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On the volume of the intersection

of two Wiener sausages

By M. van den Berg, E. Bolthausen, and F. den Hollander

Abstract

For a > 0, let W a
1 (t) and W a

2 (t) be the a-neighbourhoods of two indepen-

dent standard Brownian motions in R
d starting at 0 and observed until time

t. We prove that, for d ≥ 3 and c > 0,

lim
t→∞

1

t(d−2)/d
log P

(
|W a

1 (ct) ∩W a
2 (ct)| ≥ t

)
= −Iκa

d (c)

and derive a variational representation for the rate constant Iκa

d (c). Here, κa
is the Newtonian capacity of the ball with radius a. We show that the optimal

strategy to realise the above large deviation is for W a
1 (ct) and W a

2 (ct) to “form

a Swiss cheese”: the two Wiener sausages cover part of the space, leaving

random holes whose sizes are of order 1 and whose density varies on scale t1/d

according to a certain optimal profile.

We study in detail the function c 7→ Iκa

d (c). It turns out that Iκa

d (c) =

Θd(κac)/κa, where Θd has the following properties: (1) For d ≥ 3: Θd(u) <∞
if and only if u ∈ (u�,∞), with u� a universal constant; (2) For d = 3: Θd is

strictly decreasing on (u�,∞) with a zero limit; (3) For d = 4: Θd is strictly

decreasing on (u�,∞) with a nonzero limit; (4) For d ≥ 5: Θd is strictly

decreasing on (u�, ud) and a nonzero constant on [ud,∞), with ud a constant

depending on d that comes from a variational problem exhibiting “leakage”.

This leakage is interpreted as saying that the two Wiener sausages form their

intersection until time c∗t, with c∗ = ud/κa, and then wander off to infinity in

different directions. Thus, c∗ plays the role of a critical time horizon in d ≥ 5.

We also derive the analogous result for d = 2, namely,

lim
t→∞

1

log t
logP

(
|W a

1 (ct) ∩W a
2 (ct)| ≥ t/ log t

)
= −I2π

2 (c),

∗Key words and phrases. Wiener sausages, intersection volume, large deviations, vari-
ational problems, Sobolev inequalities.
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where the rate constant has the same variational representation as in d ≥ 3

after κa is replaced by 2π. In this case I2π
2 (c) = Θ2(2πc)/2π with Θ2(u) <∞

if and only if u ∈ (u�,∞) and Θ2 is strictly decreasing on (u�,∞) with a zero

limit.
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1. Introduction and main results: Theorems 1–6

1.1. Motivation. In a paper that appeared in “The 1994 Dynkin

Festschrift”, Khanin, Mazel, Shlosman and Sinai [9] considered the following

problem. Let S(n), n ∈ N0, be the simple random walk on Z
d and let

(1.1) R = {z ∈ Z
d : S(n) = z for some n ∈ N0}

be its infinite-time range. Let R1 and R2 be two independent copies of R and

let P denote their joint probability law. It is well known (see Erdös and Taylor

[7]) that

(1.2) P (|R1 ∩R2| <∞) =

{
0 if 1 ≤ d ≤ 4,

1 if d ≥ 5.

What is the tail of the distribution of |R1 ∩R2| in the high-dimensional case?

In [9] it is shown that for every d ≥ 5 and δ > 0 there exists a t0 = t0(d, δ)

such that

(1.3) exp
[
− t

d−2

d
+δ
]
≤ P

(
|R1 ∩R2| ≥ t

)
≤ exp

[
− t

d−2

d
−δ
]

∀ t ≥ t0.

Noteworthy about this result is the subexponential decay. The following prob-

lems remained open:

(1) Close the δ-gap and compute the rate constant.

(2) Identify the “optimal strategy” behind the large deviation.

(3) Explain where the exponent (d−2)/d comes from (which seems to suggest

that d = 2, rather than d = 4, is a critical dimension).

In the present paper we solve these problems for the continuous space-time

setting in which the simple random walks are replaced by Brownian motions

and the ranges by Wiener sausages, but only after restricting the time horizon

to a multiple of t. Under this restriction we are able to fully describe the

large deviations for d ≥ 2. The large deviations beyond this time horizon will
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remain open, although we will formulate a conjecture for d ≥ 5 (which we plan

to address elsewhere).

Our results will draw heavily on some ideas and techniques that were

developed in van den Berg, Bolthausen and den Hollander [3] to handle the

large deviations for the volume of a single Wiener sausage. The present paper

can be read independently.

Self-intersections of random walks and Brownian motions have been stud-

ied intensively over the past fifteen years (Lawler [10]). They play a key role

e.g. in the description of polymer chains (Madras and Slade [13]) and in renor-

malisation group methods for quantum field theory (Fernández, Fröhlich and

Sokal [8]).

1.2. Wiener sausages. Let β(t), t ≥ 0, be the standard Brownian motion

in R
d – the Markov process with generator ∆/2 – starting at 0. The Wiener

sausage with radius a > 0 is the random process defined by

(1.4) W a(t) =
⋃

0≤s≤t
Ba(β(s)), t ≥ 0,

where Ba(x) is the open ball with radius a around x ∈ R
d.

Let W a
1 (t), t ≥ 0, and W a

2 (t), t ≥ 0, be two independent copies of (1.4),

let P denote their joint probability law, let

(1.5) V a(t) = W a
1 (t) ∩W a

2 (t), t ≥ 0,

be their intersection up to time t, and let

(1.6) V a = lim
t→∞

V a(t)

be their infinite-time intersection. It is well known (see e.g. Le Gall [11]) that

(1.7) P (|V a| <∞) =

{
0 if 1 ≤ d ≤ 4,

1 if d ≥ 5,

in complete analogy with (1.2). The aim of the present paper is to study the

tail of the distribution of |V a(ct)| for c > 0 arbitrary. This is done in Sections

1.3 and 1.4 and applies for d ≥ 2. We describe in detail the large deviation

behaviour of |V a(ct)|, including a precise analysis of the rate constant as a

function of c. In Section 1.5 we formulate a conjecture about the large deviation

behaviour of |V a| for d ≥ 5. In Section 1.6 we briefly look at the intersection

volume of three or more Wiener sausages. In Section 1.7 we discuss the discrete

space-time setting considered in [9]. In Section 1.8 we give the outline of the

rest of the paper.

1.3. Large deviations for finite-time intersection volume. For d ≥ 3, let

κa = ad−22πd/2/Γ(d−2
2 ) denote the Newtonian capacity of Ba(0) associated

with the Green’s function of (−∆/2)−1. Our main results for the intersection

volume of two Wiener sausages over a finite time horizon read as follows:
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Theorem 1. Let d ≥ 3 and a > 0. Then, for every c > 0,

(1.8) lim
t→∞

1

t(d−2)/d
logP

(
|V a(ct)| ≥ t

)
= −Iκa

d (c),

where

(1.9) Iκa

d (c) = c inf
φ∈Φκa

d (c)

[ ∫

Rd

|∇φ|2(x)dx
]

with

(1.10)

Φκa

d (c) =
{
φ ∈ H1(Rd) :

∫

Rd

φ2(x)dx = 1,

∫

Rd

(
1 − e−κacφ2(x)

)2
dx ≥ 1

}
.

Theorem 2. Let d = 2 and a > 0. Then, for every c > 0,

(1.11) lim
t→∞

1

log t
logP

(
|V a(ct)| ≥ t/ log t

)
= −I2π

2 (c),

where I2π
2 (c) is given by (1.9) and (1.10) with (d, κa) replaced by (2, 2π).

Note that we are picking a time horizon of length ct and are letting t→ ∞
for fixed c > 0. The sizes of the large deviation, t respectively t/ log t, come

from the expected volume of a single Wiener sausage as t→ ∞, namely,

(1.12) E|W a(t)| ∼
{
κat if d ≥ 3,

2πt/ log t if d = 2,

as shown in Spitzer [14]. So the two Wiener sausages in Theorems 1 and 2 are

doing a large deviation on the scale of their mean.

The idea behind Theorem 1 is that the optimal strategy for the two Brow-

nian motions to realise the large deviation event {|V a(ct)| ≥ t} is to behave

like Brownian motions in a drift field xt1/d 7→ (∇φ/φ)(x) for some smooth

φ : R
d → [0,∞) during the given time window [0, ct]. Conditioned on adopting

this drift:

– Each Brownian motion spends time cφ2(x) per unit volume in the neigh-

bourhood of xt1/d, thus using up a total time t
∫

Rd cφ
2(x)dx. This time

must equal ct, hence the first constraint in (1.10).

– Each corresponding Wiener sausage covers a fraction 1 − e−κacφ2(x) of

the space in the neighbourhood of xt1/d, thus making a total intersection

volume t
∫

Rd(1 − e−κacφ2(x))2dx. This volume must exceed t, hence the

second constraint in (1.10).

The cost for adopting the drift during time ct is t(d−2)/d
∫

Rd c|∇φ|2(x)dx. The

best choice of the drift field is therefore given by minimisers of the variational

problem in (1.9) and (1.10), or by minimising sequences.
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Note that the optimal strategy for the two Wiener sausages is to “form a

Swiss cheese”: they cover only part of the space, leaving random holes whose

sizes are of order 1 and whose density varies on space scale t1/d (see [3]). The

local structure of this Swiss cheese depends on a. Also note that the two

Wiener sausages follow the optimal strategy independently. Apparently, under

the joint optimal strategy the two Brownian motions are independent on space

scales smaller than t1/d. 1

A similar optimal strategy applies for Theorem 2, except that the space

scale is
√
t/ log t. This is only slightly below the diffusive scale, which explains

why the large deviation event has a polynomial rather than an exponential cost.

Clearly, the case d = 2 is critical for a finite time horizon. Incidentally, note

that I2π
2 (c) does not depend on a. This can be traced back to the recurrence

of Brownian motion in d = 2. Apparently, the Swiss cheese has random holes

that grow with time, washing out the dependence on a (see [3]).

There is no result analogous to Theorems 1 and 2 for d = 1: the variational

problem in (1.9) and (1.10) certainly continues to make sense for d = 1, but it

does not describe the Wiener sausages: holes are impossible in d = 1.

1.4. Analysis of the variational problem. We proceed with a closer

analysis of (1.9) and (1.10). First we scale out the dependence on a and c.

Recall from Theorem 2 that κa = 2π for d = 2.

Theorem 3. Let d ≥ 2 and a > 0.

(i) For every c > 0,

(1.13) Iκa

d (c) =
1

κa
Θd(κac),

where Θd : (0,∞) → [0,∞] is given by

(1.14) Θd(u) = inf
{
‖∇ψ‖2

2 : ψ ∈ H1(Rd), ‖ψ‖2
2 = u,

∫
(1 − e−ψ

2

)2 ≥ 1
}
.

(ii) Define u� = minζ>0 ζ(1 − e−ζ)−2 = 2.45541 . . . Then Θd = ∞ on

(0, u�] and 0 < Θd <∞ on (u�,∞).

(iii) Θd is nonincreasing on (u�,∞).

(iv) Θd is continuous on (u�,∞).

(v) Θd(u) � (u− u�)−1 as u ↓ u�.

Next we exhibit the main quantitative properties of Θd.

1To prove that the Brownian motions conditioned on the large deviation event {|V a(ct)|
≥ t} actually follow the “Swiss cheese strategy” requires substantial extra work. We will not
address this issue here.



746 M. VAN DEN BERG, E. BOLTHAUSEN, AND F. DEN HOLLANDER

Theorem 4. Let 2 ≤ d ≤ 4. Then u 7→ u(4−d)/d Θd(u) is strictly decreas-

ing on (u�,∞) and

(1.15) lim
u→∞

u(4−d)/d Θd(u) = µd,

where

(1.16)

µd =





inf
{
‖∇ψ‖2

2 : ψ ∈ H1(Rd), ‖ψ‖2 = 1, ‖ψ‖4 = 1
}

if d = 2, 3,

inf
{
‖∇ψ‖2

2 : ψ ∈ D1(R4), ‖ψ‖4 = 1
}

if d = 4,

satisfying 0 < µd <∞.2

Theorem 5. Let d ≥ 5 and define

(1.17) ηd = inf{‖∇ψ‖2
2 : ψ ∈ D1(Rd),

∫
(1 − e−ψ

2

)2 = 1}.
(i) There exists a radially symmetric, nonincreasing, strictly positive min-

imiser ψd of the variational problem in (1.17), which is unique up to transla-

tions. Moreover, ‖ψd‖2
2 <∞.

(ii) Define ud = ‖ψd‖2
2. Then u 7→ θd(u) is strictly decreasing on (u�, ud)

and

(1.18) Θd(u) = ηd on [ud,∞).

0

s

u� ud

ηd

(iii)

0 u�

µ4

(ii)

0 u�

(i)

Figure 1 Qualitative picture of Θd for: (i) d = 2, 3; (ii) d = 4; (iii) d ≥ 5.

Theorem 6. (i) Let 2 ≤ d ≤ 4 and u ∈ (u�,∞) or d ≥ 5 and u ∈ (u�, ud].
Then the variational problem in (1.14) has a minimiser that is strictly positive,

radially symmetric (modulo translations) and strictly decreasing in the radial

component. Any other minimiser is of the same type.

(ii) Let d ≥ 5 and u ∈ (ud,∞). Then the variational problem in (1.14)

does not have a minimiser.

2We will see in Section 5 that µ4 = S4, the Sobolev constant in (4.3) and (4.4).
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We expect that in case (i) the minimiser is unique (modulo translations).

In case (ii) the critical point ud is associated with “leakage” in (1.14); namely,

L2-mass u− ud leaks away to infinity.

1.5. Large deviations for infinite-time intersection volume. Intuitively,

by letting c→ ∞ in (1.8) we might expect to be able to get the rate constant

for an infinite time horizon. However, it is not at all obvious that the limits

t→ ∞ and c→ ∞ can be interchanged. Indeed, the intersection volume might

prefer to exceed the value t on a time scale of order larger than t, which is not

seen by Theorems 1 and 2. The large deviations on this larger time scale are

a whole new issue, which we will not address in the present paper.

Nevertheless, Figure 1(iii) clearly suggests that for d ≥ 5 the limits can

be interchanged:

Conjecture. Let d ≥ 5 and a > 0. Then

(1.19) lim
t→∞

1

t(d−2)/d
logP

(
|V a| ≥ t

)
= −Iκa

d ,

where

(1.20) Iκa

d = inf
c>0

Iκa

d (c) = Iκa

d (c∗) =
ηd
κa

with c∗ = ud/κa.

The idea behind this conjecture is that the optimal strategy for the two

Wiener sausages is time-inhomogeneous: they follow the Swiss cheese strategy

until time c∗t and then wander off to infinity in different directions. The

critical time horizon c∗ comes from (1.13) and (1.18) as the value above which

c 7→ Iκa

d (c) is constant (see Fig. 1(iii)). During the time window [0, c∗t] the

Wiener sausages make a Swiss cheese parametrised by the ψd in Theorem

5; namely, (1.9) and (1.10) have a minimising sequence (φj) converging to

φ = (c∗κa)−1/2ψd in L2(Rd).

We see from Figure 1(ii) that d = 4 is critical for an infinite time horizon.

In this case the limits t→ ∞ and c→ ∞ apparently cannot be interchanged.

Theorem 4 shows that for 2 ≤ d ≤ 4 the time horizon in the optimal

strategy is c = ∞, because c 7→ Iκa

d (c) is strictly decreasing as soon as it

is finite (see Fig. 1(i–ii)). Apparently, even though limt→∞ |V a(t)| = ∞ P -

almost surely (recall (1.7)), the rate of divergence is so small that a time of

order larger than t is needed for the intersection volume to exceed the value

t with a probability exp[−o(t(d−2)/d)] respectively exp[−o(log t)]. So an even

larger time is needed to exceed the value t with a probability of order 1.

1.6. Three or more Wiener sausages. Consider k ≥ 3 independent

Wiener sausages, let V a
k (t) denote their intersection up to time t, and let
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V a
k = limt→∞ V a

k (t). Then the analogue of (1.7) reads (see e.g. Le Gall [11])

(1.21) P (|V a
k | <∞) =

{
0 if 1 ≤ d ≤ 2k

k−1 ,

1 if d > 2k
k−1 .

The critical dimension 2k/(k − 1) comes from the following calculation:

(1.22) E|V a
k | =

∫

Rd

P
(
σBa(x) <∞

)k
dx =

∫

Rd

[
1 ∧

( a
|x|
)d−2]k

dx,

where σBa(x) = inf{t ≥ 0: β(t) ∈ Ba(x)}. The integral converges if and only

if (d− 2)k > d.

It is possible to extend the analysis in Sections 1.3 and 1.4 in a straight-

forward manner, leading to the following modifications (not proved in this

paper):

(1) Theorems 1 and 2 carry over with:

– V a replaced by V a
k ;

– c replaced by kc/2 in (1.9);

–
∫

Rd(1 − e−κacφ2(x))2dx replaced by
∫

Rd(1 − e−κacφ2(x))kdx in (1.10).

(2) Theorems 3, 4 and 5 carry over with:

–
∫

(1 − e−ψ
2

)2 replaced by
∫

(1 − e−ψ
2

)k in (1.14) and (1.17);

– u� = minζ>0 ζ(1 − e−ζ)−k;

– ‖ψ‖4 replaced by ‖ψ‖2k in (1.16).

For k = 3, the critical dimension is d = 3, and a behaviour similar to that

in Figure 1 shows up for: (i) d = 2; (ii) d = 3; (iii) d ≥ 4, respectively. For

k ≥ 4 the critical dimension lies strictly between 2 and 3, so that Figure 1(ii)

drops out.

1.7. Back to simple random walks. We expect the results in Theorems 1

and 2 to carry over to the discrete space-time setting as introduced in Section

1.1. (A similar relation is proved in Donsker and Varadhan [6] for a single

random walk, respectively, Brownian motion.) The only change should be

that for d ≥ 3 the constant κa needs to be replaced by its analogue in discrete

space and time:

(1.23) κ = P (S(n) 6= 0 ∀n ∈ N ),

the escape probability of the simple random walk. The global structure of the

Swiss cheese should be the same as before; the local structure should depend

on the underlying lattice via the number κ.
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1.8. Outline. Theorem 1 is proved in Section 2. The idea is to wrap

the Wiener sausages around a torus of size Nt1/d, to show that the error com-

mitted by doing so is negligible in the limit as t → ∞ followed by N → ∞,

and to use the results in [3] to compute the large deviations of the intersection

volume on the torus as t → ∞ for fixed N . The wrapping is rather delicate

because typically the intersection volume neither increases nor decreases under

the wrapping. Therefore we have to go through an elaborate clumping and re-

flection argument. In contrast, the volume of a single Wiener sausage decreases

under the wrapping, a fact that is very important to the analysis in [3].

Theorem 2 is proved in Section 3. The necessary modifications of the

argument in Section 2 are minor and involve a change in scaling only.

Theorems 3–6 are proved in Sections 4–7. The tools used here are scaling

and Sobolev inequalities. Here we also analyse the minimers of the variational

problems in (1.14) and (1.17).

2. Proof of Theorem 1

By Brownian scaling, V a(ct) has the same distribution as tV at−1/d

(ct(d−2)/d).

Hence, putting

(2.1) τ = t(d−2)/d,

we have

(2.2) P
(
|V a(ct)| ≥ t

)
= P

(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)
.

The right-hand side of (2.2) involves the Wiener sausages with a radius that

shrinks with τ . The claim in Theorem 1 is therefore equivalent to

(2.3) lim
τ→∞

1

τ
log P

(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)

= −Iκa

d (c).

We will prove (2.3) by deriving a lower bound (§2.2) and an upper bound

(§2.3). To do so, we first deal with the problem on a finite torus (§2.1) and

afterwards let the torus size tend to infinity. This is the standard compactifi-

cation approach. On the torus we can use some results obtained in [3].

2.1. Brownian motion wrapped around a torus. Let ΛN be the torus

of size N > 0, i.e., [−N
2 ,

N
2 )d with periodic boundary conditions. Let βN (s),

s ≥ 0, be the Brownian motion wrapped around ΛN , and let W aτ−1/(d−2)

N (s),

s ≥ 0, denote its Wiener sausage with radius aτ−1/(d−2).

Proposition 1. (|W aτ−1/(d−2)

N (cτ)|)τ>0 satisfies the large deviation prin-

ciple on R+ with rate τ and with rate function

(2.4) Jκa

d,N (b, c) = 1
2 c inf

ψ∈Ψκa
d,N (b,c)

[ ∫
ΛN

|∇ψ|2(x)dx
]
,
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where

(2.5)

Ψκa

d,N (b, c) =
{
ψ ∈ H1(ΛN ) :

∫

ΛN

ψ2(x)dx = 1,

∫

ΛN

(
1 − e−κacψ2(x)

)
dx ≥ b

}
.

Proof. See Proposition 3 in [3]. The function ψ parametrises the optimal

strategy behind the large deviation: (∇ψ/ψ)(x) is the drift of the Brownian

motion at site x, cψ2(x) is the density for the time the Brownian motion spends

at site x, while 1 − e−κacψ2(x) is the density of the Wiener sausage at site x.

The factor c enters (2.4) and (2.5) because the Wiener sausage is observed over

a time cτ .

Proposition 1 gives us good control over the volume |W aτ−1/(d−2)

N (τ)|. In

order to get good control over the intersection volume

(2.6)
∣∣∣V aτ−1/(d−2)

N (cτ)
∣∣∣ =

∣∣∣W aτ−1/(d−2)

1,N (cτ) ∩W aτ−1/(d−2)

2,N (cτ)
∣∣∣

of two independent shrinking Wiener sausages, observed until time cτ , we need

the analogue of Proposition 1 for this quantity, which reads as follows.

Proposition 2. (|V aτ−1/(d−2)

N (cτ)|)τ>0 satisfies the large deviation prin-

ciple on R+ with rate τ and with rate function

(2.7) Ĵκa

d,N (b, c) = c inf
φ∈bΦκa

d,N (b,c)

[ ∫

ΛN

|∇φ|2(x)dx
]
,

where

(2.8)

Φ̂κa

d,N (b, c) =
{
φ ∈ H1(ΛN ) :

∫

ΛN

φ2(x)dx = 1,

∫

ΛN

(
1− e−κacφ2(x)

)2
dx ≥ b

}
.

Proof. The extra power 2 in the second constraint (compare (2.5) with

(2.8)) enters because (1−e−κacφ2(x))2 is the density of the intersection of the two

Wiener sausages at site x. The extra factor 2 in the rate function (compare

(2.4) with (2.7)) comes from the fact that both Brownian motions have to

follow the drift field ∇φ/φ. The proof is a straightforward adaptation and

generalization of the proof of Proposition 3 in [3]. We outline the main steps,

while skipping the details.

Step 1. One of the basic ingredients in the proof in [3] is to approximate the

volume of the Wiener sausage by its conditional expectation given a discrete

skeleton. We do the same here. Abbreviate

Wi (cτ) =W aτ−1/(d−2)

i,N (cτ) , i = 1, 2,(2.9)

V (cτ) =W1 (cτ) ∩W2 (cτ) .
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Set

(2.10) X i,cτ,ε = {βi (jε)}1≤j≤cτ/ε, i = 1, 2,

where βi (s), s ≥ 0, is the Brownian motion on the torus ΛN that generates

the Wiener sausage Wi (cτ). Write E cτ,ε for the conditional expectation given

X i,cτ,ε, i = 1, 2. Then, analogously to Proposition 4 in [3], we have:

Lemma 1. For all δ > 0,

(2.11) lim
ε↓0

lim sup
τ→∞

1

τ
logP

(∣∣∣ |V (cτ)| − E cτ,ε (|V (cτ)|)
∣∣∣ ≥ δ

)
= −∞.

Proof. The crucial step is to apply a concentration inequality of Talagrand

twice, as follows. First note that, conditioned on X i,cτ,ε, Wi (cτ) is a union of

L = cτ/ε independent random sets. Call these sets Ci,k, 1 ≤ k ≤ L, and write

(2.12) V (cτ) =

(
L⋃

k=1

C1,k

)
∩
(

L⋃

k=1

C2,k

)
.

Next note that, for any measurable set D ⊂ ΛN , the function

(2.13) {Ck}1≤k≤L 7→
∣∣∣∣∣

(
L⋃

k=1

Ck

)
∩D

∣∣∣∣∣

is Lipschitz-continuous in the sense of equation (2.26) in [3], uniformly in D.

From the proof of Proposition 4 in [3], we therefore get

(2.14)

lim
ε↓0

lim sup
τ→∞

1

τ
log P

(∣∣∣ |V (cτ)| −E
(
|V (cτ)| | X 1,cτ,ε, β2

)∣∣∣ ≥ δ | β2

)
= −∞,

uniformly in the realisation of β2. On the other hand, the above holds true

with β1 and β2 interchanged, and so we easily get

(2.15)

lim
ε↓0

lim sup
τ→∞

1

τ
log P

(∣∣∣E
(
|V (cτ)| | X 1,cτ,ε, β2

)
− E cτ,ε(|V (cτ)|)

∣∣∣ ≥ δ
)

= −∞,

uniformly in the realisation of β2. Clearly, (2.14) and (2.15) imply (2.11).

Step 2. We fix ε > 0 and prove an LDP for E cτ,ε (|V (cτ)|), as follows. As

in equation (2.43) in [3], define I
(2)
ε : M+

1 (ΛN × ΛN ) → [0,∞] by

(2.16) I(2)
ε (µ) =

{
h (µ | µ1 ⊗ πε) if µ1 = µ2,

∞ otherwise,

where h(·|·) denotes relative entropy between measures, µ1, µ2 are the two

marginals of µ on ΛN , and πε(x, dy) = pε(y−x)dy with pε the Brownian transi-
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tion kernel on ΛN . For η > 0, define Φη : M+
1 (ΛN × ΛN )×M+

1 (ΛN × ΛN ) 7→
[0,∞) by

(2.17)

Φη (µ1, µ2) =
∫
ΛN

dx
{
1 − exp

[
−ηκa

∫
ΛN×ΛN

ϕε (y − x, z − x)µ1 (dy, dz)
]}

×
{

1 − exp
[
−ηκa

∫
ΛN×ΛN

ϕε (y − x, z − x)µ2 (dy, dz)
]}

,

where ϕε is defined by

(2.18) ϕε (y, z) =

∫ ε
0 ds ps (−y) pε−s (z)

pε (z − y)
.

Lemma 2. (E cτ,ε (|V (cτ)|))τ>0 satisfies the LDP on R+ with rate τ and

with rate function

(2.19)

Jε (b)

= inf
{c
ε

(
I(2)
ε (µ1) + I(2)

ε (µ2)
)

: µ1, µ2 ∈ M+
1 (ΛN × ΛN ),Φc/ε (µ1, µ2) = b

}
.

Proof. The proof is a straightforward extension of the proof of Proposi-

tion 5 in [3]. The basis is the observation that

(2.20)

E cτ,ε (|V (cτ)|)

=

∫

ΛN

dxPcτ,ε (x ∈W1 (cτ)) Pcτ,ε (x ∈W2 (cτ))

=

∫

ΛN

dx

{
1 − exp

[
cτ

ε

∫

ΛN×ΛN

log
(
1 − qτ,ε (y − x, z − x)

)
L1,cτ,ε (dy, dz)

]}

×
{

1 − exp

[
cτ

ε

∫

ΛN×ΛN

log
(
1 − qτ,ε (y − x, z − x)

)
L2,cτ,ε (dy, dz)

]}
,

where

(2.21) qτ,ε (y, z) = Py

(
∃ 0 ≤ s ≤ εwith βs ∈ Baτ−1/(d−2) (0) | βε = z

)
,

and Li,cτ,ε is the bivariate empirical measure

(2.22) Li,cτ,ε =
ε

cτ

cτ/ε∑

k=1

δ(βi((k−1)ε),βi(kε)), i = 1, 2.

Through a number of approximation steps we prove that

(2.23) lim
τ→∞

∥∥E cτ,ε (|V (cτ)|) − Φc/ε (L1,cτ,ε, L2,cτ,ε)
∥∥
∞ = 0 ∀ε > 0.
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This then proves our claim, since we can apply a standard LDP for Φc/ε (L1,cτ,ε, L2,cτ,ε).

The proof of (2.23) runs as in the proof of Proposition 5 in [3] via the following

telescoping. Set

fi (x)= exp

[
cτ

ε

∫

ΛN×ΛN

log
(
1 − qτ,ε (y − x, z − x)

)
Li,cτ,ε (dy, dz)

]
,(2.24)

gi (x)= exp

[
−cκa

ε

∫

ΛN×ΛN

ϕε (y − x, z − x)Li,cτ,ε (dy, dz)

]
.

Then

(2.25)

Ecτ,ε (|V (cτ)|) − Φc/ε (L1,cτ,ε, L2,cτ,ε)

=

∫

ΛN

dx [1 − f1 (x)] [1 − f2 (x)] −
∫

ΛN

dx [1 − g1 (x)] [1 − g2 (x)]

=

∫

ΛN

dx [g1 (x) − f1 (x)] [1 − f2 (x)] +

∫

ΛN

dx [1 − g1 (x)] [g2 (x) − f2 (x)] ,

and hence
∣∣Ecτ,ε (|V (cτ)|) − Φc/ε (L1,cτ,ε, L2,cτ,ε)

∣∣(2.26)

≤
∫

ΛN

dx |g1 (x) − f1 (x)| +
∫

ΛN

dx |g2 (x) − f2 (x)| .

We can therefore do the approximations on L1,cτ,ε and L2,cτ,ε separately, which

is exactly what is done in [3]. In fact, the various approximations on pp. 371–

377 in [3] have all been done by taking absolute values under the integral sign,

and so the argument carries over.

Step 3. The last step is a combination of the two previous steps to obtain

the limit ε ↓ 0 in the LDP. If f : R+ → R is bounded and continuous, then

from the two previous steps we get

lim
τ→∞

1

τ
logE (exp [τ |V (cτ) |])(2.27)

= lim
ε↓0

sup
µ1,µ2

{
f
(
Φc/ε (µ1, µ2)

)
− c

ε

(
I(2)
ε (µ1) + I(2)

ε (µ2)
)}

.

Now set, for ν1, ν2 ∈ M1 (ΛN ),

(2.28)

Ψc/ε (ν1, ν2) =

∫

ΛN

dx

{
1 − exp

[
−cκa

ε

∫ ε

0
ds

∫

ΛN

ps (x− y) ν1 (dy)

]}

×
{

1 − exp

[
−cκa

ε

∫ ε

0
ds

∫

ΛN

ps (x− y) ν2 (dy)

]}
,
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and, for f1, f2 ∈ L+
1 (ΛN ),

(2.29) Γ (f1, f2) =

∫

ΛN

dx
(
1 − e−cκaf1(x)

)(
1 − e−cκaf2(x)

)
.

Then, repeating the approximation arguments on pp. 379–381 in [3], we get

from (2.27) that

(2.30)

lim
τ→∞

1

τ
logE (exp [τ |V (cτ) |]) = lim

K→∞
lim
ε↓0

× sup
ν1,ν2:

1

ε
Iε(ν1)≤K, 1

ε
Iε(ν2)≤K

{
f
(
Ψc/ε (ν1, ν2)

)
− c

ε

(
Iε (ν1) + Iε (ν2)

)}
,

where Iε is the rate function of the discrete-time Markov chain on ΛN with

transition kernel pε, i.e.,

(2.31) Iε (ν) = inf
{
I(2)
ε (µ) : µ1 = ν

}
.

The right-hand side of (2.30) equals (see equation (2.96) in [3])

(2.32) sup
i=1,2: φi∈H1(ΛN),‖φi‖2

2
=1

{
f
(
Γ
(
φ2

1, φ
2
2

))
− c

2

(
‖∇φ1‖2

2 + ‖∇φ2‖2
2

)}
.

(Line 3 on p. 381 in [3] contains a typo: f
(
Γ
(
φ2
))

should appear instead

of f
(
φ2
)
.) Using the lemma by Bryc [5], we see from (2.30) and (2.32) that

(V (cτ))τ>0 satisfies the LDP with rate τ and with rate function

(2.33)

Ĵ (b)= inf
{ c

2

(
‖∇φ1‖2

2 + ‖∇φ2‖2
2

)
:

‖φ1‖2
2 = ‖φ2‖2

2 = 1,

∫

ΛN

dx
(
1 − e−cκaφ2

1(x)
)(

1 − e−cκaφ2
2(x)
)
≥ b
}

= inf

{
c ‖∇φ‖2

2 : ‖φ‖2
2 = 1,

∫

ΛN

dx
(
1 − e−cκaφ2(x)

)2
≥ b

}
.

The last equality, showing that the variational problem reduces to the diagonal

φ1 = φ2, holds because if φ2 = 1
2(φ2

1 + φ2
2), then

(2.34) 2|∇φ|2 ≤ |∇φ1|22+ |∇φ2|22, (1−e−cκaφ2
1)(1−e−cκaφ2

2) ≤ (1−e−cκaφ2

)2.

This completes the proof of Proposition 2.
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2.2. The lower bound in Theorem 1. In this section we prove:

Proposition 3. Let d ≥ 3 and a > 0. Then, for every c > 0,

(2.35) lim inf
τ→∞

1

τ
log P

(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)
≥ −Iκa

d (c),

where Iκa

d (c) is given by (1.9) and (1.10).

Proof. Let CN (cτ) denote the event that neither of the two Brownian

motions comes within a distance aτ−1/(d−2) of the boundary of [−N
2 ,

N
2 )d until

time cτ . Clearly,

(2.36)

P
(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)
≥ P

(
|V aτ−1/(d−2)

N (cτ)| ≥ 1, CN (cτ)
)

∀N > 0.

We can now simply repeat the argument that led to Proposition 2, but re-

stricted to the event CN (cτ). The result is that

(2.37) lim
τ→∞

1

τ
log P

(
|V aτ−1/(d−2)

N (cτ)| ≥ 1
∣∣∣ CN (cτ)

)
= −J̃κa

d,N (1, c),

where J̃κa

d,N (1, c) is given by the same formulas as in (2.7) and (2.8), except

that φ satisfies the extra restriction supp(φ) ∩ ∂{[−N
2 ,

N
2 )d} = ∅ (and b = 1).

We have

(2.38) lim
τ→∞

1

τ
log P (CN (cτ)) = −2cλN

with λN the principal Dirichlet eigenvalue of −∆/2 on [−N
2 ,

N
2 )d. Hence (2.36)–

(2.38) give

(2.39)

lim inf
τ→∞

1

τ
log P

(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)
≥ −J̃κa

d,N (1, c) − 2cλN ∀N > 0.

Let N → ∞ and use that limN→∞ λN = 0 and

(2.40) lim
N→∞

J̃κa

d,N (1, c) = Ĵκa

d (1, c) = Iκa

d (c),

to complete the proof. Here, Ĵκa

d (1, c) is given by the same formulas as in (2.7)

and (2.8), except that φ lives on R
d (and b = 1). The convergence in (2.40)

can be proved by the same argument as in [3, §2.6].
2.3. The upper bound in Theorem 1. In this section we prove:

Proposition 4. Let d ≥ 3 and a > 0. Then, for every c > 0,

(2.41) lim sup
τ→∞

1

τ
log P

(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)
≤ −Iκa

d (c),

where Iκa

d (c) is as given by (1.9) and (1.10).

Propositions 3 and 4 combine to yield Theorem 1 by means of (2.1) and (2.2).
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The proof of Proposition 4 will require quite a bit of work. The hard part

is to show that the intersection volume of the Wiener sausages on R
d is close to

the intersection volume of the Wiener sausages wrapped around ΛN when N is

large. Note that the intersection volume may either increase or decrease when

the Wiener sausages are wrapped around ΛN , so there is no simple comparison

available.

Proof. The proof is based on a clumping and reflection argument , which

we decompose into 14 steps. Throughout the proof a > 0 and c > 0 are fixed.

1. Partition R
d into N -boxes as

(2.42) R
d = ∪z∈ZdΛN (z),

where ΛN (z) = ΛN+Nz. For 0 < η < N
2 , let Sη,N denote the 1

2η-neighborhood

of the faces of the boxes, i.e., the set that when wrapped around ΛN becomes

ΛN \ΛN−η. For convenience let us take N/η as an integer. If we shift Sη,N by

η exactly N/η times in each of the d directions, then we obtain dN/η copies

of Sη,N :

(2.43) Sjη,N , j = 1, . . . ,
dN

η
,

and each point of R
d is contained in exactly d copies.

2. We are going to look at how often the two Brownian motions cross the

slices of width η that make up all of the Sjη,N ’s. To that end, consider all the

hyperplanes that lie at the center of these slices and all the hyperplanes that

lie at a distance 1
2η from the center (making up the boundary of the slices).

Define an η-crossing to be a piece of the Brownian motion path that crosses

a slice and lies fully inside this slice. Define the entrance-point (exit -point) of

an η-crossing to be the point at which the crossing hits the central hyperplane

for the first (last) time. We are going to reflect the Brownian motion paths in

various central hyperplanes with the objective of moving them inside a large

box. We will do the reflections only on those excursions that begin with an

exit-point at a given central hyperplane and end with the next entrance-point

at the same central hyperplane, thus leaving unreflected those parts of the path

that begin with an entrance-point and end with the next exit-point. This is

done because the latter cross the central hyperplane too often and therefore

would give rise to an entropy associated with the reflection that is too large.

In order to control the entropy we need the estimates in Lemmas 3–5 below.

3. Abbreviate

(2.44) Ocτ =
{
βi(s) ∈ [−τ 2, τ2]d ∀s ∈ [0, cτ ], i = 1, 2

}
.

Lemma 3. limτ→∞
1
τ logP ([Ocτ ]

c) = −∞.
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Proof. The claim is an elementary large deviation estimate.

4. Let Ck
cτ (η), k = 1, . . . , d, be the total number of η-crossings made by the

two Brownian motions up to time cτ accross those slices that are perpendicular

to direction k, and let Ccτ (η) =
∑d

k=1C
k
cτ (η). (These random variables do not

depend on N because we consider crossings of all the slices.) We begin by

deriving a large deviation upper bound showing that the latter sum cannot be

too large.

Lemma 4. For every M > 0,

(2.45) lim sup
η→∞

lim sup
τ→∞

1

τ
log P

(
Ccτ (η) >

dM

η
cτ
)
≤ −C(M),

with limM→∞C(M) = ∞.

Proof. Since

(2.46) P
(
Ccτ (η) >

dM

η
cτ
)
≤ dP

(
C1
cτ (η) >

M

η
cτ
)
,

it suffices to estimate the η-crossings perpendicular to direction 1. Let T1, T2, . . .

denote the independent and identically distributed times taken by these

η-crossings for the first Brownian motion. Since for both Brownian motions

the crossings must occur prior to time cτ , we have

(2.47) P
(
C1
cτ (η) >

M

η
cτ
)
≤ 2P

( M

2η
cτ∑

i=1

Ti < cτ
)
.

By Brownian scaling, T1 has the same distribution as η2σ1 with σ1 the crossing

time of a slice of width 1. Moreover, by a standard large deviation estimate

for σ1, σ2, . . . corresponding to T1, T2, . . . , we have

(2.48) lim
n→∞

1

n
log P

(
n∑

i=1

σi < ζn

)
= −I(ζ)

with

(2.49) I(ζ) > 0 for 0 < ζ < E(σ1), lim
ζ↓0

ζI(ζ) =
1

2
,

where the limit 1/2 comes from the fact that P (σ1 ∈ dt) = exp{− 1
2t [1+o(1)]} dt

as t ↓ 0. It follows from (2.46)–(2.48) that

(2.50) lim sup
τ→∞

1

τ
log P

(
Ccτ (η) >

M

η
cτ
)
≤ −c2M

η
I
( 1

2Mη

)
.

By (2.49), as η → ∞ the right-hand side of (2.50) tends to −2cM 2. Hence we

get the claim in (2.45) with C(M) = 2cM 2.
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Abbreviate

(2.51) Ccτ,M,η =
{
Ccτ (η) ≤

dM

η
cτ
}
.

5. We next derive a large deviation estimate showing that the total inter-

section volume cannot be too large.

Lemma 5. limτ→∞
1
τ logP

(
|V aτ−1/(d−2)

(cτ)| > 2cκa

)
= −∞ for all c > 0.

Proof. After undoing the scaling we did in (2.1), we get

(2.52) P
(
|V aτ−1/(d−2)

(cτ)| > 2cκa

)
= P (|V a(ct)| > 2cκat).

We have |V a(ct)| ≤ |W a
1 (ct)|. It is known that E|W a

1 (ct)| ∼ cκat as t → ∞
(recall (1.12)) and that P (|W a

1 (ct)| > 2cκat) decays exponentially fast in t =

τd/(d−2) � τ (see van den Berg and Tóth [4] or van den Berg and Bolthausen

[2]).

Abbreviate

(2.53) Vcτ = {|V aτ−1/(d−2)

(cτ)| ≤ 2cκa}.
6. For j = 1, . . . , dNη , define

Ccτ (S
j
η,N ) =number of η-crossings in Sjη,N up to time cτ ,(2.54)

Vcτ (S
j
η,N ) =V aτ−1/(d−2)

(cτ) ∩ Sjη,N .

Because the copies in (2.43) cover R
d exactly d times, on the event Ccτ,M,η∩Vcτ

defined by (2.51) and (2.53) we have

dN

η∑

j=1

Ccτ (S
j
η,N )≤ d2M

η
cτ,(2.55)

dN

η∑

j=1

|Vcτ (Sjη,N )| ≤ 2dcκa.

Hence there exists a J (which depends on the two Brownian motions) such

that

(2.56)
Ccτ (S

J
η,N ) ≤ 2dM

N cτ,

|Vcτ (SJη,N )| ≤ 4cκa
η
N .

These two bounds will play a crucial role in the sequel. We will pick η =
√
N

and M = logN , do our reflections with respect to the central hyperplanes in
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SJ√
N,N

, and use the fact that for large N both the number of crossings and the

intersection volume in SJ√
N,N

are small because of (2.56). This fact will allow

us to control both the entropy associated with the reflections and the change

in the intersection volume caused by the reflections.

7. Let xJ√
N,N

denote the shift through which SJ√
N,N

is obtained from

S√N,N (recall (2.43)). For z ∈ Z
d, we define

V J
cτ,N (z) =V aτ−1/(d−2)

(cτ) ∩ ΛJN (z),(2.57)

V J
cτ,

√
N,N,out(z) =V aτ−1/(d−2)

(cτ) ∩ SJ√
N,N

(z),

V J
cτ,

√
N,N,in(z) =V aτ−1/(d−2)

(cτ) ∩ [ΛJN (z) \ SJ√
N,N

(z)],

where ΛJN (z) = ΛN + xJ√
N,N

and SJ√
N,N

(z) = (ΛN \ ΛN−
√
N ) +Nz + xJ√

N,N
.

The rest of the proof of Proposition 4 will be based on Propositions 5 and 6

below. Proposition 5 states that the intersection volume has a tendency to

clump: the blocks where the intersection volume is below a certain threshold

have a negligible total contribution as this threshold tends to zero. Proposition

6 states that, at a negligible cost as N → ∞, the Brownian motions can be

reflected in the central hyperplanes of SJ√
N,N

and then be wrapped around the

torus Λ24cκa/εN in such a way that almost no intersection volume is gained nor

lost.

Define

(2.58) ZJε,N =
{
z ∈ Z

d : |W J
1,cτ,N(z)| > ε or |W J

2,cτ,N (z)| > ε
}
,

where

(2.59) W J
i,cτ,N(z) = W aτ−1/(d−2)

i (cτ) ∩ ΛJN (z), i = 1, 2.

Abbreviate

(2.60) Wcτ =
{
|W aτ−1/(d−2)

1 (cτ)| ≤ 2cκa, |W aτ−1/(d−2)

2 (cτ)| ≤ 2cκa

}
⊂ Vcτ .

Note that on the event Wcτ we have |ZJε,N | ≤ 4cκa/ε, while

(2.61) lim
τ→∞

1

τ
log P ([Wcτ ]

c) = −∞ ∀c > 0,

as shown in the proof of Lemma 5 above.

Proposition 5. There exists an N0 such that for every 0 < ε ≤ 1 and

δ > 0,

(2.62)

lim sup
τ→∞

sup
N≥N0

1
τ log P

({ ∑
z∈Zd\ZJ

ε,N

|V J
cτ,N (z)| > δ

}
∪
{ ∑
z∈ZJ

ε,N

|V J
cτ,

√
N,N,out

(z)| > δ
})

≤ −K(ε, δ),

with limε↓0K(ε, δ) = ∞ for any δ > 0.
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Proposition 6. Fix N ≥ 1 and ε, δ > 0.

(i) After at most |ZJε,N | − 1 reflections in the central hyperplanes of SJ√
N,N

the Brownian motions are such that, when wrapped around the torus

Λ
2
|ZJ

ε,N
|
N

, all the intersection volumes |V J
cτ,

√
N,N,in

(z)|, z ∈ ZJε,N , end up

in disjoint N -boxes inside Λ
2
|ZJ

ε,N
|
N

.

(ii) On the event Ocτ ∩Ccτ,logN,√N ∩Wcτ , the reflections have a probabilistic

cost at most exp[γN τ +O(log τ)] as τ → ∞, with limN→∞ γN = 0.3

An important point to note is that on the complement of the event on the

left-hand side of (2.62) we have

(2.63) 0 ≤ |V aτ−1/(d−2)

(cτ)| −
∑

z∈ZJ
ε,N

|V J
cτ,

√
N,N,in(z)| ≤ 2δ.

The sum on the right-hand side is invariant under the reflections (because the

|V J
cτ,

√
N,N,in

(z)| with z ∈ ZJε,N end up in disjoint N -boxes), and therefore the

estimate in (2.63) implies that most of the intersection volume is unaffected

by the reflections.

8. Before giving the proof of Propositions 5 and 6, we complete the proof

of Proposition 4. By (2.61), (2.63), Lemmas 3 and 4 and Proposition 5 we

have, for τ,N large enough, 0 < ε ≤ 1 and δ > 0,

P
(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)
≤ e−

1

2
K(ε,δ)τ(2.64)

+P
( ∑

z∈ZJ
ε,N

|V J
cτ,

√
N,N,in(z)| ≥ 1 − 2δ, Ocτ ∩ Ccτ,logN,√N ∩Wcτ

)
,

while by Proposition 6 we have, for any N ≥ 1, 0 < ε ≤ 1 and δ > 0,

(2.65)

P
( ∑

z∈ZJ
ε,N

|V J
cτ,

√
N,N,in(z)| ≥ 1 − 2δ, Ocτ ∩ Ccτ,logN,√N ∩Wcτ

)
≤ eγNτ+O(log τ)

×P
( ∑

z∈ZJ
ε,N

|V J
cτ,

√
N,N,in(z)| ≥ 1 − 2δ, Ocτ ∩ Ccτ,logN,√N ∩Wcτ ∩ D

)

with D the disjointness property stated in Proposition 6(i). However, subject

to this disjointness property we have

(2.66) |V aτ−1/(d−2)

24cκa/εN (cτ)| ≥
∑

z∈ZJ
ε,N

|V J
cτ,

√
N,N,in(z)|,

3This statement means that if R denotes the reflection transformation, then dP̃ /dP ≤
exp[γNτ + O(log τ )] with P̃ the path measure for the two Brownian motions defined by
P̃ (A) = P (R−1A) for any event A.
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where we use the fact that |ZJε,N | ≤ 4cκa/ε on Wcτ , and the left-hand side is

the intersection volume after the two Brownian motions are wrapped around

the 24cκa/εN -torus. Combining (2.64)–(2.66) we obtain that, for τ,N large

enough, 0 < ε ≤ 1 and δ > 0,

P
(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)

(2.67)

≤ e−
1

2
K(ε,δ)τ + eγNτ+O(log τ) P

(
|V aτ−1/(d−2)

24cκa/εN (cτ)| ≥ 1 − 2δ
)
.

We are now in a position to invoke Proposition 2 to obtain that, for N large

enough, 0 < ε ≤ 1 and δ > 0,

lim sup
τ→∞

1

τ
logP

(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)

(2.68)

≤ max
{
− 1

2K(ε, δ), γN − Ĵκa

d,24cκa/εN (1 − 2δ, c)
}
.

Next, let N → ∞ and use the facts that γN → 0 and Ĵκa

d,24cκa/εN
(1−2δ, c) →

Ĵκa

d (1 − 2δ, c) (similarly as in (2.40)), to obtain that, for any 0 < ε ≤ 1 and

δ > 0,

(2.69)

lim sup
τ→∞

1

τ
log P (|V aτ−1/(d−2)

(cτ)| ≥ 1) ≤ max
{
− 1

2K(ε, δ), −Ĵκa

d (1 − 2δ, c)
}
.

Next, let ε ↓ 0 and hence K(ε, δ) → ∞, to obtain that, for any δ > 0,

(2.70) lim sup
τ→∞

1

τ
logP

(
|V aτ−1/(d−2)

(cτ)| ≥ 1
)
≤ −Ĵκa

d (1 − 2δ, c).

Finally, note from (2.7) and (2.8) that

(2.71) Ĵκa

d (1− 2δ, c) = (1− 2δ)
d−2

d Ĵκa

d

(
1,

c

1 − 2δ

)
= (1− 2δ)

d−2

d Iκa

d

( c

1 − 2δ

)
,

where the first equality uses scaling (see also (4.1) and (4.2)). Let δ ↓ 0 and

use Theorems 3(i) and (iv), to see that the right-hand side converges to I κa

d (c).

This proves the claim in Proposition 4. In the remaining six steps we prove

Propositions 5 and 6.

9. We proceed with the proof of Proposition 6(i).

Proof. For k = 1, . . . , d carry out the following reflection procedure. A

k-slice consists of all boxes ΛJ
N (z), z = (z1, . . . , zd), for which zk is fixed and

the zl’s with l 6= k are running. Label all the k-slices in Z
d that contain one

or more elements of Z. The number R of such slices is at most |Z|. Now:

(1) Look for the right-most central hyperplane Hk (perpendicular to the di-

rection k) such that all the labelled k-slices lie to the right ofHk. Number

the labelled k-slices to the right ofHk by 1, . . . , R and let d1N, . . . , dR−1N

denote the successive distances between them.
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(2) If d1 ≥ 1, then look for the left-most central hyperplane H ′
k to the right

of slice 1 such that, when the two Brownian motions are reflected in H ′
k,

slice 2 lands to the left of Hk at a distance either 0 or N (depending on

whether d1 is odd, respectively, even). If d1 = 0, then do not reflect. (As

already emphasized in part 2, we reflect only those excursions moving a

distance 1
2

√
N away from H ′

k that begin with an exit-point at H ′
k and end

with the next entrance-point at H ′
k. After the reflection, both Brownian

motions lie entirely on one side of the hyperplane at distance 1
2

√
N from

H ′
k.)

The effect of (1) and (2) is that slices 1 and 2 fall inside a 3N -box. Repeat. If

d2 ≥ 3, then again reflect, this time making slice 3 land to the right of slices

1 and 2 at a distance either 0 or N . If d2 ≤ 2, then do not reflect. The effect

is that slices 1, 2 and 3 fall inside a 6N -box, etc. After we are through, the

R slices fit inside a box of size 3 × 2R−2N (≤ 2RN). After we have done the

reflections in all the directions k = 1, . . . , d, all the labelled slices fit inside a

box of size 2|Z
J
ε,N |N .

10. Next we proceed with the proof of Proposition 6(ii).

Proof . Each reflection of an excursion beginning with an exit-point and

ending with an entrance-point costs a factor 2 in probability. On the event

Ccτ,logN,√N , the total number of excursions of the two Brownian motions is

bounded above by d logN√
N
cτ . Moreover, on the event Ocτ the number of central

hyperplanes available for the reflection is bounded above by 2τ 2/N , on the

event Wcτ the total number of reflections is bounded above by |ZJ
ε,N | ≤ 4κac/ε,

while the total number of shifted copies of S√
N,N available is d

√
N . Therefore

we indeed get Proposition 6(ii) with γN given by 2d logN/
√
N = eγN and the

error term given by (2τ 2/N)4κac/εd
√
N = eO(log τ). Note that the reflections

preserve the intersection volume in the N -boxes without the
√
N -slices, i.e.,

the |V J
cτ,

√
N,logN,in

(z)| with z ∈ ZJε,N (recall the remark below (2.63)).

11. Finally, we prove Proposition 5, which requires four more steps.

Proof . First note that the second event on the left-hand side of (2.62)

is redundant for N ≥ N0 = (4cκa/δ)
2 because of (2.56) with η =

√
N and

M = logN . Indeed, recall that

(2.72) |Vcτ (SJ√N,N )| =
∑

z∈Zd

|V J
cτ,

√
N,N,out(z)|.

Thus, we need to show that there exists an N0 such that for every 0 < ε ≤ 1

and δ > 0,

(2.73) lim sup
τ→∞

sup
N≥N0

1

τ
log P


 ∑

z∈Zd\ZJ
ε,N

|V J
cτ,N (z)| > δ


 ≤ −K(ε, δ),
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with limε↓0K(ε, δ) = ∞ for any δ > 0. To that end, for N ≥ 1 and ε > 0, let

(2.74) Aε,N =

{
A ⊂ R

d Borel : inf
x∈Rd

sup
z∈Zd

|(A+ x) ∩ ΛN (z)| ≤ ε

}
.

This class of sets is closed under translations and its elements become ever

more sparse as ε ↓ 0. The key to the proof of Proposition 5 is the following

clumping property for a single Wiener sausage. Recall that

(2.75) Wcτ = W aτ−1/(d−2)

(cτ).

Lemma 6. For every 0 < ε ≤ 1 and δ > 0,

(2.76) lim
ε↓0

lim sup
τ→∞

1

τ
log sup

N≥1
sup

A∈Aε,N

P (|A ∩Wcτ | > δ) = −K(ε, δ),

with limε↓0K(ε, δ) = ∞ for any δ > 0.

Let us see how to get Proposition 5 from Lemma 6. Consider the random

set

(2.77) A∗ =
⋃

z∈Zd: |W1,cτ∩ΛJ
N(z)|≤ε

{W1,cτ ∩ ΛJN (z)}.

Clearly, A∗ ∈ Aε,N and (recall (2.57) and (2.58))
∑

z∈Zd\ZJ
ε,N

|V J
cτ,N (z)|=

∑

z∈Zd\ZJ
ε,N

|W1,cτ ∩W2,cτ ∩ ΛJN (z)|(2.78)

≤
∑

z∈Zd

|A∗ ∩W2,cτ ∩ ΛJN (z)|

= |A∗ ∩W2,cτ |.
Therefore

(2.79) P


 ∑

z∈Zd\ZJ
ε,N

|V J
cτ,N(z)| > δ


 ≤ sup

A∈Aε,N

P (|A ∩W2,cτ | > δ).

This bound together with Lemma 6 yields (2.73) and completes the proof of

Proposition 5.

12. Thus it remains to prove Lemma 6.

Proof. We will show that

(2.80) lim
ε↓0

lim sup
τ→∞

1

τ
log sup

N≥1
sup

A∈Aε,N

E
(

exp
[
ε−1/3dτ |A ∩Wcτ |

])
= 0.

Together with the exponential Chebyshev inequality

(2.81) P (|A∩Wcτ | > δ) ≤ e−δε
−1/3dτE

(
exp

[
ε−1/3dτ |A∩Wcτ |

])
∀A ⊂ R

d,
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(2.80) will prove Lemma 6.

13. To prove (2.80), we use the subadditivity of s 7→ |A ∩W aτ−1/(d−2)

(s)|
in the following estimate:

sup
A∈Aε,N

E
(

exp
[
ε−1/3dτ |A ∩Wcτ |

])
(2.82)

= sup
A∈Aε,N

E
(

exp
[
ε−1/3dτ |A ∩W aτ−1/(d−2)

(cτ)|
])

≤
{

sup
A∈Aε,N

sup
x∈Rd

Ex

(
exp

[
ε−1/3dτ |A ∩W aτ−1/(d−2)

(ε1/d)|
])}ε−1/dcτ

.

Here, the lower index x refers to the starting point of the Brownian motion

(E = E0), and we use the Markov property at times jε1/d, j = 1, . . . , ε−1/dcτ ,

together with the fact that Aε,N is closed under translations. Next, scale space

by τ1/(d−2) and time by τ 2/(d−2), and put T = ε1/dτ2/(d−2), to get

(2.83)

Ex

(
exp

[
ε−1/3dτ |A ∩W aτ−1/(d−2)

(ε1/d)|
])

= E(ε−1/2d
√
T )x

(
exp

[
ε2/3d

1

T
|(ε−1/2d

√
T )A ∩W a(T )|

])
∀A ⊂ R

d, x ∈ R
d.

14. Abbreviate

(2.84) Tε = ε−1/2d
√
T .

Use the inequality eu ≤ 1 + u + 1
2u

2eu, u ≥ 0, in combination with Cauchy-

Schwarz, to obtain

(2.85)

(2.83)≤ 1 + ε2/3d
1

T
ETεx|TεA ∩W a(T )| + 1

2
ε4/3d

√
1

T 4
ETεx|W a(T )|4

×
√
ETεx

(
exp

[
2ε2/3d

1

T
|W a(T )|

])
∀ A ⊂ Rd, x ∈ R

d,

where in the last term we overestimate by removing the intersection with TεA.

The two expectations under the square roots are independent of x and are

bounded uniformly in T ≥ 1 and 0 < ε ≤ 1 (see van den Berg and Tóth [4] or

van den Berg and Bolthausen [2]). Hence

(2.83) ≤ 1 + ε2/3d
1

T
ETεx|TεA ∩W a(T )| + C1ε

4/3d(2.86)

∀A ⊂ R
d, x ∈ R

d, T ≥ 1, 0 < ε ≤ 1.
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The remaining expectation can be estimated as follows. First write

ETεx|TεA ∩W a(T )|(2.87)

=
∑

z∈Zd

ETεx|TεA ∩W a(T ) ∩ ΛTεN (z)|

=
∑

z∈Zd

PTεx

(
W a(T ) ∩ ΛTεN (z) 6= ∅

)

× ETεx

(
|TεA ∩W a(T ) ∩ ΛTεN (z)| | W a(T ) ∩ ΛTεN (z) 6= ∅

)
.

Then note that

(2.88)

sup
A∈Aε,N

sup
x∈Rd

sup
z∈Zd

Ex

(
|TεA ∩W a(T ) ∩ ΛTεN (z)| |W a(T ) ∩ ΛTεN (z) 6= ∅

)

≤ sup
A∈Rd: |A∩ΛN(0)|≤ε

sup
x∈Rd

Ex|TεA ∩W a(T ) ∩ ΛTεN (0)|

= sup
A∈Rd: |A∩ΛN(0)|≤ε

sup
x∈Rd

∫

TεA∩ΛTεN(0)
Px(σBa(y) ≤ T ) dy,

with σBa(y) the first hitting time of Ba(y). Since the integrand is a decreas-

ing function of |y − x|, the integral on the right-hand side is bounded above,

uniformly in A ∈ Aε,N and x ∈ R
d, by

(2.89)

∫

TεB(ε/ωd)1/d(0)
P (σBa(y) ≤ T ) dy

(ωd is the volume of the ball with unit radius). Since

(2.90) P (σBa(y) ≤ T ) ≤ P (σBa(y) <∞) = 1 ∧
(
a

|y|

)d−2

≤
(
a

|y|

)d−2

,

we find that (recall (2.84))

(2.91) (2.89) ≤ C2ε
1/dT.

Consequently,

(2.92) (2.87) ≤ C2ε
1/dT Ex|{z ∈ Z

d : W a(T ) ∩ ΛTεN (z) 6= ∅}|.
But the last expectation is bounded above by C3 uniformly in x ∈ R

d, N ≥ 1

and 0 < ε ≤ 1. Hence (recall (2.86))

(2.93) sup
x∈Rd

sup
T≥1

(2.83) ≤ 1 + C2C3ε
5/3d + C1ε

4/3d ∀0 < ε ≤ 1.

Substitution into (2.82) yields the claim in (2.80). This completes the proof of

Lemma 6.

This completes the proof of Proposition 4 and hence of Theorem 1.
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3. Proof of Theorem 2

In this section we indicate how the arguments given in Section 2 for the

Wiener sausages in d ≥ 3 can be carried over to d = 2. The necessary mod-

ifications are minor and only involve a change in the choice of the scaling

parameters.

By Brownian scaling, V a(ct) has the same distribution as t
log tV

a
q

log t

t

× (c log t), t > 1. Hence, putting

(3.1) τ = log t,

we have

(3.2) P
(
|V a(ct)| ≥ t/ log t

)
= P

(
|V a

√
τe−τ

(cτ)| ≥ 1
)
.

The claim in Theorem 2 is therefore equivalent to

(3.3) lim
τ→∞

1

τ
log P

(
|V a

√
τe−τ

(cτ)| ≥ 1
)

= −I2π
2 (c).

Both the argument for the lower bound (§2.2) and for the upper bound

(§2.3) carry over, with the shrinking rate
√
τe−τ for d = 2 replacing the shrink-

ing rate τ−1/(d−2) for d ≥ 3 (and 2π for d = 2 replacing κa for d ≥ 3). The

necessary ingredients can be found in [3, §4].
The only part that needs some consideration is the proof of Lemma 6. Af-

ter the scaling we find that in (2.83) the factor 1/T gets replaced by (log T )/T .

This can be accommodated in (2.85). The analogue of (2.89) for d = 2 reads

(3.4)

∫

(ε−1/4
√
T )B

(ε/π)1/2 (0)
P (σBa(y) ≤ T ) dy.

To estimate this integral, we argue as follows. According to Spitzer [14], equa-

tion (3.3),

(3.5) λ

∫ ∞

0
e−λtP (σBa(y) ≤ t) dt = 1 ∧ K0(

√
2λ |y|)

K0(
√

2λa)
∀y ∈ R

d, λ > 0,

where K0 is the Bessel function of the second kind with imaginary argument

of order 0. Consequently,

(3.6) P (σBa(y) ≤ 1/λ) ≤ e
K0(

√
2λ |y|)

K0(
√

2λa)
∀y ∈ R

d, λ > 0.

Hence ∫

y∈Rd : |y|≤ρ
P (σBa(y) ≤ 1/λ) dy ≤ 2πe

K0(
√

2λa)

∫ ρ

0
rK0(

√
2λ r) dr(3.7)

=
πe

λK0(
√

2λ a)

∫ √
2λρ

0
rK0(r) dr ∀ρ > 0.
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Put λ = 1/T and ρ = ε1/4
√
T/π. Then

(3.8) (3.4) ≤ πeT

K0(
√

2/T a)

∫ ε1/4
√

2/π

0
rK0(r) dr.

Since K0(r) = (1 + o(1)) log(1/r) as r ↓ 0, we obtain from (3.8) that

(3.9) lim sup
T→∞

ε1/3
log T

T
(3.4) ≤ ε1/3 2πe

∫ ε1/4
√

2/π

0
rK0(r) dr.

Here we multiply by ε1/3(log T )/T , which is the factor in the second term on

the right-hand side of the analogue of (2.86). The integral on the right-hand

side of (3.9) is of order ε1/2 log(1/ε). Hence we get Cε5/6 log(1/ε) for the second

term on the right-hand side of the analogue of (2.93).

4. Proof of Theorem 3

In Sections 4–6 we prove Theorems 3–5. The proof follows the same line

of reasoning as in [3, §5], but there are some subtle differences.

We will repeatedly make use of the following scaling relations. Let φ ∈
H1(Rd). For p, q > 0, define ψ ∈ H1(Rd) by

(4.1) ψ(x) = qφ(x/p).

Then

‖∇ψ‖2
2 = q2pd−2‖∇φ‖2

2, ‖ψ‖2
2 = q2pd‖φ‖2

2, ‖ψ‖4
4 = q4pd‖φ‖4

4,(4.2)
∫

(1 − e−ψ
2

)2 = pd
∫

(1 − e−q
2φ2

)2.

We will also repeatedly make use of the following Sobolev inequalities (see

Lieb and Loss [12, pp. 186 and 190]):

(4.3) Sd‖f‖2
r ≤ ‖∇f‖2

2, d ≥ 3, f ∈ D1(Rd) ∩ L2(Rd),

with

(4.4) r =
2d

d− 2
, Sd = d(d− 2)2−2(d−1)/dπ(d+1)/d

[
Γ
(d+ 1

2

)]−2/d
,

and

(4.5) ‖f‖4 ≤ S2,4(‖∇f‖2
2 + ‖f‖2

2)
1/2, d = 2, f ∈ H1(R2),

with S2,4 = (4/27π)1/4 .

Finally, we will use the fact that the variational problem in (1.14) reduces

to radially symmetric nonincreasing (RSNI) functions (see [3, Lemma 10 and

its proof]).
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We now start the proof of Theorem 3, numbered in parts (i–v).

(i) Picking p = 1 and q = (cκa)
−1/2 in (4.1) and (4.2) and inserting this

into (1.9) and (1.10), we see that (1.9) and (1.10) transform into (1.13) and

(1.14).

(ii) Let K = maxζ>0 ζ
−1(1−e−ζ)2. The maximum is attained at ζ = ζ� =

1.25643 . . . . We have, for any ψ ∈ H1(Rd),

(4.6)
∫
(1 − e−ψ

2

)2 ≤ K
∫
ψ2.

Therefore the set over which the infimum in (1.14) is taken is empty when

Ku < 1, implying that Θd(u) = ∞ for u ∈ (0, 1/K). Next, let ψ� be defined

by

(4.7) ψ� =
√
ζ�1B[u/ζ�],

where B[u/ζ�] is the ball with volume u/ζ�. Then

(4.8)
∫
ψ2
� = ζ�

u
ζ�

= u,
∫

(1 − e−ψ
2
�)2 = (1 − e−ζ�)2 uζ� = Ku.

Therefore when Ku > 1 there exists a ψ ∈ H1(Rd), playing the role of a

smooth approximation of ψ�, such that

(4.9) ‖ψ‖2
2 = u,

∫
(1 − e−ψ

2

)2 ≥ 1,

implying that Θd(u) < ∞ for u ∈ (1/K,∞). Finally, Θd(1/K) = ∞ because

ψ� /∈ H1(Rd) and any smooth perturbation of ψ� violates (4.9) when u =

1/K. This proves the claim with u� = 1/K. The fact that Θd is strictly

positive everywhere follows from part (iii) in combination with the asymptotics

in Theorems 4 and 5.

(iii) To prove that Θd is nonincreasing, we need the following identity.

Lemma 7. Let

Θ̂d(u) = inf{‖∇ψ‖2
2 : ‖ψ‖2

2 = u,
∫

(1 − e−ψ
2

)2 = 1},(4.10)

Θ̃d(u) = inf{‖∇ψ‖2
2 : ‖ψ‖2

2 ≤ u,
∫

(1 − e−ψ
2

)2 = 1}.
Then

(4.11) Θ̂d(u) = Θ̃d(u) = Θd(u) ∀u > u�.

Since Θ̃d is obviously nonincreasing, the claim follows from (4.11). Thus, it

remains to prove Lemma 7.

Proof. The proof proceeds in four steps.

1. It is clear that Θ̂d(u) ≥ Θd(u). To prove the converse, let (ψj) be a

minimising sequence of Θd(u), i.e., ‖ψj‖2
2 = u and

∫
(1 − e−ψ

2
j )2 ≥ 1 for all j

and ‖∇ψj‖2
2 → Θd(u) as j → ∞. Define

(4.12) gψ(a) = ad
∫ (

1 − e−a
−dψ2

)2
, a > 0.
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Then gψ(1) ≥ 1. In part 2 we will prove that lima→∞ gψ(a) = 0. Hence, by the

intermediate value theorem, there exists a sequence (aj) such that aj ≥ 1 and

gψ(aj) = 1 for all j. Let φj ∈ H1(Rd) be defined by φj(x) = a
−d/2
j ψj(x/aj).

Then, by (4.1) and (4.2), we have

‖∇φj‖2
2 = a−2

j ‖∇ψj‖2
2, ‖φj‖2

2 = ‖ψj‖2
2 = u,(4.13)

∫
(1 − e−φ

2
j )2 = gψ(aj) = 1 ∀j.

Recalling (4.10), we therefore have

(4.14) Θ̂d(u) ≤ ‖∇φj‖2
2 = a−2

j ‖∇ψj‖2
2 ≤ ‖∇ψj‖2

2 ∀j.

Let j → ∞ and use the fact that ‖∇ψj‖2
2 → Θd(u), to get Θ̂d(u) ≤ Θd(u).

2. Next we prove that lima→∞ gψ(a) = 0. For d ≥ 4 we have e−x ≥
1 − xd/2(d−2), x ≥ 0, so it follows from (4.3) and (4.4) that

(4.15) gψ(a) ≤ a−2d/(d−2)

∫
ψ2d/(d−2) ≤ a−2d/(d−2)S−1

d ‖∇ψ‖2d/(d−2)
2 .

For d = 3 we have, by Cauchy-Schwarz and (4.3) and (4.4), that

(4.16) gψ(a) ≤ a−3

∫
ψ4 ≤ a−3‖ψ‖2‖ψ‖3

6 ≤ a−3u1/2S
−1/2
3 ‖∇ψ‖3

2.

For d = 2 we have, by (4.5), that

(4.17) gψ(a) = a−2

∫
ψ4 ≤ a−4S4

2,4(‖∇ψ‖2
2 + u)2.

3. It is clear that Θ̃d(u) ≤ Θ̂d(u). To prove the converse, we begin with

the following observation.

Lemma 8. The set

(4.18)
{
ψ ∈ H1(Rd) : ψ RSNI, ‖∇ψ‖2

2 ≤ C, ‖ψ‖2
2 ≤ u,

∫
(1 − e−ψ

2

)2 = 1
}

is compact for all u > u� and C <∞.

Before proving Lemma 8 we first complete the proof of Lemma 7. Since

ψ 7→ ‖∇ψ‖2 is lower semi-continuous, it follows from Lemma 8 that the varia-

tional problem for Θ̃d(u) has a minimiser, say ψ∗. Define

(4.19) pn(x) =
1

πd/2nd
e−|x|2/n2

, x ∈ R
d, n ∈ N,

and note that
∫
pn = 1 and ‖∇√

pn‖2
2 = 2d/n2 for all n. Define ψ∗

n by

(4.20) ψ∗2
n = ψ∗2 + (u− ‖ψ∗‖2

2)pn, n ∈ N.



770 M. VAN DEN BERG, E. BOLTHAUSEN, AND F. DEN HOLLANDER

Then ‖ψ∗
n‖2

2 = u for all n. Moreover, since x 7→ (1− e−x)2 is nondecreasing on

[0,∞), we have

(4.21)

∫
(1 − e−ψ

∗2
n )2 ≥

∫
(1 − e−ψ

∗2

)2 ≥ 1 ∀n.

So ψ∗
n satisfies the constraints in the variational problem for Θd(u). Hence

(4.22) Θd(u) ≤ ‖∇ψ∗
n‖2

2 ∀n.
By the convexity inequality for gradients (Lieb and Loss [12, Theorem 7.8]),

we have

(4.23) ‖∇ψ∗
n‖2

2 ≤ ‖∇ψ∗‖2
2 + (u− ‖ψ∗‖2

2)‖∇
√
pn‖2

2 = Θ̃d(u) + (u− ‖ψ∗‖2
2)

2d

n2
.

Let n → ∞ to conclude that Θd(u) ≤ Θ̃d(u). But we already know from

part 1 that Θd(u) = Θ̂d(u), and so Θ̂d(u) ≤ Θ̃d(u). This completes the proof

of Lemma 7.

4. It remains to prove Lemma 8.

Proof. The key point is to show that the contribution to the integral in

(4.18) coming from large x and from small x is uniformly small. Indeed, since

ψ is RSNI, we have

(4.24) u ≥ ‖ψ‖2
2 ≥

∫

BR

ψ2 ≥ ωdR
dψ2(x) ∀ |x| ≥ R > 0,

and so

(4.25)

∫

Bc
R

(1 − e−ψ
2

)2 ≤
∫

Bc
R

ψ4 ≤ u

ωdRd

∫

Bc
R

ψ2 ≤ u2

ωdRd
∀R > 0,

while

(4.26)

∫

Br

(1 − e−ψ
2

)2 ≤
∫

Br

1 = ωdr
d ∀ r > 0.

So the last two integrals tend to zero when R → ∞, respectively, r ↓ 0. Next

we note that any sequence (ψj) in H1(Rd) has a subsequence that converges

to some ψ ∈ H1(Rd) such that the convergence is uniform on every annulus

BR \ Br (since ψj is RSNI and ‖ψj‖2
2 ≤ u for all j). Clearly, ψ inherits the

first three constraints in (4.18) from ψj . Moreover, since
∫

(1 − e−ψ
2
j )2 =1 ∀j,(4.27)

lim
j→∞

∫

BR\Br

(1 − e−ψ
2
j )2 =

∫

BR\Br

(1 − e−ψ
2

)2,

lim
R→∞, r↓0

∫

BR\Br

(1 − e−ψ
2

)2 =

∫
(1 − e−ψ

2

)2,
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we have that ψ also inherits the fourth constraint in (4.18) from ψj . Therefore

ψ belongs to the set. This completes the proof of Lemma 8 and hence of part

(iii).

(iv) To prove that Θd is continuous on (u�,∞), we argue as follows.

1. Suppose that the variational problem for Θ̂d(u) in (4.10) does not have

a minimiser. By Lemma 8, the variational problem for Θ̃d(u) does have a

minimiser ψ. Therefore ‖ψ‖2
2 < u, otherwise ψ would also be a minimiser

for Θ̂d(u). Let v = ‖ψ‖2
2. Then ψ is a minimiser for both Θ̂d(v) and Θ̃d(v).

So, by Lemma 7, we have Θ̂d(v) = Θ̃d(v) = Θ̃d(u) = Θ̂d(u). Since Θ̃d is

right-continuous, it follows that it is continuous at u, and therefore so is Θd.

Suppose next that the variational problem for Θ̂d(u) does have a minimiser ψ.

Then ψ is radially symmetric, continuous and strictly decreasing (see Lemma

10 in Section 5). Without loss of generality we may assume that ψ is centered

at 0. Fix d, u and let δ > 0 be arbitrary. We will construct a ψ̄ (depending on

d, u, ψ, δ) that is radially symmetric and nonincreasing such that

(4.28) ‖∇ψ̄‖2
2 ≤ Θd(u) + δ, ‖ψ̄‖2

2 = ū < u,

∫
(1 − e−ψ̄

2

)2 ≥ 1.

Since Θd is nonincreasing, it follows from (4.28) that

(4.29) Θd(u) ≤ Θd(v) ≤ Θd(ū) ≤ Θd(u) + δ ∀v ∈ (ū, u).

Since δ is arbitrary, this implies the claim.

2. For ε > 0, define

(4.30) rε = min{|x| : ψ(x) < ε}.

For 0 < α < 1, define

(4.31) qε(x) =





1 if |x| ≤ rε,

1 − α |x|−rε

rε
if rε < |x| ≤ 2rε,

1 − α if |x| > 2rε.

Then

(4.32) 0 < qε ≤ 1, ‖∇qε‖2
2 = ωdα

2(2d − 1)rd−2
ε .

Let

(4.33) ψ̃(x) = qε(x)ψ(x), x ∈ R
d.
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Then
∫

(1 − e−
eψ2

)2 =1 +

∫
[(1 − e−

eψ2

)2 − (1 − e−ψ
2

)2](4.34)

= 1 +

∫
(e−ψ

2 − e−q
2
εψ

2

)(2 − e−ψ
2 − e−q

2
εψ

2

)

≥ 1 −
∫

(1 − q2
ε )ψ

2(1 + q2
ε )ψ

2

≥ 1 − 2ε2
∫

(1 − q2
ε )ψ

2,

where we use that ψ2 < ε on the set {x ∈ R
d : q2ε (x) < 1}. Moreover,

(4.35) ‖ψ̃‖2
2 = u−

∫
(1 − q2

ε )ψ
2

and

(4.36)

‖∇ψ̃‖2
2 =

∫
|ψ∇qε + qε∇ψ|2

≤
∫
ψ2|∇qε|2 +

∫
q2ε |∇ψ|2 + 2

∫
qεψ|∇qε · ∇ψ|

=

∫

{rε≤|x|≤2rε}
ψ2|∇qε|2 +

∫
q2ε |∇ψ|2 + 2

∫

{rε≤|x|≤2rε}
qεψ|∇qε · ∇ψ|

≤ ε2
∫

|∇qε|2 +

∫
|∇ψ|2 + 2ε

∫
|∇qε| |∇ψ|

≤ ε2‖∇qε‖2
2 + Θd(u) + 2ε‖∇qε‖2 ‖∇ψ‖2.

3. Next choose

(4.37) α = min{ 1
2 , (2

d − 1)−1/2ω
−1/2
d r

1−d/2
ε }.

Then, by (4.32), (4.36) and (4.37),

(4.38) ‖∇ψ̃‖2
2 ≤ (

√
Θd(u) + ε)2.

Finally, let

(4.39) ψ̄(x) = qψ̃(x/p)

with

(4.40) p =
(
1 − 2ε2

∫
(1 − q2

ε )ψ
2
)−1/d

, q = 1,
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and ε small enough so that the right-hand side of (4.34) is strictly positive.

Then (4.1) and (4.2) in combination with (4.34), (4.35) and (4.38) imply that

ψ̄ satisfies

‖∇ψ̄‖2
2 ≤
(
1 − 2ε2

∫
(1 − q2

ε )ψ
2
)1−d/2

(
√

Θd(u) + ε)2,(4.41)

‖ψ̄‖2
2 =

u−
∫
(1 − q2

ε )ψ
2

1 − 2ε2
∫
(1 − q2

ε )ψ
2
,

∫
(1 − e−ψ̄

2

)2 ≥ 1.

It follows from (4.41) that for any δ > 0 there exists an ε > 0 such that ψ̄

satisfies (4.28).

(v) The divergence of Θd(u) as u ↓ u� comes from the following bounds.

Lemma 9. There exist constants c1, c2 (depending only on d) such that

(4.42) c1 ≤ (u− u�)Θd(u) ≤ c2 for u� < u ≤ u� min{9
8 , 1 + 2−d}.

Proof. Recall the definition of K = 1/u� and ζ� from part (ii). The

variational problem in (1.14) may be rewritten as

(4.43) Θd(u) = inf
{
‖∇ψ‖2

2 : ‖ψ‖2
2 = u,

∫
F (ψ2) ≤ Ku− 1, ψ RSNI

}
,

where

(4.44) F (t) = Kt− (1 − e−t)2, t ≥ 0.

1. First we derive the lower bound. By the definition of K and the

inequality e−t ≥ 1 − t, t ≥ 0, we have F (t) ≥ max{0,Kt− t2}. Let

(4.45) µ(t) = |{x : ψ2(x) ≥ t}|, t ≥ 0.

Suppose that ψ satisfies the constraints in (4.43). Then we have

Ku− 1≥
∫

{K/3≤ψ2<2K/3}
F (ψ2)(4.46)

≥
∫

{K/3≤ψ2<2K/3}
(Kψ2 − ψ4) ≥ 2K2

9
[µ(K/3) − µ(2K/3)].

Moreover,

1≤
∫

(1 − e−ψ
2

)2 ≤ µ(2K/3) +

∫

{ψ2<2K/3}
(1 − e−ψ

2

)2(4.47)

≤µ(2K/3) +

∫

{ψ2<2K/3}
ψ4 ≤ µ(2K/3) + 2Ku/3,
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implying that µ(2K/3) ≥ 1/4 for u� < u ≤ 9
8u�. This in turn implies that

(4.48) R0 = min{|x| : ψ2(x) < 2K/3} ≥ (4ωd)
−1/d.

Using (4.48) and Cauchy-Schwarz, we get

K/6 =−
∫

{K/3≤ψ2<2K/3}
ψ(r)

dψ

dr
(r)dr(4.49)

≤ R1−d
0

dωd

∫

{K/3≤ψ2<2K/3}

[
ψ(r)r(d−1)/2(dωd)

1/2
]

×
[
− dψ

dr
(r)r(d−1)/2(dωd)

1/2
]
dr

≤ R1−d
0

dωd

( ∫

{K/3≤ψ2<2K/3}
ψ2
)1/2

‖∇ψ‖2

≤ R1−d
0

dωd
(2K/3)1/2 [µ(K/3) − µ(2K/3)]1/2‖∇ψ‖2.

It follows from (4.46), (4.48) and (4.49) that the lower bound in (4.42) holds

with c1 = 2−8+4/d3d2ω
2/d
d .

2. Next we derive the upper bound. For R2 ≥ R1 ≥ 0, consider the test

function ψR1,R2
defined by

(4.50) ψR1,R2
(x) =





ζ
1/2
� if 0 ≤ |x| < R1,

ζ
1/2
�

R2−|x|
R2−R1

if R1 ≤ |x| ≤ R2,

0 if |x| > R2.

A straightforward calculation gives

‖∇ψR1,R2
‖2
2 ≤ωdR

d
2(R2 −R1)

−1ζ�,(4.51)

‖ψR1,R2
‖2
2 =ωdR

d
1ζ� + dωdζ�(R2 −R1)

∫ 1

0
[R1 + (R2 −R1)v]

d−1v2dv.

From (4.44) we have

(4.52) F ′′(t) =
1

4
− 4
(
e−t − 1

4

)2
≤ 1

4
, t ≥ 0.

Since F ′(ζ�) = 0, it follows that

(4.53) F (t) ≤ 1

4
(t− ζ�)

2, t ≥ 0.

By the definition of ζ�,

(4.54)∫
F (ψ2

R1,R2
)=

∫

{R1≤|x|≤R2}
F (ψ2

R1,R2
)

≤ 1

4

∫

{R1≤|x|≤R2}
(ψ2

R1 ,R2
− ζ�)

2 ≤ 1

4
dωdζ

2
� (R2 −R1)R

d−1
2 .
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Let R2 = R2(R1) be the unique positive root of

(4.55) R = R1 +
4(Ku− 1)

dωdRd−1ζ2�
.

It follows from (4.54) that ψR1,R2
satisfies the second constraint in (4.43).

The choice R1 = (u/ωdζ�)1/d yields that the second expression in (4.51) is

strictly larger than u. On the other hand, the choice R1 = 0 gives Rd2 =

4(Ku− 1)/dωdζ
2
� and yields, by the constraint on u in (4.42),

(4.56) ‖ψ0,R2(0)‖2
2 =

4(Ku− 1)

ζ�

∫ 1

0
(1 + v)d−1(1 − v)2dv ≤ u.

Hence there exists a pair (R1(u), R2(u)) such that ψR1(u),R2(u) satisfies the

constraints in (4.43). Finally, from the first expression in (4.51) in combination

with (4.55) we get

(4.57) Θd(u) ≤ ‖∇ψR1(u),R2(u)‖2
2 ≤ 1

4
ζ3
�dω

2
d(Ku− 1)−1R2(u)

2d−1.

3. It remains to find an upper bound on R2(u). Since R1(u) ≤ (u/ωdζ�)1/d

we have, by (4.55),

(4.58) R2(u) ≤ R1(u) +
4(Ku− 1)

dωdR2(u)d−1ζ2�
≤
( u

ωdζ�

)1/d
+

4(Ku− 1)

dωdR2(u)d−1ζ2�
.

Moreover, by the expression in (4.51) we have

(4.59) u ≤ ωdR2(u)
dζ� + dωdζ�R2(u)

d/3 ≤ 2dωdζ�R2(u)
d.

Combining (4.58) and (4.59), we obtain the required upper bound on R2(u):

(4.60) R2(u) ≤
( u

ωdζ�

)1/d
+

4(Ku− 1)

dω2
dζ

2�

( u

2dωdζ�

)(1−d)/d
.

For u satisfying the constraint in (4.42), there exists a constant c3 (depending

only on d) such that R2(u) ≤ c3. Hence the upper bound in (4.42) holds with

c2 = ζ3
�dω

2
dKc

2d−1
3 /4.

5. Proof of Theorem 4

1. Let φ ∈ H1(Rd) and pick p = u2/d, q = u−1/2 in (4.1) and (4.2). Then

(recall (1.14))

(5.1)

u(4−d)/d Θd(u) = inf
{
‖∇φ‖2

2 : φ ∈ H1(Rd), ‖φ‖2
2 = 1,

∫
u2(1−e−u−1φ2

)2 ≥ 1
}
.

Since u 7→ u2(1 − e−u
−1φ2

)2 is nondecreasing on [0,∞), we see that u 7→
u(4−d)/d Θd(u) is nonincreasing on [0,∞). In part 4 we will prove that it is

strictly decreasing on (u�,∞).

2. Since u2(1 − e−u
−1φ2

)2 ≤ φ4, we have

(5.2) u(4−d)/d Θd(u) ≥ µd, d = 2, 3, 4.
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Note that the constraint ‖φ‖4 = 1 in (1.16) may be replaced by ‖φ‖4 ≥ 1 via

an argument similar to the one in the proof of Lemma 7. On the other hand,

u2(1 − e−u
−1φ2

)2 ≥ φ4 − φ6/2u, and hence

(5.3)

u(4−d)/d Θd(u) ≤ inf{‖∇φ‖2
2 : φ ∈ H1(Rd), ‖φ‖2

2 = 1, ‖φ‖4
4 ≥ 1 + 1

2u‖φ‖6
6}.

In [3, §5.5] it was shown that

(5.4) lim sup
δ↓0

inf{‖∇φ‖2
2 : φ ∈ H1(Rd), ‖φ‖2

2 = 1, ‖φ‖4
4 ≥ 1 + 2δ

3 ‖φ‖6
6} ≤ µd.

Replacing δ by 3/4u in (5.4), we get from (5.3) that

(5.5) lim sup
u→∞

u(4−d)/d Θd(u) ≤ µd.

3. To settle the claim made in part 1 we need the following fact.

Lemma 10. Let 2 ≤ d ≤ 4. Then for every u > u� the variational problem

for Θ̂d(u) has a minimiser.

Proof. By Lemma 8, the variational problem for Θ̃d(u) has a minimiser,

say ψ∗. There are two cases. Either ‖ψ∗‖2
2 = u, in which case ψ∗ is also a

minimiser of Θ̂d(u) and we are done, or ‖ψ∗‖2
2 < u. We will show that the

latter is impossible. This goes as follows.

d = 2, 3: Suppose that ‖ψ∗‖2
2 = u′ < u. Then

(5.6) Θ̃d(u) = ‖∇ψ∗‖2
2 ≥ Θd(u

′).

But it follows from part 1 that u 7→ Θ̃d(u) is strictly decreasing on (u�,∞) for

d = 2, 3. Hence we have a contradiction.

d = 3, 4: Perturbing ψ∗ inside the set {ψ ∈ D1(Rd) : ‖ψ‖2
2 ≤ u,∫

(1 − e−ψ
2

)2 = 1} with smooth perturbations, we have that ψ∗ must satisfy

the Euler-Lagrange equation associated with the variational problem

(5.7) inf
{
‖∇ψ‖2

2 : ψ ∈ D1(Rd),

∫
(1 − e−ψ

2

)2 = 1
}
,

which reads

(5.8) ∆ψ = −λdψe−ψ
2

(1 − e−ψ
2

),

where λd > 0 is a Lagrange multiplier. The formal derivation of (5.8) uses the

results in Berestycki and Lions [1, §5b]. Without loss of generality we may

consider only RSNI-solutions of (5.8):

(5.9)
d

dr

(
rd−1dψ

dr

)
= −λdψe−ψ

2

(1 − e−ψ
2

)rd−1.
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We have dψ
dr (0) = 0 (see the same reference). Integrating (5.9) over [0, r], we

get

rd−1dψ

dr
=−λd

∫ r

0
ψe−ψ

2

(1 − e−ψ
2

)rd−1dr(5.10)

≤−λd
∫ 1

0
ψe−ψ

2

(1 − e−ψ
2

)rd−1dr = −cψ ∀r ≥ 1 ∃ cψ > 0.

Hence dψ
dr (r) ≤ −cψr1−d. Integrating this inequality over [r,∞) and using the

fact that limr→∞ ψ(r) = 0, we get

(5.11) ψ(r) ≥ cψ
d− 2

r2−d ∀r ≥ 1.

Hence ψ 6∈ L2(Rd) for d = 3, 4.

4. We are now ready to prove the strict monotonicity of u 7→ u(4−d)/d Θd(u)

on (u�,∞). Pick u > u�. Lemma 10 guarantees the existence of a minimiser

φ∗ for the variational problem

(5.12)

u(4−d)/d Θ̂d(u) = inf
{
‖∇φ‖2

2 : φ ∈ H1(Rd), ‖φ‖2
2 = 1,

∫
u2(1−e−u−1φ2

)2 = 1
}

(recall (5.1) and Lemma 7). Pick v > u. Since u 7→ u2(1−e−u−1φ∗2

)2 is strictly

increasing on [0,∞) when φ∗ > 0, there exists a δu,v > 0 such that

(5.13)

∫
v2(1 − e−v

−1φ∗2

)2 = 1 + δu,v.

Hence we have

(5.14)

u(4−d)/d Θ̂d(u) = ‖∇φ∗‖2
2

≥ inf{‖∇φ‖2
2 : ‖φ‖2

2 = 1,

∫
v2(1 − e−v

−1φ2

)2 = 1 + δu,v}

= (1 + δu,v)
(d−2)/d v(4−d)/d inf{‖∇φ‖2

2 : ‖φ‖2
2 =

v

1 + δu,v
,

∫
(1 − e−φ

2

)2 = 1}

= (1 + δu,v)
(d−2)/d v(4−d)/d Θ̂d

( v

1 + δu,v

)

= (1 + δu,v)
2/d
[( v

1 + δu,v

)(4−d)/d
Θ̂d

( v

1 + δu,v

)]
,

where the second equality uses (4.1) and (4.2). But, by part 1 and Lemma 7,

the right-hand side is ≥ (1 + δu,v)
2/dv(4−d)/dΘ̂d(v), and so u(4−d)/d Θ̂d(u) >

v(4−d)/d Θ̂d(v) because δu,v > 0.
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5. The proof that µd > 0 for 2 ≤ d ≤ 4 is given in [3, Lemma 15]. There

it is also shown that µ4 = S4, the Sobolev constant in (4.3). It is easy to see

that µd <∞ for 2 ≤ d ≤ 4.

6. Proof of Theorem 5

(i) The proof again relies on the Sobolev inequality in (4.3).

1. Since e−ψ
2 ≥ 1 − ψd/(d−2) for d ≥ 5, we have

ηd = inf{‖∇ψ‖2
2 : ψ ∈ D1(Rd),

∫
(1 − e−ψ

2

)2 = 1}(6.1)

≥ inf{‖∇ψ‖2
2 : ψ ∈ D1(Rd),

∫
ψ2d/(d−2) ≥ 1}

=Sd,

by the Sobolev inequality (4.3). To prove that ηd < ∞, we simply note that

ψa given by ψa(x) = e−a
−1|x|2 is in D1(Rd). Adjusting a such that ψa satisfies

the integral constraint in (1.17), we see that ηd ≤ ‖∇ψa‖2
2.

2. To prove that (1.17) has a minimiser, let (ψj) be a minimising sequence

for ηd, i.e., ψj is RSNI and
∫
(1−e−ψ2

j )2 = 1 for all j and limj→∞ ‖∇ψj‖2
2 = ηd.

We can extract a subsequence, again denoted by (ψj), such that ψj → ψ∗

weakly in D1(Rd) and almost everywhere in R
d as j → ∞ for some ψ∗ ∈

D1(Rd). Clearly, ψ∗ is RSNI and ηd ≥ ‖∇ψ∗‖2
2. It therefore suffices to show

that ψ∗ satisfies the integral constraint in (1.17), since this implies that ηd ≤
‖∇ψ∗‖2

2 and hence that ψ∗ is a minimiser.

3. Estimate

(6.2) 0 ≤
∫

(1 − e−ψ
∗2

)2 ≤
∫
ψ∗2d/(d−2) ≤

( ηd
Sd

)(d−2)/d
.

Fix ε > 0. Then there exists an R1(ε) > 0 such that

(6.3) 0 ≤
∫

Bc
R1(ε)

(1 − e−ψ
∗2

)2 ≤ ε.

Let C = supj ‖∇ψj‖2
2 and define R2(ε) by

(6.4)
( C
Sd

)2
ω

(4−d)/d
d

d

d− 4
R2(ε)

4−d = ε.

Since ψj is RSNI, ψj ∈ D1(Rd) and ‖∇ψj‖2
2 ≤ C for all j, it follows from the

Sobolev inequality in (4.3) that

C≥Sd‖ψj‖2
2d/(d−2) ≥ Sd‖ψj1Br(0)‖2

2d/(d−2)(6.5)

≥Sdψj(r)
2|Br(0)|(d−2)/d = Sdψj(r)

2ω
(d−2)/d
d rd−2 ∀ r > 0∀j.
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Combining (6.4) and (6.5), we find

(6.6)∫

Bc
R2(ε)

(1 − e−ψ
2
j )2 ≤

∫

Bc
R2(ε)

ψ4
j ≤

( C
Sd

)2
ω

(4−2d)/d
d

∫

Bc
R2(ε)

|x|4−2ddx = ε ∀j.

Now put R(ε) = max{R1(ε), R2(ε)}. Then, since
∫

(1− e−ψ2
j )2 = 1 for all j, we

get from (6.6) that

(6.7) 1 − ε ≤
∫

BR(ε)

(1 − e−ψ
2
j )2 ≤ 1 ∀j.

Since ψj → ψ∗ almost everywhere, it follows from the dominated convergence

theorem that

(6.8) 1 − ε ≤
∫

BR(ε)

(1 − e−ψ
∗2

)2 ≤ 1.

Combining this inequality with (6.3), we obtain

(6.9) 1 − ε ≤
∫

(1 − e−ψ
∗2

)2 ≤ 1 + ε.

Since ε was arbitrary, we conclude that ψ∗ satisfies the integral constraint in

(1.17) and therefore is a minimiser of (1.17).

4. It remains to show that ψ∗ is unique up to translations and that

‖ψ∗‖2 < ∞. Once this is done, we can identify ψd in Theorem 5 with ψ∗. To

prove uniqueness, we recall that ψ∗ satisfies (5.8), the Euler-Lagrange equation

associated with (1.17):

(6.10) ∆ψ∗ = −λdψ∗e−ψ
∗2

(1 − e−ψ
∗2

),

where the Lagrange multiplier λd is uniquely determined by Pohozaev’s identity

(see Berestycki and Lions [1, §5b]). The resolvent (−∆)−1 has K(x, y) =
1

4πd/2 Γ(d2 − 1)|x− y|−(d−2) as integral kernel. Hence

(6.11) ψ∗(x) = λd

∫
K(x, y)ψ∗(y)e−ψ

∗2(y)(1 − e−ψ
∗2(y)) dy.

It follows from the arguments in [3, §5.6(III)2], that

(6.12) ψ∗(x) ≤ min{ψ∗(0), C|x|−(d−2)} for some C <∞.

Combining (6.11) and (6.12), we obtain

(6.13)

lim
|x|→∞

|x|d−2ψ∗(x) = λd
1

4πd/2
Γ

(
d

2
− 1

)∫
ψ∗(y)e−ψ

∗2(y)(1 − e−ψ
∗2(y)) dy,

where the right-hand side is strictly positive and finite. Thus, we see that

ψ∗ is a “fast decay solution” of (6.10). We can now apply Tang [15, Theo-

rem 2] to conclude that ψ∗ is the unique minimiser of (1.17) up to translations.
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Hypotheses (H1) and (H2) in [15] (with p = 1, q = 3 and m = 2), which need

to be satisfied by the right-hand side of (6.10), are easily verified. Finally,

(6.12) implies that ‖ψ∗‖2 <∞.

(ii) The proof is based on leakage of L2(Rd)-mass.

1. By dropping the constraint ‖ψ‖2
2 = u in (1.14) we obtain the lower

bound Θd(u) ≥ ηd in (1.18). To prove the upper bound, let u ∈ (ud,∞) and

define

(6.14) ψ∗2
n,u = ψ2

d + (u− ‖ψd‖2
2)pn

with pn given by (4.19). Then ‖ψ∗
n,u‖2

2 = u and

(6.15)

∫
(1 − e−ψ

∗2
n,u)2 ≥

∫
(1 − e−ψ

2
d)2 = 1.

Hence ψ∗
n,u satisfies the constraints in (1.14). Moreover, by the convexity

inequality for gradients we have

(6.16) ‖∇ψ∗
n,u‖2

2 ≤ ‖∇ψd‖2
2 + (u− ‖ψd‖2

2)‖∇
√
pn‖2

2 = ηd +
2d(u− ud)

n2
.

Let n → ∞ to obtain Θd(u) ≤ ηd for u ∈ (ud,∞), which proves the upper

bound in (1.18).

2. To prove that u 7→ Θd(u) is strictly decreasing on (u�, ud) we argue as

follows. The following result, which is an analogue of Lemma 10, is valid for

d ≥ 2, though we will need it only for d ≥ 5.

Lemma 11. Let d ≥ 2. Suppose that u− > u� and that Θd(v) > Θd(u−)

for all v ∈ (u�, u−). Then the variational problem for Θd(u−) has a minimiser.

Proof. By Lemma 8, Θ̃d(u−) has a minimiser, say ψ̃. Let ‖ψ̃‖2
2 = v. Then,

by (4.10), v ≤ u− and ψ̃ is a minimiser also for Θ̃d(v). Hence, Θ̃d(v) = Θ̃d(u−).

Therefore, by Lemma 7, Θd(v) = Θd(u−). Hence v = u− (by the assumption

in the lemma), so that ‖ψ̃‖2
2 = u−. Consequently, ψ̃ is a minimiser also for

Θd(u−).

The rest of the proof is via contradiction. Suppose that u− ∈ (u�, ud) is

such that Θd(v) > Θd(u−) for v in a left neighbourhood of u− and Θd(v) =

Θd(u−) for v in a right neighbourhood of u−. By Lemma 8, Θ̃d(v) has a

minimiser for v in a right neighbourhood of u−. By taking smooth variations

of this minimiser under the constraint u− ≤ ‖ψ‖2
2 ≤ u− + ε for some ε > 0, we

obtain that Θd(v) has a minimiser ψ satisfying the Euler-Lagrange equation

(recall (5.8))

(6.17) ∆ψ = −λ−ψe−ψ
2

(1 − e−ψ
2

),

where λ− = d−2
2d Θd(u−) by Pohozaev’s identity. The minimiser ψ− for Θd(u−),

which exists by Lemma 11, also satisfies (6.17). Now, let ψd be the unique “fast
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decay solution” of the variational problem for Θd(ud) (according to Tang [15]).

Then ψd(· (λ−/λd)1/2) is a fast decay solution of (6.17), which by uniqueness

equals ψ−(·). By scaling we have

(6.18) u− = ‖ψ−‖2
2 =

(
λd
λ−

)d/2
ud

and

(6.19)

∫
(1 − e−ψ

2
−)2 =

(
λd
λ−

)d/2 ∫
(1 − e−ψ

2
d)2 =

(
λd
λ−

)d/2
.

Since ψ− is a minimiser for Θd(u−), we have λ− = λd by (6.19). Hence

u− = ud by (6.18), leading to a contradiction. Consequently, u 7→ Θd(u) is

strictly decreasing on (u�, ud).

7. Proof of Theorem 6

(i) By Theorems 4 and 5(ii), we have that u 7→ Θd(u) is strictly decreasing

for 2 ≤ d ≤ 4 and u ∈ (u�,∞) or d ≥ 5 and u ∈ (u�, ud]. Hence Θd(u) has a

minimiser by Lemma 11. The proof that this minimiser is RSNI is similar to

the proof of Theorem 5(i) (see also the proof of Theorems 4 and 5 in [3]).

(ii) The proof runs via contradiction. Let d ≥ 5 and u ∈ (ud,∞). Suppose

that Θd(u) has a minimiser, say ψ. Let

(7.1) η̄d = inf{‖∇ψ‖2
2 : ψ ∈ D1(Rd),

∫
(1 − e−ψ

2

)2 ≥ 1}.

Then, clearly, ψ is a minimiser of η̄d as well. It is easy to see that η̄d = ηd
(compare (1.17) and (7.1)). Moreover, by Theorem 5(ii), ηd = Θd(u) for

u ∈ (ud,∞). Hence ψ is a minimiser of ηd also. By Theorem 5(i), all minimisers

of ηd have L2-norm ud. This contradicts the constraint ‖ψ‖2
2 = u in the

variational problem for Θd(u) for u ∈ (ud,∞). Hence Θd(u) does not have a

minimiser for u ∈ (ud,∞).
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