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Abstract

We consider the problem of estimation of term structure of interest rates.
Filtering theory approach is very natural here with the underlying setup being
non-linear and non-Gaussian. Earlier works make use of Extended Kalman Fil-
ter (EKF). However, as indicated by de Jong (2000), the EKF in this situation
leads to inconsistent estimation of parameters, though without high bias. One
way to avoid this is to use methods like Efficient Method of Moments or Indirect
Inference Method. These methods, however, are numerically very demanding.
We use Kitagawa type scheme for nonlinear filtering problem, which solves the
inconsistency problem without being numerically so demanding.

1 Introduction

Term structure of interest rates is a set of yields to maturity, at a given time, on
bonds with different maturity dates. Typically, a model for the term structure of
zero coupon bonds consists of a dynamic model for the evolution of the factors
that influence the short term interest rate — time series dimension and a model
for bond prices (or yields) as a function of the factors and the time to maturity —
cross sectional dimension. One of the important parameters that links both models
together is the market price of risk. The market price of risk is a key factor to
price interest rate derivatives. It can be estimated from the yield data, provided the
factors in time series dimension are known. On the other hand, by analyzing the
time series data separately one can obtain the factor values. However, as we shall
see in section 2, this method does not provide good estimate of the term structure
for long maturities. The standard error for these estimates are very high. One of the
possible reasons is that this method probably does not use all the information about
the factor values contained in the cross-sectional dimension. An alternative approach
is to use both the dimensions simultaneously for estimation. Recent literatures on
this includes Babbs and Nowman (1999), Chen and Scott (1993), de Jong (2000),
Frachot, Lesne and Renault (1995), Geyer and Pichler (1999), Pagan and Martin
(1996), and Pearson and Sun (1994).

Application of filtering techniques in the estimation of term structure models
using cross-sectional/time series data has been investigated by many. See, for ex-
ample, the most recent works by Babbs and Nowman (1999), and de Jong (2000)
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and the references therein. Babbs and Nowman (1999) considered general linear
Gaussian model of the term structure while de Jong (2000) considered so called
affine term structure model. Both articles used Kalman filtering technique, valid
only for those models that are linear in nature and with Gaussian errors. However,
one may have to consider nonlinear models and/or models with non-Gaussian error
for better fit to the data. In fact, de Jong (2000) has such type of model and as
pointed out in the article, the use of Kalman filtering techniques in this situation
leads to inconsistent estimation of parameters though without high bias. It is also
mentioned that the inconsistency problem can be avoided by using other estimation
procedures such as indirect inference method of Gourieroux, Montfort and Renault
(1992) or the efficient method of moment (EMM) of Gallant and Tauchen (1996),
but these methods are numerically very demanding.

In this short note we want to explore the use of readily available filtering tech-
niques suitable for nonlinear models with non-Gaussian errors. Namely, we shall
use Kitagawa (1987) type filtering scheme used by Danilov and Mandal (2000) to
estimate stochastic volatility in two factor short rate models. Similar technique is
also used in Fridman and Harris (1998), and Hasbrouck (1999) in the time series
dimension. The advantages are many-fold. Firstly, it will resolve the inconsistency
problem faced by de Jong (2000). Secondly, this would not be as numerically de-
manding as the indirect inference or the EMM. Finally, this scheme still provides a
deterministic way to evaluate the likelihood function and is numerically less intensive
than simulated likelihood method or MCMC method. Even though our method is
applicable to multifactor models, in order to reduce the amount of technicalities we
shall illustrate the approach on two one-factor models: “affine” Cox, Ingersol, and
Ross (CIR)(1985) model, and “nonlinear” Longstaff (1989) model. For the purpose
of comparison we estimate one-factor Vasicek (1977) model as well.

Usually, the cross-sectional dimension of the term structure model gives a de-
terministic relation : yield Y as a function of the factors in the time-series model
and some other parameters such as market price of risk. However, when using more
bond values (of different maturities) than the number of factors, this exact relation
may not (and for some models, such as affine ones, cannot) be satisfied by all the
data in the yield vector. There could be several reasons for this. The exact no-
arbitrage relation can be violated due to market imperfections. To some degree,
prices are affected by seasonal and business oscillations. Most of all there could be
measurement/human errors. We, therefore, as in de Jong (2000), assume that

Y*(1,t) =Y (1,t) + &(7),

where Y*(7,t) is the observed yield at time ¢ with maturity at 7, Y(7,t) is the
theoretical yield given by the cross-sectional dimension of the model and £,(7) is the



observational error. We also assume that the model captures all time dependence
via the factors at time ¢ and, therefore, we assume that the errors of observation
(1) are uncorrelated with respect to time ¢ but, of course, may be correlated with
respect to maturity 7.

The article is organized as follows. In section 2 we treat the time series data and
cross-sectional data separately and estimate the term structure for two one-factor
models : Vasicek (1977), and CIR (1985), and a two-factor model introduced by Fong
and Vasicek (1991). The general setup of the one-factor model on which Kitagawa
filtering scheme will be applied and the properties of specific models considered
are described in section 3. In section 4 we explain the Kitagawa scheme used and
the implementation to specific models. Empirical results are discussed in section 5.
Finally, some conclusions are offered in section 6.

2 Need for cross sectional estimation.

In this section we estimate the term structure by analyzing the time series and cross
sectional data separately. The estimation is done in 4 steps. First, the short rate
model is estimated using 3-month Treasure Bill as a proxy for the short rate. Second,
given the estimated parameters of the model the (stochastic) volatility component
vy was estimated. Third, given vy, r; and set of time series parameters we estimate
the market price of risk by minimizing

N
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where 73, are maturities of the observed yields. Finally, we calculate the estimated
yields at each point of time and with different maturities from the cross-sectional
model.

We have considered two one-factor models : Vasicek (1977), and CIR (1985),
and one two-factor model : Fong and Vasicek (1991) given by

dry = rk(p—ry)dt + \/v—tth(l), (1)
dvy =Av—uv)dt + 7 dW®

For estimation of the time series dynamic the EMM of Gallant and Tauchen

(1996) was employed. As an auxiliary model we have used the semi-nonparametric
(SNP) model of type AR(L)-ARCH(M)-Hermite(K,0):

fy]0) = C[PK(Zt)]2¢(yt’M:vt717 1)



Table 1: EMM estimates of parameters

H Parameter H FV ‘ Vasicek ‘ CIR H
I 6.520(18.83) | 6.09(17.64) | 7.54(79.30)
K 0.109(3.19) | 0.064(7.45) | 0.019(13.77)
o 1.702(16.02) | 0.270(28.62)
v 2.640(9.26)
) 1.482(1.67)
T 1.034(4.34)

where
C is  the normalising constant,
P, is  the Hermite Polynomial of degree K,
-1 =  (Y—L,--.,Y—1) is the lag vector so that the conditional
distribution of y; given all the past depends only on x;_1,
Pop i = Yo+ 1yi—i +ayi—im1 + -+ YLYi—i—r+1,
o = B,
Ry, = 70 + Tlye—m — to_po| + T2AY—nr—1 — o,y o] +
+ - 4 Tar|Ye—1 — Ha,_,|, and
2= (Y Baeer)/Rey

Estimation of the SNP model is done by maximum likelihood, and Schwarz’s
Bayes information criterion (BIC) (see Schwarz (1978) ) was used to determine
the correct order of the model. Moment generating conditions in EMM were es-
timated by Monte-Carlo, averaging the estimated scores of the AR(2)-ARCH(4)-
Hermite(6,0) on a series of 200000 weekly observations generated by application of
the Euler discretisation scheme with 20 intervals per week to the system of SDE (1).
The estimation results are reported in Table 1. For details see Danilov and Drost
(2000)2.

Vasicek (1977), and CIR (1985) models do not require volatility estimation. For
Fong and Vasicek (1991) model the Nonparametric Method of Conditional Moments
(see Danilov and Mandal (2000) ) was employed for estimation of v;.

2These parameter estimations are obtained when the data are expressed in percentages. Since in
our analysis we use data in decimal points (divided by 100), the parameter values were renormalised
appropriately.



The yield functions for all three models under consideration belong to affine
class and well known (for one factor models they are also given in section 3). The
market price of risk is defined canonically. Since we were not particularly interested
in economical implications of the models, we did not calculate the standard errors.

As we have seen, steps 1 and 2 do not require a set of yields with different
maturities, but step 3 does, where yields with 10 different maturities, from 1 year
to 10 years were used.

Figures 1-3 show the quality of the fit for these three models. In the figures
“stars” denote observed average term structure, i.e., the bond yields averaged over
observed time points: 1 371, Y*(r;,¢). The solid line connects the average fitted
term structure points, i.e., % Yo Y(Tk, r¢, ). Dotted lines represents RMSE error
bounds:
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Figure 1. Fitted term structure of one factor Vasicek model (time series
estimation).
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Figure 2. Fitted term structure of one factor CIR model (time series estimation).
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Figure 3. Fitted term structure of two-factor Fong-Vasicek model (time series
estimation).



We see that the RMSE bounds get bigger and bigger as the maturity period
increases. As mentioned earlier, this could be due to the non-usage of all the in-
formation about the parameters of the model hidden in cross sectional data. Also,
extending the one-factor Vasicek (1977) model to two-factor Fong and Vasicek (1991)
model by adding a stochastic volatility component does not improve the fit by much.

This leads to the approach of estimating all parameters of the financial model
(including the market price of risk) simultaneously using cross-sectional data as well.
Also, at the same time, we estimate unobserved factors such as stochastic volatility
component. Idea of joint estimation of cross sectional dynamics of financial models
is in line with earlier works such as de Jong (2000), Bams and Schotman (1998),
Munnik and Schotman (1994).

3 Cross sectional properties of specific models.

3.1 General Setup.
We consider the following (one-factor) setup. The short rate model is of the form
d’l”t :M(Tt,(g)dt—FO’(Tt,H)th, (2)

where r; is the short rate, 6 is a set of time series parameters and u,o are the
infinitesimal drift and variance functions, respectively. Contrary to the approach
used in section 2, here we treat r; as an unobserved stochastic process and it is
subject to estimation. Under standard assumptions (see e.g. Rebonatto (1996),
Cochran (2001) ) the Girsanov theorem applies, and thereby, one can obtain the
risk neutral measure under which the Wiener process W; is transformed as

AW, = dW; + Aydt. (3)

In what follows the random process A; will be restricted to some specific form de-
pending on the model being considered. In all the cases, however, \; involves only
one new real valued parameter A, interpreted as the market price of risk. Thus,
under the risk neutral measure, we obtain the dynamics

dry = v(ry, 0, \)dt + o(ry, 0)dW.
This, in turn, leads to the yield formula
Y(Ta t) = Y(Ta ¢, 0, )‘)

As mentioned earlier in the introduction, to accommodate factors like market im-
perfections, human error we use the following as the observational model:

Y*(r,t) =Y (1,r,0, ) + (1), (4)



where the (multivariate) observation error (1) are i.i.d. sequence of random vec-
tors with unknown variance-covariance matrix. We shall apply the Kitagawa like
algorithm on the observation equation (4) with the unobserved component model
to be given by (2) and thus resulting in estimators for 6, A and filtered r;.

3.2 Specific models.
First we consider the CIR (1985) model :
dry = k(p — r¢)dt + o/ridWs.
Under the risk neutral measure (taking A\; = g\/ﬁ in (3)) the model becomes
dry = k(p — ry)dt — Arydt + U\/ﬁdﬁv/t,
resulting in the bond pricing formula of “affine” form
Y (7,t) = A(7,t) + B(7,t)ry,
where

2(e771) — 1)

B(r,t) =
2) (Y+ K+ M) 1) + 29
Aty = Pl emRROE
’ o2 " (y+r+A) (T — 1) 4297

v o= (s + A +20%)"2%

Therefore, we have 4 unknown parameters to estimate.

For Vasicek (1977) model we have
dry = k(p — r¢)dt + odW;

as real dynamics and under the risk neutral measure (by taking A\; = % in (3)) the
model becomes N
dry = k(p — r¢)dt — Adt + odWy,
resulting in an affine bond pricing formula, as in CIR, with
1 _ _
Bry) = L=epHT)

A(r,t) = e(T—B(T,t)HiB(T,t)?,



where 6 is the yield on infinite maturity bond.
For the Longstaff (1989) model the short rate equation takes the form

dry = k(pu — /r)dt + o/rdWy,

where 4 = %, and under the risk neutral measure (with Ay = 22 /r; in (3)) it

Py — o
satisfies .
dry = k( — /re)dt — 2Xridt + o /T dW5.

Now, however, we do not have an affine form of the yield function. The pricing
formula can be called “semiaffine” in the sense that

Y(r,t) = A(r,t)+ B(r,t)rs + C(7,t)\/14,

o 1—cg 1/2 c3 + 0467(7-7)&)/2
A(T, t) = (m) exXp | 1 —+ coT + 1_ 606’7(7775) 5

2\ — v 2y

B(r,t) =
(7:1) 2 02(1 — cper(T=1))’

Clrp — A+ + e(T=8)/2)2
(nt) = vo2(1 — cpe(™=t)) 7

v o= (4)\2+202)1/2,

co = 2A+7)/@A—7),

2

c = —%(4)\—%7)(2)\—7),
e = (2A+7)/4- K/,

c3 = ;52(2)\2—02),

cy = —ii\—sz@)\‘f"ﬁ-

As we can see, in this case, we have 3 parameters to estimate.



4 Kitagawa maximum-likelihood approach and unob-
served component estimation.

A state-space model with one unobserved factor is given (suppressing the notation
for parameters) by

yt — Y(/r't) +€t7 t:(),l"“
revt|re ~ P (reelre),

where {g;} is an independent sequence of random vectors with unknown variance-
covariance matrix, Y (r;) is a (known) function (in our case yield), and Pea1fe(Te1lre)
is a (known) conditional density of the unobserved variable (short rate, in our
case). Exploiting the Markovian property of {r;} and denoting the observations
(y1,Y2,--.,Yn) by Yy, one has the following recursive filtering scheme (A) :

One-step-ahead prediction density :

fn\n—l(rn‘yn—l) = / pn|n—1(rn‘7an—l)fn—l(7an—1 ‘Yn—l)drn—l-

—00

py|r(yn|rn)fn\nfl(rn|Yn*1)
P(Yn|Yn-1)

oo
where  p(ynlYaot) = [ pypunlra) fupns (al Yoo )
—00

Filtering density :  fu(rn|Yn) =

9

[o@)
Estimate : n :/ Tnfn(Tn|Yn)dr,.
(@)

Smoothing density :

(Tn+1 |YN)pn\n—1 (Tn+1lrn)

® farin
TN (rnlYN) = fa(ralYa / drp1.
Nl YN) = fa(ralYa) | Tt 7o) +1
Smoothed estimate : A9 = / T fo N (T YN )drp.

Set of recurrent formulas (A) allow us to calculate the estimator of unobservable
component i.e. 7,. In general, it would not be possible to evaluate these inte-
grals analytically. However, one can approximate them by the standard Riemann
sums of appropriate dimensions. For example, with node points at zg, z1,..., 2L
approximation looks like

L
/ Fr)dr =3 f(zi1)AZi,  where AZi= (5 — 2 1), (5)
=1

10



In this case, though, one needs to prove that the estimator obtained by using
numerical approximation indeed converges to 7, as the partition becomes finer and
finer. By induction it follows that

[ ST oy (wilra) T piji—1 (rilriz1) fo(ro)dro - - - drp—y
[ ST gy (wilrs) THZ pijiea (rilriza) fo(ro)drg -+ - dr—y”

fn\nfl(rn’Yn—l) =

S STy (yilrd) Tz paji—a (rilrie1) fo(ro)dro - - - drp—1
[ STz pypr (yilra) 1T piji—a (rilrioa) fo(ro)dro - - - dry

S o iz pype (yilra) Tz paji—1 (rilri—1) fo(ro)dro - - - dry,

S J iz pypr (Wilra) Tz piji—1 (rilriea) fo(ro)dro - - - dry

Using the Riemann sums of appropriate dimensions we obtain the following approx-
imations to the above three quantities.

and 7, =

Tnpn—1(zi,—1|Yn-1)
)IEED D 122, pypr Wslzia—1) T10—, Pojs—1(zis—1l2i,_1—1)
X fo(zig—1)Do+An—_1

—1 —1
Ein—lmzm 152, pyiruslzis—1) T10—, Pajs—1(zis—1lzig_ 1)
Xfo(ziofl)AO“'An—l

In(zin—1|Yn)
Dy 2oy Hm Pyt Wslzis—0) T 1o Pojs—1 (is—al2i gy 1)
XfO(Ziofl)AO“'An—l

Zin Zio H::1 Pylr(Ys|zis—1) H::1 Psfs—1(Zis—1]7ig_q 1) ’
X fo(zig—1)A0-+An

and 7,
Do Zio Zip—1 [ [0y Pyir(slzis—1) [T, Psjs—1(zis—1l2iy_ —1)
XfO(ZiO—l)AO"'An

Din " iy [, pyir(uslzis—1) T, Psjs—1(zis—1lzi,_1 —1) ’
X fo(zig—1)A0-+An

where Ay = 2;, — 2, 1. Note that these latter equations can also be arrived at
following the recursive scheme (A) when at each recursive step the integrals are
replaced by its one dimensional Riemann sum approximation.

Clearly, 7,, converges to 7, as the partition zg, 21, ..., 2;, becomes finer provided
that all integrands are Riemann integrable. However, it is known that the conver-
gence of the Riemann sums of type (5) is slow. On the other hand, if one considers

11



the following Riemann sum

L

D Uf(zic1) + f(z)]AZi /2,

=1

then the convergence to [ f(r)dr is faster3. This type of approximation is precisely
what appears in Kitagawa (1987) method, and also used by us.

Let us again consider the recursive scheme (A). Each density is approximated
by piecewise linear functions, that is, it is specified by the number of segments,
location of nodes and the value at each node. It is assumed that all the densities
are supported on finite interval®. In the simplest case the nodes for all the densities
are assumed same, zg,z1,...,2[, say. Then the integration in the one-step-ahead
prediction equation is evaluated as follows.

o0
/ Patn1 (FalTn1) fa1 (P Yn_1)drn_1
— 00

Zr

= / pn|n—1(rn|rnfl)fnfl(rn71|Yn71)d’l“n,1

20

L .

= Z/ pn\nfl(rnhnfl)fnfl(rnfl|Yn71)drnfla
i=17%-1

where using the linearity of the functions in the interval (z;_1, 2;),
Zi
/ Prjn—1(Tn|rn—1) fn—1(rn-1Yn-1)drn—
Zi—1

~ (pn|n71(Tn‘zi—l)fn—l(zi—l ’Yn—l) + pn|n71(rn’zi)fn—l(zi‘Yn—l))

(zi — zi-1)
e

Note that, the quantity p(y,|Y,—1) in the filtering equation can be evaluated as

[ py|7’(y”‘Tn)fnln—l(rn‘yn—l)drn

and the integration is calculated as above. The integration in the smoothing equation
is also evaluated similarly.

Note also that the recursion (A) allows us to calculate the likelihood function
as

p(Yn) = p(Yn-1[Yn—-2)p(yn—2|Yn-3) - .. p(y2ly1)p(y1),

3See, e. g. formulas (4.1.3) and (4.1.7) in Press (1992) for the rate of convergence.
4In case of infinite support, the end points of the grid are to be chosen in such a way that they
cover the essential domain of the density.
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where the quantities on the right hand side are already calculated during the filtering
stage of the recursion. We will use this to obtain the Quasi-Maximum Likelihood
(QML) estimate of the parameters.

Another interesting observation can be made here that we can rewrite the ex-
pression for the estimator of the unobserved component by

P o ETOV"J“nTTLH?zlpy|r(yi|ri)
" ETOV"J“n H?:lpy|r(yi|ri) ’

where the expectations in the numerator and the denominator are taken with respect
to the trajectory of the state space process. Going by this probabilistic interpretation
of 7, one can evaluate it by stochastic method (simulation) as well. We choose to
evaluate it by the deterministic (grid) method because of its advantage in that it is
computationally less intensive, especially so when the dimension of the unobserved
vector is small. On the other hand, there are works on comparative complexity
of the Monte-Carlo methods (see, e.g., Curtiss (1956), Bahvalov (1964), Danilov,
Ermakov and Halton (2000)), that indicate significant superiority of the simulation
based techniques over deterministic ones when the dimension of the problem is large.

4.1 Implementation for specific models.

Successful application of the Kitagawa algorithm relies on the knowledge of two kind
of distributions:

e Distribution, py(yn|rn), of the observed process given the state process at
current moment of time.

e Transition distribution, pyj,—1(rny1|7s), of the state at moment n given the
state at moment n — 1.

In our analysis we shall use a set of 4 bonds to estimate the model (see sec-
tion 5.1). So &(7) will be 4 dimensional normal distribution with zero mean and
unknown variance covariance matrix C' that defines py.(yn|rs). The unknown ma-
trix C' contains (due to symmetry) 4(4+1)/2 = 10 different elements, that is, in the
case of CIR (1985) and Vasicek (1977) the number of parameters to be estimated is
10 +3 + 1 = 14, and that in case of Longstaff (1989) : 10 + 2+ 1 = 13. In fact, we
shall decompose C' as

C = A1/2RA1/2,

where A is the diagonal matrix consisting of the square roots of the diagonal ele-
ments of C' i.e. variances and R is a correlation matrix. That will allow for more
interpretable estimation results.

13



Situation with py|,,—1(7n+1|rn) is a bit different. For Vasicek (1977) model it is
given by a normal density. For the other two, however, the expressions are more
complicated. In the case of CIR (1985) the transitional density at time ¢ + h condi-
tional on time ¢ is defined as

o (VP 1/2
presalr) = e (2)7 L2,
2K —kh 2/%0
c = m,uzcrt+h6 “,v:crt,q:?—l,

where I,(-) is the modified Bessel function of the first kind of order g.
In the case of Longstaff (1989) model corresponding density takes form

P(Tesnlre)

_ 1 [6—2(m—ﬁ+nh/2>2/(02h> L MT/0? (=2 T Tk 2)? (02h)

V2mro2h
2o (1 g 2(y/Teen + VI + wh/2)7\ )
o2\/T¢ o2h

Both expressions are somewhat involved but do not deliver any difficulty to program.

In numerical implementation of the algorithm the simple uniform grid was used.
The number of grid points was equal to 500. Lower bound of grid was set to be
0.Upper bound for the grid points was set to 50%, that is far above any historically
observed rate for US.

_|_

5 Empirical results.

5.1 Data Description.

The data description and yields correlations are gathered in the Tables 2 and 3. We
observe that yields with different maturities are highly correlated. Therefore, it is
not necessary to use all available maturities for estimation. Also, in order to keep the
number of parameters in observation equation reasonably small we should restrict
ourselves not to use too many maturities. In our analysis, as in de Jong (2000),
we use bonds with 4 maturities: 3 month (almost the short rate), 1 year (short
yield), 5 year (middle yield) and 10 year (long yield). This restricts the number of
parameters to 14 in CIR (1985) and Vasicek (1977) and to 13 in Longstaff (1989)
case, as noted earlier in section 4.1.
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Table 2: Summary of Data

H Maturity 3mth lyr 2yt 3yr 4yr 5yr H
mean 5.84 6.30 6.49 6.61 6.69 6.75
st. dev. 3.10 3.11  3.05 3.01 299 298
maximum 16.00 16.34 16.15 15.83 15.85 15.70
minimum 0.62 0.85 1.15 1.41 1.60 1.77
first obs. 093 1.19 153 1.78 195 2.09
last obs. 6.18 643 695 7.19 743 7.63
first autocorr. .9819 .9837 .9866 .9887 .9902 .9914
H Maturity 6yr Tyr 8yr 9yr 10yt H
mean 6.81 6.84 6.87 6.88 6.90
st. dev. 298 297 296 295 294
maximum 15.47 15.28 15.17 15.10 15.07
minimum 1.93 2.07 219 228 234
first obs. 220 229 237 243 249
last obs. T 786 7.94  8.00  8.07
first autocorr. .9924 .9932 .9937 .9940 .9942
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5.2 Estimation.

In order to make the parameters of 3 different models to be comparable we write
them all in a standardized form

dry = —k(r® — p®)dt + /oo + o1rdWy,

where 01 = 0 for Vasicek model, oy = 0 for CIR and Longstaff models, s = 1/2
for Logstaff and s = 1 otherwise. Parameter estimation for short rate equations are
gathered in the following Table 4. For each model and each parameter of the model
the corresponding cells contain point estimate, its standard error and t-statistic.®
From the likelihood values we conclude that among the three models considered,
the CIR provides the best fit and Vasicek is the worst. As we can see, all estimated
parameters are significant. Autoregression parameter x is small for all models, indi-
cating significant persistence in all of them, i.e., high first order autocorrelations®.
This, in turn, implies flat term structure of these models, that is in good agreement
with graphical analysis (see next section).

Model K n 0o o1 A
Likelihood
L89 5.060e-02 3.629e-03 -1.588e-02
[0.067] 2.703e-02 [0] 1.304e-03 2.311e-03
3.946e+03 1.872e+00 2.782e400 | -6.871e-+00
CIRS85 4.258e-02 6.277e-02 2.172e-03 -3.153e-02
2.016e-03 1.272e-03 [0] 2.035e-04 6.900e-04
4.031e+03 2.113e+01  4.934e+01 1.068e+01 | -4.570e+01
vT7
0.105 7.3e-02 7.45e-04 [0] 3.51e-03
3.350e+-03

Table 4. Parameter estimations.

We can see that both the stochastic volatility model show significant and negative
market price of risk. Vasicek model in contrast estimate A to be positive. The
mean reverting parameter is in reasonable range from 5% for Longstaff model up
to approximately 7% for Vasicek. The value of volatility parameter oy in Longstaff
case is approximately 50% smaller than corresponding value in CIR. The variablity
factor oyp is about 1.8 - 10~ for Longstaff and 1.4 -10~* for CIR which are similar.
However contrast them with oq = 7.5 - 10™% for the model with constant volatility.

SFor Vasicek model standard errors are currently not available.
%For Longstaff case k was calculated according to xk = 01/(4,/R).
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5.3 Quality of Fit.

In order to evaluate the quality of fit for the models under consideration we plot
implied term structures together with empirical term structures and residual vari-
ances. As we already have seen in Table 4, the CIR model provides best fit. At Fig
4-6 we can see that the width of the error bounds is the smallest for CIR model.
However the Longstaff model provide fit that is very similar to CIR notwithstanding
that it has only 3 parameters in the state equation. Not surprisingly the Vasicek
model reveals inferior fit, especially for the longest maturities.

0.095 — —

0.09 — -
*

0.085 — —

0.075 — —

0.065 I I L I I I I I I
[o] 1 2 3 4 5 6 7 8 9 10

Figure 4. Fitted term structure of one factor Vasicek model.
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One of the important outputs of the Kitagawa method is the set of estimates
for the unobserved component in the model. In the short rate models under con-
sideration this component is ;. The estimates for 7, in the best performing CIR
model are plotted at figure 7, together with 3 month and 10 year yields (the shortest
and the longest yields). We can see, that the estimated factor moves similarly to
the long yield, this is confirmed also from the correlation coefficient between r; and
these yields, that reach 0.98 for the long yield against only 0.78 for the short yield.
For the other two models as well the behavior of r; is similar. Even though this is
contradictory to the intuition that r;, being the instantaneous rate, would be more
similar to the short yield rather than the long yield, this finding is conforming to
other earlier works. For example, for CIR, de Jong (2000) obtained similar term
structure figure as in our figure 5. When he considered two factor models, the first
factor was closely related to the long yield. This only shows the misspecification of
the model and reaffirms the need to consider factor models with several factors.

0.16 ;
—— CIR factor
3 month yield
— — 10 year yield h

1 1 1
1970 1974 1978 1982 1986 1990

Figure 7. Estimated unobserved component in CIR model.

6 Conclusion

We develop a method for efficient estimation of the term structure model. The
method is based on application of Kitagawa algorithm to nonlinear filtering setup.
Performance of the method was checked on a number of one factor models. We
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found that estimation techniques using unobservable component approach seems to
fit better the long yield part of the empirical yield curve. Estimation techniques that
treat short rate as observable random process and estimate time series parameters
of this process directly, in contrast, fit better short maturities. Performance of the
former at the long maturities is similar to performance of latest on the short ma-
turities. Apparently the model misspecification affect differently those procedures.
Therefore, we can suggest for the future research that the two-factor model, with
an extra (volatility) factor like Fong and Vasicek (1991) or Longstaff and Schwartz
(1992) is necessary. On the other hand, use of cross sectional data to estimate the
volatility factor is necessary in order to obtain good fit for longer maturities. Fur-
ther, a comparison between the Kalman filter method (used by de Jong (2000) and
the Kitagawa method to estimate the term structures for CIR (1985) model does not
show much difference. Possibly, for this particular model (CIR) use of Kalman filter
is as good as the use of theoretically better Kitagawa-like method. Nevertheless, use
of Kitagawa method removes the inconsistency problem (see de Jong (2000) that
comes with the use of Kalman filter.
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