On the volume of the intersection of two Wiener sausages

By M. van den Berg, E. Bolthausen, and F. den Hollander

Abstract

For $a > 0$, let $W^a_1(t)$ and $W^a_2(t)$ be the a-neighbourhoods of two independent standard Brownian motions in \mathbb{R}^d starting at 0 and observed until time t. We prove that, for $d \geq 3$ and $c > 0$,

$$
\lim_{t \to \infty} \frac{1}{t^{(d-2)/d}} \log P\left(|W^a_1(ct) \cap W^a_2(ct)| \geq t\right) = -I^a_d(c)
$$

and derive a variational representation for the rate constant $I^a_d(c)$. Here, κ_a is the Newtonian capacity of the ball with radius a. We show that the optimal strategy to realise the above large deviation is for $W^a_1(ct)$ and $W^a_2(ct)$ to “form a Swiss cheese”: the two Wiener sausages cover part of the space, leaving random holes whose sizes are of order 1 and whose density varies on scale $t^{1/d}$ according to a certain optimal profile.

We study in detail the function $c \mapsto I^a_d(c)$. It turns out that $I^a_d(c) = \Theta_d(\kappa_a c)/\kappa_a$, where Θ_d has the following properties: (1) For $d \geq 3$: $\Theta_d(u) < \infty$ if and only if $u \in (u_0, \infty)$, with u_0 a universal constant; (2) For $d = 3$: Θ_d is strictly decreasing on (u_0, ∞) with a zero limit; (3) For $d = 4$: Θ_d is strictly decreasing on (u_0, ∞) with a nonzero limit; (4) For $d \geq 5$: Θ_d is strictly decreasing on (u_0, u_d) and a nonzero constant on $[u_d, \infty)$, with u_d a constant depending on d that comes from a variational problem exhibiting “leakage”. This leakage is interpreted as saying that the two Wiener sausages form their intersection until time $c^* t$, with $c^* = u_d/\kappa_a$, and then wander off to infinity in different directions. Thus, c^* plays the role of a critical time horizon in $d \geq 5$.

We also derive the analogous result for $d = 2$, namely,

$$
\lim_{t \to \infty} \frac{1}{\log t} \log P\left(|W^a_1(ct) \cap W^a_2(ct)| \geq t/\log t\right) = -I^a_2(c),
$$

Key words and phrases. Wiener sausages, intersection volume, large deviations, variational problems, Sobolev inequalities.