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Abstract

Consider a spatial branching particle process where the underlying mo�
tion is a conservative di�usion on D � R

d corresponding to the elliptic op�
erator L on D� and the branching is strictly binary �dyadic�� with spatially
varying rate ��x� � � �and � �� �� which is assumed to be bounded from
above� We prove that� under extremely mild circumstances the process
exhibits local extinction if and only if �c � �� where �c denotes the gen�
eralized principal eigenvalue for the operator L	 � on D� �This criterion
is analogous to the one obtained by Pinsky �
���� for the local extinction
of superdi�usions�� Furthermore we show that when the process does not
exhibit local extinction� every nonempty open subset is occupied in
nitely
often with positive probability which can be characterized by a solution
bounded in ��� 
� to the semilinear elliptic equation Lu 	 ��u� � u� � �
on D� Moreover� in this case� there is an exponential rate of growth on
su�ciently large compact domains� and this rate can be arbitrarily close
to �c� In order to reach these conclusions we 
rst develop some results
concerning innerproduct and multiplicative martingales and their relation
to the operators L 	 � and L 	 �� respectively� where � �x� � x� � x�
In the case of the innerproduct martingales we show that for some cir�
cumstances they can be used as changes of measure for the law of the
branching process in a similar way that Girsanov densities act as changes
of measure in the context of di�usions� More speci
cally� the change
of measure induces a drift consistent with a certain Doob�s h�transform
on the path of a randomized ancestral line of descent� These concepts
are essentially spatial versions of spine decompositions for Galton�Watson
processes given in Lyons et al� �
�����
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� Introduction and main results

��� Markov branching di�usions

Let D � Rd be a domain and consider Y � fY �t� � t � �g� the di�usion process
�with probabilities fPx� x � Dg� corresponding to the elliptic operator L on D
satisfying

L �
�

	

dX
i�j��

aij
��

�xi�xj



dX
i��

bi
�

�xi
on D� ���

where the symmetric matrix a�x� � aij�x� is positive de�nite for � �� x � D and
aij � C��D� � bi � C��D�� �We assumed these stronger than usual smoothness
assumptions for convenience 
 they guarantee that there will be no problem
de�ning the adjoint operator�� We assume that Y is conservative� that is� that
�D �� infft � � � Y �t� �� Dg satis�es Px��

D � �� � � �in other words�
Y has an a�s� in�nite lifetime�� Furthermore let � � � � C��D�� � � ��� ��
be bounded from above on D and � �� �� �Here C��D� denotes the usual
H�older space�� Then� the binary �L� ���branching di�usion under the measure
Px is de�ned �informally� as follows� A single particle starts at position x � D�
performs a Y �motion on D� This particle is killed with spatially dependent
rate �� At the moment and spatial position of its death� the particle produces
precisely two o�spring� Each of these two individuals proceed independently to
perform Y �motions killed at rate � at which point they reproduce in the same
way as their parent and so on� At each time t � � the branching di�usion
consists of a point process Zt de�ned on Borel sets with almost surely �nite
total mass Zt�D��

In the sequel� the notation Px� Ex and Z will be used for the branching
di�usion and the notation Px� Ex and Y will be used for the di�usion on D
corresponding to L� Moreover� we shall use the Ulam�Harris labelling notation�
That is an individual u is identi�ed by its line of decent from the initial ancestor�
More precisely� if u � �i�� 			� in��� in� then she is the inth child of the in��th
child of ����of the i�th child of the initial ancestor	Thus uv refers to the individual
who� from u�s perspective� has line of descent expressed as v	 Further� the length
juj is equal to the generation in which individual u lives� We shall use Nt to
denote the set of individuals alive at time t and fYu�t� � u � Ntg for their
positions in D� In this way we have for example Zt�A� � cardfu � Nt � Yu�t� �
Ag where A is any Borel set�

A whole array of questions can be asked about the large time behavior of the
process Z � fZt���gt��� Basic questions which address the concepts of �local
extinction� and �recurrence� �however unde�ned as yet� focus on whether this

	



process will visit nonempty open sets in�nitely often and if so� how can this be
quanti�ed� Surprisingly there are few results in this direction in existing liter�
ature� In the late �fties and sixties� there were a small cluster of papers which
considered simple properties of either general or speci�c examples of branching
di�usions� Speci�cally we speak of the �former� Soviet and Japanese contri�
butions of Sevast�yanov ������� Skorohod ������� Watanabe ������ ����� and
Ikeda et al� �����a�b ������

Some results can be found amongst these references pertaining to the kind
of problems we have alluded to above� in particular Watanabe ������� In more
recent times� the number of articles concerning growth and spread of branching
di�usions are again largely restricted to special cases� for example branching
random walks and branching Brownian motions or simple variations thereof�
Notably Biggins ������ ���	� has produced local limit theorems analogous to
the one in Watanabe ������ which demonstrate that numbers of particles in any
Borel set can be appropriately rescaled over time by their average to achieve a
�Law of Large Numbers� type result� Ogura ������ also showed for branching
di�usions where the motion process is a Brownian motion with �a restricted
class of� space dependent drift that in a given compact set� the number of
particles will become zero and remain zero or a strong law of large numbers can
be produced for the number of particles in that set�

By comparison� the recent developments and popularity of measure�valued
di�usions �superdi�usions� have given a more thorough treatment of analogous
issues concerning concentration and migration of mass� It is almost impossible
to give a full account of books and papers on measure�valued di�usions� We
therefore restrict ourselves here by mentioning the two basic textbooks Daw�
son ������ and Dynkin ������ and the recent monograph Etheridge �	���� on
measure�valued processes in general� and the articles Delmas ������� Engl�ander
and Pinsky ������� Iscoe ������� Pinsky �����b�� Pinsky ������ and Tribe ������
regarding the long term behaviour of these processes �when then underlying mo�
tion process is a di�usion� in particular�

In this article we have three main goals� The �rst is to formalize the rela�
tionship between the operators L
� and L
�
 �where 
�x� � x�	x� and two
classes of martingales related to the Markov branching di�usion� Secondly to
introduce the concept of �spine� decomposition for Markov branching di�usions�
Thirdly we aim to show the functionality of these two by applying them to the
fundamental question of local extinction versus recurrence�

��� Inner�product and multiplicative martingales

In the mid nineties the article of Lyons et al� ������ appeared which formalized
a new approach to analyzing some fundamental problems in the Galton�Watson
process� It was shown that a classical martingale� that has been a popular ob�
ject of study in earlier years �numbers alive in the n�th generation divided by
their expectation�� can serve as a Radon�Nikodym change of measure on the
space of Galton�Watson branching trees� The e�ect of this change of probabil�
ity is to pick out a randomized line of decent� called the spine� and to size�bias
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o�spring distributions associated with each node along the spine� In the case of
Galton�Watson processes� the spine dominates the behavior of the process under
the new measure� That is to the extent that simple and intuitively appealing
probabilistic proofs of classical theorems can be achieved where the original
proofs were more analytical and complicated� In fact� this phenomenon is not
particular to Galton�Watson processes� A number of authors have shown that
similar constructions can be produced for a variety of non�spatial and discrete
time spatial branching processes� see Lyons ������� Kurtz et al� ������� Olof�
sson ������� Athreya �	����� Kyprianou and Rahimsadeh Sani �	����� Biggins
and Kyprianou �	����� In each of these cases a naturally occurring martingale
is used as the appropriate change of measure� The �natural occurrence� of these
martingales is a consequence of the fact that they are constructed from pos�
itive harmonic functions� Take for example the case of a discrete time typed
branching process� Roughly speaking for this case� the afore mentioned mar�
tingales are of the form ��n

P
i h�Xi� where the sum is typically taken over

individuals alive in the n�th generation� Xi is the a type of individual i �which
could be for example a birth position� and h is an eigenfunction with respect
to the expectation operator with eigenvalue �� The last of these properties can
be written� using obvious notation� Ex�

P
i h�Xi�� � �h�x� where � is the eigen�

value� See Athreya and Ney ����	� Chapter VI���� Athreya �	���� and Biggins
and Kyprianou �	�����

In Section 	 we show that the idea of martingales from harmonic functions
transfers comfortably into the context of Markov branching di�usions� In this
case� the analogous class of martingales takes the form expf	�tg R h�y��t�dy�
where � is an appropriately evolving point process embedded within the Markov
branching process and h is positive and harmonic with respect to L 
 � 	 �
for some appropriate � � R� These martingales we refer to as innerproduct
martingales �for the case of branching Brownian motion� they have also been
referred to in the past as �additive� martingales��

In Section � we follow the trend of the previously mentioned literature and
show that we can use a speci�c class of these martingales to serve as changes
of measure for the branching di�usion� The e�ect of the change of measure is
to perform a Doob�s h�transform on the di�usion along a randomized ancestral
line of descent� the spine� whilst doubling the rate of �ssion along this path� It
will turn out that this fact is a direct consequence of Girsanov�s theorem for
di�usions and Poisson processes� It is worth remarking that in the context of
superprocesses� there exists a path decomposition similar in spirit to the spine
construction when one conditions a supercritical superdi�usion to survive� In
this case� the conditioned process can be recovered by taking a particle Markov
branching di�usion as a �backbone� process along which there is a continuum
of immigration at each space�time point according to the superdi�usion condi�
tioned on extinction� and �nally add a version of this process with a random
number of initial particles to the process conditioned on extinction� This is also
referred to as the �immortal particle picture� �see Etheridge �	����� Evans and
O�Connell ������ and Engl�ander and Pinsky ������ for an overview�� It is an�
ticipated that there is a link between these backbone processes and the spines
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that we de�ne here� We hope to o�er in future work some insight into their true
relationship�

There exists another class of martingales in the context of Markov branching
di�usions� These are closely related to the non�linear operator L 
 �
 �recall
that 
�x� � x� 	 x�� The works of Ikeda et al� �����a�b and ������ Skorohod
������ and McKean ������ all demonstrate clear links between multiplicative
martingales and positive bounded solutions to parabolic di�erential equations
of the form ut � Lu 
 ��u� 	 u�� Later� other authors such as Neveu �������
Champneys et al� ������� Harris ������ and Kyprianou �	���� used these facts
to work with these multiplicative martingales as tools in the context of �typed�
branching Brownian motion� Of particular note is their use to date in analyzing
travelling wave solutions to the Kolmogorov�Petrovskii�Piskunov �K�P�P� equa�
tion or variants of it� In this article� we too shall need multiplicative martingales
as tools in our proofs� For this reason� we spend a little time in Section � to
discuss their relationship with the semi�linear operator L
�
� It will turn out
that when evaluating the probability of local extinction in certain circumstances
�discussed in the following section� we are essentially considering whether there
exist travelling waves solutions to a generalized version of the K�P�P equation�

��� Local extinction versus local exponential growth� re�
currence

The issue of local extinction can be understood in the following context� Given
any nonempty open set B 

 D �the notation B 

 D means that the closure
of B is a bounded subset of D� what are the necessary and su�cient conditions
for this set to be visited for arbitrarily large times with positive probability� It
turns out that the answer to this question boils down to a simple dichotomy
concerning a spectral condition on the linear operator L 
 �� That is to say�
whether its generalized principal eigenvalue �de�ned shortly� is positive or not�
This fact re�ects a similar scenario that has been obtained for superdi�usions
in Pinsky ������ and Engl�ander and Pinsky ������� We are also able to provide
some weak results pertaining to characterizing the growth in the number of
individuals in the given set B when it is visited for arbitrarily large times
with positive probability� In section � we discuss several concrete examples of
branching di�usions where the issues surrounding the dichotomy we demonstrate
can be clearly seen�

To formulate the question of local extinction more precisely we make the
following de�nition�

De�nition � �local extinction� Fix an x � D� We say that Z under Px
exhibits local extinction if for every Borel set B 

 D� there exists a random
time �B such that

Px��B ��� � � and Px�Zt�B� � � for all t � �B� � �	

Remark � Since Z is a discrete particle system� the above de�nition of local
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extinction is tantamount to

Px

�
lim
t��

Zt�B� � �

�
� �	

In the sequel we will use the following notation� We write C����D� to denote the
space of twice continuously di�erentiable functions with all their second order
derivatives belonging to C��D�� A C����boundary is de�ned with the help of
C����maps in the usual way�

Let

�c � �c�L
 ��D� �� inff� � R � �u � � satisfying �L
 � 	 ��u � � in Dg

denote the generalized principal eigenvalue for L 
 � on D �see section ��� in
Pinsky �����a� or Appendix A for further elaboration�� From a probabilistic
point of view� the generalized principle eigenvalue can be equivalently expressed
as

�c � sup
fA� A��D� �A is C���g

lim
t��

�

t
logEx

�
exp

�Z t

�

��Y �s�� ds

�
� �A � t

�
�

for any x � D� where �A � infft � � � Y �t� �� Ag� From the above probabilistic
representation of �c it is clear that �c � � since � is bounded from above� It
is standard theory �see Appendix A� that for any � � �c� there exist a function
� � 
 � C����D� such that �L
 ��
 � �
 on D�

The main results concerning local extinction�exponential growth are as fol�
lows�

Theorem � �local extinction versus local exponential growth�

�i� For any Borel set B 

 D and x � D�

Px

�
lim sup
t��

Zt�B� � � or �
�

� �	

�ii� Fix x � D� The branching di�usion Z under Px exhibits local extinction
if and only if there exists a function h � � satisfying �L
 ��h � � on D�
that is� if and only if �c � ��

�iii� When �c � �� there exists a function � in ��� ��� such that

Px

�
lim
t��

Zt�B� � �

�
� ��x� for all nonempty open B 

 D� �	�

and furthermore� � solves L�
 ���� 	 �� � � on D�
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�iv� When �c � �� Z exhibits local exponential growth� for any � � �c there
exists a �large enough� B� 

 D such that for all x � D�

Px

�
lim
t��

e��tZt�B�� ��
�
� �	

The next corollary follows from part �ii��

Corollary � The local extinction property does not depend on x � D	 that is�
either Z under Px exhibits local extinction for all x � D or it does not exhibit
local extinction for any x � D�

The reader will note that once the martingale tools are in place� the proof is
reasonably straightforward and does not require a great deal of intricacy thus
motivating the martingale theory presented in sections 	� � and �� The elemen�
tary nature of the arguments can also be seen when comparing our method with
the techniques employed by Ogura ������ to deduce similar conclusions for a
much less general class of branching di�usions�

Remark 	 �total mass� In Theorem � we were concerned about the local
behaviour of the population size� When considering the total mass process
kZk �� h�� Zi� it is easy to see that the growth rate may actually exceed �c�
Indeed� take for example a �transient� di�usion corresponding to L on D with
�� �� �c�L�D� � � and let � � � be constant� Then �c�L
��D� � �
�� � ��
but 
 since the branching rate is spatially constant 
 a classical theorem on
Yule�s processes tells us that e��tkZtk tends to a nontrivial random variable as
t��� that is� that the growth rate of the total mass is � � �c�

It is not clear when the function � in Theorem � is equal trivial solution �
and when it is otherwise a non�trivial solution to the equation Lu
��u�	u� � �
on D� If there is no �non�trivial� solution to the semi�linear elliptic equation� we
obtain a �zero�one law� concerning the probability that a nonempty set B 

 D
becomes eventually vacant�

Corollary 
 �local extinction versus recurrence� Assume that the equa�
tion Lu
 ��u� 	 u� � � has no solution in ��� �� except the trivial ones u � �
and u � �� Then either

lim sup
t��

Zt�B� ��� Px	a	s	 for all x � D� and nonempty open B � D�

or

lim
t��

Zt�B� � �� Px	a	s	 for all x � D� B 

 D

according to whether �c � � or �c � ��
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An active example of this Corollary concerning branching Brownian motion
will be shown in Section �� In that case� Lu
��u�	u� � � takes the form of the
travelling wave equation to the K�P�P equation� ���	�u�� 
 cu� 
 ��u� 	 u� � �
where c is the wave speed and � is a constant�

One can think of Lu 
 ��u� 	 u� � � as a generalization of the travelling
wave equation associated with the K�P�P equation� Essentially then the ques�
tion of the uniqueness and non�triviality of � would seem to be questions about
existence and uniqueness of �travelling waves�� This provides then another mo�
tivation for this work� It emphasizes probabilistic interpretations of travelling
waves� In the future we hope to o�er further insight into these matters�

Pinsky ������ and Engl�ander and Pinsky ������ consider similar questions
for another type of spatial branching process� the superdi�usion correspond�
ing to the semilinear operator Lu 
 �u 	 �u� where � and � are related to
the variance of the o�spring distribution and to the �mass creation�� respec�
tively� Their conclusions are proved by considering the relationship between
the superdi�usion and solutions to the parabolic partial di�erential equation
�u��t � Lu
 �u	�u� with appropriate initial and boundary conditions� The
behaviour of solutions of this class of parabolic equations together with an un�
derstanding of how to express the behaviour of the superdi�usion in terms of
these solutions is fundamental to their methodology� Given that the branch�
ing di�usion we have described here is associated with the semilinear operator
L 
 �
 one might argue that with some mild adaptations to the case � � ��
the analytical arguments of Engl�ander and Pinsky ������ can be re�employed
here� Indeed that is the case and in Section � we follow this line although the
results obtained are weaker than what the probabilistic techniques deliver� In
particular� only part �ii� of Theorem � is proved using the analytic approach�
This again emphasizes the motivation for pursuing probabilistic techniques�

��� Outline

The rest of this paper is organized as follows� In the second section we give
a number of results concerning inner�product martingales and their connection
to certain partial di�erential equations� This section will later be completed
by section four which treats similar questions for multiplicative martingales�
Between these two sections� we present a key section �Section �� which contains
the  spine�construction!� In section �ve we utilize the preceding three sections
and prove the theorems stated in subsection ���� An analytical proof of Theorem
� part �ii� will be shown in section six� Then� in section seven� we complete the
theory with several concrete examples� Finally� Appendix A is intended to make
this paper easier to read by giving the necessary background material�

� Natural inner�product martingales

As is well known� the theory of di�usion processes lays down a clear relationship
between positive harmonic functions and the existence of certain martingales�
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leading to the stochastic representations of solutions to certain partial di�er�
ential equations� For an account of this theory one can consult Karatzas and
Shreve ������ for example�

The story is very similar for branching di�usions and that forms part of
the motivation for this section� In what follows we shall show that positive
functions that are harmonic with respect to the operator L
 � 	 � for � � R�
either on the whole domain D or a compact subdomain such as a ball B� are
intimately linked to certain martingales which can be written as functionals of
the �L� ���branching di�usion� The results we shall prove are by no means an
exhaustive analogy of what can be proved for di�usions� but they su�ce for
our purposes� The connections we present are not exclusively new� It is clear
that other authors have pursuing these connections in the past� see for example
Watanabe ������� Ikeda et al� �����a�b� ������ Champneys et al� ������ and
Harris ������� Our exposition� if not providing more general results within
this context� uses more elementary� probabilisitic proofs� In particular� we will
not �unlike in section six� rely on the theory of evolution equations and their
connection to the Laplace�functional of Z� but rather on arguments only using
standard branching decomposition together with It"o�s formula for the single L�
particle� Thus� on bounded domains� for example� one does not have to worry
about the appropriate boundary condition for the semigroup� nor about the
question� why the solution to the integral equation becomes actually a classical
solution�

Before continuing with the results we need to introduce some notation� Let
Ft be the natural �ltration generated by Zt� For any Borel set B 

 D� let

us denote by bZ �
n bZt � t � �

o
the process corresponding to the branching

di�usion Z where particles are instantly annihilated when they meet �B	 We
let NB

t consist of those individuals who are �rst in their line of descent to hit
�B	 Recall the stopping time �B � infft � � � Y �t� �� Bg� We would like to
de�ne similar objects for each u � NB

t � Henceforth for such a u� we denote the
�nite hitting time of �B by �Bu � For technical reasons� we also need to de�ne
�Bu for u �� NB

t � for such an individual� �Bu ���� Finally for each individual u�
let �u be their time of death and note that in their particular ancestral line of
descent� if juj � n then �u is the time of the n�th arrival in a Poisson process
with inhomogenous intensity ��Y �t���

Theorem � �Local inner�product martingales� Consider a ball B 

 D
�or indeed any other compact set with a C����boundary�� Let h � C����B��
h � � on B and � � R� Then

W h
t �B� �

D
h� bZtE
h �x�

e��t 

X
u�NB

t

h
�
Yu
�
�Bu
��

h �x�
e���

B
u

is a Px�martingale for all x � B with respect to Ft if and only if

�L
 � 	 �� h � � in B	

�



Proof
 We begin by assuming that W h
t �B� is a martingale so that neces�

sarily Ex

�
W h

t �B�
�
� � for all x � B and t � �	 By conditioning on the �rst

�ssion point we have for all x � B

h �x� � Ex

�
h
�
Y
�
t 
 �B�� e� R

t��B

�
�	�
Y 
s��ds

�

Ex

�Z t��B

�

	� �Y �s�� e�
R
s

�
�	�
Y 
r��drh �Y �s�� ds

�
	 ���

It follows that

Mt �� exp

�
	
Z t��B

�

�
 � �Y �s�� ds

�
h
�
Y
�
t 
 �B��




Z t��B

�

	� �Y �s�� e�
R
s

�
�	�
Y 
r��drh �Y �s�� ds ���

is a martingale� If h � C� �B�� an application of It"o�s formula shows that when
Mt is written as an It"o di�usion� as the drift component is necessarily zero� we
are forced to have �L	 � 	 ��h � 		�h on B� That is �L
 � 	 ��h � � on B�
�nishing the proof in one direction�

For the other direction� let us assume that �L
 � 	 �� h � � on B �and
hence necessarily h � C� �B��� Suppose it can be proved that ExW

h
t �B� � �

for all t � � and x � B� Then the result follows from the decomposition

W h
t	s �B� �

X
u� bNt

e��t

D
h� bZs �u�E
h �x�



X
u�NB

t

h
�
Yu
�
�Bu
��

h �x�
e���

B
u



X
u� bNt

e��t
X

uv�NB
t

h
�
Yuv

�
�Buv
��

h �x�
e����

B
uv�t�

�
X
u� bNt

e��tW h
t �B� u� 


X
u�NB

t

h
�
Yu
�
�Bu
��

h �x�
e���

B
u

where given Ft� bZs �u� and W h
t �B� u� are independent copies of bZs and W h

t �B�
under the law PYu
t� respectively�

It remains then to prove then that ExW
h
t �B� � � for all t � � and x � B�

First some new notation� Let L to be those individuals who� during their life
time� cross the boundary �B before time t for the �rst time their ancestral
history or are alive at time t without having an ancestor �including themselves�
who has met the boundary �B	 In the terminology of Chauvin ������� this is a
stopping line� Let AL �n� be those individuals in the n�th generation who are
neither in L� nor have an ancestor in L� Now de�ne

W h
t �B� n� �

X
u�L
juj	n

e���t��
B
u �

h
�
Yu
�
t 
 �Bu

��
h �x�



X

u�AL
n�

	e���u
h �Yu ��u��

h �x�
	

��



We shall now show that this is a mean one martingale with respect to Gn�
the natural ��algebra generated by the complete life all individuals up to and
including the n�th generation� Note that for individuals u in the n�th generation
or less� �u� �

B
u and membership of L are Gn�measurable�

Using the assumption on h and It"o�s formula �recall that h has bounded
derivatives on B� � it follows that ��� is a martinagle and thus we have a
stochastic representation for h given by ���� This representation can otherwise
be written

h �x� � Ex
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���t��B�h
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�
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 �B��
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		t��B�	e
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for all t � � where � is the �rst �ssion time in our branching process� Now
consider the decomposition
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By taking conditional expectations in this decomposition with respect to Gn and
applying ��� the martingale property is proved�

Now note� using ��� again� that

Ex

�
W h

t �B� n�
�

� Ex

�
W h

t �B� ��
�
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��	 � �Y ����h �Y ����

h �x�

�
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The branching process does not explode in a �nite time� and hence AL �n�� �
almost surely� This together with monotonicity implies

� � lim
n��

Ex

�
W h

t �B� n�
�

� Ex

�
W h

t �B�
�

 lim

n��
Ex

�� X
u�AL
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	e���u
h �Yu ��u��

h �x�


A 	

We want to prove that the limit on the right hand side is zero� To this end note
that for u � AL �n� � �u � ��� t�� h is bounded on B� AL �n� � fjuj � n � �u � tg �

��



and the n�th generation contains 	n members� We thus have the upper bound

Ex

�� X
u�AL
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	e���u
h �Yu ��u��

h �x�


A � Kej�jt	kPx ��k � t�

where �k is the time of the k�th arrival in the Poisson process fnt � t � �g whose
intensity at time t conditional on Y is � �Y �t�� 	 Since fnt � kg is equivalent to
f�k � tg it follows that
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where Bt � exp
nR t

�
� �Y �s�� ds

o
	 The �niteness of this sum implies necessarily

that
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�� X
u�AL
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	e���u
h �Y ��u��

h �x�


A � �

hence Ex

�
W h

t �B�
�
� � and the proof of the Theorem is concluded�

The following result is an immediate consequence of the previous theorem�
Denote by � the principal eigenvalue of L
� on B �that is the supremum of the
real part of the spectrum�� Recall that �see for example Theorem ����� in Pinsky
�����a��� the corresponding Dirichlet�eigenfunction 
 belongs to C����B�� and

 � � on B �while 
 � � on �B��

Corollary � �Dirichlet inner product�martingales� The process M� de�

ned by

M�
t �

X
u� bNt

e��t

 �Yu �t��


 �x�
� e��t

h
� Zti

 �x�

is a Px�martingale with respect to the 
ltration generated by the branching pro�
cess for all x � B�

Here is another version of Theorem � but with a little weaker assumption on h�
In fact we will not need this version in the rest of the proofs but it shows there
are much deeper connections with Dirichlet problems for di�usions�

Theorem � Let B 

 D be a ball� h � B � ����� a C
�
B
�
�function and

� � �� Then
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is a Px�martingale with respect to the 
ltration generated by the branching pro�
cess for all x � B if and only if

�L
 � 	 �� h � � in B	

Proof
 Suppose that W h
t �B� is a martingale� Then necessarily we have ����

Indeed by bounded convergence �� � �� we can write

h �x� � Ex

�
h
�
Y
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�B
��
e�

R
�B

�
�	�
Y 
s��ds

�

Ex

�Z �B

�

	� �Y �s�� e�
R
s

�
�	�
Y 
r��drh �Y �s�� ds

�
	 ���

The unique solution to the Dirichlet problem �c�f� Karatzas and Shreve �������

�L	 �� 
 ���u � 		�h in B

u � h on �B	

has stochastic representation equal to the right hand side of the above stochastic
representation of h and hence u � h	 That is� �L
 � 	 �� h � � in B	 Note that
we used � � � to guarantee the potential is positive and that h is continuous on
B	 These conditions together are su�cient to guarantee that the above Dirichlet
problem has a unique solution with a stochastic representation�

Now suppose that �L
 � 	 �� h � � in B	 The function h can be written
as a solution to the above Dirichlet problem� By uniqueness and the stochastic
representation of the solution this implies that ��� and hence ��� or equivalently
��� holds� The proof is completed in the same way as the previous Theorem�

For both the Theorems above we have used a technique of approximating the
expectation of our candidate martingale via a generational decomposition� This
technique is essentially based on a method used by Chauvin ������ who used
it to show the existence of multiplicative martingales for branching Brownian
motion� Not surprisingly this method will be used again when we look in more
detail at multiplicative martingales�

The martingales we have considered so far are �local� in the sense that they
concern the branching di�usion up to containment in a bounded domain B�
Once this containment is removed� it is not necessarily true that we can make
discounted inner products which function as martingales� This re�ects a similar
situation for di�usions� We �nish this section with the global version of the
previous results�

Corollary �� �Inner�product �super�martingale� Suppose that � � h �
C����D� solves the elliptic equation �L
 � 	 ��h � � on D	 Then

W h
t � e��t

hh� Zti
h�x�

is a �nonnegative� right�continuous� Px�supermartingale for all x � D� hav�
ing an almost sure limit as t � �� Conversely if W h

t is a martingale then
�L
 � 	 ��h � � on D	

��



Proof
 By taking an increasing sequence of balls Bn such that D � SnBn we
produce a sequence of equalities in n of the form

Ex

�
W h

t �Bn�
�
� � for all x � Bn� t � �	

�Note that obviously h � C����Bn� for all n�� Fatou�s Lemma together with
conservativeness of the underlying di�usion Y implies that for all x � D �starting
the limit from su�ciently large n�
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The supermartingale property follows from the decomposition

W h
t	s �

X
u�Nt

e��t
h �Yu �t��

h �x�
W h

s �u�

where given Ft� W h
s �u� are independent copies of W h

s under the law PYu
t�	
For the converse� use conditioning on the �rst �ssion time to produce another

martingale similar to ��� with �B 
 t replaced by t� then apply It"o�s formula as
before�

Remark �� When considering the proof of Theorem � one can adopt the
methodology in one of the directions there to prove that if �L
 � 	 ��h � � in
D then W h

t is a martingale� providing certain growth conditions hold on h� We
do not specify general growth conditions� but we will use this fact in the �rst
and last examples of Section �

� Girsanov�type theorems� h�transforms and spines

for branching di�usions

The aim here is to give a construction of a change of measure with respect
to Px which has the e�ect of identifying a randomized distinguished line of
descent� the spine� and adjusting the di�usion and rate of reproduction along
that line of decent according to a classical Doob�s h �transform� This change of
measure� discussed in Subsection ��	� is de�ned by the Dirichlet innerproduct
martingales discussed in Section 	� The structure of these martingales can be
decomposed into traditional Girsanov densities for di�usions and jump processes
thus rendering them contemporary with the ubiquitous Girsanov Theorem�

We remind the reader that whilst the results in this section are new� we
are not necessarily introducing new technology� We will show here how the
fundamental concepts behind Lyons et al ������ concerning size basing and
spine decompositions translate and generalize to the Markov branching di�usion
setting�

Let B be a bounded domain with C����boundary � Let � � �c�L
��B� and

 be as in Corollary �� Section ��� of Pinsky �����a� concludes that L
�	� is a

��



critical operator� Let e
 be the eigenfunction corresponding to the formal adjoint
of L
�	�c	 Since 
 and e
 are bounded� we have

R
B 
�x�e
�x�dx �� and thus

by de�nition� L
�	� is a product�critical operator �see the Appendix�� Note
also that on account of invariance properties under h�transforms� the operator

�L
 � 	 ��
�
� L
 a

r



� r

is also product�critical� which means that the corresponding di�usion is positive
recurrent� thus ergodizing with full support on the interior of the domain B�

��� Girsanov theorems for di�usions and Poisson processes

Let Px be the law of the di�usion Y corresponding to the elliptic operator L on
D� There are two important changes of measure associated with these processes
which we shall now discuss�

Firstly� we quote a special version of Girsanov�s theorem for di�usions which
concerns Doob�s h�transforms� Before stating this result we shall de�ne fGtgt��

a �ltration with respect to which the process Y is adapted�

Proposition �� �Girsanov�s theorem for di�usions� Suppose that B� 
� e

and � compose the Dirichlet set�up as above then there exists a probability mea�
sure Px
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where Px

� is the law of a di�usion corresponding to the operator

L
 a
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� r	

The new di�usion does not hit the boundary and is positive recurrent in B�

The second change of measure that will be of importance is the Girsanov�
type change of measure for the Poisson process n �conditioned on the path of Y
�� We do not claim the result is new� it is included merely for completeness as
it is easy to prove and not necessarily easy to �nd in the literature� For this we
suppose that fHtgt�� is a �ltration with respect to which n is adapted� Further

denote by L
�
Y the law conditioned on the process Y of a non�homogeneous

Poisson process� n � f�i � i � �� 			� ntgt��� with instantaneous rate � �Y �t���

Proposition �� �Girsanov�type theorem for Poisson processes�

dL��Y
dL�Y

�����
Ht

�n� � 	nt exp

�
	
Z t

�

� �Y �s�� ds



	

��



Proof
 There are a number of ways that this can be proved� The simplest
and quickest is to recall that the �non�homogeneous� Poisson process nt� being
a submartingale� can be characterized by its compensator �that is the increasing
process that appears in its Doob�Meyer decomposition� and therefore through
a martingale representation� see for example Kallenberg ������� In this context

that means that n is a L��Y �Poisson process with instantaneous rate 	� �Y �t��

if and only if �t � nt 	
R t
� 	� �Y �s�� ds is a martingale with respect to Ht� On

account of the fact that n has independent increments� it su�ces to check that
�t has L

��
Y �expectation � for all t � �	 This is a straightforward computation

using the above Radon�Nikodym derivative�

��� Spines on bounded domains

Theorem �� �Girsanov�type theorem for branching di�usions� Assume

that B� 
� e
 and � compose the Dirichlet set�up as in Proposition ��	 then there
exists a probability measure Qx for Z de
ned by

dQx

dPx

����
Ft

� M�
t 	

Further� under this change of measure� the branching di�usion has a randomized
line of descent� the spine� that di�uses with corresponding operator

L
 a
r




� r

which does not hit the boundary �B and is positive recurrent�

Proof
 The branching di�usion Z can be considered to be de�ned on the
space �T �F � Px� where �T �F� is the appropriate measurable space of marked
trees� Note that the marks are points in the path space of of Y and n� �See
Chauvin ������ for a rigorous de�nition�� For any g � T there exist distin�
guishable genealogical lines of descent from the initial ancestor� In following
such a line of descent we identify its spatial path � � f�tgt���

Let T 
 be the enriched space of marked trees in T with distinguished line
of descent and F
 � � �F � T 
� the sigma algebra it generates� Write Tt for
the subspace of marked trees in T which are truncated �in the obvious way�
at time t� Let F


t � � �T 
t � where T 
t is the space of marked trees in Tt with
distinguished line of descent�

Given any �g� �� � T 
t � the measure PxjFt for each x � B can be decomposed
according to a particular choice of distinguished line of descent giving the path
of the spine so that

dPx �g�jFt �
X
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where P 
x jF�t is a non�probability measure satisfying

dP 
x �g� ��jF�t � dPx ���jF�t � dL�
 �n�jF�t �
ntY
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dP
�i �gi�jFt��i

and the tree g is decomposed into the distinguished line of descent �with path
�� and gi� the marked subtrees growing o� it�

We can de�ne a bivariate probability measure Q

xjF�t on the measurable

space �T 
t �F

t � for each x � B such that for �g� �� � T 
t �
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x �g� ��jF�t � �
�B
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e��t dP 
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where we understand �B � infft � � � �t �� Bg� Decomposition ��� enables us to
marginalize Q


xjF�t to a probability measure on �Tt�Ft� � say QxjFt � satisfying
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The e�ect of the change of this change of measure on the branching process can
be seen though ���� Rewrite this identity as

dQ
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With Propositions �	 and �� in mind we see that this decomposition suggests
that under Qx the branching process evolves as follows�

�i� a particle moves as a di�usion corresponding to the operator

�L
 � 	 ��� � L
 a
r



� r	

��



�ii� at rate 	� this particle undergoes binary �ssion�

�iii� at the instant of �ssion one of the particles is chosen with probability ��	�

�iv� the chosen particle repeats steps �i�
�iii� and

�v� the particle which is not chosen initiates an �L� �� �branching di�usion�

The randomized line of descent we refer to as the spine� The spatial path
along the spine corresponds to the operator �L
�	���� Indeed for further con�
�rmation� one can perform the following calculation showing the distributions
of the spine position and the number of �ssions along the spine� Let A � D be
a Borel set� then

Q

x ��t � A� nt � k�
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Yu
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i��

dP
�i �gi�jFt��i

where the indicator in the integral forces there to be precisely 	k nodes in the
marked trees we are considering hence justifying the third equality� Completing
the computation we thus have

Q

x ��t � A� nt � k� �

h
P�x � L

��
Y

i
�Y �t� � A� nt � k�

indicating that the behaviour of the spine is that of the speci�ed h�transformed
di�usion with the instantaneous rate reproduction doubled�

Remark �	 In many cases �see the later sections containing Examples� the
inner�product martingales which were shown in Corollary �� can be shown to
be martingales� In these instances� using a more general version of the Girsanov
Theorem for di�usions� it is possible to construct a spine which is not necessarily
con�ned to a compact domain by following the same procedure as above�

From this construction of a spine using the martingale M�
t we are able to �nd

conditions under which the martingale itself will converge in mean� The im�
portance of this� as will be seen in the next Theorem� is that the measure Qx

��



becomes absolutely continuous with respect to Px� This will eventually enable
statements about the process under Qx� where the behaviour of the spine is
quite speci�c� to be transferred into statements under Px�

Theorem �
 Suppose that B� � and 
 are the same as in Proposition ��� If
� � � then the martingale M�

t is L��Px� convergent for all x � B and hence
Qx � Px	

Proof
 First recall that M� � limt��M�
t exists since we are dealing with

a positive martingale� Note that the result is trivial when x � �B and hence
we only consider the case that x is in the interior of B	 To prove this theorem
we make use of a standard element of measure theory� For the case at hand� it
says that

Qx � Px �� lim sup
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t �� Qx�a�s��� Ex
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Suppose that S � � ���t� nt� � t � �� is the sigma algebra generated by the move�
ment and reproduction along the spine� Let EQ�

x be the expectation operator
associated with Q


x	 Taking expectations under Q

x conditional on S we have
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where in the last inequality we have used the fact that 
 is bounded from
above on B	 Now note since � is bounded from above� the process n is stochas�
tically bounded above by the Poisson process with constant rate � � �� �
supx�D � �x� 	 Since for this �upper�bounding� homogeneous Poisson process�
the equivalent version of the �nal sum in is almost surely convergent �one can
apply the Law of Large Numbers� or� alternatively� check that the right hand
side has �nite expectation�� then so is ���� We have thus proved that

lim sup
t��

EQ�

x

�
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t

���S� �� Q

x�a�s�

It now follows from Fatou�s Lemma that

EQ�

x

�
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and therefore lim inft��M�
t � � Q


x�almost surely� Since
�
M�

t

���

is a Qx�

martingale it has a limit Q

x�almost surely and hence we have proved that

lim supt��M�
t �� Qx �almost surely and L� �Px� convergence follows�

� Natural multiplicative martingales

Browsing existing literature one will again get the feeling that the results we
present in this section are already embedded within existing knowledge� The
fundamental issue is the link between solutions to the non�linear elliptic equa�
tion Lf 
��f�	f� � � �on both compact domains B as well as D� and certain
martingales which take the form of a multiplicative structure� The reader is re�
ferred to Skorohod ������� Ikeda et al� �����a�b� ������ McKean ������� Neveu
������ and Harris ������� Consistent with our earlier remarks about inner prod�
uct martingales we claim that the results here are to some extent more general
in this context than the current literature necessarily o�ers� Further� our proofs
are again probabilistic relying on similar techniques used for the inner product
martingales� Just like we did it for inner�product martingales� we start with a
local version� Again the reader will note the use of stochastic representations of
solutions to di�erential equations and generational decompositions�

Theorem �� �Local multiplicative martingales� Let B 

 D be a ball
and let f � B � ��� �� and f � C
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 First assume that �ft �B� is a martingale� NecessarilyEx

�
�ft �B�

�
�

�	 By conditioning on the �rst �ssion time we obtain for all t � ��

f�x� � Ex

�
f
�
Y
�
t 
 �B�� e� R

t��B

�
�
Y 
s��ds




Z t��B

�

� �Y �s�� f� �Y �s�� e�
R
s

�
�
Y 
s��dsds

�
����

showing that

f
�
Y
�
t 
 �B�� e� R

t��B

�
�
Y 
s��ds 


Z t��B

�

� �Y �s�� f� �Y �s�� e�
R
s

�
�
Y 
s��dsds

����

	�



is a martingale� By dominated convergence� it can even be seen to be a uniformly
integrable martingale and L��Px� convergence implies
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Now consider the Dirichlet problem

�L	 ��u � 	�f� in B

u � f on �B

The unique solution to this problem �c�f� Karazas and Shreve ������� has
stochastic representation equal to the right hand side of ��	� and hence u � f	
That is to say� Lf 
 �
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f� 	 f
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� � in B	

Now suppose that Lf 
 �
�
f� 	 f

�
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solution to the above Dirichlet problem� we have ��	� and hence ����� This
latter can otherwise be written as
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�Recall that � denotes the �rst �ssion time�� Using the same notation as before�
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u�AL
n�

f� �Yu ��u��

f �x�
	 ����

We claim that �ft �B� n� is a Gn�martingale� To see this note that

�ft �B� n
 �� �
Y
u�L
juj	n

f
�
Yu
�
t 
 �Bu

��
f �x�

�
Y

u�AL
n�

�Y
i��

	
���ui
t��Bui�

f
�
Yui

�
t 
 �Bui

��
f �x�


 ���ui	t��Bui�
f� �Yui ��ui��

f �x�



and apply ���� to achieve the martingale property� Since f is bounded in

��� �� it follows that �ft �B� n� is both an almost surely and L��Px� conver�
gent martingale� The branching process is non�explosive which means that

	�



limn��AL �n� � �	 These previous two facts together imply that

Ex

�
�ft �B� ��

�
� Ex

�
�ft �B�

�
� Ex

�
�
	
t��B�

f
�
Y
�
t 
 �B��
f�x�


 �
		t��B�
f� �Y ����

f�x�

�
� � ����

for all t � �	 Observing the decomposition

�ft	s �B� �
Y
u� bNt

f �Yu �t��

f �x�
�fs �B� u�

Y
u�NB

t

f
�
Yu
�
�Bu
��

f �x�
����

where give Ft� �fs �B� u� are independent copies of �fs �B� under the law PYu
s��
the expectation ���� together with the strong Markov branching property shows

that �ft �B� is a martingale�
An obvious consequence is the following result�

Corollary �� Let f � B � ��� �� be a member of C�B� and furthermore� let
f � � on �B	 The product Y

u� bNt

f �Yu �t��

f �x�

is a martingale if and only if f solves Lf 
 �
�
f� 	 f

�
� � on B�

Finally� we have the following result concerning the whole domain�

Corollary �� �Multiplicative martingale� Let f � D � ��� �� be continu�
ous� The product

�ft �
Y
u�Nt

f �Yu �t��

f �x�

is a martingale if and only if Lf 
 �
�
f� 	 f

�
� � on D	

Proof
 If �ft is a martingale then by conditioning on the �rst �ssion time
we obtain for all t � ��

f�x� � Ex

�
f �Y �t�� e�

R
t

�
�
Y 
s��ds 


Z t

�

� �Y �s�� f� �Y �s�� e�
R
s

�
�
Y 
s��dsds

�
	

The Feynman�Kac formula �c�f� Karatzas and Shreve ������� now tells us that
the right hand side is the unique solution to �u��t 
 �L	 �� u � 	�f� in D
with u�x� �� � f�x�	 Hence u � f and Lf 
 �

�
f� 	 f

�
� � in D	

		



Suppose now that Lf 
 �
�
f� 	 f

�
� � on D	 Let Bn be an increasing

sequence of balls such that D � S
nBn	 Since Ex

�
�ft �Bn�

�
� � for all x �

Bn� bounded convergence and the conservativeness of the underlying di�usion
implies that for all x � D

� � lim
n��

Ex

�
�ft �Bn�

�
� Ex

�
lim
n��

�ft �Bn�

�
� Ex

�
�ft

�
	

The martingale property now follows by a decomposition similar to �����
In contrast to the equivalent version of this Corollary for inner�product mar�

tinagales� note that the method of in�ating domains preserves the martingale
equality on account of boundedness�

Remark �� Using the Maximum Principle given in Proposition � of Pinsky
������ and�or Proposition ��� of Engl�ander and Pinsky ������� there is at most
one non�trivial �that is not identically one� solution to Lf 
 ��f� 	 f� � � on
B with boundary condition �� Also any function g � � which is not identically
� solving the same equation on B is smaller or equal than f � Note that in the
above two references for the maximum principle the term u� 	 u is replaced by
u	 u�� One recovers the relevant form here by taking �	 u in place of u�

Now assume that �c � �� There exists a domain B� 

 D for which
� � �c �L
 ��B��� the generalized principal eigenvalue of L
� on B�� satis�es
� � �c 	 � � � � �c� Note that once we know we can �nd such B� then any
B�
� with a smooth boundary satisfying B� 

 B�

� 

 D also has this property�

Fix B� and de�ne the branching di�usion bZ obtained from Z by killing the
particles on meeting the boundary B� which we can assume is C����smooth� As
previously remarked� the operator L
 � 	 � is critical on B�� Let 
 denote the
corresponding Dirichlet�eigenfunction� In Section 	 it is shown how to construct
an innerproduct martingale of the form

M�
t �� e��t

D

� bZtE

 �x�

where x � B�� The next Theorem uses the notation of this paragraph�

Theorem �� When �c � � there exists a unique non�trivial solution to Lu

�
�
u� 	 u

�
� � such that u � ��� �� when in B� and u � � on �B�� which can

be characterized as either u�x� � p� �x� � Px

� bZ becomes extinct
�
or u�x� �

q� �x� � Px

�
limt��M�

t � �
�
	

Proof
 Note that it is automatic from their de�nition that on the boundary
of B� both probabilities are one� It su�ces then to prove that both p� and q�
can be used to construct product martingales and are non�trivial� Uniqueness
is guaranteed by the previous Theorem and its following Remark�

	�



Theorem �� shows thatM�
t is L��Px� convergent for all x � B�� This implies

necessarily that the limit M� is strictly positive with positive probability and
on the complement of the extinction of bZ there can be no mass in the limit�
Consequently for x � B� we have

� � p��x� � q��x� � � with p��x� � q��x� � � on �B�	

This shows that the two proposed probabilities are non�trivial�
For the case of p�� note that by a classical branching decomposition� for all

t� s � � n bZt	s �B�� � �
o
�
nbZs �u�B�� � � for all u � bNt

o
where given Ft� bZs �u�B�� are independent copies of bZs �B�� under the measure
PYu
t�	 It follows that

Px

� bZt	s �B�� � �
�
� Ex

�� Y
u� bNt

PYu
t�

� bZs �B�� � �
�
A 	

Taking the limit as s � �� the Dominated Convergence Theorem implies that
for all t � �

p� �x� � Ex

�� Y
u� bNt

p� �Yu �t��


A 	

A standard branching decomposition again shows that this last identity guar�
antees that

Q
u� bNt

p� �Yu �t�� is a product martingale�
Now turning to q�� we note that� again appealing to a standard branching

decomposition� the innerproduct martingale M�
t can be written as follows for

t� s � �

M�
t	s � e��t

X
u� bNt


 �Yu �t��


 �x�
M�

s �u�

where given Ft� M
�
s �u� are independent copies ofM�

s under the measure PYu
t�	
Taking limits as s � �� it is again clear from this equality that

q� �x� � Ex

�� Y
u� bNt

q� �Yu �t��


A
and hence

Q
u� bNt

q� �Yu �t�� is a martingale�

	�



� Local extinction versus local exponential growth

and recurrence	 probabilistic arguments

	�� Proof of Theorem � 
i�

Let $� �� f� � $ � lim supt�� Zt�B� � �g	 First� note that it is su�cient to
prove that for all K � R	 �

Px

�	
lim sup
t��

Zt �B� � K

�
�$�

�
� �	 ����

Indeed� from ���� it follows that

Px

�	
lim sup
t��

Zt �B� ��
�
� $�

�
� �	

Therefore we now prove ����� Recall that � is continuous and � �� �� that
is� � is bounded away from zero on some ball� Using this along with well�
known positivity and continuity properties of the transition kernel p�t� x� y�� it
is straightforward to prove that

��K�B� �� inf
x� �B

Px�Z��B� � K� � �	 ����

Although ���� is intuitively clear� the precise formulation of its proof is a bit
tedious� and therefore we skip here the technicalities�

Then� by the strong Markov�property�

Px

�	
lim sup
t��

Zt �B� � K

�
� $�

�
� lim

n��
��	 ��K�B��

n
� ��

�nishing the proof�

	�� Proof of Theorem � 
ii�

Assume that �c � �� This means that L
 � is critical or subcritical which in
turn means by de�nition �see Appendix A� that one can pick an h � � with
�L 
 ��h � � on D� According to Corollary �� Section 	� the innerproduct
hh� Zti is a supermartingale� bounded above in expectation by h�x�� Since h is
bounded below on compact domains� it follows that for all B 

 D� Zt �B� �
const��hh� Zti and hence by comparison� when x � B

lim sup
t��

Zt�B� �� Px�a�s�

It now follows from part �i� that

lim sup
t��

Zt�B� � lim
t��

Zt�B� � � Px�a�s�

	�



Now assume that �c � � and let B�� �� bZ� 
� M�
t � p� and q� be as in Theorem

	�� Theorem �� shows that M�
t can be used as a change of measure for the law

of the branching di�usion�

dQx

dPx

����
Ft

�� M�
t 	

Further� under Qx there is a randomized ancestral line of descent whose path is
the di�usion � � f�t � t � �g corresponding to the operator

L
 a
r



� r�

on B�� so that � lives on B�� and is positive recurrent�
It was shown in Theorem 	� that

p� �x� � Px

� bZ becomes extinct
�
� Px

�
M� � �

�
� q� �x�

and p��x� � q��x� � � on �B�	 Clearly Qx � Px and on fM� � �g the two
measures are equivalent �with probability �	 q� � �	 p��� As we already know
that under Qx there is one particle �whose path is that of the spine� which
ergodizes on B� with full support on the interior of B�� then we can say that for
any Borel B � B� and x � B��

Qx

�
lim inf
t��

Zt�B� � �

�
� �	

Since dQx � M�dPx� it follows that

Px

�
lim sup
t��

Zt�B� ��
�

� Px

�
lim inf
t��

Zt�B� � �

�
� �	 q��x�

� �	 p��x� � �

Note we have used again the fact that with probability �� the lim supt�� Zt�B�
is either zero or in�nity from part �i�� Since we can arbitrarily in�ate B�

to enclose any x � D� we have proved that non�local extinction occurs with
strictly positive probability for all Borel subsets of D	 Note� generally speaking
the larger B� is chosen� the higher the value of the lower bound� Part �ii� of the
Theorem is now proved�

	�� Proof of Theorem � 
iii�

For each x � D we can take a sequence of domains with smooth boundaries
fBngn�� � satisfying x � Bn 

 Bn	��

S
Bn � D �and �c �L
 ��Bn� � �c	� It

	�



follows by monotonicity that in a pointwise sense pn �x� � p�x� where pn �x� �
p� �x� if we would take B� � Bn	 Note that in the limit p�x� � ��� ��� Further�

Lp
 �
�
p� 	 p

�
� � on D	 ����

Remark 	� shows that in fact� p is the maximal solution to ���� in ��� ��� Refer�
ring to the last paragraph of the previous part of the proof� we now have that
� �x� �� Px

�
lim supt�� Zt�B� � �

� � p �x� for all x � D	 The function � �x� is
also a solution to the equation ����� To see this� note again from the branching
property that for t� s � �	

lim sup
s��

Zt	s �B� � �

�
�

	
lim sup
s��

Zs �u�B� � � for all u � Nt

�

where given Ft� Zs �u�B� are independent copies of Zs �B� 	 In a similar way to
previous analysis� it follows that

Q
u�Nt

� �Yu �t�� is a martingale and hence by
Theorem ��� � also solves �����

	�� Proof of Theorem � 
iv�

Denote � �� �c 	 � � �� Let B�� bZ and 
 be as in the second part of the proof�
Obviously� it is enough to show that there exists a B� 

 D such that

Px

�
lim inf
t��

e��tZt�B�� � �
�
� �� ����

because then the original statement follows by replacing B� with B���� We now
therefore prove ����� Since 
 is bounded from above � we have

Px�lim inf
t��

e��tZt�B�� � �� � Px�lim inf
t��

e��t bZt�B�� � ��

� Px�lim
t��

e��th
� bZti � ��

� q��x�

The last probability in the estimate is smaller than �� giving the required state�
ment�


 Local extinction criterion	 analytical arguments

In this section we present an analytical proof of the local extinction criterion�
Although we have already given a probabilistic proof for the result in the pre�
vious section� we feel that this paper becomes more complete by showing here
how the result can be derived from an analogous one which can be found in
the superprocess literature� This analogous result for superdi�usions �which we
will utilize in the proof� has been proved recently by Pinsky �see Pinsky ������
Theorem �� and the remark afterwards� using quite a bit of heavy analytical ma�
chinery� As far as the proof of the condition for local extinction is concerned� we

	�



will show how to derive this from Pinsky�s result using a comparison argument
between branching di�usions and superdi�usions� Our proof of the condition for
no local extinction will be essentially the same as his proof for superdi�usions�

Regarding the comparison mentioned above� it is likely that the deeper rea�
son for it is compounded in the fact that one can decompose a superdi�usion
using  immigration! and an underlying supercritical �strictly� binary branch�
ing di�usion �see Evans and O�Connell ������ and Engl�ander and Pinsky ������
Section ��� Intuitively� if the underlying branching process visits a compact
again and again �no local extinction�� then so does the superdi�usion as well�
For the rigorous proof we will utilize a result on the  weighted occupation time!
for branching particle systems obtained by Evans and O�Connell ������ �also
used for proving the immigration picture in the same paper��

Proof of the criterion on local extinction

�i� Assume that �c � �� Let �x� s� �� 
�s� x� be jointly measurable in �x� s�

and let 
�s� � 
�s� �� be nonnegative and bounded for each s � �� By Evans and

O�Connell ������ Theorem 	�	�� Ex

h
exp

�
	 R t

�
h
�s�� Zsids

�i
� u�t� x�� where u

is the so�called mild solution of the evolution equation

�u

�s
�s� � Lu�s�	 �u�s� 
 �u��s�	 
�t	 s�u�s�� � � s � t�

lims�� u�s� � �	
�	��

�Here we used the notation u�s� � u�s� ���� Pick a 
 � C	
c �D� satisfying 
�x� �

�� for x � B and 
�x� � �� for x � D nB� Let u � u

T �
t�� be the mild solution of

the evolution equation

�u

�s
�s� � Lu�s�	 �u�s� 
 �u��s�	 �
�
t����T 	 s�u�T 	 s�� � � s � T�

lims�� u�s� � �	

�	��

For the rest of the proof of part �i�� let the starting point x � D be �xed�
Using the argument given in Iscoe ������ p�	���� we have that Z exhibits local
extinction if and only if

lim
t��

lim
���

lim
T��

u

T �
t�� �T� x� � �	 �		�

Consider now X � the �L� �� ��D��superdi�usion �that is� the superdi�usion
corresponding to the operator Lu
�u	�u� on D 
 see Engl�ander and Pinsky

������ for the de�nition� and let U � U

T �
t�� be the mild solution of the evolution

equation

�U

�s
�s� � LU�s� 
 �U�s�	 �U��s� 
 �
�
t����T 	 s�� � � s � T�

lims�� U�s� � �	
�	��

Again� the argument given in Iscoe ������p� 	��� shows that the support of X
exhibits local extinction �that� is the property in De�nition � holds with X in

	�



place of Z� if and only if

lim
t��

lim
���

lim
T��

U

T �
t�� �T� x� � �	 �	��

Using �	��� Pinsky ������ has shown �Theorem � and the remark afterwards�
that the assumption �c � � is equivalent to the local extinction of the support
of X � Thus� �	�� follows from �c � �� We now show that �	�� implies �		��
which will complete the proof of this part� Making the substitution v �� �	 u�
we have that v is the mild solution of the evolution equation

�v

�s
�s� �

Lv�s� 
 �v�T 	 s�	 �v��s� 
 �
�
t����T 	 s���	 v�T 	 s��� � � s � T�
lims�� v�s� � �	

�	��

By Iscoe ������ pp� 	���� U and v �with t� � �xed� have the following proba�
bilistic representations�

U�T� x� � Ex exp

�Z T

�

ds h�
�
t����s�� Xsi
�
�

v�T� x� � Ex exp
�R T

�
ds h�
�
t����s���	 v�s��� Xsi

�
	

�	��

%From these equations it is clear that v � U � Hence

lim
t��

lim
���

lim
T��

v

T �
t�� �T� x� � �	 �	��

�ii� Assume now that �c � �� The proof of this part is almost the same as the
proof of the analogous statement for superdi�usions Pinsky ������ p�	�	�	����
In that proof it is shown that the assumption �c � � guarantees the existence
of a �large� subdomain D� 

 D� and a function v � � de�ned on D� which is
not identically zero and which satis�es

Lv 
 �v 	 �v� � � in D�

limx��D�
v�x� � ��

v � � in D�	
�	��

Since f � � also solves Lf
�f	�f� � � in D�� the elliptic maximum principle
�see Pinsky ������ Proposition �� and Engl�ander and Pinsky ������ Proposition
����� implies that v � �� Let w �� � 	 v� Then w � � and furthermore w
satis�es

Lw 	 �w 
 �w� � � in D�

limx��D�
w�x� � ��

w � � in D�	
�	��

	�



Let "P denote the probability for the branching di�usion "Z obtained from Z by
killing the particles upon exiting �D�� Obviously "Px� "Z survives� � Px�Z�t�D�� �
� for arbitrary large t�s�� and thus� it is enough to show that

� � "Px� "Z survives�	 ����

We now need the fact that w � � on D�� This follows from the equation

�L	 ���	 w��w � � in D�

and the strong maximum principle �Theorem ��	�� in Pinsky ������� applied to
the linear operator L	 ���	 w��

Now an argument similar to the one in the proof of Lemma �� shows that

"Exe
hlogw� �Z
t�i � w�x�� t � �	 ����

Suppose that ���� is not true� Then the left�hand side of ���� converges to � as
t � �� On the other hand� the right�hand side of ���� is independent of t and
is smaller than �� which is a contradiction� Consequently� ���� is true� �

� Examples

In this section we will present �ve examples for branching di�usions which will
illustrate the general results of this paper�

��� Branching Brownian motion 
with drift��

This is one of the most simple branching di�usion models one can consider� par�
ticularly if D � R and � is a positive constant� In this case L � ��	

�
d��dx�

�
	

It is well know that the positive harmonic functions of L
 � are expf	�xg for
� � R giving �c � � � � �corresponding to the case � � ��� Here one notes that
we have the luxury of innerproduct martingales de�ned on the whole domain�
Indeed the martingale with growth rate �c is the classical martingale Nte

��t

which converges almost surely and in mean to its limit W	
It is easy to reason without the technology we have presented in this article

that the process visits any Borel set in�nitely often with probability one� This
follows by virtue of the fact that every line of descent di�uses as a standard
Brownian motion which exhibits these properties�

Watanabe ������ has proved an even stronger result than this conclusion� He
has shown that over and above local extinction with probability zero� a strong
law of large numbers exists�

lim
t��

Zt �B�

e�tt����
� �	��

���� jBj �W Px�a�s�

�In fact Watanabe proved versions of this result for higher dimentional Brow�
nian motion too as well as some other special branching di�usions related to

��



Brownian motion�� Suppose now we consider a branching Brownian motion in
R with a constant drift � � R� One could reason in this case that despite the
fact that particles exhibit transient motion� for a small enough � the compar�
ative reproduction ensures that space �lls up everywhere with particles� The
necessary comparison is of course captured in the spectral condition on �c in
Theorem �� In this case we have L � ��	

�
d��dx�

�

 � �d�dx� and hence� again

referring to well know facts� the positive harmonic functions are again of the
form expf	�xg for � � R� This time �c � � 	 ���	� �� �achieved at � � ��
which is then positive if j�j � p

	�	
In Theorem � we should still be concerned about the probabilities � �x� 	 It

is not yet clear whether they will be identically one or not� The travelling wave
solutions to the K�P�P equation come to our rescue� According to Theorem
	�ii���iii�� � � ��� �� satis�es

�

	

d��

dx�

 �

d�

dx

 �

�
�� 	 �

�
� �	

However� Kolmogorov et al� ������ proved that there are no non�trivial solutions
bounded in ��� �� to this� the travelling wave K�P�P equation� for j�j � p

	� and
otherwise there is a unique non�trivial solution� Consistently with Corollary �
we see that there is local extinction with probability zero or one �that is� � � �
or � � �� according to whether �c � � or �c � � respectively�

In the case of non�zero drift� it can be easily checked� using methods similar
to those in the proof of Theorem �� that inner�product supermartingale associ�
ated with �c is also a martingale� Further� following the discussion in Section
�� it is possible to produce a spine from this martingale along which there is
a doubled rate of reproduction and the associated di�usion operator is simply
that of standard Brownian motion �so the ��drift has been removed��

��� Transient L and compactly supported �

Consider the case when L corresponds to a transient �but conservative� di�usion
on D � Rd and � is a smooth nonnegative compactly supported function� Since
the generalized principal eigenvalue coincides with the classical principal eigen�
value for smooth bounded domains� it follows that for any nonempty bounded
B 

 D one can pick such a � with B � supp��� and so that L
 � is super�
critical on D� that is �c � � �all one has to do is to ensure that the in�mum of
� on a somewhat smaller smooth domain B� 

 B is larger then the absolute
value of the principal eigenvalue on B�� Then� a fortiori� L
 � is supercritical
on D as well�� On the other hand� by the transience assumption� it is clear that
the initial L�particle wanders out to in�nity with positive probability without
ever visiting B �and thus without ever branching�� when starting from x �� B�

In light of Corollary �� this now shows that there exists a non�trivial travelling
wave solution to Lu
 �

�
u� 	 u

�
� � for such an L and �� To the best of our

knowledge� this is a new result concerning generalized K�P�P equations�

��



��� The Harris�Williams branching di�usion

This is a specialized example of a branching di�usion studied for aspects of its
prototypical behaviour �and in many ways has served as a source of inspiration
for this paper� by Harris and Williams ������ and Harris �	����� We consider
here a variant of their model� The di�usion operator on R� is

L� �
�

	
ay�

��

�x�

 �

�

�x


�

	

�
��

�y�
	 y

�

�y

�
�

where � � R� That is� the operator corresponding to a time changed Brown�
ian motion with drift where the time change is controlled by an independent
Ornstein�Uhlenbeck process operating in the y�direction� �Since we work with
positive de�nite operators� we should in fact replace the �rst coe�cient ay� by
af�y� where f � � is obtained by modifying the function y� on a compact�
This� however will not a�ect the rest of the argument�� In the original version
of this model� � � �	 The branching rate is dependent purely on the y variable
and takes the form

� �x� y� � ry� 
 �

where � � � and � � r � ���	 Note that � is not bounded� However this is
not a problem� Since� as is clear from the model� the process does not explode
and� as far as the parameter values of interest are concerned� the generalized
principle eigenvalue is �nite�

Further� note that the operator L� is symmetric with respect to the reference
density g�x� y� � exp�	y��	�� Using a comparison principle for symmetric op�
erators �see Corollary ����	 in Pinsky �����a��� it follows that L� corresponds to
a recurrent di�usion on R� � Consequently� the generalized principal eiganvalue
of this operator is zero �see Appendix�� and therefore

�c�L� 
 ��R�L� � � � �	

For the case that � �� �� an application of an h�transform shows that

�c�L� 
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Therefore� for su�ciently small � �j�j � p
	�� the positivity of the generalized

principal eigenvalue is preserved� The conclusion is that for a small enough
drift� there is no local extinction� This is again consistent with intuition� that
is to say the branching rate �wins� against transience�

Like the previous example� this is another branching di�usion from which
we could in principle compare the transition of local extinction to non�local
extinction against the event of the existence of travelling waves to the equation

�

	
ay�

��u

�x�

 �

�u

�x


�

	

�
��u

�y�
	 y

�u

�y

�


�
ry� 
 �

� �
u� 	 u

�
� �	 ��	�

�	



�Again� one should slightly modify the �rst coe�cient�� Harris and Williams
������ have shown there exists an asymptotic wave speed� say &�� for the left most
particle in the x�direction of this branching di�usion when � � �	 Given the
elegant probabilistic arguments in Harris ������ linking the asymptotic speed
of the left most particle in a standard branching Brownian motion and the
minimal speed at which travelling waves to the K�P�P equation exist and then
the relationship with local extinction expressed in the previous example� one
might be inclined to believe a similar relationship holds here� That is to say� is
it true that the transition in � from local extinction to non�local extinction� seen
through the positivity of �c�L� 
 ��R� �� coincides precisely with the transition
from existence to no existence of travelling waves to ��	�� And further that this
transition takes place at precisely � � &� �

Personal communication with Dr� Harris con�rms that minimal wave speed
for existence in ��	� is indeed &�	 For the rest� some work awaits�

��� Branching Ornstein�Uhlenbeck process and more gen�
eral recurrent motions

Let L � �
�' 	 kx � r on Rd � d � �� where k � �� Then L corresponds to the

d�dimensional Ornstein�Uhlenbeck process with drift parameter k� Note that
it is a �positive� recurrent process� Furthermore let � be a positive constant�
Consider now the �L� ���branching di�usion Z �on Rd �� We call Z a branching
Ornstein�Uhlenbeck process� By recurrence it follows that L is a critical operator�
and thus �c � �c�L�R

d� � �� Consequently �c�L 
 ��Rd � � �� By Theorem
��ii� and �iv�� Z does not exhibit local extinction� and exhibits local exponential
growth �with rate arbitrarily close to �� on large compact domains�

Of course� non�local extinction with positive probability would immediately
follow from the obvious comparison with a single recurrent L�particle� It fol�
lows that non local extinction and local exponential growth hold even when
L is replaced by an arbitrary L on a domain D as far as L corresponds to a
recurrent di�usion on D� In fact� as Theorem ������i� in Pinsky ������ shows�
�c�L 
 ��D� � �� whenever L corresponds to a recurrent di�usion on D and
the branching rate � � � is not identically zero� Therefore� Z does not exhibit
local extinction� and exhibits local exponential growth on large compacts for any
recurrent motion and any not identically vanishing branching rate�

��	 Branching outward Ornstein�Uhlenbeck process

Let L � �
�' 
 kx � r on Rd � d � �� where k � �� Then L corresponds to the

d�dimensional  outward! Ornstein�Uhlenbeck process with drift parameter k�
This process is transient� Furthermore let � be a positive constant� and consider
the �L� ���branching di�usion Z� Following Example 	 in Pinsky ������� we have
that �c�L 
 ��Rd � � � 	 kd� From Theorem ��ii� we conclude that if � � kd
then Z does not exhibit local extinction� and exhibits local exponential growth
�with rate arbitrarily close to � 	 kd� on large compact domains� However if
� � kd then Z exhibits local extinction�

��



For this case we have the luxury of having an exact form for the one di�
mensional space of harmonic functions satisfying �L
 � 	 �c�h � �� Indeed� it
is easy to see that h�x� � expf	kjxj�g satis�es �L 
 � 	 �c�h � �� and that
making an h�transform with this h� L
 � 	 �c transform into

�L
 � 	 ��h �
�

	
'	 kx � r	 ����

This operator corresponds to an �inward� Ornstein�Uhlenbeck process which is
�positive� recurrent� Thus the operator in ���� is critical� and therefore it has
a one�dimensional space of positive harmonic functions� the positive constants�
Using the correspondence between the positive solutions for the two operators
�invariance under h�transforms�� we conclude� that in fact� h�x� � expf	kjxj�g
is the only �up to constant multiples� positive harmonic function for L
�	�c�

Using the associated inner�product martingale �which can again be shown
to be a martingale using methods found in Theorem ��� we can follow the
arguments of Section � to produce a spine with a doubled rate of reproduction�
This spine is precisely the Ornstein�Uhlenbeck process corresponding to the
operator �����

Now� irrespective of the value of � 	 kd it would seem possible to change
measure in such a way that there is a positive recurrent spine� This would seem
to suggest that there is a strong case for non�local extinction without a condition
on � 	 kd� However� in order to transfer statements of local survival back to
the process under the original measure� we would need mean convergence of the
inner�product martingale and thus the condition � 	 kd � � appears�

� Appendix A	 A review on criticality theory

Let L be as in ���� We do not assume in this general setting that L corresponds
to a conservative di�usion� There exists however a corresponding di�usion pro�
cess Y on D that solves the generalized martingale problem for L on D �see
Chapter � in Pinsky �����a��� The process lives on D �' with ' playing the
role of a cemetery state� Let � � C��D� �again� we do not assume anything
further about ��� We denote by Px and Ex the corresponding probabilities and
expectations� and de�ne the transition measure p�t� x� dy� for L
 � by

p�t� x� B� � Ex

�
exp

�Z t

�

��Ys� ds

�
�Yt � B

�
�

for measurable B � D�

De�nition �� IfZ �

�

p�t� x� B� dt � Ex

Z �

�

exp

�Z t

�

��Ys� ds

�
�B�Yt� dt ���

��



for all x � D and all bounded B 
 D� then

G�x� dy� �

Z �

�

p�t� x� dy� dt

is called the Green
s measure for L
 � on D� If the above condition fails� then
the Green�s measure for L
 � on D is said not to exist�

In the former case� G�x� dy� possesses a density� G�x� dy� � G�x� y�dy� which
is called the Green
s function for L
 � on D�

For � � de�ne

CL	��� � f u � C� � �L
 � 	 ��u � � and u � � in D g	

The operator L 
 � 	 � on D is called subcritical if the Green�s function
exists for L
�	� on D� in this case CL	��� �� �� If the Green�s function does
not exist for L
�	� on D� but CL	��� �� �� then the operator L
�	� on D
is called critical� In this case CL	��� is one�dimensional� The unique function
�up to a constant multiple� in CL	��� is called the ground state of L
� on D�
The formal adjoint of the operator L
 � 	 � on D is also critical with ground
state &
� If furthermore 
&
 � L��D�� we call L
 �	 � on D product L� critical�
or product�critical in short� �For 
 � &
� product�criticality means that 
 is
an L��eigenfunction�� Finally� if CL	��� � �� then L 
 � 	 � on D is called
supercritical�

If � � �� then L
� is not supercritical onD since the function f � � satis�es
Lf � � on D� In this case L 
 � � L is subcritical or critical on D according
to whether the corresponding di�usion process� Y � is transient or recurrent on
D � Product�criticality in this case is equivalent to positive recurrence for Y � If
� � � and � �� �� then L
 � is subcritical on D�

In terms of the solvability of inhomogeneous Dirichlet problems� subcritical�
ity guarantees that the equation �L
 ��u � 	f in D has a positive solution u
for every � � f � C�

c � �Here C�
c � Cc � C� �� If subcriticality does not hold�

then there are no positive solutions for any � � f � C�
c 	

One of the two following possibilities holds �
�� There exists a number �c � such that L	� on D is subcritical for � � �c�

supercritical for � � �c� and either subcritical or critical for � � �c�
	� L	 � on D is supercritical for all � �� in which case we de�ne �c ���

De�nition �� The number �c � �	���� is called the generalized principal
eigenvalue for L on D �

Note that �c � inf f� � � CL	��� �� �g� Also� if � is bounded from above�
then case �� holds�

The generalized principal eigenvalue coincides with the classical principal
eigenvalue �that is� with the supremum of the real part of the spectrum� if D
is bounded with a smooth boundary and the coe�cients of L are smooth up
to �D� Also� if L 
 � is symmetric with respect to a reference measure � dx�

��



then �c equals the supremum of the spectrum of the self�adjoint operator on
L��D� � dx� obtained from L
 � via the Friedrichs� extension theorem�

Let h � C��� satisfy h � � in D� The operator �L
 ��h de�ned by

�L
 ��hf �
�

h
�L
 ���hf�

is called the h�transform of the operator L
 �� Written out explicitly� one has

�L
 ��hf � L
 a
rh
h
� r


Lh

h

 �	

All the properties de�ned above are invariant under h�transforms�
For further elaboration and proofs see Chapter � in Pinsky �����a��
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