to the origin. (Remember: We conditioned on seeing a long block of 1’s at
an initial piece of the color record.) This is the reason why we introduce the modified measure
P, since with respect to P one can be (almost) sure to have a big block of 1’s in the scenery
close to the origin. However, the such constructed stopping times are not reliable enough to
base the first partial reconstruction algorithm on them. Instead, these stopping times are used
as ingredients to construct more reliable stopping times.

We treat the “zig” part and the “zag’ part of the recursion separately, starting with the
formal specification of the “zig” part: Given an abstract partial reconstruction algorithm f, we
build stopping times out of it:

The specification of the stopping times depends on a fixed, sufficiently large parameter o € N.
Informally speaking, « influences how many stopping times in each step should be valuable, and
what the time horizon for the m-th partial reconstruction algorithm in the hierarchy should be.
The parameter « is chosen fixed but large enough; recall Subsection 2.1.



Definition 3.8 Let m > 1. Let a function f : CN — ClI=52"™52""] be given. Assume that f(x)
depends only on x[[0,2 - 2'29mm [ We define the random set

Ts(x) := {t € [0, g12amm+1 _ g . gl2anm| | Jw e C*?™: w< f(x) and w < f(0 (X)) }. (3.12)

We define a sequence Ty = (Tt 1)~ of G-adapted stopping times with values in [0, 2120mm+1]
Let t(0) < ... < t(|T¢(x)|—1) be the elements of Tf(x) arranged in increasing order. For k € N,
we set

[ (2 22mming) 4 2. 2120mm e 9 92nmit ke < T (x|,
Trr(x) = { 2120mm 1 otherwise. (3.13)
Observe that the stopping times T (x) depend only on x[[0, 2120mm+1],
In the next definition, we introduce events EZ,, ; they specify what the stopping times

should fulfill: There should be sufficiently many of them, they should be separated by at least
2. 22"m and they should stop the random walk sufficiently close to the origin. Furthermore,
given any abstract partial reconstruction algorithm f, we define an event Eﬁ’;const’ 5 it measures
whether f correctly reconstructs a piece of the scenery around the origin.

Definition 3.9 Let m € N.

1. Given a sequence T = (T )ken of G-adapted stopping times, we define

2anm
o= ) {700 <22 S(m(x))| < 2" 7i(x) + 2 22" < 7i(x) for j < k.
k=0
(3.14)
2. We set for f:CN — ¢l=52"m.52"m].
?;const,f = {5“_27’Lm’ 2nm] < f(X) < §H_9 ’ 2nm’ 9- 2nm]} : (315)

Roughly speaking, the following theorem states: there are stopping times “to get started”
which solve their task with high probability:

Theorem 3.10 There exists a sequence of G-adapted stopping times T' = (Tkl)keN with values
in [0,2'2°™] and a constant ¢4 > 0, such that

P |(Blap)| < €. (3.16)

The next theorem states that the “zig”-part of the construction works correctly with high
probability. As a premise, the “zig”-part needs the underlying “lower level” partial recon-
struction algorithm f to work correctly when f is applied at the beginning. Furthermore, the
“zig”-part needs f to have a sufficiently high probability to work correctly on the given scenery
& whenever it is applied again. Informally speaking, the reason is: In the “zig”-part we can only
reconstruct, if we know where we are. The idea is to start the whole lower-level reconstruction
procedure again whenever we want to find out whether we are close to the origin. As mentioned
before, if the result has a large overlap with the piece we have have already reconstructed, we
can be rather sure that we are close to the origin.

10



Theorem 3.11 Under the assumptions of Definition 3.8, we have that
1 _
P (EST?;){TJI)C N E;Zconst,f n {P [E;Zconst,f | f] 2 5}:| <e (317)

We remark: in the “zig part” (Theorem 3.11) we work with the event E:;;;Tf, while in the “zag
part” (Theorem 3.12 below) we work with Eop.1;-

Intuitively, in order to successfully recognize locations close to the origin, we need not only
the “lower level” reconstruction to work correctly the first time (i.e. B tconst, ; needs to hold),
but also the scenery must be such that whenever one starts the “lower level” reconstruction
again, one has a sufficiently high chance to reconstruct again a correct piece; this is why we need
the event “P[ET. o €] > 1/27.

Finally the heart of the reconstruction algorithm consists of the “zag”-part: there are partial
reconstruction algorithms Alg™™ which take an initial piece of the color record as input data,
and abstract “lower level” stopping times 7 as “argument procedures”. Intuitively, the following
theorem states that the algorithms Alg™™ reconstruct correctly with high probability, provided

the “argument procedures” 7 fulfill their specification EZ, ..

Theorem 3.12 For every m € N, there is a map
Alg™m [0, 2120mm N ¢z _, cl=s2mm 52mm] (3.18)

such that for every vector T = (T1)ren of G-adapted stopping times with values in [0,229""] one
has

P [(Em ) NET

reconst,Alg"™ (7,-) stop,T

| < esemeomn (3.19)
for some positive constants cg and cs5, where Alg"™ (7,-) : x — Alg"™ (7(x), x[[0,2 - 21227m ).

To motivate the allowed range for the abstract arguments 7 in this theorem, recall that T (x)
in (3.13) take their values in [0, 21297m+1],

Note that Theorems 3.11 and 3.12 use the original probability measure P, while Theorem
3.10 uses the modified probability measure P.

An algorithm Alg" is defined in the next Section 5, but its correctness, i.e. Theorem 3.12,
is proven in Section 6, below. Theorems 3.11 and 3.10 are proven below in separate Sections
7 and 8, respectively. Right now we show how to use these three theorems: Provided these
three theorems are true, the hypothesis of Theorem 3.7 holds, i.e. there exists a sequence
of measurable maps A" : CN — C[=52""52""] guch that (3.9) is valid. We take the maps
Alg™™ and the sequences of stopping times T, T 't from Theorems 3.10, 3.11, and 3.12 to define
recursively maps A". Then we prove: the properties guaranteed by Theorems 3.10, 3.11, and
3.12 imply that the sequence of maps (A™),,>1 satisfies (3.9). We are ready to describe the
“zig-zag”-recursion formally:

Definition 3.13 We define A™ : CN — CI=52""52""] and sequences T™ = (Tj")ren of G-
adapted stopping times by simultaneous recursion over m > 1:

o T is chosen using Theorem 3.10.

o A™(x) := Alg" (T™(x), x[[0,2 - 2129nm [) with Alg"™ taken from Theorem 3.12.
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o T™FL .= Tym, with the notation of Definition 3.8.

Recall Definition (3.10) of the events E™. From now on, we use our specific choice for A™
from Definition 3.13. Using (3.15), we rewrite (3.10) in the form
E™ = E:gconst,Am' (320)

Theorem 3.14 For the sequence (A™)m>1 as defined in Definition 3.13 and (E™)men as in
(8.20), the bound (3.9) is valid.

All theorems of this section together yield the proof of our main theorem:

Proof of Theorem 1.1. By Theorem 3.14, (3.9) holds; then (3.11) holds by Theorem 3.7;
moreover (3.7) holds by Theorem 3.5; finally Theorem 3.1 implies the claim (1.1) of Theorem
1.1. =

4 Proofs concerning the Skeleton Structure

Lemma 4.1 The shift © : Q — Q, (£,5) — (£(-+ S(1)), S(- +1) — S(1)) is measure-preserving
and ergodic with respect to P.

Proof. The shift © is measure-preserving: Since the distribution of £ is invariant under (de-
terministic) translations, and since S(1) is independent of £, we get: £(- 4+ S(1)) has the same
distribution as £. Furthermore, (S(t+1)—S5(1));en has the same distribution as S. Since £, S(1)
and (S(t4+1) — S(1))ien are independent, (- +S(1)) and (S(t+1) — S(1))ien are independent,
too. Consequently ©(&,S) has the same distribution as (¢, .5).

For the ergodicity part, we condition first on deterministic £&: Recall from Section 2 that for
fixed ¢ € CZ, Py = 6¢ ® Qo denotes the “canonical” version of the conditioned measure P - | £].
We claim first that the shift © is ergodic (but in general not measure-preserving) with respect
to P¢. To prove this claim, note that the standard shift

6 :ZN = ZN, (s(t))en — (s(t+1))sen (4.1)

is ergodic (but not measure-preserving) with respect to the probability measure Pg induced by
S. Consider the measurable map

fe: 2V — 9, fel(s) = (£ +5(0)),s — 5(0)); (4.2)

then f¢ o ©=060o fe, and P is the image measure of Ps with respect to fe. Thus © is ergodic
with respect to P, since O is ergodic with respect to Ps.

Let A C Q be measurable and shift-invariant: ©~![A] = A. According to the above we have
for every ¢ € CZ that P¢[A] € {0,1}. Consider the set

M = {feCZ|P5[A] :1}. (4.3)

We claim that for all ¢ € Z holds ¢ € M if and only if ¢

(++a) € M. To prove this claim,
let £ € M and choose N € N such that P[S(N) = a] > 0.

Then the image measure of

12



Pe[ - | S(N) = a] with respect to O equals Pe(.yq). Assume £ € M. Then 1 = P¢[A | S(N) =
a] = P[®@NA| S(N) = a] = P¢(.4)[A]; this shows that & € M implies £(- +a) € M. The same
argument, applied to the translated scenery &' = £(- + a) and o’ = —a, shows that £(- +a) € M
implies & € M; hence M is a translation invariant set.

By the ergodicity of the translation operator on sceneries, M has measure P[§ € M| =0 or
Pl¢ € M] = 1. If P[¢ € M] = 0, then P[P¢[A] = 0] = 1; in this case Fubini’s theorem yields
P[A] = 0. Otherwise P[P¢[A] = 1] = 1; thus P[A] = 1, again by Fubini’s theorem. m

Proof of Theorem 3.1. The idea of this proof is to apply the reconstruction function Ap
to all the shifted observations #*(x) for each k € N. Every time one does this, one gets either a
scenery or the state fail as result.

Given Ap : CN — C? U {fail} as in the hypothesis of the theorem, we define measurable
functions A% : CN — CZ, k € N, as follows:

e If there exists j € [0, k[ such that Ag(67(x)) # fail and
{7 € 10,4 | AB(8" (1)) # £a11, Ap(®"(0) ~ Ap@ () )| (44)
> {7 € 10K | An(89 () # £ail, An(87 () # An(® () }

9

then let jo be the smallest j with this property, and define A%(x) := Ag(6%°(x)).

e Else define A%(x) to be the constant scenery (1);ez.

Finally define the measurable function A : CN — C% by

limg 00 A% () if this limit exists pointwise,

Al = { (1)jez otherwise. (4.5)

We check that the such defined function A fulfills the claim (1.1) of the Theorem 3.1:

Let us give the general idea: by the hypothesis (3.1) and an ergodicity argument, "on the long
run” the proportion of sceneries Ag(6%(x)) (for k& € N) which are equivalent to ¢ is strictly
bigger than the proportion of sceneries which are not equivalent to £. More formally, define for
k € Z the Bernoulli variables XskCe and lef,rongsce' we set XX _ equal to 1 iff Ap(6*(x)) # fail
and Ag(6F(x)) ~ &. Similarly, X Wrongsce is equal to 1 iff Ag(6%(x)) # fail and Ap(6*(x)) # &.
Define

R‘
T
A

X! : (4.6)

wrong sce

=

VE = XZ' and Y =

sce * k sce wrong sce

m
-
I
=)

Observe that if Y, > lejrongsce holds, then A% (x) ~ €. As a consequence of Lemma 4.1, the
sequences (X% )k>o and (XF wrong sce)k>0 are stationary and ergodic, since they can be viewed as
a measurable function of the sequence k — ©%(¢,S). Note that & ~ (- + S(k)). By the ergodic

theorem, we have almost surely:

vh, EF P [AR(6F(x) # tail, Ap(y) ~¢] (4.7)
le\frongsce ki)o p [AB(Hk(X)) 7é fail, AB(X) ¢ 5] . (48)
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Thus by the assumption (3.1) there exists a.s. a (random) ko such that for all k¥ > ky we have
Yk > vk and hence A% (x) = Ag) (x) = &; recall that we chose the smallest possible jp in

sce wrong sce

the definition of A%. Thus a.s. A(x) ~¢.

Definition 4.2 For k,k € N, let Zgjock(k, k) be the event of sceneries

EBlock(kjy ﬁ) = {5 € CZ

There is an integer interval Jy C [—lk, k] with |Jo| > k such
that £[Jo = (1)jeg, s a constant piece of scenery with value 1. [~

(4.9)
In this section, only the case k = n%o, K = né is relevant. In Section 8 below, another case is
used as well.

Lemma 4.3 If k € 2N is large enough, k > k%, k € N, and if € is a scenery with & ¢

EBlock(k, k), then P[Egp(k)|&] < e~CTk/%* with some constant ¢z > 0. As a consequence,
— _ 2
PE(K)|€ ¢ Eplock(k, k)] < e77k/F.

Proof. Let ¢ € C”\ ZEpjoa(k, k). The idea of the proof is to split the time interval [0, k]
into pieces of size k2. Let us examine at first one of these time intervals of size x?: A typical
length scale for the distance that the random walks travels in this time interval is k; in particular
the probability that it travels farther than distance x is bounded away from 0, at least if & is
large enough. If the random walk travels that far, it gets close by a point not colored with “1”,
assuming that & ¢ Epjock(k, k). (Note that the random walk does not leave the interval [k, [k]
up to the time horizon k.) But once the random walk is close enough to a point not colored
with “1”7, the probability to hit this point a few steps later is bounded away from 0, too. Thus
in every k2-sized interval the random walk has a probability bounded away from 0 to see not
only the color 1. There are roughly k/x? such intervals in [0, k]; thus the probability to see only
I’s up to the time horizon k is exponentially small in k/k2.

Formally, we proceed as follows: We define stopping times (7;);—¢ . |K—2k)—1°

;= inf {t € [jK?, (5 + 1/2)k?] | €[[S(¢), S(t) + 1] is not constant 1} . (4.10)

In other words, 7; is the smallest time in the interval [jx?, (j + 1/2)x?] when there is a point
sufficiently close to the right of the location of the random walker which is not colored with “1”.
If no such time exists, 7; = co. We claim: For some constant cg > 0 holds

P [r; < o0& 8700, 75k%] > cs. (4.11)

This means: Uniformly in & € C% \ Eplock(k, ) and in the history of the random walker up to
time jx2, the chance that the random walk will get sufficiently close to a point not colored by
“1” during the next x2/2 steps is bounded from below by a positive constant.

To prove (4.11), we observe by the Markov property, A; := S((j 4+ 1/2)x%) — S(jx?) has the
distribution *%*/2 with respect to the conditioned law pPl:=P[ |, S[[0,jx2]]; recall that x
is even. Since u*”“Q/ 2 has the standard deviation cgk for some constant cg, the Central Limit
Theorem implies

P [AJ Z H] Z C10 (412)
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for large enough . Here cjg denotes a fixed positive constant less than P[X > ¢y 1], and X is a
standard normal random variable. Observe that whenever ¢ € C%\ Egjoek(k, k) and A; > k hold
(i.e. in the interval of interest the random walk S moves at least the distance x to the right),
then 7; is finite (i.e. the random walk passes close to a point which is not colored with 1). This
is true since £ € C% \ Epjoak(k, k) implies that £[[S((5 + 1/2)k2), S((j + 1/2)k?) + k] cannot be
a constant piece 1, and since the random walk does not perform jumps to the right larger than
I_,. Since the jump distribution p is not supported on a strict sublattice vZ of Z, there is a fixed
L € N such that [0,{_] C Uﬁ:o supp(u*f). If the event {r; < oo} holds, then ¢ is not constant
1 on the interval [S(7;), S(7j) +I—]. Let A; denote the event that x[[ix?, (j + 1)k?] is constant
1. Then we have for some constant 1 > ¢1; > 0 and I<J2/2 > L:

PlIAS] > Pjlr; <oo]Pj[30 € [0,L]: x(mj +4£) # 1|75 < o9 (4.13)
> Pj[3le(0,L]: x(mj+ ) # 1|7 <oo] >cnn.
Hence we obtain by the Markov property:

|k 2k]|—1 |k 2k]|—1
PEsR) <P | () 4lel=r| T PAllel <™ ()
=0 §=0

This proves Lemma 4.3 m
Proof of Lemma 3.3. Let ¢ := Var[S(1)] be the variance of the single step distribution p.
Consider the integer interval I := [—20n{?, 20n{°] N Z; then

P [T = (Dser] = [C] M = o], (4.15)

The first submartingale inequality states Plmaxo<;j<; X; > A] < E[X;]/A, for A > 0 and nonneg-
ative submartingales X;. Recall that S? is a submartingale, since = ~ 2
the submartingale inequality yields:

is convex. Applying

P3jeo,nd]: S ¢I] =P max S(j)% > 40*nd’ | < (40*n") 1B [S(ng")?] = i
0<j<n?

4.16)

—~

If S(j) € I is valid for all j € [0,n§"] and if £[1 = (1)jer holds, then x[[0,75°] = (1);¢(0,20)-
Thus (4.15) and (4.16) and the independence of S and £ imply

P [Ba(nd)] = Jjej i (4.17)

Hence we get for some constant c3 > 0, using Lemma 4.3 and the abbreviations Z§; . =

C”\ Egloek (n3, ng) and Ep = Fp(n2°):

p [EB|§ € E%lock]
P[Eg]

P [5 c El%lock‘ EB] < < %’6’4071,(1)04»167077162 < e—csn(l)Q. (4.18)

The shift operation ond’ applied to (£, S) cannot shift the scenery ¢ by more than in2® steps,
and every shift of the interval [—In3°,In3"] by not more than InZ° steps is contained in J;. Thus
the shifted event @_”gOBigBlock occurs whenever the event £ € Egjock holds; thus (4.18) implies

P[©~"3’BigBlock® | Eg] < e~"", which is equivalent to the claim of Lemma 3.3. m

Proof of Lemma 3.4. We abbreviate k := ngo.
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1. We observe first that £ o ©F and the event Eg(k) are both measurable with respect to
the o-field o(&, (S(5));j<k), and S o O is measurable with respect to o((S(j) — S(k)))j>k)-
Since o (&, (S(j))j<k) and o((S(j) — S(k)))j>k) are independent with respect to P, this
implies that &€ o ©% and S o ©F are independent with respect to P[-|FEg(k)]. Hence ¢ and
S are independent with respect to the image measure Pg = (P[-|Eg(k)]) o (6%)~!. Since
BigBlock € o(£), this implies part 1.

2. By the independence proven in 1., it suffices to show the two claims £5(S) = Lp(S) and
Lp(EN(ZN\ 1)) = Lp(E[(Z\ J1)):

e With respect to P, S o ©F and S both have i.i.d. p-distributed increments and the
starting point 0; thus their distributions coincide. By the above argument, So©F and
FEgp(k) are independent with respect to P. Hence the laws of S o ©* with respect to P
and with respect to P[-|Eg(k)] coincide with the law £p(S) of S with respect to P.
Hence Lp(S) = Lp[.|Egk) (S © %) = Lp,(S). Since ¢ and S are independent with
respect to Pp, and since BigBlock € (), we obtain the first claim £5(S) = Lp(S).

e We condition on fixed values of {[[—lk, k] and ST[0, k]:

We know that £ o ©F is a translation of ¢ by S(k) steps, which is not more than ki
this translation maps [—Ik, k] to a subset of J;. Thus (£ 0 ©F)[(Z\ J;) is obtained
by translating a (S(k)-dependent) subpiece of £[(Z \ [—k, [k]). Thus by our i.i.d. and
independence assumptions for ¢ and S we get: (£ o ©F)[(Z\ J1) has the distribution
LpE[(Z\ J1)) = v\ with respect to P[-|€[[—lk, k], S[[0, k]]. Furthermore, (€ o
OM)[(Z\ Jy) and (£0O%)[J; are independent with respect to P[- |¢[[—1k, k], ST[0, k]].
Since Ep(k) depends only on {[[—lk,lk] and S[[0, k], this implies

Lpy(E[(Z\ 1)) = Lp[. 5y (€0 ON[(Z\ J1)) = 5\, (4.19)

and £[(Z \ J1) is independent of £[J; with respect to Pg. Since the event BigBlock
depends only on £[.Jp, this independence implies

LoENZN\ ) = Lp(ENZN\ 1)) = vV = LpE[(Z\ 1) (4.20)
recall our choice of P. This proves our second claim.

3. We have just seen: BigBlock € o(£[J1), and the random pieces £[(Z \ J1) and £[J; are
mutually independent with respect to Pg. These two facts imply part 3.

4. This is an immediate consequence of the definition P = Pg|- |BigBlock].

Proof of Theorem 3.5. Assume A’ : CN — C% is a measurable map satisfying (3.6):

Po[ A (x) ~ € |BigBlock] > % (4.21)
So,
P [{A'(x) =~ £} N BigBlock] > §PB [BigBlock] . (4.22)
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By Lemma 3.3 it follows, since ng is large enough (see Subsection 2.1):

, 2 a2 1
~E> = — 3 —. .
Pg[A'(x) 5]_3(1 e 0)>2 (4.23)
Now, by definition of Pg,
Pe[A'(x) ~ €] =P [A’ (X o @”30) ~ 00| Ep (ngO)} . (4.24)
Obviously & o et &. Thus
! n20\ __ 20 1
P[A (Xo@o)rv&‘EB(no )]>2. (4.25)
We define Ap : CN — CZ U {fail}:
_f Al(xo©m") if Eg(n2°) holds,
An(0) = { fail otherwise; (4.26)

this is well defined since Eg(n2’) € o(x). By (4.25), the such defined Ap satisfies (3.7). =
Lemma 4.4 For all events E C Q we have
P(E) < |c|¥8°+1P(E). (4.27)

Proof of Lemma 4.4. Define ' := C%\/1 x Oy and write Q = C% x Qy = C”* x C2\ x Qy =
C’/1 x €. Then by definition of the measure P and by Lemma 3.4 we have P = v’/' ® Py and
P = PJ1 ® Por where Py and PJl, respectively, are the marginal distributions of P on Q' and

C”’1, respectively. Thus we have for all measurable cylinder-sets of the form E = {e1} x Ey C ,
where e; € C’t and Ey C V-

P[E] = Py, [{e1}]Por [Bn] < [+ 107 [{e1}] P [Bs] = [C| 6" 1 P[E] (4.28)

where the inequality follows because v is the uniform distribution on C, |J;| = 4in2° 41, and Py,
is bounded from above by one. Since C’! is finite, every measurable subset of £ can be written
as a finite disjoint union of sets of the above form {e;} x Es with e; € C’t and Ey C . This
proves the result. m

Proof of Theorem 3.7. For pieces of scenery v, ¢, we define the piece of scenery ® (1, ¢) as
follows: If ¢ <1 ¢, then ®(¢), ¢) denotes the unique piece of scenery with ® (v, ¢) ~ ¢ such that
P C P(1, ¢); otherwise we set P(1), p) := ¢. Let A™ as in the hypothesis of the theorem and
x € CN. With the abbreviation ™ := A™(x), we define recursively

¢ o= (4.29)

¢l = (™, e, (4.30)
, . limy, 00 ¢ if this limit exists pointwise on Z,

A = { (1)jez else. (4.31)

(By convention, a sequence ((™),en of pieces of sceneries converges pointwise to a scenery ( if
the following holds: lim inf,,_,~, domain(¢"") = Z, and for every z € Z there is m, > 0 such that
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for all m > m, one has (" (z) = ((z).) Being a pointwise limit of measurable maps, the map
A’ : CN — C? is measurable. For the purpose of the proof, we abbreviate §M = Ef[-2mm, 2mm]
and £ = £[[-9-2",9-2"] and we define the events

Em, = {ém < Em“} . (4.32)
We claim:
1. liminf,, o E7%, holds P-a.s.,
2. If the event liminf,, .o Eff, N[, _q E™ occurs, then A’(x) =~ &.

These two statements together with the hypothesis (3.9) imply the claim (3.11) of the theorem.

Proof of claim 1.: By Lemma 4.4 we may replace “P-a.s.” in the claim by “P-as.. If
I} # Iy are fixed integer intervals with |I;| = |Iy|, then P[¢[]} = &[] < 2¢19e 31| holds for
some constants c12,c13 > 0, even if I; and I are not disjoint. (See also the similar Lemma 6.33,
in particular estimate (6.66), below. The factor 2 makes the notation consistent with this lemma,
recall the binary choice: £[1; ~ £[I means £[1; = &[Iy or {[I) = ({[12)7.) We apply this for
Iy = [-2"m,2""] and all integer intervals Iy C [—9-2"m+1 9.2"m+1] with |[;| = |[o]| = 22" +1,
I # Iy; there are at most 18-2"m+! choices of I;. We obtain P[(E];,)¢] < 18-2"m+1 Qe ge 232"
which is summable over m; recall n,,4+1 = 0(2"™) as m — oo. Hence (EJ},)¢ occurs P-a.s. only
finitely many times by the Borel-Cantelli lemma; this proves claim 1.

Next we prove the second claim: By the assumption made there, there is a (random) M such
that the events EJf, and E™ hold for all m > M. Let m > M. In the considerations below, we
use several times the following rule: For pieces of sceneries «, 3,7, d:

Ifa<f<v<dand a <19, then 8 <1 7. (4.33)

In particular, this applies to

—-m+1

—-m+1
M€

and §m <£m<Em<§m+1 4gm’b—i—l 45 : (434)
we obtain ™ <y ™!, By the definition of (™ and ®, we know (™ = £™; hence we obtain
(™ <1 €™FL Using the definition of ® again, we see (" C ®(¢™, ¢mH) = ¢+l Using (4.33),
(4.34), (™~ ™, (ML x ¢mFL again, we get

(" <1 & 5 M 5y Emﬂ and ("™ <1 Emﬂ- (4.35)

Let W™ : Z — Z, m > M, denote the unique translation or reflection that maps ("™ onto a
subpiece of €. As a consequence of (™ C (™t " C Emﬂ, and (4.35) we see that h™ does
not depend on m for m > M. Hence h"™ maps ¢ := U, (™ to a subpiece of § = >, e,
thus ¢ < & In fact the domain of ¢ is Z; to see this we observe that domain(¢) contains all
(h™)~ domain(€")] = (h™)~1[=9 - 2"m 9. 2"n] which cover all of Z. To summarize, we have
shown that (¢"),,>nm converges pointwise to a scenery ¢ ~ &; thus A'(x) = ¢ ~ & by the
definition of A’(x). This finishes the proof of the second claim and also the proof of Theorem

3.7. m
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Definition 4.5 We define events of sceneries

B = {5 e CZ ( P [(15751““,@)c 5} < 6*04"0/2}, (4.36)
En o= ﬁl {§ eCt|IfP[E™|€] > %, then P {(E:g;;TmH)C NnNE™ ‘ g] < e"m+1/2}
- N{eer|plEmmarnernlrmig: g <emorlwam
m=1
= () {6 PLE™ 0By |€] < e}, (4.38)
Z o= nET rlw =1 N Em, (4.39)

where ¢c5 and cg are taken from Theorem 3.12 and c4 is taken from Theorem 3.10.

Note the similarity between these events and the bounds in (3.16), (3.17) and (3.19). The
following lemma provides a link between bounds with and without conditioning on the scenery

&:

Lemma 4.6 Let A be an event, r > 0, and Q be a probability measure on Q such that Q[A] < r2.
Then

QIQIA[E] > r] <. (4.40)

Proof of Lemma 4.6. This follows directly from

P2 Qux [ QIAIE1dQ = rQ [QIAIE] > 7). (4.41)
{Q[Alg]>r}

[
Lemma 4.7 For some constant c14 > 0 it holds:
Pl¢ ¢ 5] < emcuamo, (4.42)

Proof of Lemma 4.7. Using the bound (3.16), Lemma 4.6 for Q = P, the fact P[- | £] =
P[- | £], and the definition (4.36) of =i, we obtain for a sufficiently small constant ¢4 > 0

—C14M
e 1410

Ple¢ sl <ememol <

<—3 (4.43)

recall that ng was chosen large enough, see Subsection 2.1. As a consequence of the bounds
(3.17) and (3.19) we know

1
P (E:‘:(;;%Terl)c N Em N {P [Em ‘ 5] Z 5}:| S 67"m+1’ (444)
P(E™°NER,rm] < cse”®mm, (4.45)
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We obtain by the bound (4.44), Lemmas 4.4 and 4.6 with @ = P, and (4.37):
—C14M0

Ple¢En] < [ 1P[¢ ¢ En) < o “Z T2 S (446)

Here we used again that ng is large, and that (n,,)men grows fast; see Definition 3.6. The same
argument yields, this time using (4.45) and (4.38):

—C14M0

; = " n —cen €
Ple¢Em] < [c/""HPle ¢ Em] < |c| °°“Z 2geonn/? < €

(4.47)

The combination of (4.43), (4.46), (4.47), and (4.39) proves Lemma 4.7. =

Lemma 4.8 For all £ € = and all m € N the following holds for some constants c15 > 0,
c1g > 0:

m

—_

PE™ | =21- 20166_615n’“ z5 (4.48)
k=0
and
P[E™\ E™! | €] < cipec15mm+1, (4.49)

Proof of Lemma 4.8. Let £ € E. We prove (4.48) and (4.49) simultaneously by induction
over m: For m = 1 we obtain, since { € =1 and £ € Zyyy; see (4.36) and (4.38):

PE'[€] > PlEg,m | €= PUE) N By, | €]
1
> 11— @no/2 cé/2e_06”1/2 >1- Z crpe” N > — (4.50)

m=0

I\DH

for some constants cyg, c15; recall that n; > ng and ng is large enough by Subsection 2.1. Thus
(4.48) holds for m = 1. Let m > 1. Using £ € Zy1, (4.37), and our induction hypothesis (4.48),
we see P[(Eerl )N E™ | €] < e~™m+1/2. Hence we obtain (4.49), using & € Zpyp and (4.38):

stop,T™m+1
PIE"\E™' g < P[(E™N)en Bt ] + P (B ) 0 B[ €]
< CL})/Qe_C‘S”m“/2 + e mmi1/2 < opgeT 1ML (4.51)

Consequently we get, using our induction hypothesis (4.48) again:

m—+1
1
PIE™ € > PE™[& - PEM\E™! [ >1- ) cige 5™ > 55 (452)
k=0
this completes our induction step. m
Lemma 4.9 For some constant ci7 > 0 and for all £ € =2,
B o
P Em 5] <emamno, (4.53)
m=1
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Proof of Lemma 4.9. By Lemma 4.8 we have for ¢ € Z:

k

U (Em)c

m=1

k k
SPUEY €+ ) PE™\E™ [ <) cpe " < e,
m=1

m=0

P §

(4.54)

where ¢17 < c¢15 is a small positive constant; recall that ng is large. In the limit as £ — oo, this
yields the result (4.53). =
Proof of Theorem 3.14. Using Lemma 4.7 we have

o0

U (Em)c

m=1

o0

{cesin &™)

m=1
< 6*014710 + /
{¢€E}

U Em c
m=1
< eTeum Lgup P £l
£e=

g] < emmno, (4.56)

P < Plt¢E|+P (4.55)

o0

U (Em)c

m=1

We bound the argument of the last supremum, using Lemma 4.9:

| -

The combination of (4.55) and (4.56) yields, since ny is large (by Subsection 2.1):

[e.9]

U (Em)c

m=1

o0

U (Em)c

m=1

P

oo

U (Em)c

m=1

< e gm0 < % (4.57)

P

5 Heart of the Reconstruction Procedure:
Definition of the Algorithm Alg"

This section contains the heart of the reconstruction procedure: for every n € N, we define an
algorithm Alg™; it is designed to reconstruct long pieces of scenery with high probability. In
Section 6 below we show that it fulfills the formal specification given in Theorem 3.12.
Informally speaking, the observation x allows us to collect many pieces of “puzzle words”.
These puzzle words are chosen to have size cin with a fixed parameter cq; recall subsection
2.1. To obtain them, we collect triples of words (wi,ws,ws) which occur in sequence in the
observations x soon after a stopping time 7(k); an initial piece of y is represented below by
a formal argument 7. We put those words ws into our puzzle which are already uniquely
determined by w; and ws. This means that w; and ws should be be very “characteristic signals”;
if w1 and ws could be read at very different locations in the scenery close to a stopping time,
then it is unprobable that they will enclose always the same word wsy. Frequently, ws turns out
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to be a ladder word: Whenever one reads a ws in the context wjwsws along a non-ladder path
sufficiently close to the origin, one reads with high probability a different word w} in the context
wywhws, too, along a different path with the same starting point and the same end point; but
then ws is not collected as a puzzle word.

Here is the formal construction: We take input data 7 € [0,2'2°"]N and n € C22™" A side
remark: although for formal reasons there are infinitely many 7(k) given in the input data, the
construction below actually uses only the first 24" of them.

Definition 5.1 We define for m > 0 the random sets:

PrePuzzle™ (7,7n) = (5.1)
{(w1, w2, w3) € (™3 | 3k € [0,2°"[: wiwows T n[[r(k), 7(k) + 22”]},

Puzzlef' (7, 7n) := (5.2)

{(wl,wg,wg) € PrePuzzle"(1,n) | V(wy,w), w3) € PrePuzzle™(1,n): wh = wg},

Puzzlefy(1,7n) == (5.3)
{wy € C™ | Jwy,ws € CA"™: (w1, we, w3) € Puzzlef'(r,n)}.

Let us explain the idea behind the following constructions: Although many of the words wsy in
“Puzzler;” turn out to be ladder words of a central piece in the true scenery &, some of them
are not: There are “garbage words” in the puzzle. We play a “puzzle-game” with the words in
“Puzzlert”: We try to fit larger and larger pieces together. In order to distinguish “real” pieces
from “garbage” pieces, we need some “seed words” which are guaranteed (with high probability)
not to be garbage words; every piece that fits to a piece containing a seed word has a high chance
not to be garbage, too. This is what the set Seedy; defined below is good for. We identify “seed”
words as “puzzle” words that occur in the observations almost immediately after a stopping
time 7(k), when we expect the random walk to be close to the origin.

Recall the abbreviation h = [|M|. Formally, we proceed as follows:

Definition 5.2

Seedy'(7,n) = (5.4)
n dk € [0,2°"[ 35 € [0, Teynl]

{(wlaw%wi’)) € Puzzlef'(1,7) ' wiwaws = [ (r(k) + 7+ [0,3cn]) [

Seedfi(7,7n) := {wg € C" | (w1, w2, w3) € Seed{(7,7)}, (5.5)

Seedij;(7,7) == (5.6)

" Jv € Seedfi(1,7) :
{ne st | S ot o0 2 . dniz. }

Neighbors™ (7,n) := (5.7)
{(wl,wg) e (C™? | 3k € [0,2°",w e C"L . wywws T nl[r(k), 7(k) + 22”]}.

Let us explain what “Seedq;” is intended for: We need to identify the orientation of the pieces

(whether they are to be read “forward” or “backward”). This task consists of two problems:
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The identification of the relative orientation of two pieces with respect to each other, and the
identification of the absolute orientation with respect to the “true” scenery £. Of course, we
have no chance to identify the absolute orientation if the random walk is symmetric; we even
bother about identifying the absolute orientation only in the very unsymmetric case [, # [_.
The set Seedyr helps us to identify the absolute orientation in this case: Suppose we read every
[_.-th letter in a word from the left to the right, and every [._-th letter in the same word from
the right to the left; then every I_[._-th letter appears in both words, when at least one letter
is read both times. This turns out to be characteristic enough to identify the reading directions
“left” and “right” in the case [_, # [—. The fixed parameter co influences the length of the
sample pieces in this procedure.

The relation “Neighbors” serves as an estimation for the geometric neighborship relation be-
tween ladder words: ladder words that occur closely together in the observation x are expected to
occur on geometrically neighboring intervals in the “true” scenery £. The next definition defines
a “true” geometric neighborship relation >,. We try to reconstruct the corresponding “true”
neighborship relation for ladder words in a piece of £ using only the “estimated” neighborship
relation “Neighbors”.

Recall that p** denotes the k-fold convolution of y; in particular

k
supp 1= {Z 8
=1

Definition 5.3 Let I,J be right ladder intervals. By definition, I >, J means |I| = |J| = cin
and minJ — max I € supp p**. Similarly for I',J' being left ladder intervals, I' <, J' means
|I'| = |J'| = c1n and max J' — min I’ € supp p*".

Vi: s; € supp,u} ) (5.8)

The next definition is the heart of our method: We describe how to obtain reconstructed pieces
of sceneries. All pieces of scenery w € CI752"52"] are tested as candidates in a sequence
of “Filters”: Reconstructed ladder words should be in “Puzzler;”, the “estimated” and the
“reconstructed” neighborship relation should be consistent with each other, the reconstructed
pieces should contain “Seedp;;” words, and no piece of the puzzle should be used twice.

Only candidate pieces that pass all Filters are considered as a solution of the partial recon-
struction problem.

Definition 5.4 Let Filter?(,n), i = 1,... ,5, denote the set of all w € CI=>2"52"1 which fulfill
the following condition 1.,... 5., respectively:

1. For every right ladder interval I C [—5-2",5-2"], |I| = cin, one has (w[I)_, € Puzzlefj(7).

2. For all right ladder intervals I,J C [=5-2",5-2"]:
if by J, then (w[I)—, (w[J)=) € Neighbors™ (7, 7).

3. For all right ladder intervals I,J C [=5-2",5-2"], |I| = |J| = cin:
if (w[I)=,(w[J)—) € Neighbors™(1,n), then there is ¢ € N such that I >, J + ql_,.

4. For every right modulo class Z € Z /17 there exists a right ladder interval I C Z N [-2 -
27,2 2" such that (w[I)_, € Seedfy;(7,n).

5. For all right ladder intervals I,J C [=5-2",5-2"], |I| = |J| = cin:
if (wlI)s = (w[J)=, then I =J.
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We set
5
SolutionPieces” (1, n) := ﬂ Filter}' (7, 7). (5.9)
i=1

The output of the algorithm Alg™ could be any of these pieces w € SolutionPieces”(,7); we
choose one of them, if it exists.

Definition 5.5 We define Alg"(7,n) as follows:

e If SolutionPieces™ (7, n) is nonempty, then we define Alg"™(7,n) to be its lexicographically
smallest element.

e Otherwise Alg"(7,n) is defined to be the constant scenery (1) e[—5.2n 5.27]-

We could have equally well taken any element of SolutionPieces”(7,7n) in Definition 5.5; we
choose the lexicographically smallest one just for definiteness.

6 Playing Puzzle: Correctness of the Algorithm Alg"

In this section we prove Theorem 3.12 by showing that the Algorithm Alg™ defined in Definition
5.5 fulfills the specification described by this theorem: Let n = n,,, m € N. A remark concerning
notation: Events defined in this section are labeled with an upper index n, not m, since the
“hierarchy level” m plays no role here, in contrast to the “Skeleton” section. Only events that
also occur in the “Skeleton” section keep their old index m. Hopefully, this should not cause
any confusion.

Let 7 = (71)ren denote a fixed vector of G-adapted stopping times with values in [0,2!297].
We abbreviate Input := (7(x), x[[0, 2 - 2127[).

Definition 6.1 We define the following events:

EY qoesit = {&[[—5-2",5-2"] € SolutionPieces™ (Input)} , (6.1)
B | Vw € SolutionPieces™ (Input) : (6.2)
all piecesok " gH_Qn’ Qn] <Lw= 5“_9 . 2n’ 9. 2n] :
Lemma 6.2
E:cll doesit [ Egll pieces ok < E:Zconst,Alg"(T,-) (63)

Proof of Lemma 6.2. When the event E7, ; ... holds, then the set SolutionPieces™ (Input) is
not empty. Thus Alg"™(Input) is the lexicographically smallest element of SolutionPieces” (Input).

When the event E7 . also holds, then £[[—2",2"] < Alg"(Input) < £[[-9-2",9-2"]. m

all pieces o
Here is the main theorem of this section; it states that the events E, ; .; and E;‘Hpieces ok
occur very probably whenever the stopping times 7 fulfill their task specified by E,, ;:
Theorem 6.3 For some constant cg > 0, c5 > 0:
P [EsTtnop,T (E:Zidoesit N Egllpiecesok)] < cze” O (64)
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This theorem is proven the following three subsections. We split the proof into a purely combi-
natoric part and a probabilistic part. The combinatoric part (subsection 6.1 below for E7 4 it
and subsection 6.2 below for Ejj; icces ok) shows that whenever some more “basic” events (named
B™ below, where

stands for a varying label) and E'.  _ occur, then the events E”:
and E} . occur, too. In the probabilistic part (subsectlon 6.3 below) we show that these

43 ”
N stop,T xi does it
all pieces o

basic events B are highly probable, at least when EJ,, -
The Proof of Theorem 3.12 is an immediate consequence of Lemma 6.2 and Theorem 6.3.

occurs.

6.1 Combinatorics concerning E7, i it

In this subsection, we show that a piece of £ centered at the origin passes all the tests specified
by the Filter;, provided some basic events B" (specified below) hold.

Definition 6.4 For n € N we define the following events:

For every right ladder path 7 € [—2 - 122", 2 - [227])(0:c17/2[ anq for
;‘igﬂ := { every admissible piece of path 7/ € AdPath(2 - 122", cin/2): ; (6.5)
If omr=¢&on, then m(cin/2 — 1) > 7'(e1n/2 — 1).

For every right ladder path = € [—2 - 122", 2 - [227)(0:c1n/2] and for
Bgg . = { every admissible piece of path n/ € AdPath(2 -12%" ¢1n/2): . (6.6)
If o =¢&on, then 7(0) < 7'(0).

Let B, and BZ, . be defined just as B, , and B, . with “right ladder path” replaced by “left

sigl sig Ir sigr sigrr
ladder path’ and with “<” and “>7” exchanged in (6 5) and (6.6). We set
ggnals = Bmgrl N Bmgrr a 351g11 N Bmglr? (67)
For every ladder path m € [=2-12%2" 2. 122")0:¢1nl and for every
Egnaistt :=  admissible piece of path 7/ € AdPath(2 - 122", ¢in): . (6.8)
If Eom=E&on, then 7(cin/2) = 7'(c1n/2).
Lemma 6.5 ngnals = EggnalsII'

Proof of Lemma 6.5. Assume that the event B, ., occurs. Let w € [-2- 12272 . 1227 0einl
be a right ladder path and 7’ € AdPath(2-12%",c;n). Assume that £ o = £ o7’ holds. Looking
at the first half of 7 and 7’ only (with the first points (0,7(0)), (0,7'(0)) dropped), we see
m(cin/2) > 7'(e1n/2), since B, holds. Similarly, looking at the second half of 7 and 7’ only,
we infer m(cin/2) < 7'(¢1n/2), since B holds. Therefore 7(cin/2) and 7'(¢c1n/2) coincide.

sigrr
The case of left ladder paths is treated similarly. This shows that E" holds. m

signals I1

Definition 6.6 By definition, the event B patns occurs if and only if the following holds: every

admissible piece of path R € [—12-2" 12 - 2" 03einl pecurs in the random walk S with start at
most 22" time steps after some stopping time 7(k), k < 2°™. More formally:

N { VR € AdPaths(12 - 2", 3¢yn) 3k € [0,2°7[3; € [0,22"] : }

allpaths = TimeShift™ ¥+ (R) C § (6.9)

The following auxiliary lemma helps us to show below that the true scenery & passes the test
Filter;. Roughly speaking, it tells us that sufficiently many ladder words occur in the puzzle.
This is important, since playing our puzzle game would lead to a failure when pieces were
missing.
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Lemma 6.7 Assume that the event By .in N Bignais N Edfop, holds. Let I C [—6-2",6-2"] be
a right (or left) ladder interval with |I| = 3cin, and let wi, wa, w3 € CA™ with (§[1)—, = wiwaws
(or (&[1)— = wiwows in the case of a left ladder interval). Then (w1, wa,ws) € Puzzlel (Input).

Proof of Lemma 6.7. Assume that [ is a right ladder interval; the case of left ladder intervals
can be treated in the same way by exchanging “left” and “right”. Let I = I} U Iy U I3, where
I, I, and I3 denote the left, middle, and right third of I, respectively; thus ({[;)— = wj,
t=1,2,3. Since the event B} paths holds, the straight path which steps through the elements of
I from the left to the right in 3¢in steps is realized at least once by the random walk (S(¢))¢>0
within time 22" of a stopping time 7(k), k < 2°". Observing ¢ along such a straight path
generates the word wjwsows. Thus

(w1, we,ws) € PrePuzzle (Input). (6.10)

Let w) be such that (wq,wh, ws) € PrePuzzle™ (Input). In order to prove the claim (wy,ws, ws) €
Puzzlef' (Input) it remains to show: wz = wy. When the event EF,  _ holds, the stopping times
of 7(k), k < 2%, all stop the random walk (S(t));>0 somewhere in the interval [—2",2"].
Within time 22" the random walk moves at most a distance [22". Because of wywhws €
PrePuzzle” (Input), the word wjwhws occurs somewhere in the observations at most 22" time
steps after a stopping time 7(k), k < 29". Within time 22" after a stopping time, the random
walk cannot be further away from the origin than [22" 4+ 2" < 222" gince the event Egop.r
holds. Thus there exists an admissible piece of path R’ : [0,3cin[— [~2 122" 2.122"] such that
€ o R = wiwhws. Let R:[0,3cin[— I C [-2 1227 2-12?"] denote the right ladder path which
passes through I from the left to the right. We know & o R'[[0,c1n[= £ o R[[0,¢cin[= w; and
(o R'[[2c1n, 3ern])— = (£ o R[[2c1n, 3e1n[)— = w;. Furthermore, the event EY, 111 2 Bl
holds; see Lemma 6.5. Abbreviating = := ¢;n/2 and y := 5¢y1n/2, this implies R'(z) = R(z)
and R'(y) = R(y). But R[[z,y] is a right ladder path; thus R'[[z,y] must be the same right
ladder path, since only right ladder paths can travel equally fast to the right as R does. Hence
wy = (£ o R[[ein,2¢c1n[)— = (§ o R'[[cin, 2¢in[)—, = wh. This finishes the proof of Lemma 6.7.
[

NB~ NEZ

signals stop,T

Corollary 6.8 If the event B} holds, then £[[—5-2",5-2"] € Filter} (Input).

all paths
Proof of Corollary 6.8. Assume that B .o N Bignais N Eftop,r holds, and let I C
[—5-2",5:2"], |I3] = e1n, be a right ladder interval. Set I; := Iy — cinl_, and I3 := Iy + cynl_;
these are right ladder intervals adjacent to the left and to the right of I, respectively. Thus
I:=1, Ul U3 is a right ladder interval, |I| = 3¢in. Since n > ng and ny is large enough, we
obtain I C [—6-2",6-2"]. We set w; := ({[I;)—, i = 1,2,3. We have (w1, w2, ws3) € Puzzlef (Input)
by Lemma 6.7; thus wo € Puzzlefj(Input). This finishes the proof of Corollary 6.8. m

The following definitions are analogous to the definition of Filter; and Filtery, with the “re-
constructed candidate” w replaced by the true scenery ¢, and with the domain [-5 - 2" 5 - 27]
replaced by the larger domain [—9 - 2",9 - 2"]. We insert the corresponding statements for left
ladder intervals, too; this turns out to be useful only in the next subsection.
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Definition 6.9

Er?eighborI = (611)
For all right ladder intervals I,J < [-9-2"9.2"]: if [ >, J, then

((§[1)—, (€] J)—) € Neighbors™(r, 7).
For all left ladder intervals I,J C [-9 -2"9 .27 if I <, J, then(’

((¢[1), (£]J)) € Neighbors™ (7, 7).

Er?eighbor = (6.12)
For all right ladder intervals I,J C [-9-2",9 .27, |[I| = |J| = an:
if ((¢]1)—,(&[J)=) € Neighbors™(7,n), then there is ¢ € N such that
Iy, J+ql.

For all left ladder intervals I,J C [-=9-2",9-2"], |I| = |J| = ¢n: if
((&]1)—, (&[] J)~) € Neighbors"(7,n), then there is ¢ € N such that I, J—ql_.

Lemma 6.10 If the event B:llpaths holds, then the event E;’eighborl

E[[-5-2",5-2"] € Filtery (Input).

holds too, and consequently

Proof of Lemma 6.10. Assume that the event B[}, paths Dolds. We treat only the case of right
ladder intervals; the case of left ladder intervals can be treated in the same way by exchanging
right with left, — with <, and >, with «,.

Let I,J C [-9-2",9-2"] be right ladder intervals such that I >, J. We need to prove
((¢[1)=, (&[] J)=) € Neighbors"(Input). Let 4 := min[, i, := max/, j; := minJ, and j, :=
max J. Since >, J, there exists an admissible piece of path consisting of h+1 = [| M|+ 1 points
starting in 7, and ending in j;. Since I'>,J we have |I|],|J| = c¢yn. Thus there exists an admissible
piece of path R : [0,2¢1n + h — 1[— [, j,| starting at 4; and ending in j,; furthermore we can
require that R[[0,cin[and R[(cin+h—14[0, cin|) are right ladder paths. Set wy = (£]1)_, and
wo = (£]J)_; then € o R = wywwy where w € C"~1. Since n > ng holds and ng is large enough,
we have h < ¢in. Thus the piece of path R has length shorter than or equal to 3cin. The
range rng(R) of R fulfills rng(R) C [-10-2",10-2"], and since By s holds, the random walk
(S(t))i>0 “follows the path” R at least once within time 22" after a stopping time of 7. In other
words, there exists k € [0,2°"[ and j € [0, 22" —2c;n — h+1] such that for all i € [0,2c1n+h—1]
we have S(7(k) +j+1i) = R(7). Thus we get £ o S[(7(k) +j +[0,2c1n + h — 1[) = wywws. This
implies that (w1, ws) € Neighbors"(Input) and thus ((£[1)—, ({[J)—) € Neighbors"(Input). m

The following elementary number theoretic lemma serves to replace admissible pieces of path
with more than h steps by admissible pieces of path with h steps, up to a sequence of maximal

steps in one direction:

Lemma 6.11 Let s = (s;)j=1,...k € ME | K € N. Then there is (rj)j=1,...n € MM with

i ri+ (K — h)l_ — i s; € I_N. (6.13)
s j=1
Similarly, there is (r})j:17...7h e M" with
h K
S orh— (K =h)l_ =) sje—Il_N. (6.14)
P j=1
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Proof. In order to treat (6.13) and (6.14) simultaneously, let I, denote either I_, or —I._. For
a € M let n, denote the number of j = 1,... , K such that s; = a. Let n, € [0, |l |[N(ne+1_2Z)

goes

having ny, entries a for every a € M\ {l.} and h — 3~ ¢ \p 1.3 N entries lo,. Set

1 /
0= > (na—ny)(le —a) €N (6.15)
aeEM
note (I, —a)/l— > 0 and n, — n/, € |l|N. Then
K
d (e =s)) =) na(le —a) (6.16)
j=1 aeM
h
=gl + Y no(le —a) =gle + Y (I —1y),
aeM j=1

which implies the claim (6.13) or (6.14), respectively. m

Lemma 6.12 If the event EG, 1.1 N EXp - holds, then the event ET holds, too, and

neighbor IT
consequently £[[—5 - 2™, 5 - 2"] € Filtery (Input).

Proof. Assume that the events Eg,, ..y and Ef, -
ladder intervals:

Let I,J C [-9-2"9 2" be right ladder intervals with |I| = |J| = c¢in, and assume
((€[1)=, (&]J)=) € Neighbors"(Input). We need to show I >, J + ¢l_, for some g € N.

Using Definition 5.7 of Neighbors™ and the abbreviations w; := ({[I)— and wq := (£]J)—, we
see: There is an admissible piece of path R : [0,2c¢in + h — 1[— Z with the following properties:

hold. We treat here the case of right

e R is realized by the random walk S in during some time interval D C 7(k) + [0,22"],
|D| = 2c1n + h — 1, for some k € [0,2°"*[. This means: R equals S|D when time-shifted
back to the origin.

e Observing the scenery ¢ along R produces wjwwsy for some w € C"~1; ie.: €0 R = wiwws.

We know |7(k)| < 27" since the event EZ, _ holds; thus R takes all its values in [—(2" +
1227),2" 4 1227) C [—2-12%",2 - 12?"], since the random walk cannot travel faster than distance
[ per step. We examine the first ¢in steps of R: (€ o R[[0,c1n[)—. = wy = ({[I)— implies
R(cin/2) = minl + cini—. /2, since the event EZ, .y holds; note that  := minI + cini— /2 is
the point in the middle of a right ladder path walking through I. The same argument applies to
the last cin steps of R: (§oR[(cin+h—14]0,cin]))— = wa = (£]J)_ implies R(3cin/2+h—1) =
minJ + ¢inl_, /2 =: y; y is the point in the middle of J. The path R travels from z to y in
K :=cin+ h —1 > h steps, using some step sizes (s;);j=1,..,x € MK As a consequence of
(6.13) in Lemma 6.11, there is (r;);=1,...n € M with Z;‘:l rj+ (K —h)l — Zle sj = ql_,
for some ¢ € N. Since max] —z = (cin/2 — 1)l and y — minJ = ¢ynl_ /2, we obtain
minJ —max/ =y —z — (aqn — 1)l = Zle sj— (aan— 1), = 2?21 rj — ql—. This means
I, (J+qlo), as we wanted to show.

Summarizing, this implies {[[—5 - 2",5 - 2"] € Filterj(Input) and the first statement in the
definition of B ighbor 11> Which treats right ladder intervals.

The proof for left ladder intervals can be treated analogously. Altogether, we see that the
event Ell: 1horrr 18 valid. m
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Definition 6.13 We define the event

For every modulo class Z € Z/I_,Z there exists k € [0,2°"[ such
Bl a1 = < that S(7(k) +h) € Z, S[(7(k) + h+ [0,3cinl_]) is a right ladder » . (6.17)
path, and S|(7(k)+h+3cinl—+[0,3cinl_]) is a left ladder path.
Lemma 6.14 If the events By ains: Baignals: Breed1 and Egfop, - hold, then {[[-5-2",5-2"] €

Filter} (Input).

Proof of Lemma 6.14.  Assume that the event By . ino N Bignais N Bieear N Edtop,» holds.
Let Z € Z/I_Z. Since B, 4 holds, there exists a k € [0,2°"[ such that S(7(k) +h) € Z, Ry :=
S[(r(k) + h+[0,3¢1nl_]) is a right ladder path, and Rg := S[(7(k) + h 4+ 3c1nl— + [0, 3c¢1nl-])
is a left ladder path. Since Eg,, . holds, we know S(7(k)) € [-2",2"]. Thus the random walk S
cannot leave the interval [—2-2",2-2"] during the time interval 7(k)+[h+3cinl—+3ci1nl_], since
(h+3cinl—+3cinl_)l < 2™, and the random walk cannot travel faster than [ per step. Thus R;
and Ry take all their values in [—2-2", 2-2"]. Note that the right ladder path R; and the left ladder
path walk Ry traverse precisely the same interval, Ry using step size [_, to the right, and Ry with
step size —I._ back. The same is true when we restrict Ry and Ry to the smaller time intervals
[t1,t]] == 7(k) + h+ cinl— 4 [0, canl_] and [to,t}] := 7(k) + h + 3cinl— + 2¢c1nl_, + [—canl_,, 0],
respectively: We have S(t1) = S(t}) =: a, and S(t}) = S(t2) =: b, and S[[t1,t}] is a right ladder
path: it traverses [a,b] from the left to the right, while on S[[t2,t5] it is a left ladder path; it
traverses [a,b] in opposite direction. In particular, reading only every [._th letter in x|[[t1, ]
and only every [_th letter in x[[t2,t5] yield the same word, only in reversed direction:

(It 4] O (61 +1-Z))— = (€1 ([, 8] N (0 + L1 Z))— = (x[ft2 8] O (b +1-Z)) . (6.18)

We consider the words ujugus := x[(t1—c1n+0, 3¢1n[) and vyvavs := x[(ta—c1n+[0, 3c1n|) with
u;, v; € C™; note that ¢, — cin + [0, 3¢1n[C domain(R;) and ty — c1n + [0,3¢1n[C domain(Rz).
We get (u1,u2,u3), (v1,v2,v3) € Puzzlel' (Input) by Lemma 6.7. Hence we obtain (w;, ws,ws) €
Seed? (Input) by Definition (5.4), since the words ujusus and vijvevs occur in the observations
sufficiently close to a stopping time 7(k); more specifically: t; — cin,to —cin € 7(k) + [0, Tegnl].
Consequently ug,ve € Seedfj(Input) by Definition (5.5). Finally we observe

(u2[([0, conl ] N1 Z)) . = (£[([a,;b] N (a + 11 2)))— = (v2[([0, c2nl ] NI Z)) (6.19)

by (6.18). Thus we have shown ug € Seedj;(Input), see (5.6). Since ug = & o S[(¢t1 + [0, cin]),
and since S[(t1 + [0, cin|) is a right ladder path with values in Z N [—2-2" 2 - 2"] this implies
E[[-5-2",5-2"] € Filter}(Input). m

Definition 6.15 For n € N, we define the following event:

For every i,j € {1,...,I?}, every i-spaced interval I C [-11 -
n ) 2™/ 11-2"], and every j-spaced interval J C [—11-2" 11-2"] with (6.20)
uniquefit = 4 |71 = |J] > con holds (£[1)— # (£[J)—, and if I # J, then (’ '
(1) % (€17)-.
Lemma 6.16 If the event By ;. g, holds, then {[[—5-2",5-2"] € Filterg (Input).

Proof. Using c2 < ¢; (see subsection 2.1), this follows immediately from Definition 6.15 of
the event B and of Definition 5.4 of Filter;. m

unique fit?
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Theorem 6.17 B" C E™

all paths n 351gnals N Bseedl n Bumque fit a Estop T = “xidoesit

Proof. We collect the statements of Lemmas/Corollary 6.5, 6.8, 6.10, 6.12, 6.14, and 6.16 in
the following list:

B ggnals < ggnals I

Ballpaths n 351gnals N Eg?op, - {5“ 5- 2n n] S FiIterTf(Input)},

Ballpaths g {5“ 5- 2n n] S Filterg(InPUt)}a

E51gna1sII N Estop T C {5[[_5 -2"5- 2n] € Filter?(InPUt)}a

Ballpaths n BSlgnals N BseedI n Estop T C {5[[_5 25 2n] € FilterZ(InPUt)}a
Hnique fit C {{[[-5-2",5-2"] € Filterz(Input)}

The theorem is an immediate consequence these statements, using (6.1) and (5.9). m

6.2 Combinatorics concerning Ej icces ok

In this subsection, we show that a piece w that passes all the Filter; occurs in the true scenery
& near the origin, provided some “basic” events B" hold.

Definition 6.18 We define the events

n (6.21)

recogn stralght

For every R € AdPaths(ll 2" cin) with R(eyn—1) — R(0) ¢ {(can — 1), —(ean —1)I_}
{there is R € AdPaths(12 2" cln) such that R(0) = R(0), R(cin — 1) = R(cin — 1), and}

EoR#Eo

E} path R : [0,3cin[— [—-11-2",11 - 2"] with £ o R = wjwows holds:

For all (w1, ws,ws) € Puzzlef (Input) and every admissible piece of
only ladder *— (6 22)
wy is a ladder word of £[[—11-2™,11 -27].

Lemma 6.19 We have

n
B all paths N Bre

recogn straight C Eg, only ladder* (623)

Proof of Lemma 6.19. Assume that the event B[} paths [ Brecogrlstralght holds. Let
wiwaws € Puzzlef'(Input), and let R : [0,3¢cin[— [—11 - 2", 11 2"] be an admissible piece of
path with £ o R = wywows. We prove by contradiction that the event Eonly ladder DOlds: Assume
wy is not a ladder word of {[[—11-2",11 - 2"].  Since Bl oonstraignt 1OIdS, there exists an
admissible piece of path R : [cin,2cin[— [—11 2" 11 - 2"] such that R(cin) = R(cin) and
R(2¢cin — 1) = R(2¢c1n — 1), but wy # (£ o R)_, =: w). Let R : [0,3cin[— [~11-2",11-2"] be
the admissible piece of path which on [e;n,2¢1n[ is equal to R and otherwise is equal to R. We

have £ o R = wijwhws. Since B paths holds, too, this implies that the random walk S follows

the path of R within time 22" from a stopping time of 7(k), k < 2°™. The same is valid for R,
maybe with a different stopping time 7(k’). In other words: wiwhws € PrePuzzle"(Input) and
wiwows € PrePuzzle™ (Input). This implies the contradiction wiwows ¢ Puzzlef' (Input); thus we
have proved Lemma 6.19. m
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Definition 6.20 We define the events

Bgutside out = (6.24)
For every admissible piece of path
{R € ([-2-12%,2-122"]\[-10-2",10-2"])[0¢17/2]; €0 R is not strongly equivalent} ,
to any ladder word of length ¢1n/2 of {[[-9-2",9-2"].
rrrblodclass = (625)

For all w € Filter] (Input) and for all right ladder intervals I C [-2-2",2-2"], |I| = cin:
If there is a right ladder interval J, C [—2-2",2-2"] with w[I = £[J,, then

EN([-2,2"] N (J, +1-7)) C w[(I +1-2) C€[([-9-2"9 2] 1 (J, 1 1.7)), and

if [_, = I and if there is a (left) ladder interval J; C [-2-2",2-2"] with (w[I)” = £[J],
then €]([~27,27) 1 (J; +12)) C (w[(I +1Z))" C £[(—9 - 27,927 (\ (J + 12).

Informally speaking, the meaning of the event ET ., . is the following: If a “reconstructed”
piece of scenery w contains a correct “seed piece” w[I over a sufficiently long ladder word,
then the whole modulo class generated by I is reconstructed correctly. The reconstruction may
generate the wrong orientation, but this is only allowed if left ladder intervals and right ladder
intervals coincide, and if already the “seed piece” w[[ is reversed compared with the true scenery
£.

The next lemma formalizes the intuitive idea of “playing a puzzle game”: We start with a
seed word as reconstructed piece; then we append successively pieces of our puzzle that match to
an ending of the growing reconstructed piece. This procedure continues until the reconstructed

piece is large enough.

Lemma 6.21 We have

n n n m n
Boutside out N Bunique fit N Eonly ladder a Estop,T - Emod class (626)

Proof of Lemma 6.21. Assume that the events on the left hand side of (6.26) hold. We
claim that then £ holds, too. To prove this claim, let w € Filter}(Input), and let I C

mod class
[—2-2",2-2"], |I| = cin be a right ladder interval. Assume that J C [-2-2",2-2"] is a ladder
interval. We assume one of the following two cases:

A) J is a right ladder interval, and w[I = £[J;

B) I, =1_ and (w[I)” =¢][J.

We treat both cases simultaneously as far as possible; in order to unify the notation, let -~
denote the reversion operation - in case B and the identity operation in case A. We set Z :=
J+1_Z € Z/I_Z; then it remains to show:

€[([-2",2"1 N 2) C (w[(I +1_Z))~ C£[([-9-2",9-2"] N Z). (6.27)

To prove the right hand side of (6.27), we prove by induction over all right ladder intervals I’
with I C I’ C[-5-2™,5-2"]:

(w[I')™ T e[([~9-2",9-2" N 2). (6.28)
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Once we have proven this, the right hand side of (6.27) follows from the special case I' =
(527527 N (I + 7).

The induction starts with I = I’: in this case (6.28) holds since our assumption A) or B),
respectively, implies (w[I)~ C £[([-9-2",9-2"]N Z). For the induction step, assume that (6.28)
holds for some I’. We enlarge I’ by a single new point: let I” = I'U{i} C [-5-2",5-2"|N(I+I_Z)
be a right ladder interval, i ¢ I'. Let I; C I” be a right ladder interval with |I;| = ¢;n and
i € I;. Using w € Filter(Input) we see wy := (w[l;)—, € Puzzlef;(Input). Hence there are
wy, w3 € C1™ such that (w1, we, w3) € Puzzlef' (Input) C PrePuzzle™ (Input). Thus wywows occurs
in the observation y at most 22" time steps after a stopping time 7(k), k < 29%; say wjwaws
is read there in y while the random walk follows an admissible piece of path R : [0,3cin[— Z;
(we shifted the time domain of R back to the origin). Since the event EZ, ~ holds, we have
|S(7(k))| < 2". Within time 22" the random walk cannot travel farther than distance [22"; thus
R has all its values in [—(2" +(2%7), 2" 4 [227] C [-2-122" 2.122"]. Consider the ladder interval
I''=L\{i} =LNTI, |I]| = cyn—1 > ¢1n/2: the induction hypothesis (6.28) implies (w[I})~ C
E[([—9-2™,9-2"NZ); say (w[I])~ = £[ D’ for some right ladder interval D’ C [-9-2",9-2"|N Z.

Furthermore, w) := (w[I})_, is a subword of wy = (w[I;)_, and thus also a subword of § o R.
Hence we see, using that the event Bl .. . holds: R cannot take all of its values outside

[—10-27,10-2"]; thus it has all its values in [-10-2" — 3¢inl, 10-2" +3cynl] C [-11-2™,11-2"].
Since the event E7 1 4 holds, wa = (w[I;)— is a ladder word of £[[—11-2" 11 - 2"]; say
wy = (£]D)_, for some right ladder interval D C [—11-2" 11 - 2"] (we call this “case A;”), or
wy = ({[ D)~ for some left ladder interval D C [—11-2" 11 -2"] (call this “case B1”). Thus w)

occurs as a (possibly reversed) ladder word

e as a subword of ([ D)_, in case Ay, or as a subword of ({[D)._ in case By;

e as wh = ({[D')_, in case A, or as wh = ({[D’)— in case B.

Since the event Blhique it holds, this implies D’ C D, and furthermore the reading directions

have to coincide: If case A holds, then case Aj occurs, and if case B holds, then case By occurs.
Let T': Z — 7 denote the translation (case A) or reflection (case B) that transports w|I; to
¢[D. Then T transports w[I] to {[D’, and thus — using once more that By ;  .q holds — T
is also the map that transports w[I’ to a subpiece of £[([—9-2",9-2"] N Z) according to the
induction hypothesis (6.28). Hence T transports w[(I; UI") = w[I” to an equivalent subpiece of
¢[[—11-2",11-2"]. To see that T[w[I"] is already a subpiece of £[([—9-2",9-2"|NZ), we proceed
as follows: T maps the nonempty seed interval I C [-2-2",2-2"] to J C [-2-2",2-2"|N Z; thus
it has the form 7'(z) = £z +a with |a| < 4-2". Consequently 7" maps the domain [-5-2",5-2"]
of w to a subset of [—9-2",9-2"]. This shows (w[I”")~ C £[([-9-2",9-2"]N Z), which finishes
our induction step and also the proof of the right hand side of the claim (6.27).

To prove the left hand side of (6.27), we observe that 7! maps [-2",2"] to a subset of
[-5-2" 5-2"]. Since T maps I to J, it maps the modulo class I +[_Z to Z = J + [ Z; thus
T~! maps [-2",2"] N Z to a subset of (I +1_.Z)N[-5-2"5-2" = (I +1_7Z) N domain(w).
Since T~! maps a subpiece of £[([~9-27,9-2"] N Z) to w[(I + _Z), this implies the left hand
side of the claim (6.27). This finishes the proof of Lemma 6.21. m

Definition 6.22 We define the event

Every u € Seedfj(Input) is a left or right ladder word of £[[—2 -
Elqmni=12"2-2". If I, # I, then every u € Seedfj;(Input) is a right » . (6.29)
ladder word of £[[—2-2",2-2"].

32



Lemma 6.23 We have

n n n
Bunique fit a Bsignals nB

all paths N Bre

m n
recogn straight a Estop T - Eseed II- (630)

Proof of Lemma 6.23. Assume that the events on the left hand side of (6.30) hold. In order
to show that the E7._;; holds, let wy € Seedfj(Input). We need to show that ws is a ladder word
of £[[-2-2",2-2"]. Using (5.5), we take wy,ws € C" with (wy,wa,ws) € Seed (Input); thus
wiwowsz = N[ (7(k)+7+[0, 3c1n) for some k < 2°™ and j € [0, 7cynl]. Since B, ; holds, we have
|S(7(k))| < 2". Using 2"+7einl?+3c1ln < 2-2" —cynl, we see that the random walk S is located
inside the interval [—2- 2" 4 ¢ynl, 2 - 2" — ¢ynl] during the time interval 7(k) 4+ 7cinl + [0, 3cin].
The word wywyws is read along an admissible piece of path, say R € AdPath(2-2" — ¢inl, 3cin)
with § o R = wiwaws; (the time interval is shifted back to the origin). The event Ey\ |.qqer
holds by Lemma 6.19, and we have (w;, w2, w3) € Puzzlef'(Input); hence wy is a ladder word
of £[[—11-2",11 - 2"]; say we = & o w for a ladder path 7 : [0,cin[— [—11-2",11 - 2"]. Let
7' = R[[c1n,2¢1n| be the middle piece of R, along which one observes (£ o7’)_, = wy = £ o
Since the event EY, ..y holds by Lemma 6.5, we get m'((3/2)cin) = m(cin/2); thus m takes
least one value in [—(2-2" — ¢1nl), 22" — ¢ynl]; therefore all the values of 7 are in [—2-2",2-2"].
Thus wy is a ladder word of £[[—2-2",2-2"].

For the rest of the proof we assume [, # [ and let u € Seedfj;(Input). It remains to
show: w is a right ladder word of £[[—2 - 27,2 - 2"]. Using Definition (5.6) of Seedf};, we choose
v € Seedfj(Input) with (u[(—_Z N [0,conl_]))—= = (v[(I=Z N [0,canl_]))—. From the first part
of the proof we get: u and v are ladder words of {[[—2-2",2-2"], since u,v € Seedfj(Input). We
distinguish three cases:

1. w is a right ladder word;
2. u and v are left ladder words;

3. u is a left ladder word and v is a right ladder word.

We need to show that case 1. holds; thus we prove that the cases 2. and 3. lead to a contradiction:

In case 2., let u = ({[I)— and v = ({[J)— for some left ladder intervals I, J C [-2-2",2-2"],
[I| = |J| = e1n. We get (u[(I_Z N [0,canl_]))— = (£[I")— for some 2 -spaced interval I’ C I,
|[I'| = con + 1. Similarly, (v[(I-Z N [0,canl_]))— = (&[J")— for some I._I_,-spaced interval
J'CJ, |J'| = ean+1. Thus (§[I")— = ({[J')—, which is incompatible with the event B}l ;.-

In case 3., let u = ({[I)— for some left ladder interval I C [-2-2",2-2"] and v = ({[J)—
for some right ladder interval J C [-2-2" 2. 2"] |I| = |J| = cin. We get again (u[(l—Z N
[0, conl_]))— = (£[T")— for some I2 -spaced interval I’ C I, |I'| = con + 1. This time we have
(W[(I-ZN[0,canl_]))— = (&[J")_ for some %, -spaced interval J' C J, |J'| = con + 1. Since
2 7& 12,, we have I' # J'. We obtain (([1') = (£[J’)—, which is incompatible with the event

unlque fit?

Thus cases 2. and 3. cannot occur. Summarizing, we have proven that the event E7, ;; holds.

[

Definition 6.24 Ifl_, = 1., we define the event

Bl = (6:31)
For all ladder intervals I,J C [-9-2",9-2"], |I| = |J| = cin: if at least one
{Of ((€[D). (E[)-), ((E[1)~, E ) ) ((éU)H( [J)-), or ((€[1)—, (§[)) is in}

Neighbors™ (Input), then distan J) <3-lein.
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In the case I, #1_, we set B}, to be the sure event.

Lemma 6.25 ngnals N Eggopﬁ C Bl
Proof of Lemma 6.25. Assume that the event Bg, ... N E{, - holds, and that I, =1 = 1.

Let I,J C[-9-2",9-2"], |I| =|J| = c1n be right ladder intervals, and assume that there is a
(w1, wz) among ((€71), (1)), ((€T1) s (€[1))s (E[T)s (E1T) ), 01 ((€]1), (1)) with
(w1, ws) € Neighbors™(Input). By definition (5.7), some word wjwws with w € C"~1 occurs in the
observations y at most 22" time steps after a stopping time 7(k), k& < 2°". Since Eg,p + holds, the
random walk remains in the interval [—2-122" 2.122"] during that time interval; say the random
walk follows an admissible piece of path R : [0,2cin+h—1[— [-2-122" 2-122"] while producing
the observations £ o R = wywws; (we shifted the time domain back to the origin). R consists of
the three pieces 7} = R[[0,cin], 7' = R[(c1n + [0,h — 1[), and 75, = R[(cin + h — 1 + [0, c1n])
with o] = w1, (Eon’), = w, and (§omh)_ = wy. Let &1 := ¢1n/2 and 9 := (3/2)cin+h—1
be the points in the middle of the domain of 7] and 7%, respectively. Then

|7y (21) — 7h(2z2)| < (c1n + h — 1)1, (6.32)

since the path R cannot travel faster than [ per step. The event Eggnals 11 holds by Lemma 6.5.
Let 1 : [0,can[— I and my : ein + h — 1 4 [0,cin[— J be ladder paths with range I and J,
respectively; we choose these paths to be left or right ladder paths according to whether the
reading direction is “«” or “—”. Hence, using {om; = w; = {on} and (§oms)_, = we = ({om))_,
we obtain 7 (x1) = m1(x1) and 7h(x2) = ma(x2). Consequently (6.32) implies

distance(I, J) < |mi(z1) — m2(z2)| < 3-lein. (6.33)

Summarizing, we have shown that the event E’f holds. m
The following event E} ok compares modulo classes (modulo some ) in “reconstructed”
pieces w with modulo classes in the “true” scenery £. Roughly speaking, it states that all
modulo classes are reconstructed correctly, and either all of them are reconstructed in the correct
orientation (“case A”), or all of them are reversed (“case B”). Even more, reversion is only
allowed for symmetric maximal jumps of the random walk. Our goal is to show that this event
holds for v =1 (at least if the basic events B hold), but as intermediate steps, other values of

~ are relevant, too.

Definition 6.26 For all divisors v > 1 of l_,, we define the event

ETZ

mod ok = (634)

(For all w € SolutionPieces” (Input) there is a bijection ¢ : Z/vZ — Z/vZ such
that (at least) one of the following two cases holds:

A) VZ € ZjyZ: €[([-2",2") N0y (2)) CwlZ CE[([-9-2%,9 27 N1(2))

B) I =I_ and
VZ e ZjAL: €1(1-2%,2"] N 1y(2)) E (w]2)” CE[([=9 27,927 N1, (2)

\

Lemma 6.27 For v =1_,, we have EgeedH N Eglodclass

N E%., N B" C Em

unique fit = “modI_, ok"
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Proof of Lemma 6.27. Assume that the event Eg ;11 N Ef o4 class N Edist N Biinique e holds.
Let w € SolutionPieces"(Input). Let Z € Z/I_,Z. In order to define «(Z) = ¢;_ (Z), we proceed
as follows: Since w € Filtery(Input), there exists a right ladder interval I C Z N [-2-2",2-2"]
such that (w[I)_, € Seedfj;(7,m). We choose such an I. Then (w[I)_, is a left or right ladder
word of {[[—-2-2",2-2"], since the event E? _,; holds. More specifically: for some right ladder

interval J C [—2-2",2-2"], at least one of the following two cases holds true:

Case A(Z): w[l =¢&[J,
Case B(Z): I =l_ and (w[I)” =¢[J.
We define «(Z) := J +1_7Z € Z/I_Z. Since the event E"

mod class

holds, we get

for Case A(Z):  £[([-2™,2"Nu(Z)) Cw[Z CE[([-9-2™,9 2" Nu(Z)),
for Case B(Z): £[([-2™,2"]Nu(Z)) C (w[Z)” C&[([-9-2™,9 2" Nu(2)).

We claim that one of the following two cases occurs:

Case A: For all modulo classes Z € Z/I_,7Z holds Case A(Z);
Case B:  For all modulo classes Z € Z/I_Z holds Case B(Z).

This is obvious for [, # [._, since then Case B(Z) cannot occur. To prove the claim for [_, =1,
we proceed as follows: For Z € Z/IZ, let Ty : 7Z — Z denote a translation (Case A(Z)) or
reflection (Case B(Z)) which transports w|[Z to a subpiece of {[[—9-2",9-2"|Nu(Z). Let Z,W €
ZJIZ. We choose two right ladder intervals I; C ZN[4-2",5-2"], L, CWN[4-2",5-2"], |[;| =
|Io| = c1n, with I >, Io; such intervals exist, since supp p*" meets every modulo class (modulo
[) and since n > ny is large enough. We abbreviate I := Tz[I1] and I} := Tyy[l2]. Since w €
Filtera(Input) one has ((w[I1)—, (w[I2)—) € Neighbors™(Input). Let Xz denote the symbol “—”
in the Case A(Z) and “~” in the Case B(Z). Then ((w[I1)—, (w[I2)=) = ((§[11)x,, (E[15) xy )-
Since the event E7.  holds, this implies distance(I{, I5) < 3-lcin. However, Tz maps [—5-2",5-2"]
to [=9-2" —1,9-2" 4+ []; (the extra summand [ arises since Tz was specified only by its action
on a modulo class). Thus it maps I;,I> C [4-2",5-2"] to a subset of [4-2" —1,9-2" 4[] in the
Case A(Z), and to a subset of [-9-2" — [, —4 - 2" +[] in the Case B(Z). The same statement
holds with Z replaced by W. The intervals [4-2" —[,9-2" +[] and [-9-2" — [, —4-2" 4[] are
farther apart than 3 - leyn > distance(I7, I5); thus either both Tz and Ty must be translations,
or both must be reflections. Summarizing, we have shown so far that Case A holds or Case B
holds.

It only remains to show that ¢ : Z/I_,Z — Z/I_Z is bijective. Since Z/I_,7Z is finite, it suffices
to show that ¢ is injective: Let Z,W € Z/I_Z with «(Z) = «(W). Using the above maps 17,
Tw again, we know

Tz[Z Ndomain(w)] =Tz[ZN[-5-2",5-2"]]
Tw[W Ndomain(w)] = Tw[W N[-5-2"5 2"

(Z)N][-9-2"9-2",  (
(WYN[=9-27,9-27.

5)

- 6.3
c 6.36)
The sets on the right hand of (6.35) and (6.36) coincide; thus T%z[Z N[5 -2",5 - 2"]] and
Tw[WN[=5-2",5-2"]] overlap at least in K N¢(Z) for some interval K of length 2". We choose
any right ladder interval D C K N¢(Z) with |D| = ¢in and set Dy := T, '[D] and D5 := T}/ [D].

Then

Case s (w[Dy)— = (¢[D)— = (
Case B:  (w[Dy)— = ({[D)— = (w]D2)—;
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thus w € Filters(Input) implies D1 = Dy; hence Z = Dy + [, Z = Dy + [_,Z = W. This shows
that ¢ is indeed injective. m

The next lemma contains a “step down” procedure in order to arrange correctly larger and
larger modulo classes in a reconstructed piece of scenery w. Here is a rough idea for the rather
complex construction:

Suppose we have already correctly reconstructed large pieces of the scenery & restricted to
modulo classes (mod 7, say) up to a translation (and possibly a global reflection for all classes).
Our task is to identify the relative translation between different modulo classes.

We start with a “reference” ladder word; it occurs over both, a ladder interval I in the
reconstructed “candidate” scenery w, and a ladder interval J in the “true” scenery & (possibly
reflected). Then we look for the rightmost “neighboring” ladder words that occur not in the same
modulo class as the reference word, both in the candidate scenery and in the true scenery; we
use here the “estimated” neighborship relation “Neighbors”. Taking the rightmost “neighboring”
words as our new starting point, we repeat this construction until we are sure after v steps to
re-enter the modulo class that we started with; say we arrive at ladder intervals I, and J,,
respectively. In this way we obtain two “chains” (I;) and (J;) of neighboring ladder intervals;
(J;) belongs to the the “true” scenery, and (I;) belongs to the “reconstructed candidate” w.

Using the Definition of the tests “Filter;,3”, and of the events i gnhor1/11, We know that the
“estimated” and the “geometrical” neighborship relations coincide at least when taking only
rightmost neighbors as above; this holds for both, the “reconstructed” piece w and for the
“true” scenery {. The distance between I, and I equals the distance between J, and J, since
this distance is not affected by a relative translation between different modulo classes; recall
that I, and I belong to the same class modulo v, and so do .J, and J. Having identified the
starting point and the end point of our two chains of intervals, there also no ambiguity left
for the relative position of the intervals in between in the chain; but then we have successfully
reconstructed the larger modulo class spanned by the whole chain (I;).

This construction is repeated recursively until we have correctly reconstructed the whole piece
of scenery.

We describe the procedure formally:

Lemma 6.28 Assume that the events BlTaniqueﬁ‘w EITlLeighborD and Egeighborﬂ hold true. Let vy > 1
be a divisor of [, and assume that the event Eod ok valid. Then there is a divisor v of I_,

with 1 <~/ < such that the event Egmdy, ok 8 valid, too.

Proof. Let v be as in the hypothesis of the lemma. Every modulo class Z € Z/+Z is a union of
modulo classes Z' € Z/I_7. Furthermore, every such modulo class Z' € Z/I_7 has a nonempty
intersection with supp p**. (One can see this as follows: Since 1 is the greatest common divisor
of the elements of supp u, every integer can be written in the form gi_, + Zszl sj with 3 € Z,
K € N, and s; € suppp for 1 < j < K. By Lemma 6.11 it suffices to take K = h; thus we get
7, = supp p*? + 1_,Z, which is equivalent to the above claim.)

Since we assume 7 > 1, the set difference Z \ 7Z contains at least one Z € Z/~Z as a subset;
thus Z \ 7Z has at least one element in common with supp u**. Let M_, := max[(Z \ vZ) N
supp 1] and M_ := —min[(Z \ ¥Z) N supp p*"]. Define 7’ to be the greatest common divisor
of v and M_,; thus o' < v since M_, ¢ ~vZ.

Let w € SolutionPieces” (Input). According to Definition (6.34) of Ef, ;. . we have to distin-
guish two cases A and B; however, we treat both cases simultaneously as far as possible. We
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set

= { §M=9-2",9-27] in case A of (6.34),

(&[[-9-2™,9-2"])7 in case B of (6.34). (6.37)

For Z € ZL/vZ we set iy(Z) := +1,(£Z) with “+” in case A and “—" in case B; here the bijection
Lyt Z]YL — Z/vZ is taken from Definition (6.34) of the event EJ, . .. The introduction of ,

takes care of the inversion of modulo classes in ¢ in case B. Since the event E”.

mod ok is valid, we
have for all Z € Z/~Z:

¢[(y(2) N [=2",2"]) Ew[Z E ([iy(2). (6.38)

For Z € Z/¥Z, let Ty : Z — 7Z denote the translation which transports w|Z to some Tz [w[Z] C
¢[ty(Z); in particular T7[Z] = iy(Z). Tz is uniquely determined, since the event B}’ holds.

unique fit
Of course, T also depends on -, but we suppress this in the notation, since « is considered

fixed for the moment. For W € Z/vZ, we set Ty := (TZ;l(W))_l; thus Ty [W] = Z;l(W). For

later use, we note

([ (Z) N [=2",2"]) € Tz[w([Z] C ¢[iy(Z). (6.39)
We define
(= |J Tzw[Z]C ¢ (6.40)
ZEL/NT

Note that [-2",2"] C domain(¢’). For (nonempty) ladder intervals I and J, we abbreviate
T] = TIJF'Yz and T] = TJ+»yZ.

Let the following data be given: u € {w, ('}, a right ladder interval I contained in the domain
of u with |I| = ¢in, and k € [0,7]. We define Seq(I,u, k) to denote the set of all (Io,... ,Ix)
with the following properties:

1. Iy =1;

2. Iy,...,Ij areright ladder intervals contained in the domain of v with |I;| = ¢in, 0 < j < k.
3. For all j € [0,k[: I; +vZ # 111 +~Z.

4. For all j € [0,k[: ((u[Ij)—, (u[Ij4+1)—) € Neighbors™(Input).

Of course Seq(1,u, k) also depends on =, Input, and n, but these parameters are considered fixed
for the moment.

Let MaxSeq(I,u, k) denote the set of all (;);—o,... x € Seq({,u,k) for which min I}, — min Iy
is maximal.

Given a modulo class Z € Z/vZ, we take a fixed right ladder interval J C Z;l(Z) N[0, (cin+
1)i] C Z;l(Z) N domain(¢’), |.J| = ein. Furthermore, we set I := T7.J C Z N domain(w).

J serves as a “reference” interval in the “true” (only possibly reflected) piece of scenery (’,
while I serves as a “reference” interval in the “reconstructed” piece of scenery w.

We prove by induction over k:

e MaxSeq(/,w, k) contains a unique element (I;);—o,.. x, namely

I =M_j+(cin—1)_j+1I. (6.41)
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e MaxSeq(J,(’, k) contains a unique element (J;);=o,... x, too, namely
Ji=Mj+ (can—1)l_j+J, (6.42)
where M = M_, in case A and M = M_ in case B.

This is obvious for kK = 0. Here is the induction step k — 1 — k:
If (I)j=o,... k> (Jj)j=0,... .k are given by (6.41) and (6.42), then

(Ij)j:O,...,k c Seq(I,w, k) and (Jj)j:O,...,k € Seq(J, C’, k‘) (643)
To see this, we check the conditions 1.—4. in the definition of Seq:
1. This is obvious.

2. The only nontrivial claims are J; C domain(¢’) and I; € domain(w), 0 < j < k. To prove
the first claim, we observe |minJ — min J;| < (M + cinl)k < 2cinly < 2cinl?; thus we
obtain for all i € J;: [i| < 2c1nl?+(cin+1)I—. < 2"; hence J; C [—2",2"] C domain(¢’). To
prove the second claim, we observe that J+[—2"/2,2" /2] C [-2",2"] = domain({’) (recall
n > ng, and ng is large enough). We apply the translation T to J+ ([—2"/2, 2" /2]NyZ) to
obtain I+([—2"/2,2"/2]"Z) = Ty[J+([-2"/2,2"/2]NvZ)] C domain(w) = [~5-2", 5-2"].
This implies I+ [—2"/2+4~,2" /2 —~] C [-5-2",5-2"], since [—5-2",5-2"] is an interval;
consequently I; C I 4 [-2"/24v,2" /2 —v] C domain(w), which proves the second claim.

3. This is a consequence of min /41 —max [; = M_, ¢ yZ and min Jj;1 —max J; = M ¢ ~Z.

4. Because of minl; ;1 —maxI; = M_ ¢ supp 1" we get I >, Ij1q1; thus the fact w €
Filtery (Input) implies ((w[I;)—, (w[lj+1)—) € Neighbors™(Input); see Definition 5.4. Sim-
ilarly min J;11 —maxJ; = M_, € suppu*h in case A and minJ; 1 —maxJ; = M_ €
—supp ,u*h in case B. Hence we get J; >, Jj41 in case A and —J; <, —Jj41 in case B; this
implies ((¢'[/j)—, (¢'[Jj+1)—) € Neighbors"(Input) in both cases, since the event EJ. ;1\ o 1
holds; see Definition 6.9.

Thus the conditions 1.—4. are indeed valid.
To check the defining property of MaxSeq, consider another sequence

(Ijl')j:O,...,k € Seq(I,w, k) and (J]’-)j:()w.’/C € Seq(J, ', k). (6.44)

Using our induction hypotheses

MaxSeq(I, w, k — 1) = {(IJ)J:07 7]gfl}, (645)
MaxSeq(J, ¢,k —1) = {(Jj)j=0,.. k—1} (6.46)
and
( ;’)j:O,...,k—l € Seq(-[uw7 k— 1)7 ( ]/')j:O,...,k:—l € Seq(Ju </7 k — 1)7 (647)
we know
minl_1 —minly > minl},_; — min [, (6.48)
minJ;_1; —minJy > minJj_; — minJ), (6.49)



with equality only if (Ijl‘)j:O,...,k—l = (Ij)jzo,...,kz—l or (Jj,‘)jzo,...,k—l = (Jj)jzo,...,k—l'
We treat first case of the I's: Using ((w[l},_,)—,(w[I})—) € Neighbors"(Input) and w €
Filtery (Input) we get I} >, I}, + al_, for some a € N; thus
min I}, — max [;,_; < min I}, + al_, —maxI_; < M_, (6.50)

by the maximality of M_, and I + yZ # Ix_1 + vZ; (see condition 3. in the definition of Seq,
and recall I_, € yvZ). Hence

min [, —minf) = (minl;, —maxIj_;)+ (cyn —1)i_, + (min I}_; — min [)) (6.51)
< M_ + (egn — 1)l + (min Ix_; — min Ip) = min [, — min .

This proves
(Zj)j=0,... . € MaxSeq(I, w, k). (6.52)

Furthermore, using our induction hypothesis, equality in (6.51) can hold only if (1 ]’) j=0,... k—1 €
MaxSeq(I,w, k—1) and min I}, —max I} _; = M_,, which is equivalent to (Ij’»)j:(),___ k= (Ij)j=0,.. k-

We treat (J;)j=o,...  similarly: Since the event EJ . . 1 holds, ((('[Jz_1)—, (('[Jp)—) €
Neighbors™ (Input) implies

J_1>n Ji +al_.  in case A, (6.53)
—Jp_1 < —J —al—  incase B (6.54)

for some a € N; see Definition (6.12). This implies in both cases A and B, analogously to (6.50):
min Jj, — max Jj,_; < minJj, +al_, —maxJ;_; <M (6.55)

by the maximality of M; recall that M = M_, in case A and M = M_._ in case B, and that
I, =l_ € 7Z holds in case B; furthermore recall that J;, and J;_, belong to different classes
modulo 7. We repeat arguments similar to (6.51):

minJ;, —minJ), = (minJ;, —maxJ;_;)+ (cin — 1)l + (minJ;,_; — minJj)  (6.56)
< M+ (ein — 1)l 4 (min Jx_; — min Jy) = min J; — min Jy,

with equality only if (J});=0,.. x € MaxSeq(J,¢’,k—1) and min J;, —max J; _, = M. This proves
in analogy to (6.52):

MaxSeq(J, Clvk) = {(Jj)j=0,...,k}- (6'57)

Since i, is bijective, the facts 77, 1; € domain(¢’), (¢'[T1,1j)— = (w[Ij)—, and (I;); € Seq(I,w, k)
imply

(T[J.Ij)j S Seq(J, CI, k) (6.58)
Similarly, TJij C domain(w), (w[TJij)H = ({'[Jj)—, and (J;); € Seq(J,¢’, k) imply

(Ty,J;); € Seq(I,w, k). (6.59)

39



Now we set k = . Observe that I, +yZ = Iy +vZ and J, +vZ = Jo + vZ; hence Ty, = T,
and TJO = TJ,Y. Thus, using (6.52), (6.57), (6.58), (6.59), and the defining property of MaxSeq,
we obtain

min I, —minly = minTy I, — min T Iy (6.60)
< minJ, —min Jy
= min TJ7 Jy — min TJO Jo
< min [, — min [y.

Since the first and last term in (6.60) are identical, equality holds everywhere in (6.60). Hence,
using (6.57), (6.58), and the defining property of MaxSeq again, we see

(T1,I;); € MaxSeq(J,¢', ) (6.61)

and thus (77,1;); = (Jj);, since MaxSeq(J,¢’,v) is a singleton. Furthermore the facts (6.41),
(6.42), v # 0, and Ty, = Ty, imply M_, = M, since

0 = (min I, — min Iy) — (min Jy, — min Jy) = M_,y — M~. (6.62)

A side remark: consequently case B cannot occur whenever M_, # M._. Using (6.41) and (6.42)
again, we see that all translations 77, j =0,... ,7, coincide: 17, = T;. We observe

(IoU...UL)+YZ =14+ {jM_ |j=0,... .y} +vZ =1+~'Z; (6.63)

recall that 7/ was defined to be the greatest common divisor of M_, and . Thus we have shown:
the translations Tz, Z € Z/~Z, depend only on the rougher modulo class Z' = Z++'Z € 7/+'Z;
hence Tz 1z 1= Tz and vy : Z)Y'Z — Z/Y'ZL, 1y(Z') = Uyc z1 zen)yz 12 (Z) are well-defined.
Since ty : Z/yZ — Z/vZ is a bijection, ¢, is a bijection, too. In analogy to i, we introduce
iy (Z') ==ty (£Z'), (“47 in case A, “=” in case B). As a consequence of (6.39), we obtain for
all Z' € Z/~'Z:

[y (Z") n[=2",2"]) C Tz [wl[Z'] € ¢[iy(Z). (6.64)
Hence the event E + ok is valid. This finishes the proof of Lemma 6.28. =
Lemma 6.29 Errrlmd | ok N Blrllnique fit N Er?eighborl N Errlleighbor II < Er?lodlok‘

Proof. Assume that ET ;;, N Bgniqueﬁt N Egeighborl N Egeighborﬂ holds. Let I'" denote the
(random) set of all divisors v > 1 of [, for which the event Ef ;. is valid. I' # 0, since
E" ok holds. The smallest element of I' cannot be bigger than 1 by Lemma 6.28; thus it

modl_,
must be equal to 1. This means that £ ;, . holds. m

Lemma 6.30 For v =1, we have E}} ;. € E}

all pieces ok *

Proof. This is obvious, since there is only the trivial “modulo class” Z = 11(Z) = Z remaining
for v = 1: In case A, one has £[[—2",2"] C w C £[[-9-2",9-2"], and in case B, one has
E-2"2" | Cw” CE[-9-2,9-2". =

40



n m
Theorem 6.31 Bseedl n Bumque fit n Ball paths N Bout51de out n Brecogn straight N Bmgnals EstOp T =

aH pieces ok

Proof. We collect the results of Lemmas 6.5, 6.10, 6.12, 6.19, 6.21, 6.23, 6.25, 6.27, 6.29,
and 6.30 in the following list:

ngnals < ggnals 1>
Ball paths < EITlLeighbor I
E81gnals II N Estop T < ErTlLeighbor 1>
Ball paths N Brecogn straight < Egnly ladder>
Bout51de out N Bunlque fit n Eonly ladder n Eggop T < Eglod class’
Bumque fit n 351gnals N Ball paths n Brecogn straight n Eg‘:Op,T < Egeed 1D
ngnals E;tnOp T g EchLlsU
Eseed II n Emod class n Edlst n Bumque fit < EITILIOd [ ok
Emod [ ok N Bunlque fit n Eneighborl n Eneighbor II < Eglod 1ok’
BT C o .
mod 1 ok = all pieces ok

The claim of the theorem is a simple combination of these inclusions. m

6.3 Probabilistic estimates for basic events

In this subsection we show that the “basic events” B, occur very probably. Together with the
result of the previous subsections this shows that the partial reconstruction algorithms Alg"
yield with high probability a correctly reconstructed piece of scenery.

We start with an elementary auxiliary lemma:

Lemma 6.32 Let f : Iy — J be a finite injection without fizved points. Then there is I' C I
with |I'| > |Ip|/3 and f[I'IN T = 0.

Proof. We construct recursively finite sequences (Ij) and (I,), for k —1 < |Iy|/3, of subsets
of Iy. The “loop invariants” of the recursion are: f[I] NI, =0, flI[] NI, =0, fiI;] NI, =0,
I N Illc =0, |I]/€| =k, and |I;| > |1o| — 3k.

The recursion starts with the given Iy and with I = . In the (k + 1)st step, k < |Io|/3,
we choose any point € Iy, and define I; | := I U{z}. If f~!(x) exists, then we set Ij;q =
I\ A{z, f(z), f~1(2)}; else we set T := I; \ {z, f(2)}.

Note that the validity of the above “loop invariants” is indeed preserved by the recursion;
the fact f(x) # x is used for the third loop invariant.

Finally we set I’ := I} for k := min{j € N | 3j > |Iy|}; then I' C I is well-defined and fulfills
the claims in Lemma 6.32. =

Lemma 6.33 There exists constants cis,c19 > 0 not depending on n such that:
P [(Bgniqueﬁt)c] < CISe_Clgn- (665)

Proof. Let i,j € {1,...,I%}, and let I C [-11-2" 11 -2"] be a i-spaced interval, and J C
[-11-27 11 - 2"] be a j-spaced interval with |I| = |J] > 1. Let f : I — J be a monotonically
increasing or decreasing bijection, but not the identity map; thus the case I = J can only occur
if f is decreasing.
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We claim: For some constants c¢jo > 0 and ¢13 > 2log2/co (not depending on i, j, I, or J)
we have

Pl¢o f = &[] < erpelll. (6.66)

Note that £ o f = £[1 is equivalent to (&[J)— = (§[I)— if f is increasing, and it is equivalent to
(&[J)= = (&]I)— if f is decreasing.

Before proving (6.66), let us show how it implies (6.65): There are at most ? choices for (i, 5),
and given (i, 7), there are at most (22-2" +1)? < 500-22" choices for (I,.J) with |I| = |J| = can;
finally there is one binary choice: f is increasing or decreasing. If £ o f # £[I holds for all of
these choices (with the trivial exception I = J and f = id), then the event BunlOlueﬁt is valid;
note that it suffices to consider |I| = |J| = can instead of |I| = |J| > con, since it suffices to
consider subintervals of I, J consisting only of can points. Hence (6.66) implies (6.65):

P [(Bliquest)S] <17-500- 2% -2 cipe™ 189" = ¢1ge” 10", (6.67)

where c¢1g := 1000{%c12 and c¢1g := c13¢2 — 2log 2 > 0.

We prove (6.66) next: unless f is the identity map, it can have at most a single fixed point,
since it is the restriction of some affine-linear map to the ladder interval I. Remove this fixed
point from I, if it exists; call Iy the set of all remaining points. By Lemma 6.32, there is I’ C I
with |I'| > |Ip|/3 > (|I|—1)/3 and f[I']NI" = (). Hence &[ f[I'] and £[I’ are independent random
pieces of scenery; thus

Pleof=¢[I < Plgof[I'=¢[I'] =[] 1 < || ~171=D73, (6.68)

thus (6.66) follows with ¢13 := (log|C|)/3 and ¢ := |C|*/3. Note that ¢;3¢ — 2log2 > 0 since
co was required to be large enough; recall subsection 2.1. m

Lemma 6.34 There exist constants cog, co1 > 0 not depending on n such that:
P [( gllpaths) mE:‘gop 7-] < C2I€_C2on- (669)

Proof of Lemma 6.34. Let k£ < 2*" and R € AdPath(12-2",3cin). We set

Bt = {aj € [0,22"] : TimeShift™ ™+ (R) C S} , (6.70)
m Te(x) < 21207 1S (i (x))] < 2, (6.71)
stop, T,k Ti(x) +2- 22nm < 7y (x) forj < k ’ ’

AR = BT\ BE (6.72)

20m—1 m an
Note that Ballpaths mRGAdPath(H 2" 3cin) Uk 0 BR and E stop T = Estop T,k for k <2 ) and
thus

20m 1

k
stop T \ Ballpaths c U m A?{ : (673)
ReAdPath(12:27 3cin) k=0
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In the following, R runs over the set AdPath(12 - 2",3cin):

20m—1
n m n n,k
P[( allpaths) EstOpT] < |AdPath(122 ,361H)|H1]%XP po AR (674)
|AdPath(12 - 2%, 3¢1n)| < 25- 27| M*™, (6.75)
20m 1 T 20m 1
N A = H PAE AR (6.76)
k=0 J i<k
P AN AR | < PBEY | Broprn 0 () A | 5 (6.77)
i<k ] i<k

the last statement follows from the elementary fact P[A N B|C] < P[A[B N C]. Since 22 4

3cin < 222" we have C"k = ngOka N ﬂj<k An’] € Fr., i.e. one can decide whether

the event C};k holds by observing ¢ and S(0),...,S(7;). Furthermore, if Cg’k holds, then
|S(m:(x))| < 2", and as a consequence of the local Central Limit Theorem [4], Theorem 5.2
(page 132) we get: there is a constant cge > 0 such that for all z,y with |z| < 12 - 2" and
ly] < 2% Ply+ S(j) = x for some j € [0,22"]] > ¢222™™; note that y + S is a random walk
starting in the point y. Note that we do not need the random walk to be aperiodic; it suffices
that it can reach every integer, i.e. that the greatest common divisor of the elements of | M| is
1. Thus by the strong Markov property:

nt P [S(r(k) +3) = for some j € [0.2%] ‘cg’“] > 927", (6.78)
z|<12:2n

Once it is in the starting point x, the probability that S follows an admissible path R €
AdPath(12 - 2™,3cin) for the next 3cin — 1 steps is bounded from below by uiffn". Here

fmin = min{u({z}) |z € M} is the smallest positive probability for a jump. Therefore, us-
ing the strong Markov property again:

PBi* | ] = em2mpilyr (6.79)
We combine (6.74)—(6.77) and (6.79) to obtain
P [ stop,T \ Ball paths] < 25 2n’M’361n(1 — C222" n/ﬁifllnn)2an (680)

< 252 MP exp { —em2 i)

— min

< 25exp {n(log 2 4 3¢1 log | M) — copem(¥1082+3¢1 108 imin—log 2)} .

Now a > 1 — 3¢y logy pimin by our choice of « in subsection 2.1; thus the right hand side of the
last inequality converges to 0 superexponentially fast as n — oco. Note that we may choose an
upper bound co1e7 20" for the right hand side in 6.80, where neither co; nor coy depend on « or
c1. This is true since n > ng, and ng was chosen large enough, depending on ¢; and «; recall
subsection 2.1. This proves the lemma. m

Lemma 6.35 There exists a constant cog > 0 not depending on n such that:

P )] < 160", (6.81)

n
outside out
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Proof of Lemma 6.35. The set [—2-122",2-122"]\ [-10-2",10-2"] contains less than 4-[-22"
points, and for every fixed starting point the number of admissible paths with ¢1n/2 points is
equal to |[M|™/2=1 Hence there are less than 4-122"| M|“™/2 paths R € AdPaths(2-12%", ¢;n/2)
with R(:) ¢ [-10-2",10 - 2"] for all @ = 0,... ,c1n/2. On the other hand, there are less
than 40 - 2" ladder words of length ¢in/2 in [-9 - 2™,9 - 2"]. The colors £ o R that a path
in R € AdPaths(2%",cin/2) with R(i) ¢ [-10-2",10-2"] for all i = 0,... ,e;n/2 — 1 reads
are independent of the colors inside [—9 - 2" 9 - 2"]. Thus the probability that a given path
R € AdPaths(2%", ¢in/2) with R(i) ¢ [-10-27,10-2"] for alli = 0,... ,¢;n/2— 1 reads the same
colors as a fixed ladder word in [—9-2",9-2"] is |C|~“"™/2. Thus

P[( gutsideout)c] S 160l23n’M’qnﬂ‘c‘_qn/?‘ (682)

el

Since [M| < |C|, the last expression becomes exponentially decreasing in n since ¢; > 6/ log 15 M

since c¢; was chosen large enough; see subsection 2.1. This proves the lemma. =

We prepare the treatment of the event B by the following combinatoric lemma:

recognstraight

Lemma 6.36 Let coy = 1/(2IM|(I= +1_)). There are two intervals I1,Io C [0,c1n[ with
|I1| = |I2| > caacin—1 such that the following statement is valid: For all R € AdPaths(11-2™, ¢in)
with R(cin — 1) — R(0) ¢ {(cin — 1)I—,, —(cin — 1)I_}, there is I € {I1,12} and an admissible
path R € AdPaths(12 - 2" ¢in) with the following properties:

e R(0) = R(0), R(cin—1)= R(cin —1).
o At least one of the following holds:

1. for all (i,5) € I x I with j <i: R(i) ¢ {R(j), R(5)};
2. for all (i,j) € I x I withi < j: R(i) ¢ {R(j),R(j)}.
1

Proof. We define k := |cogcin], I' := [1,2k] C [0, c1n],
observe |I1], |I2| > cagcin — 1 and Iy, I2 C [0, cinf.

Let R € AdPaths(11 - 2™, ¢in) be not a ladder path. We show first: There are R',R” €
AdPaths(12 - 2" ¢yn) such that R'(0) = R"(0) = R(0), R'(cyn —1) = R"(ein — 1) = R(cin — 1),
R'TI" and R"[I' are ladder paths, and R"[I' = r + R'[I’ for some r # 0, i.e. R"[I’ is obtained
from R'[I’' by a spatial translation.

To prove this claim, let d = (d;)i=1.. eyn—1 € ML d; :== R(i) — R(i — 1), be the jump
sizes in R. Every other d € M1 with San-lg, = Zf”i Ld; gives rise to an admissible
path R € AdPaths(12-2", ¢1n), too, with R(0) = R(0), R(cln—l) - R(cin —1), and with jump
sizes d; = R(i) — R(i — 1); namely R(i) :== R(0) + Z] L dj. Since R has its starting point and
end point in [—11-2" /11 - 2"] and since ¢;nl < 27, the path R can indeed not leave the range
[—12-27,12.27).

There are at most |M| possible values for d;, but there are c¢;n possible indices i; thus at
least one value a € M occurs in the d; at least ¢yn/| M| times. We choose 2k(a+1.—) > 0 indices
i with d; = a and replace them by [_,, and we choose 2k(l_. — a) > 0 different indices ¢ with
di = a and replace them by —[._; note that 2k(a + 1) + 2k(l—, —a) = 2k(l-, + 1) < cin/|M].
We end up with a new vector d € M1 with 36" g, = "1 g, since 2k(I— + 1_)a =
2k(a+1_)l_ 4 2k(I_. — a)(=1_). d contains at least 2k entries with value I_,, or it contains at
least 2k entries with value —I._, since already the described replacement procedure has produced
sufficiently many such entries. However, not all entries of d can equal [_; similarly not all its

= [1,k], and Iy := [k + 1,2k]. We
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entries can equal —Il._, since R is not a ladder path. We permute the entries of d; in two
different ways; the resulting vectors are called d’ and d”: First to obtain d’, permute the entries
in d such that the first 2k permuted entries d}, i = 1,... ,2k either all equal [_, or all equal
—l_; the order of the remaining entries is irrelevant. Second to obtain d”, transpose the first
entry dj with a different entry d; # d;. Let R’ and R” be admissible pieces of paths with
R'(0) = R"(0) = R(0) and step sizes d; = R'(i) — R'(i — 1) and d/ = R"(i) — R"(i — 1),
respectively. Recall I’ = [1,2k]; then R'[I’ and R"[I’ are ladder paths, and R"[I’ is obtained
from translating R'[I’ by r := d{ — d} # 0. Thus our first claim holds.

R'TI" is a right ladder path or a left ladder path. Without loss of generality, we assume
that it is a right ladder path; the case of left ladder paths can be treated similarly by reversing
directions in the arguments below. Furthermore, we assume without loss of generality r» > 0;
otherwise we exchange R’ with R”.

We are ready to prove the claim of the lemma; recall that k is a point in the middle of I’.
There are two cases:

e If R(k) > R'(k), then we take I := I and R := R'. Since R'[I is a right ladder path, it
moves with maximal speed [_, to the right. R cannot move faster than that to the right;
thus R(j) > R/(i) and R'(j) > R'(4) for all 4,5 € I with i < j.

o If R(k) < R'(k), then R(k) < r + R'(k) = R"(k); this time we take I := Iy and R := R".
The same argument as above yields R(j) < R"(i) and R"(j) < R"(i) for all i,j € I with
j<i.

This proves Lemma 6.36. =

Lemma 6.37 There exist positive constants cos and cog not depending on n such that:

P[( gecognstraight)c] < co5e” 0. (6.83)

Proof of Lemma 6.37. Given R € AdPaths(11 - 2", ¢in) with R(cin) — R(0) ¢ {(cin —
Di_,—(ein — 1)}, we take I = I(R) C [0,c1n[ and R € AdPaths(12 - 2", ¢1n) as in Lemma
6.36. Without loss of generality assume that condition 1. in Lemma 6.36 is satisfied. We prove
for all I’ C I by induction on |I'|:

P[¢oR)[I' = (o R)[T'] = |c| 71", (6.84)

This is obvious for I’ = ). For other I’, let I” := I' \ max I". Then ¢(R(max I')) is independent
of (€0 R[I",& o R[I"), since they are generated by disjoint parts of the scenery. Thus

PloR)[I'=(¢oR)[I'l = Plg(R(maxI')) =¢(R(maxI'))] - Pl(§oR)[I" = (5o R)[I"]
|~ He) = ey, (6.85)

By taking I’ = I, we conclude P[(£ o R)[T = (£ o R)[I] < |C|~MI.

It does not suffice to multiply the last bound with the bound 23 - 2"|M|“™ > |AdPaths(11 -
2" ¢1n)|: the product may sometimes be bigger than 1.

To overcome this difficulty, we partition AdPaths(12 - 2", ¢in) 5 R into equivalence classes

[R]: we put two paths into the same class if and only if they are mapped to the same value
by the map R +— (R(0), R(cin — 1), I(R), R[I(R)); here I(R) € {I1, >} is taken from Lemma
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6.36. We bound the number of equivalence classes from above: For our purposes, a simple
but rough bound suffices: There are at most 25 - 2" choices for each of R(0), R(cin — 1), and
R(min I(R)), and there is a binary choice I(R) € {I1, I>}; finally given R(min I(R)), there are
not more than |M|¥ choices for R[I(R), where again k = |coqcin] = |[I(R)|. Altogether the
number of equivalence classes is bounded by c2723" | M|*, where co7 := 2 - 253. We may choose
a map AdPaths(11 - 2", ¢;n) — AdPaths(12 - 2", ¢in), R — R such that R depends only of the
equivalence class [R] and fulfills the claim in Lemma 6.36. We get

P[B! )] < P[3R € AdPaths(11- 2" c1n) : £ o R[I(R) = £ o R[I(R)] (6.86)

recogn straight
<Y PlEoR[I(R) =0 R[I(R)]
(R]
< 2™ (IM/IC)* < ear(Cl/|IM]) exp{(8log 2 — caser log(|M]/[C]))n}.
We emphasize: the sum in the last but one expression runs over equivalence classes [R], not
over paths R; the event {¢ o R[I(R) = £ o R[I(R)} does not depend on the choice of R € [R].

We have coqcq log(|M|/|C]) — 3log 2 > 1; recall from subsection 2.1 that ¢ is large enough. The
estimate (6.86) proves the lemma with cog = 1, co5 = c27|C|/|M]. =

Lemma 6.38 There exist constants cog > 0, ca9 > 0 such that:

P [( ggnals)c] < 6296_02871' (687)
Proof of Lemma 6.38. We show that
P[ ggrr] >1- 6306_02871 (688)

for some constants c3g > 0 and cog > 0. The proof for ngrl, B
analogously. Take a right ladder path 7 € [-2- 122" 2. l22”][0701”/2[ and an admissible piece of
path 7/ € AdPath(2 - 122", ¢;n/2) with 7(0) > 7/(0). We show by induction over j € [0, c1n/2]

with the abbreviation I = [0,j + 1] and I’ = [0, j[:
Pléor[I'=¢on[I'] =|C| ™. (6.89)

n n
sl and BSigll can be done

Indeed, (6.89) is trivial for j = 0. For the step j — j+ 1, we observe that 7 (j) is right of all 7(7)
and 7'(7), i < j, since 7 is a right ladder path and 7(0) > 7/(0). Thus £ o 7(j) is independent
of the family (£ ow[I’,€ o 7'[I"). Therefore, using our induction hypothesis,
Pléon[I=¢on'[I] (6.90)
= Plgon[I'=¢on'[I']- Pleon(j) = Eon'(j)] = |CI7 7,
For j = ¢in/2 we obtain that
Pl on[[0,c1n/2[= € o 7'[[0,c1n/2[] < |C|~™/2. (6.91)

There are no more than 4 - 122" +1 < 5-122" such 7 and not more than 5 - 22| M|"/2 such =’
Therefore

P[(Blig,)] < (512272 | M|/ |c|~an/2 (6.92)

sigr

holds; consequently (6.88) is valid with cag = 25 - 12 and cag := 1 < ¢; log(|C|/|M])/2 — 41og 2.
The last inequality holds, since |C| > | M| and ¢; was chosen large enough; see subsection 2.1.
]
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Lemma 6.39 There exist constants c3; > 0 and c3o > 0 such that:

P [(Bleqn)® N EY,

fop.r) < caze” MM, (6.93)

Proof. We proceed similarly to the proof of Lemma 6.34. In the following, Z runs over all
classes Z € Z/1_Z. We set for all Z (compare with Definition (6.17) of Bl 41):

gk S(r(k)+h) e Z, S[(r(k)+h+[0,3cinl_]) is a right ladder path, (6.94)
z and S[(7(k) + h + 3cinl— + [0,3cinl_]) is a left ladder path. T
n,k n,k
ARt = EI e\ B (6.95)
where E7? s given by (6.71). Note that B2 4, = N, Ur—e ' By" and still EZ,,  C B,
for k < 207, thus
20m _1
n k
stop T \ BseedI C U m A (696)
Z k=0
We obtain
p| 20m _1
PER, \ Byt < lmaxP| (| AY"| = — max H P AR () A% | . (6.97)
k=0 i<k
n,k n,j c n,
PlAY A | < P(BY) |EL, .0 [)AY |- (6.98)
i<k i<k

Since h + 3cinl— + 3cinl_, < 2 2%, we have C3" = B N Ay € Fry. Using
Lemma 6.11, we know [_,Z + supp u* = Z; hence ¢33 := inf ez Pz + S(h) € Z] > 0; (note that
the random walk x + S starts in the point ). Moreover, given that S(h) € Z, the probability
to follow a right ladder path in Z in the subsequent 3cinl._ steps is p({l_})**™, and the
probability to follow then a left ladder path in the next 3cinl_. steps is p({—1._})"-

Thus by the strong Markov property:

P [Bg,k | Cg,k] > 033/1({[%})3clnl‘_,u({—lg})3clnl* — 6336—0340171’ (699)
where ¢34 := —3l_logu({l~}) — 3l_logu({—Il—}). We combine (6.97), (6.98) and (6.99) to
obtain

P [Eg, stop,7 \ Biear] <1-(1- cgge” M < exp {—cszemman2omny. (6.100)

We have c34c1 < alog2, since o was chosen large enough; see subsection 2.1. Thus the right
hand side of the last inequality converges to 0 superexponentially fast as n — oo. This proves
the lemma, since n > ng and ng was chosen large enough. m

Finally we reap the results of this section:

Proof of Theorem 6.3. By Theorems 6.17 and 6.31 we have

Ex1does1t a Egllpiecesok 2 (6101)
Bseedl N Bunique fit N Bgll paths N Bgutside out N Brnecogn straight N ngnals N E;?op T (6102)
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hence

stop T \ (Ex1 does it N gllplecesok) - (Bgniqueﬁt)c U (( gll paths) N Egslop 7')

U (Boutsideout)cL-J ( recogns‘craight)C U ( ggnals)c U (( gleedI) mE1sTtnop T) (6103)

Thus Theorem 6.3 follows from the main Lemmas 6.33, 6.34, 6.35, 6.37, 6.38, and 6.39 of this
subsection. m

7 How to find back:
Correctness of the stopping times T}
In this section, we prove Theorem 3.11.

Definition 7.1 Let T = (Ty)ren be a sequence of G-adapted stopping times. We define the
events

;’éerronT = {Vk >0:if Ti(x) < 212anm then |S(Tk(x))| < 2mm }, (7.1)
Up to time 2120mm /8 S visits 0 at least
Pl 1= {110 e 25078 S visita 0 at st} 2

We abbreviate

E?Zconst,f = {5 € CZ P [ reconst, f | f] }; (73)

recall Definition (3.15) of the event E™

reconst, f

Lemma 7.2 For some constant css and all m > 0:

1-PI[ED

enough back] < c3p2” M (74)

Proof of Lemma 7.2. Let (X;);>1 denote the time difference between the (i + 1)st and
the i-th visit of S at the origin. By recurrence, (X;);>1 is a.s. well defined, and by the strong
Markov property it is i.i.d. with respect to P. Since S starts in the origin, X is the first return
time to the origin, and > 7_; X; is (a.s.) the time of the j-th visit at the origin. For the sake of
this proof, we abbreviate: z = 2'2"m /8 and y = 23", Using

Y Y 3
(ngloughback)c = {ZXZ > $} - (Z Xz1/3> > (75)
1=1 i=1

and the Chebyshev-Markov inequality, we obtain the claim (7.4):

1-P[ED <

Yy
1/3 _
enough back] P Z Xi / > $1/3] <z 1/3E

y
> x 3] (7.6)
i=1

= o VyE [x}P] = 2B [X[/°] 2memn.
The fact £ [ X3 ] < oo is proven in the appendix, Lemma A.1. m
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Definition 7.3 Let v(k), k > 0, denote the (k + 1)st visit of S to the origin. We introduce a

random set T’f(é’,x) and an event E;”;grll back recog”
T} (¢ x) == {t e N| £[[-2",2"] < f(6'(x)) < &[[-9-2",9-2"] }, (7.7)
it [ For more than 1/4 of the points k € [0, 22anm+1[ holds 73
when back recog, f "7 U(k‘Qanm'H) e T}(&,X) . ( . )
Lemma 7.4 If the event ET} . , holds, then T¢(x) 2 T(&,x) N [0, 2l2anmi1 _ 9. gl2anm|

Proof. We know £[[—2"",2""] 5 f(x) by Ejteong ;- Let t € T(E, x), t < 21207m1 — 2. 21207,
Then we also have £[[—2"m, 2" 5 f(0"x). Hence ¢ € Tf(x); to this end recall Definition (3.12)
of the random set T¢(x). This implies the lemma. =

Lemma 7.5 Assume that the events Egztrlror,Tf N Egri:ulghback N Eﬁgibackrecogvf and Tr(x) 2
T/, (€, x) N [0, 212041 — 2. 912a% [ hold. Then ng;ij holds, too.
Proof. Using E:fljulgh back: We know

v(k20mm+1) € [0, 2120mm+1 /8] C [0, 212amm+1 9. pl2amm (7.9)
for all k € [0,22mm+1[. Since the event E:V”};zrllbackremgj holds, we obtain [T¢(x)| > |T(&,x) N

[0,2120mm+1 9. p120mm [| > 92anm+1 /4 By Definition (3.13) of the stopping times T}, this yields
Trr(x) < 2120mm+1 for all k < (2207m+1/4) /(2 - 220m+1) = 22(@=1)nm+1 /8 The event E™*!

no error, T’y
holds, and 22(@=1)nm+1 /8 > 90mm+1. recall that o and n,,,; > ng are large (see Section 2.1).

Hence we obtain |S (T (x))| < 2™+ for all k € [0,2%"7+1[; recall (7.1). Using Definition (3.13)
again, we see that Ty ;(x) + 2 - 22"m+1 < Ty, (x) is automatically fulfilled for j < k whenever
Ty (x) < 2120mm+1 ] which is the case at least for k € [0,2%"m+1[. Summarizing, we have proven

that the event E:g;;le holds; recall its definition (3.14). m

when back recog, f reconst, f

Lemma 7.6 P [(ExE! ) 0 {€ € Tignns } | <097

Proof. We define Bernoulli random variables Yy, k > 0, by Y := 1 if v(k29"m+1) € ’]I‘}(g, X)s

and Yy, := 0 else. Note that v ((k + 1)207m+1) —py(k207m+1) > 20mm+1 > 9.912anm = Algo note that
2an,, _

EmTl {2*2omm+1 Zi:o Hely > 1/4}. Because of the strong Markov property

when back recog,f
of the random walk (S(k))r>0 we have that conditioned under £ the variables (Yj)xr>o are i.i.d.;
recall that f(x) depends at most on x[[0,2 - 21207 [ If furthermore & € Eleconst,f holds, then

E[Y) | €] > 1/2. Hence we obtain for these £, using the exponential Chebyshev inequality for
2am,y, _
the binomial variable Z%:o Ty

220mm+1 1

1 ¢ —2anm 1
P [(E:vnljenbackrecog,f) ‘ 5] = P | 27 %0nm+1 Z Y. < Z § (7.10)
k=0

22anm+1
2an,, —
< E |:el/47Y1 §:| 2 o < <M) < 0'922anm+1 )

2
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This yields the claim of the lemma:

1 ¢ -
P [<E$};nbackrecog,f> N {5 € :‘?;const,f} } (7'11)

c an,,
< [ (E ) | € € Etonur ] £ 0977

when back recog, f

Lemma 7.7 P [(Em+1 N E™T

1 —NMm+1
no error, T’y reconst,f] < 3¢ .

Proof. Let v; denote the (i 4+ 1)st time when the random walk S visits a point of Z\[—2"m+! +
2[2120mm gnmi1 _ g[p12anm] We set

Ertl = {F3we " s w < E[[-9-2", 92" and w < (0¥ (x))} . (7.12)

wrong,i

If the event E@ﬁig,i occurs, then our procedure might fail to estimate correctly the location of
the random walk: we might be misled to think that at time v; + 2 - 2129"m we are close to the
origin while we are not.

We claim that the following holds:

212anm+1 -1
(Eerl )c N E™ C U Em+1 (713)

no error, T’y reconst,f = wrong,:"
=0

Indeed: Tf (EJ5EL 7 )¢ holds, then |S(Tyx(x))| > 2"+ for some k with Tfy < 212741 (see

no error,

(7.1)); thus |S(Tfx(x) — 2 2120mm)| > 2nm+1 — 91212amm gince S cannot travel faster than speed
[. This means T} (x) — 2 - 212%™ = v; for some i < 2!2°"m+1 Using Definition 3.8 of T} x(x),
this implies v; € Tf(x); hence there is w € C**"™ such that w < f(x) and w < f(0%(x)).

Assuming that the event ET . . holds, too, this implies w < f(x) < £[[-9-2"",9 - 2""]; see
(3.15). This yields that Eﬁﬁig,i holds; recall (7.12). Summarizing, we have shown that (7.13)
holds.

For all i, f(0Vi(x)) depends only on x[[v;, v;+2-212¢"n [ and S does not visit [—9-27m 9.2mm]
in this time interval [v;,v; + 2 - 2120™m [ since the distance between [—9 - 2"m 9 . 2"m] and
Z\[—2"m+1 4 2]2120mm onm+1 _ 9[212amm] g Jarger than 212'2°"m  and since the random walk
cannot travel faster than [ steps per time unit.

Thus by the strong Markov property and by independence of S and &, we get: x[[v;, v; +
212anm] ig independent of £[[—9-2"m 9.2 ]; therefore f(0i(x)) is independent of £[[—9-2"m 9.
2"m] | too0.

The probability that a random word of length 2 - 2™ which has i.i.d. letters with uniform
distribution in C is equal to a word which is independent of it is equal to [C|722"™. There are
at most 37 - 2" words of a fixed length in £[[—9-2"",9 - 2™"] and also in f(6#"*(x)), counting
all reversed words, too. Thus there are at most 37222"™ pairs of such words. It follows that

PlEnEL | < 3r22mm o2, (7.14)
Hence we get the claim of the lemma, using (7.13):

212anm+171
m+1 c m m+1
P[(Enoerror,Tf) ﬁE‘reconst,f} < Z P{Ewrong,z}
1=0

< 212anm+1 '37222nm‘c‘—2-2nm < ZeMmtl (7.15)

W[ =
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For the last inequality, recall that n,, > ng is large enough, and note that |C|722"" is the leading
term of the last but one expression; also recall that n,,+1 = 2lvm] ig of a much smaller order
than 2. m

Proof of Theorem 3.11. By Lemmas 7.4 and 7.5, we know Eﬁt&rorvipf N E:fljulgh back N
1 1 . .. .
Ez’vﬁfgn back recog, f | B const, 5 C E:;;)jf. Using some Boolean algebra, this implies
+1 =
(Egslop,Tf)C N ?gconst,f N {5 € ‘—‘;’elconst,f} (716)

m+1 ¢ m+1 c m+1 ¢ =
< (Eenough back) U ((Enoerror,Tf) N ?;COHSt,f) U ((Ewhenbackrecog,f) N {5 € “?;COHSt,f}) :

Consequently, using Definition (7.3) of Ereconst,f and Lemmas 7.2, 7.6, and 7.7:

1
P (B3, 1 Bt 0 { P (Bl 1€] 2 5] (r.17)
1 ¢ 1
<P |:(E:r11z>rugh back) ] +P |:(E1T1)Z)Jgrror,Tf)c n :ZCOHStvf]

+1 ¢ =
+ P [(E:vnhenbackrecog,f> N {5 € “?;const,f}]

1 2an
an n 2 m+1 —-n .
< 352 mEl 4 —e7'mtl 4 (.9 < e tmtl

recall that a and n,,,41 > ng are large (see Section 2.1). This proves Theorem 3.11. =

8 Getting started: The first stopping times

In this section, we prove Theorem 3.10.

8.1 The stopping times 7°

We start with the definition of a sequence 70 = (T,g) £>0
in [0,212070]. Roughly speaking, these times search for long blocks of 1’s in the observation Y.
Here is intuitive idea behind this construction: Since we conditioned on a large block of 1’s to
occur in the true scenery £ close to the origin, observing a long block of 1’s at a later time
indicates with high probability that the random walk has returned close to the origin. This is
true only up to a certain time horizon, since long blocks of 1’s in the true scenery will occur far
from the origin, as well.

Definition 8.1 Let the random set T°(x) be defined as follows:

of G-adapted stopping times with values

TO(x) == {t € [0,2"%*" — ] | x[[t.t+ ng) is constant 1} . (8.1)
We arrange the elements of T°(x) in increasing order: to(0) < ... < to(|TO(x)| — 1). We set

00y = § 102 270K) g 2 220k < [TO(y))
k\X) - 912ano otherwise.

Recall Definition (3.14):
2(17740

Egopro = [ {TR00) <2207, |S(TY00)] < 2%, TP (x) +2- 2% < TR(x) for j < k}. (8.3)
k=0

(8.2)
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Theorem 8.2 For some positive constants csg and c37 holds P [EO ] > 1 — cgge 370,

stop,T9

We prepare the proof of Theorem 8.2 by some Definitions and Lemmas. We use again the
abbreviation J; = [—2In3’, 2in3"].

Definition 8.3 (Analogue of Definition (7.2)) Let I C J; be an integer interval. We define

Egnough back,7 = {Up to time 212970 /4§ visits the interval I at least 23*" times }. (8.4)

Lemma 8.4 For some constants csg > 0 and csg > 0, the following holds: If I C Jy, |I| > 1, is
an integer interval, then

p[EOnoughback,I] > 1 — c3ge™ M0, (8.5)

€

Proof. Let T; := inf{t | S(t) € I} be the entrance time of S into I. We show first: For some
positive constants c49 and c41 (depending at most on the distribution p of S(1)) we have:

p [T[ Z 2120010/8] S C40€_C41n0. (86)

If 0 € I, this is trivial, since .S starts in 0. Otherwise I contains only positive numbers, or it
contains only negative numbers; without loss of generality we assume the first possibility. Let
z =min I €]0,2in2°]. Consider the interval J :=] — 270, z[ C ] — 2" 2™ and consider the exit
time H :=inf{t | S(t) ¢ J} of J. Note that H is a.s. finite.

On the one hand, we know

P[H > ] < cype 182" (8.7)

for some constants cg2,c43 > 0 depending at most on the variance of S(1), since in every time
interval of size 22" the random walk has a positive probability to exit .J, bounded away from
0. In particular, for ¢ = 212070 /8 the probability in (8.7) is superexponentially small in ng.

On the other hand, since S is a martingale and since S has jumps sizes bounded by [, we get
P[S(H) > 0] > 1— (2 +1)27". Furthermore, using again that S has jumps sizes bounded by [,
we know the following: If S(H) > 0, then S(H) € I and 17 = H, since z is the leftmost point
in I and |I| > [; the random walk cannot cross I without touching it.

Altogether, we have the following upper bound for the left hand side in (8.6):

P[H > 22970 /8 or S(H) < 0] < cqpe”¢41"0, (8.8)

for some positive constants ¢4 and c41.

Provided the random walk visits a point € I, the probability to visit this point again at
least 239 times in the subsequent 21207 /8 time steps is at least 1 — cpg27%"0. This follows
from Lemma 7.2, using the strong Markov property of the random walk; recall that the law of S
with respect to P and with respect to P coincide. Combining this with (8.6) yields claim (8.5)
of Lemma 8.4. m

We remark: Lemma 8.4 holds not only for deterministic intervals I, but also for random ones,
provided that I and S are independent. We use this below for the following specific choice of I,
which depends on the scenery &, but not on S:

P-a.s. there is a (random) integer interval Jy C J; = [—2In2°, 2in2°] with |Jy| > nd such that
&[Jp is constant 1; recall Definition 3.2. Just for definiteness we take the rightmost such Jy. Let
I=1() = {z€Jy |dist(z,Z\ Jo) > ng/4}; (8.9)

then I is P-a.s. well defined, and it is an integer interval containing |I| > ng/2 > I points.
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Definition 8.5 (Modification of Definition 7.3) Let w(k), k > 0, denote the (k+ 1)st visit
to the (random) set 1(£) by the random walk S. We introduce a random set TV and an event
EO

when back recog .

TY := {t e N| S(t) € I(€) and [S(j) — S(t)| < ng/4 for 0<j—t <nf}, (8.10)
E 1en back recog = {For more than 1/4 of the points k € [0,22°[ holds w(k2°™) € TV } |
(8.11)
Lemma 8.6 (Modification of Lemma 7.6) P [(Egvhenbackrecog) C] < 0.9
Proof. We observe as in (4.16) by the submartingale inequality:
1 1 1
PISG) < n/a for 0. < j <nf] > 1 — 25 B [5(nf)?) =1 - VWL 10 (g
0

since ng is large enough; see Subsection 2.1. Let Y} denote the indicator function of the event
{w(k20m0) € T}; the Yj are P-a.s. well defined. As a consequence of the strong Markov
property, the Yy, k € [0,22%™0]  are i.i.d. Bernoulli random variables; note that the stopping
times w(k2°), k € N, have at least the spacing 2™ > nl. Furthermore P[Y; = 1] > 1/2,
since this probability equals the left hand side in (8.12). The claim of the Lemma now follows
by the same large deviation argument as in (7.10). m

Lemma 8.7 (Analogue of Lemma 7.4) The inclusion T D TY N [0,2'2%%0 — p7[ holds P-
almost surely.

Proof. Assume that the event BigBlock holds; this occurs P-almost surely. Then I(£) is well
defined. Let t € TV, ¢t < 2129m0 —nl Then S(t) € I(£), and during the subsequent n{ steps, the
random walk S cannot leave the interval Jy, since it does not travel farther than ng/4 (recall
definition (8.10)), and since Z \ Jy is more distant than this from I(£) (recall the definition
of 1(£)). Since £[Jy is constant 1 by definition (3.4) of the event BigBlock, this implies that
ST[t,t + nf] is constant 1;ie. t € T'. m
Recall Definition (7.1):

Epy eroro = {Vk € Nt TE T (x) < 220, then |S(T{(x))| < 2"} (8.13)
Lemma 8.8 (Modification of Lemma 7.5) Assume that the events
E° NEY NEY and TO(x) 2 T¥N0,2'2%"0 —n7[ hold. Then

no error,T9 enough back,I (&) when back recog

holds, too.

0
Estop 10

Proof. The proof is almost the same as for Lemma 7.5. Note that the small differences between

the definitions of Egnough back, (€) and E;‘ljulgh back are not essential for the validity of the proof.
[ ]

Definition 8.9 We define the event of sceneries

For every (integer) interval J C [—2[2120m0 2]212an0]\ J) (8.14)
with |J| = n3 holds: ¢[J is not constant 1. ’

=0 o Z
—no blocks *— {5 ecC
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Lemma 8.10 For some positive constants cq4, ca5 holds ]3[5 € E?loblocks] > 1 — cyqe™C570,

Proof. For every fixed interval J C [—2 - [2120m0 2. [2120m0]\ J; with |J| = n3 we have
P[¢[J is constant 1] = |C|~", (8.15)

which is superexponentially small in ng. Furthermore, there are less than 41212270 such intervals.
Thus P[¢ ¢ = ] < 4l2t2am0|C ]’"(2), which is still superexponentially small in ng. This

“—no blocks
implies the lemma. Note that we may choose cy4, c45 independent « for ng large enough, even

though 412120m0|C|="5 does depend on « (see Subsection 2.1. m
Lemma 8.11 For some constants cyg, ca7 > 0 holds
Pl(Bpy error,r0)°] < cage™ 7. (8.16)
Proof. Let X be defined by
X = {x € Z|z + [~In,In]] C [~21212em0 21212am0]\ J1, (8.17)

As a consequence of Lemma 4.3 (with the parameters k = n{, and x = n2) we know for every
¢ € CN such that &[[—Ind, In] contains no block of 1’s of length n3:

Pe[€ o S[[0,nf] is constant 1] < e, (8.18)

Let t € Nand let £ € Z0 . . Using the Markov property of the random walk, (8.18) implies
the following:

Pe[€ o S[(t +[0,n7]) is constant 1| S(t) € X] < e, (8.19)

If ¢ < 212070 and |S(t)| > 2" holds, then we know S(t) € X; note that J; = [—2in2’, 2In2°] has

a distance larger than Inf from Z \ [-2", 2], and recall that S cannot travel faster than with
speed [, and that ng is large by Subsection 2.1.
Thus (8.19) implies

Pf[(Egoerror,To)c] (820)
< P¢[There is t < 2'29™0 guch that |S(t)| > 2" and £ o S[(t + [0,nj]) is constant 1]

S 212anoefc7ng S efno;

for the last inequality recall that ny was chosen large enough, depending on « (see Subsection
2.1). Combining this with Lemma 8.10 yields for some positive constants csg, c47:

P[(EgoerronTO)c] S P[f ¢ Egoblocks] + / Pf[(Er?oerror,To)c] dﬁ S 646€*C47TL0. (821)
{éeE'?lo blocks}

]
Proof of Theorem 8.2. From Lemmas 8.7 and 8.8 we know that

)C] + p[(Egnough back,[(f))c] + P[(E\?Vhen backrecog)c]' (822)

Hence the claim of Theorem 8.2 is a consequence of Lemmas 8.4, 8.6, and 8.11. =

P((E;

Otop,TO)C] < P[(EO

no error, 70
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8.2 The stopping times 7T

Unfortunately, the constructed stopping times T are not good enough as arguments for the first
reconstruction Algorithm “Alg”™”: We cannot construct more than roughly exp(const ng) reliable
stopping times based on the way we build the T stopping times; in fact we use much less than
this number. Otherwise we cannot guarantee that they really stop the random walk with high
probability close to the origin. However, the number exp(const ng) is much too small to collect
a sufficiently large puzzle for reconstructing at least the modified piece £[J; in the scenery using
our reconstruction algorithm; to illustrate this fact, we remark that we have only roughly an
upper bound dP/dP < exp(const n2%); see Lemma 4.4. A modification of the parameters does
not solve this problem; we need an essentially improved series of stopping times 7" to get the
reconstruction algorithm started.

Our construction of T is partially parallel to the construction of the partial reconstruction
algorithm Alg", but it is also partially parallel to the construction of the stopping times Ty and
T°: Roughly speaking, we collect a set of typical signals (“a puzzle”) at the very beginning and
another one at a candidate time. Instead of matching the pieces together, we just compare the
two puzzles: If the puzzles have a sufficiently high overlap, then they were generated with high
probability at roughly the same location.

Fortunately, many constructions of the previous sections can be used again, up to small
modifications: There are extra complications due to the presence of a modified domain J;. We
keep the presentation as close as possible to the previous sections to show the parallelism. Here
is the formal definition of the “new” puzzles and of T':

Definition 8.12 We set, using the abbreviation Input := (T%(x), x[[0, 2 - 212™[) again:

Puzzlef(x) := (8.23)
{ (w1, ws, w3) € Puzzlef (Input) |3k € [0,2°™[: wywows T x[(T (x) +[0,2"/1]) } ,

Puzzle[d(x) = {wy € CO™ | Jwy, w3z € C™ ¢ (wy,wa, ws) € Puzzley(x)} (8.24)

|Puzzlef(x) N Puzzlefd(6hy)| > 2”0/3}

and |Puzzle(y(0'x)| < 50 - 2™ (8:25)

Tl(x) = {t c [0’ 212an1 —9. 212an0[

Finally we define another sequence T' = (Tkl)k>0 of G-adapted stopping times with values in

[0,212071): Let ¢1(0) < ... < t1(|T (x)| — 1) be the elements of T (x) arranged in increasing
order. For k € N, we set

t(2-22mk) 42 2120m0 if 2. 22m g < T (x)],

1 i
T (x) = { 9120m1 otherwise. (8.26)

Note that 7°(y) only depends on x[[0, 2'2%"0[; thus Puzzle[%(x) only depends on x[[0, 2-2!2m0],
since 210 /] < 212amo,

Definition 8.13 Using the abbreviation J; = [—2In3°,2In3°] from Definition 3.2 again, we
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define the following random sets:

CorPaths :=

R is an admissible piece of path, for every admissible piece of path
0,cinol | R : [0, cino[— Z with R'(0) = R(0) and R'(cing—1) = R(cing—1)

kez holds £ o R’ = £ o R, and there is such a path R’ which takes at (’ (8.27)
least one value in Ji.

Corrupted := {{ o R € C°'"° |R € CorPaths }, (8.28)
Centery := {w € C"™ | w is a (left or right) ladder word of £[([—11-270,11 - 2"0] \ J;)},

(8.29)

Centeryp := Centery U Corrupted, (8.30)

. eing | W is a right ladder word of
Centeryyy = {w €Ccam | E[([—2 - 2m0/2 2. 2n0/2] \ [—2n0/2 9no/2]) (8.31)

Some of the definitions and lemmas below are only small modifications of previous definitions
and lemmas, respectively. We underline the new pieces to show the differences.

Definition 8.14 (Modification of Definition 6.15) We define:

For every 1,5 € {1,...,1?}, every i-spaced interval
Ao I C[=11-2m011 - 2™0]\ g, and  every  j-spaced interval %39
uniquefit © ) J C [—11-2m0 11-2™]\J; with [I|] = |J| > «cnp holds(’ (8.32)

(M1 # (€]J)—, and if I # J, then (£[1)— # (£[J)—.

Lemma 8.15 (Modification of Lemma 6.33) There exists constants cig,c19 > 0 such that
the following holds:

P(Bifiguen)”] < crse™e™. (8.33)
Proof. The proof of Lemma 6.33 remains literally true when we replace P by P, but additionally
restrict I and J to be disjoint from Ji, since the distributions of £[(Z \ Ji) with respect to P
and with respect to P coincide; see Lemma 3.4. m

Lemma 8.16 |Center;| < 46 -2, |Corrupted| < ng', and thus |Centeryy| < 50 - 270, If the event
ngiqueﬁt holds, then |Centeryyy| > 270/3,
Proof. The first statement is obvious, since there are at most 23 - 2™ choices for the leftmost
point of a ladder interval in [—11-2"0 11 -2"0] and there is the binary choice “left” or “right”.
We show |Corrupted| < nd! next: The number of pairs (R(0), R(cing — 1)) € Z? with R €
CorPaths is bounded by (|J1|+c1m0l)? < ngl; recall that ng was chosen to be large (see Subsection
2.1). Furthermore, every such pair gives rise to at most a single element of Corrupted, since
different paths R, R’ € CorPaths with the same starting point and the same end point generate
the same word £o R = £o R’ by Definition (8.27). This shows |Corrupted| < na! < 4.2"0 since ng
is large enough by Subsection 2.1. Using the definition of Centery, we obtain |Centery| < 50-2m0.
Finally we show |Centeryy| > 270/3. We observe that [—2 - 270/2 2. 270/2] \ [~270/2 9n0/2]
is disjoint from .J;. Assuming that B holds, this implies that all right ladder intervals

unique fit
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I, I C [—2-2m0/2 9. 9m0/2]\ [—270/2 9n0/2] with I} # I |I1| = |I2] = ¢ing > cong generate
pairwise different ladder words (£[I1)_. # (£[I)_.. Since there are at least 270/2 — ¢;ng > 2m0/3
such ladder intervals (ng is large enough; see Subsection 2.1), there are as least as many ladder
words w € Centeryiy.

Lemma 8.17 For every x € Z with || > 2 - 2™ + 21212070 and for every t € [0,212™1 holds:

P [S(t) = x, |Puzzlefy(#'x)| < 50 - 2", and |Centery N Puzzle[d (6 )| > 2m0/3 | < exp{—2"0/4}.
(8.34)

Proof. We set

Puzzle[(0'x) if S(t) = « and |Puzzlep} (0" x)| < 50 - 2",

0 else. (8.35)

Outside, ; := {

70

The random set Puzzle[3(6"x) only depends on x[[t,t +2-2!2%"0[ and the random walk cannot
travel a longer distance than 2121270 during the time interval [t,¢ 4 2 - 2'2°™0[ Given S(t) = z
and |z| > 2270 4 2[212970  the random walk S cannot enter the interval [—2-2"0 2. 2] during
the time interval [t,¢+ 222970 [; thus Outside, ; depends only on S and £[(Z \ [-2-2m0,2-2"0)).
Hence, using Lemma 3.4 and J; C [—2-2"0,2.2"0], the random piece of scenery {[[—2-2"0,2.2"0]
and the random set Outside, ; are independent with respect to P. Let I, denote the set of all
right ladder intervals I C ([—2-2"0,2-2"0]\ J;) with |I| = ¢ing. We define 7 similarly with
“right ladder intervals” replaced by “left ladder intervals”. We partition Z, into cingl_, subsets,
ZI(1),... , Zl(cingl—):

Z/(k) :={I € Z, | minI € k + cingl_Z} (8.36)

Let k € [1, cingl—] be fixed. Note that the cardinality N := |Z](k)]| fulfills the bounds

2no 4. 2m0 4. 2m0
< —|Jil-2< N < :
ClnolH ClnolH Cl’rlolH

(8.37)

Furthermore, the elements of Z}(k) are pairwise disjoint; thus the family (§[1) ez is i.i.d. and
independent of Outside, ; (with respect to P). For I € T, we set X} = 1for (£]I)— € Outside, 4,
and X7 := 0 otherwise. Similarly for J € 7;, let X b denote the indicator function of the event
{(¢]J)~ € Outside, ;}. Then, conditioned on a given value of Outside, ;, the Bernoulli random
variables X%, I € Z/(k), are i.i.d. with respect to P[ - [Outside, ;). Furthermore we have, using
|Outside, ¢| < 50 - 2"0:

P[X} = 1| Outside, ;] < |Outside, ||C|~/ < 50elos2=e1log|Chno —. (8.38)

We set Y, = ) rezi(k) X1 Consequently this random variable is stochastically dominated
by a Binomial(N, p)-distributed random variable; note that Y,  is binomially distributed with
respect to the conditioned measure P - |Outside, ;]. A rough but simple large deviation estimate
suffices for our purposes: Using the exponential Chebyshev inequality, we have for ¢ > 0 and
o :=log(a/p) > 0:

BIYE > Na) < BV < (o079 4 (1 - )™)Y = (1 +a—phpa)  (839)
< (e"p"a”*)N = exp{Na(1 — log(a/p))}
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In particular, we obtain for the choice a = N~12"0/3 /(4¢ingl_.) > 27270/3 /16 (where we have
used (8.37)), using (8.38): o = log(a/p) > (c1log |C| — 2 log 2)ng — log 800 > ¢1(log [C|)no /2 + 1;
the last inequality holds by our choice of ¢; and ng (see Subsection 2.1). Hence we obtain:

. ono/3 ol
Py Xj> 1 ] < Y P[Yy > Na] < eingl_ exp{Na(1 — log(a/p))}
1€, k=1
1 1
< einpl_, exp {—OSgl—MQ"O/:g} < 3 exp{—2"0/4}. (8.40)

The same argument works for left ladder intervals, too:

N | 9no/3 1 no /4
P ; Xpz = | < gexp{-2"/"} (8.41)
1

Combining (8.41), (8.40), and |Corrupted| < ng! < 270/3/2 (see Lemma 8.16), we obtain

5 5 9no/3
P [|Center1 N Outside, ¢| > 2"0/3] < P ||Centeryp N Outside, ¢| > (8.42)
5 no/3 5 2n0/3
<P Xi> +P > X > < exp{—2"/4},
1€, JETI,

The claim (8.34) is an immediate consequence of this bound. m
Due to the presence of the “modified” part £[J;, we define the following modification of

recogn straight’ which is a little weaker than the original version:

Definition 8.18 (Modification of Definition 6.18)

B™ (8.43)

recogn straight =

For every R € AdPaths(11-2"°, c1ng) with R(cing—1)—R(0) ¢ {(cino—1)I—, (c1no—

1)l_} there is R € AdPaths(12 - 2", ¢ing) such that R(0) = R(0), R(cing — 1) =
R(cing — 1), and (R takes at least one value in Jy, or { o R # £ o R).

i

For all (w1, wa, w3) € Puzzle(Input) and every admissible piece of
path R : [0, 3cing[— [—11-270,11-2"°] with {o R = wjwaws holds: p . (8.44)
wy is a ladder word of £[[—11-2™0 11 -2™] or wy € Corrupted.

10 —
Eonly ladder "

Lemma 8.19 (Modification of Lemma 6.37) There exist positive constants cas and cag not
depending on ng such that:

P [(B”O )] < cageczomo, (8.45)

recogn straight

Proof. The proof of Lemma 6.37 requires orily a small modification: Given ]? € AdPaths(11 -
2", c1ng), there are two cases: Either some R € AdPaths(12 - 2™, ¢1ng) with R(0) = R(0) and
R(cing — 1) = R(cing — 1) touches J; (“case 17), or no such R touches J; (“case 27).
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e In the first case, the underlined new condition in definition (8.43) of B is

recogn straight
certainly satisfied.

e In the second case, we may proceed further just as in the proof of Lemma 6.37, with P
replaced by P: formula (6.84) remains true in this case, since neither R[I(R) nor R[I(R)
touches Ji. Recall that £[(Z \ J1) has the same distribution with respect to P as with P.

The rest of the proof of Lemma 6.37 still remains true when we replace P by P but remove all
paths R from AdPaths(11-2"0, ¢1ng) and AdPaths(12-2"0, ¢1ng) that belong to the first case. m

Lemma 8.20 (Modification of Lemma 6.19) We have

no HNO 10
Ball paths N Brecogn straight < Eonly ladder*

(8.46)

Proof. We describe the modifications required in the proof of Lemma 6.19: Assume the
event Bl s N Blitogn straighs 101ds, and let wiwyws € Puzzlef®(Input), and R € AdPaths(11 -
2"0,361no)l £ o R = wiwows as in the proof of Lemma 6.19. Again, we prove by contradic-
tion that Eg’gly ladder DOlds: Assume that wy is not a ladder word of {[[—11-2"°, 11 - 2™°] and
wy ¢ Corrupted. We distinguish two cases: Either the middle piece R[[c1ng, 2cing[ of R belongs

to CorPaths when being time-shifted back to the origin (“case 17), or it does not (“case 27”).

e In case 1, wy = (£ o R[[c1no, 2c1no[)— € Corrupted by Definition (8.28), which contradicts
our assumption.

e In case 2, using Definition (8.27), there is an admissible piece of path R’ : [c1ng, 2c1n0[— Z
with R'(cing) = R(cing) and R'(2¢1ng — 1) = R(2¢ing — 1) such that wh := (o R)_, #
(€ o R[[e1ng,2c1np[)— (“case 2.17), or all admissible paths R’ : [c1ng,2¢1no[— Z with
R'(e1ng) = R(c1ng) and R'(2¢1ng — 1) = R(2¢1ng — 1) do not touch J; and fulfill £ o R =
50 RHClno, 261’00[ (“case 2.2”).

— In case 2.1 we proceed just as in the proof of Lemma 6.19; this yields the contradiction
wiwaws ¢ Puzzle (Input).

— In case 2.2, we use that R[[cing,2c1ng| is not a ladder path, since ws is not a ladder
word of {[[—11-2"0,11 - 2"]. Using Definition (8.43), this case is contradictory, too,

. no
simce Brecogn straight holds.

Thus all cases lead to a contradiction; this proves the Lemma. m

Lemma 8.21 If E™

0 n
only ladder [ Estop,TO holds, then Puzzleyy(x) C Centeryy.

Proof. Assume that Egr?lyladder N Egtop,TO holds, and let wo € Puzzle[¥(x). Take wy,ws € C™
with (wi,ws, ws3) € Puzzleffj(x) by (8.24). Then by (8.23), (wi,ws,w3) € Puzzle(Input),
and wjwsws occurs in the observations y at most 20/l time steps after some stopping time
TP(x), 0 < k < 2270, Since Egtop,TO holds, we have |S(T}?)| < 2"; thus wjwows is read in y
while the random walk follows some admissible piece of path R with values in [—2-2"0,2.2"0] C
[—11-2"0,11-2™0]. Since Eggly ladder 110lds, this implies: w, is a ladder word of {[[—11-2"0,11-2"0],
or wo € Corrupted. In the next argument, we use the following fact: If 7 is a ladder path and
7 is an admissible piece of path with the same length, starting point, and end point as 7, then
7 = 7. Using this fact and the Definitions (8.27) and (8.28), we see: if wy is a ladder word of
&[[—11-2m0 11 - 2™0], but not of £[([—11-2m0,11 - 270]\ J;), then wy € Corrupted, too. Thus we

obtain wy € Centery;. This proves the lemma. m
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Lemma 8.22 (Modification of Lemma 6.34) There exist constants cag,co1 > 0 such that:

P [(B”O )° N B

all paths stop,T0 < Coqpe 0200, (8.47)
Proof. Again, the proof of Lemma 6.34 remains literally true when we replace P by P and 7

by T?; in particular note that the event B;Ll‘fpaths depends only on the random walk S, but not

on the scenery £, and the strong Markov property for S still holds with respect to P. m
Recall Definition (7.1): E* o= {Vk e N: If T} (x) < 2"*™  then |S(T}(x))| < 2™}.

no error

Lemma 8.23 For some constants cys, c49 > 0 holds p [El

no error,Tl} 21— cage™ 0.

Proof. Using Definition 8.12 of 7' and Lemmas 8.20, 8.21, and 8.17, we obtain (see also the
explanations below):

P |:Erlloerror,T1] (848)
o p [For all t € [0,212°™ [ holds: if [Puzzley(x) N Puzzlefy(6'x)| > 2"0/% and
= ||Puzzlefy(0'x)| < 50 - 2™, then |S(t + 212em0)| < 2m

) 212em 1 [|Centery; N Puzzley(6tx)| > 2m0/3,
> P[Puzzle[y(x) C Centeryy] — Z P | |Puzzlefy(0*x)| < 50 - 2", and

=0 2. 2M0 4 2]2120m0 < | G(¢)| < [2120m

= JB[BaTLll(l)paths N Bze(::ogn straight || EgtOp,TO] — 2i2em . gjplzem . eXp{_2n0/4}
= P[Egtop,TO] B P[(B;Ll?paths)c N Egtop,TO] B P[(Bfeocogn straight)c] — 2 exp{24(log 2)(1’01 o 2710/4}
> 1 cage 0"

for some constants c4g,cq9 > 0. For the second inequality in (8.48), note that the random
walk S cannot travel farther than [2120™ within time 2!2971; thus |S(t + 2129m0)| < 2™ or
2.2m0 4 21212am0 < | §(¢)| < [2129™ holds for all ¢ € 0,221 ], In the last step of (8.48) we used
Theorem 8.2, Lemmas 8.19 and 8.22, and the fact n; = 2Lv70J (recall Definition 3.6); especially
exp{24(log 2)an; — ono/ 41 is superexponentially small in ng. The constants c4g and c49 need not
depend on «, since ny was chosen large and a-dependent (see Subsection 2.1). m

Definition 8.24 We define the event

Bno = | VR AdPaths(3 - 270/ 3eymg) 3k € (0,273 € [0, 2%/ - | g 00
all paths II TimeShiftTk (0+7 (R) cs

Lemma 8.25 (Yet another modification of Lemma 6.34) There exist constants cso, c51 >
0 not depending on ng such that:

P [(B:ﬁ)pathsn)c n Egtop,T0i| < csoe” @M. (8.50)

Proof. The proof is almost the same as the proof of Lemma 6.34; we only explain the differences.
This time, some of the parameters in the proof of Lemma 6.34 must be changed: We replace

(6.70) by BF .= {aj e [0,2™/1] : TimeShiftT<k>+J’(R)} and AdPath(12-2", 3¢;n) by AdPaths(3-
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20/2 3¢1np); then the estimate (6.75) is replaced by |AdPaths(3-270/2 3¢ ng)| < 7-270/2| M|3c1m0,
Then (6.78) changes to

inf P {S(T(k‘) + j) = x for some j € [0,2"0 /]] ‘ C’go’k} > 592770/ (8.51)
|| <3-2m0/2

3cing
min °

for some constant csy > 0. Hence the right hand side of (6.79) gets replaced by c5227"0/2y
We end up with the following modified version of (6.80):

- log 2 o
P [ ] <70 o (P22 s ) im0},

(8.52)

which still converges superexponentially fast to 0 as ng — oo. This proves the Lemma. m
Definition 8.26 (Modification of Definition 6.4)

3 For every right ladder path 7 € ([—2122"0, 212270\ J;)[0c1m0/2l and
ngnals := § for every admissible piece of path ©/ € AdPath(2122" c;ng/2): ., (8.53)
If Sor = o/, then 7(0) < 7/(0) and 7(cing/2—1) > 7' (c1np/2—1).
R For every ladder path 7 € ([—2122"0,212%70] \ .J;)l0c1mol and for
no

Esigna_lsII = { every admissible piece of path 7/ € AdPath(2122™ ¢ing): . (8.54)
If Eom=¢&on, then m(cing/2) = 7'(c1no/2).

Note that 7’ in the last two definitions may well have some of its values in Jj.

Lemma 8.27 (Modification of Lemma 6.38) There exist constants cog > 0, co9 > 0 not
depending on ng such that:

]5 [(B;gnals)c] S 6296_028n0' (855)

Proof. The proof of Lemma 6.38 remains literally true when we consider paths
7€ ([—212%m0 212%m0] \ Jp)l0ernol (8.56)

only, but replace P by P. Note that in the induction step in proof of Lemma 6.38 & o m(j)
is independent of the family (¢ o 7[I’,& o #/[I’) with respect to P, too, even if 7’ touches the
“corrupted” domain Ji; see (6.90) and a few lines before this formula. This is true because 7
does not touch Jy, and £[J; is independent of £[(Z \ Ji) by Lemma 3.4. Thus formula (6.90)
remains true when P is replaced by P. m

Lemma 8.28 (Modification of Lemma 6.5) B  C E"

signals = signalsII”

Proof. When we consider paths 7 only which do not to touch Ji, the proof of Lemma 6.5
remains literally true in this modified case, too. m

Lemma 8.29 (Modification of Lemma 6.7)
Assume that the event By o N BEg 10N Egtop,TO holds. Let I C[—6-2m,6-2"]\ J; be a
right ladder interval with |I| = 3cing, and let wy, we, w3 € CA™ with ({[1)—, = wiwows. Then

(w1, wa,w3) € Puzzlef® (Input).
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Proof. The proof of Lemma 6.7 remains literally true when we consider only intervals I that
are digjoint from Jy, n = ng, and replace ngnals and ESlgnals 1 by their modified versions; note

that the ladder path R in the proof of Lemma 6.7 does not touch J;, but we need not assume
this for R/. =

Lemma 8.30 If the event Baupat][1S N B:l(l)patth NnB™ N Eto 70 holds, then Centeryp C

signals

Puzzley (x)-

Proof. Assume that B;Ll(fpathsﬂBaHpathSHﬂngnalsﬂE stop.T0 holds, and let wy € Centeryy;. Then

= (&[1)_ for some right ladder interval I C [—2.270/2 2.270/2]\[—2"0/2 970/2] |[| = ¢;ng. We
take the larger right ladder interval I’ D I, |I'| = 3¢yng, with ¢1ng extra points to the left of I and
another ¢;ng extra points to the right of I; then I’ C [—3-2"0/2 3.270/2]\ J; C [~6-2"0,6-270]\ J;
note that dist(J;, Z\[~270/2, 270/2]) > ¢1ngl and dist([—2- 2”0/2, 2.970/2) 7\ [3. 2”0/2,3 210/2]) >
c1nol; recall that ng is chosen large enough (Subsection 2.1). Then (£[1)_, = wjwows for some
wi,wz € C4™, and Lemma 8.29 implies (wi,ws,w3) € Puzzle®(Input). Let R denote the
(unique) right ladder path R : [0,3¢1[— I’. Since B:l(l)patth holds, the random walk S follows
R (time-shifted) at most 2"/l time steps after some stopping time 70 (x), k € [0,2°"[. Then
£ o R = wywyws; thus (wy,ws,ws3) € Puzzle[j(x) by Definition (8.23); hence wy € Puzzlef{(x)
by Definition (8.24). This proves the lemma. m

Definition 8.31 We set

Eler = {|Centerryr N Puzzle]y(x)| > 270/% and |Puzzle[d(x)| < 50 -2 }, (8.57)

= 1

‘:ienter = {5 S CZ [ center ’ 5] 2 } . (858)
The sets El, ., and El, ., play an analogous role for the stopping times 7" as E™ s and

Ereconst, f Play for the “higher level” stopping times in Section 7.

Lemma 8.32 For some positive constants cs3 and cs4 holds P[§ € Zlter] > 1 — cyzecsam0
no no 0 rn

Proof. If the events Ball paths’ Ball paths II? Bmgnals’ Estop,TO’ Eor(l)ly ladder?’ and Bur?lque fit hOld’ then

we have |Centeryp N Puzzle)(x)| = |Centeryyr| > 2n0/3 and ]Puzzle" (x)| < |Centeryy| < 50 - 2M0

by Lemmas 8.21, 8.30, and 8.16. By Lemma 8.20, we can replace Eonly ladder 1D the above list of

events by BmcOgn straight- Thus we have
D 1 no no no
P [Ecenter] 2 P |:Ball paths N Ball paths II N B51gnals n Estop T0 N Brecogn straight Bumque fit (859)
> 1 —cse” "0

for some positive constants cs5 and cs4 by Theorem 8.2 and Lemmas 8.22, 8.25, 8.19, 8.27, and
8.15.
Hence we obtain the following:

1~ 1~
3716 # Zhana] = 5P | PlBha)® 16> 3] < Pl(Blana) ] S szt (500

recall that P[|¢] and P[-|¢] coincide. m

62



Definition 8.33 (Yet another modification of Definition 7.3) Let v(k) denote again the
(k + 1)st visit of S to the origin. We define

1 L \Centerm N Puzzle”o (Ht )’ > omno/3
T (57 X) - {t G N and |PUZZ|en0 (9t )| S 50 2n0 9 (861)
Bl [ For more than 1/4 of the points k € [0, 2291 (8.62)
when back recog * holds v(onml) c Tl/(f,X) . .

Lemma 8.34 (Yet another analogue to Lemma 7.4) If the event B;Ll‘fpaths N Ballpatth N

B;gnals n Estop 70 h0ld57 then Tl(X) 2 Tl/(gv X) N [07 212&”1 -2 212&”0['
Proof. Assuming that the event B pathsﬂB:H patthﬂngnalsﬂEgtOp holds, we know Centeryp C

Puzzle[y(x) by Lemma 8.30; thus |Puzzle$(x) N Puzzle[)(6x)| > |Centerpyr N Puzzlel) (6% x)| for
all t. This implies the claim T*(x) 2 ’]I‘l’(f,x) N [0,212em — 2. 212am0[ of the 1emma recall
Definition (8.25) of T!(y). m

Lemma 8.35 (Yet another modification of Lemma 7.5) Assume that the events
El N Eenoughback N Ewhenbackrecog and Tl( ) = Tl,(§7X) a [07 212@”1 -2 212&”0[ hold.

no error,T'!

Then Estop 71 holds, too.

)

Proof. Replacing T ¥ by T') and Ty by T ! the proof of Lemma 7.5 remains literally true. m

Lemma 8.36 (Yet another modification of Lemma 7.6) We have the bound

P [(Ex}vhenbackrecog) N {5 € "—‘center} ] < 0.9

Proof. The proof of Lemma 7.6 remains literally true when one replaces E!
El

when back recog’ ““reconst,f

22an1

(8.63)

hen back recog, f by

by = m + 1 by 1, and P by P; recall P[|¢] = P[-|¢]. m

center )

Proof of Theorem 3.10. By Lemmas 8.34 and 8.35 we know

1 no no
E noerror,T! N Eenough back N Ewhen back recog Ball paths n Ball paths IT n Bs1gnals N Estop 70 = Estop T1-

(8.64)

Since E! enough back depends only on S but not on &, we have P[(Eenough back) ] = P[(Eénough back) -
Thus, using Lemmas 8.23, 7.2, 8.36, 8.32, 8.22, 8.25, 8.27, and Theorem 8.2, we know

PlEYop 1)) (8.65)

S P[(Eloerror Tl) ] + P[(Eenoughback) ] + P [(Ewhenbackrecog) N {5 € “center}]
+ p [§ center] + P[(B;Ll(l)paths) N Estop TO] + P[(B;Ll(l)paths H) n Estop TO]

+ P[(ngnals) ] + P[(Egtop)c]
< cyge 490 4 0a 27O 4 0.9226‘"1 + 53670 | op @7 C20M0

_|_ C5oe_c5ln0 _|_ 6296_028710 _|_ 6366_0377'10

—C4M0
<e )

since ng is chosen large enough (see Subsection 2.1) m
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A Appendix: The first return time to the origin

Lemma A.1 Let X be the first return time of the random walk S to the origin. Then E[Xl’g] <
00 holds whenever 0 < 5 < %

Proof. Let k :=1[_, + [, and note that P[Sy = 0] > 0; e.g. one may perform [._ steps of size
I, and then [_, steps of size —I._. As a consequence of the local central limit theorem, there is
a constant csg > 0 such that P[S,, = 0] > csn /2 holds for all n € kN, n > 0. (By choosing
¢s6 small enough, this even holds for small values n € kN\ {0}.)

For A > 0, let
LA =Y e ?"P[S, =0]. (A1)
n=0
Then we have for 0 < A < 1/k and cz7 := ef;g_k:

(k)1
LN = S e NP, = 0] 2 (M) e esg (k)T T2 > % (A.2)

m=1

Let X denote the (j + 1)st visit of the random walk S to the origin; this is consistent with the
above definition of X;. Then

_ —AX;T —AX17j _
L[\ = ZE[e i = ZE[G Y= T—Ble ]’ (A.3)
7=0 7=0
Using (A.2), this implies for 0 < A < 1/k:
_ 1 -
1— Ele™] = T3y < AV (A.4)
We observe the elementary fact
/ (1 —e N1 dN = -1 (—p)2”, (A.5)
0

which holds since 5 < 1; here I' denotes the Gamma-function. Note that —I'(—3) > 0, since
0<pB<l.
By Fubini’s theorem, this implies

E[X?] = F(%lﬁ) /O OO(1-E[6*AX1])A*1*5 dA (A.6)

—1 M —AX171\\—1-8 OO -1-p
< m(/o (1— E[e™ M)At d)\+/1/k)\1 dA).

The second integral in the last bracket is finite, since 8 > 0. The first integral in the bracket is
estimated as follows, using (A.4):

1/k VI
/ (1—ElePA1Fdr < et / A2 7P d\ < oo; (A7)
0 0
the last integral is finite since § < % This proves the lemma. =
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