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Abstract

In this paper we consider some models for contention resolution in cable networks, in
case the contention pertains to requests and is carried out by means of contention trees.
More specifically, we study a number of variants of the standard machine repair model,
that differ in the service order at the repair facility. Considered service orders are First
Come First Served, Random Order of Service, and Gated Random Order of Service. For
these variants, we study the sojourn time at the repair facility. In the case of the free access
protocol for contention trees, the first two moments of the access delay in contention are
accurately represented by those of the sojourn time at the repair facility under Random
Order of Service. In the case of the blocked access protocol, Gated Random Order of
Service is shown to be more appropriate.
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1 Introduction

Cable networks are currently being upgraded to support bidirectional data transport, see e.g.
van Driel et al. [7]. The system is thus extended with an 'upstream’ channel to complement the
"downstream’ channel that is already present. This upstream channel is time slotted and shared
among many stations so that contention resolution is essential for upstream data transport. An
efficient way to carry out the upstream data transport is via a request-grant mechanism, like
in Digital Video Broadcasting [8]: stations request data slots in contention with other stations
via contention trees. After a successful request, data transfer follows in reserved slots, not in
contention with other stations.

A tractable model for the access delay due to this request procedure is an essential step
toward a better understanding of such a request-grant mechanism, and expressions for the first
moments of the distribution of the access delay are particularly relevant. The performance
analysis of contention trees has received considerable attention, see Mathys and Flajolet [12]
or Tsybakov [17]. However, these analyses have been performed under the assumption of a
Poisson source model, and do not easily lead to properties of the closed model in which a finite
number of stations use contention trees for reservation: As the contention is for requests rather
than data, there is at most a finite number of stations that can enter the contention procedure.

Therefore, we are looking for tractable finite-population models for contention resolution
using contention trees. In this paper we propose to consider the machine repair model as a
model for the access delay in contention resolution and analyse variants of the machine repair
model to obtain the required approximations.

The machine repair model (e.g. Takdcs [15], Chapter 5), also known as the computer
terminal model or as the time sharing system (e.g. Kleinrock [10], Section 4.11; Bertsekas and
Gallager [1], Example 3.22), is one of the key performance models that assumes that the input
population is finite. The basic model is illustrated in Figure 1. There are N machines working
in parallel. After a working period a machine breaks down and joins the repair queue. At the
repair facility, a single repairman repairs the machines according to some service discipline.
Once repaired, a machine starts working again.

Figure 1: Machine repair model

In the basic model, the distribution of both the working time and the repair time of machines
is assumed to be exponential and the service discipline at the repair facility is assumed to be
First Come First Served (FCFS). For this model, the steady state distribution of the number of
machines in repair is well-known. Furthermore, the arrival theorem (see Sevcik and Mitrani [14])
states that at the moment that a machine arrives at the repair facility, it sees the steady state
distribution of the model with N — 1 machines. Using the arrival theorem, also an expression
for the steady-state sojourn time distribution at the repair facility can be found (e.g. Kobayashi
[11], Section 3.9). From these results it easily follows that the variance of the sojourn time at



the repair facility in the basic model is asymptotically linear in N, the number of machines.

In this paper, we show that the machine repair model can be an appropriate model for
contention resolution in cable networks for the case that so-called Capetanakis-Tsybakov con-
tention trees are used for reservation (see Capetanakis [3] and Tsybakov and Mikhailov [16]).
It turns out that the average time spent in contention resolution, obtained via simulations,
matches the average sojourn time at the repair facility in the basic machine repair model al-
most perfectly. However, the basic model fails to accurately predict the variance of the time
spent in contention resolution.

Closer inspection of contention trees reveals a possible source for this mismatch. Contention
trees operate by recursively splitting a group of stations into subgroups. Splitting stops as soon
as each subgroup contains at most one station: a station is successful in transmitting its request
as soon as it is the only contender in a group. The split is performed so that each station in
a given group has the same probability of being successful, irrespective of the instant at which
it became ready to transmit the request. Thus, contention trees deviate from queues with a
first come first served service discipline. This suggests that variants of the basic machine repair
model are needed to obtain a more appropriate model for the time spent in contention resolution,
and that these variants should have some randomness built into their service discipline. In this
paper, we consider two such variants.

Firstly, we consider the machine repair model as described above with a random order
of service (ROS) discipline. Here, after a repair, the next machine to be repaired is chosen
randomly from the machines in the repair queue. We analyse the sojourn time distribution
at the repair queue for this model. In fact, it turns out that this model is closely related to
the machine repair model considered in Mitra [13], in which the service discipline at the repair
facility is processor sharing (PS). For PS, and also for ROS, the average sojourn time at the
repair facility is identical to the average sojourn time in case of a first come first served service
discipline. This is of course a direct consequence of a combination of Little’s formula and the
fact that the steady state distribution of the number of machines at the repair facility is the
same for all work-conserving service disciplines that do not pay attention to the actual service
requests of customers. The variance of the sojourn time under PS, however, dramatically
differs from that for FCFS (which, as mentioned above, is asymptotically linear in N). Mitra
[13] shows that the former variance is for large N proportional to N2, and in Section 4 the
same is seen to hold for ROS.

We shall see that the variance of the sojourn time under ROS gives an accurate prediction
of the access delay of requests in contention, when the so-called free access protocol is used.
However, the prediction is not accurate in case of the so-called blocked access protocol. For that
protocol, we consider an extension of the machine repair model, as illustrated in Figure 2. In
this extension, machines that broke down are first gathered in a waiting room before they are
put in random order in the actual repair queue at the moments that this repair queue becomes
empty. In the sequel this service discipline will be called gated random order of service (GROS).
Again, also for the GROS service discipline, the average sojourn time at the repair facility is
identical to the average sojourn time in case of a first come first served service discipline. Hence,
the emphasis of our analysis will be on obtaining an (approximate) expression for the variance
of the sojourn time at the repair facility.

It is appropriate to comment briefly on the relevance of the variance of the access delay in
contention resolution. Firstly, low variability implies low jitter. As such, access variability is
a key performance measure in itself. However, the main reason for studying the variance of
the access delay is that it is needed in understanding the total average waiting time in cable
networks. This follows from the request grant mechanism employed, as explained in the first
paragraph of this introduction. Data transfer in cable networks consists of two stages. In the
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Figure 2: Extension of the machine repair model with a waiting room

first stage, bandwidth for data transfer is being requested via the contention procedure. Once
successfully transmitted, the requests queue up in a second queue. In this queue, the service
time distribution is given by the distribution of the number of packets for which transfer is
being requested. Now, due to the phenomenon of request merging, which will be described in
more detail in Section 2, the number of packets being requested depends on the time spent in
contention so that the variance of the service time depends on the variance of the access delay
in the contention resolution. Clearly, the variance of the service time is needed to estimate the
average waiting time in this second queue.

The rest of the paper is organised as follows. In Section 2 we describe the contention
resolution process using contention trees in more detail. Next, in Section 3, we review some
of the properties of the basic machine repair model. Moreover, we derive expressions for the
first two moments of the steady state sojourn time distribution. The machine repair model
with ROS service discipline is considered in Section 4. Here, we first relate the model with
ROS service discipline to the model with processor sharing service discipline. After that, we
briefly review the main results from Mitra [13] for the model with the processor sharing service
discipline. In Section 5, we give an approximate derivation of the moments of the sojourn time
in the model with GROS service discipline. In Section 6 we present numerical results which
show that the models of Section 4 and 5 can be used to approximate the sojourn time for
contention resolution in cable networks using contention trees. Finally, Section 7 presents some
conclusions.

2 Access via contention trees

Tree algorithms are a popular tool to provide access to a channel that is time slotted and
shared among many stations. These algorithms and their many variants are also referred to
as stack algorithms or splitting algorithms; we refer to Bertsekas and Gallager [1], Section 4.3,
for a survey. In this paper, we will confine attention to the basic ternary tree, illustrated in
Figure 3. The basic tree consists of nodes, and each of these nodes comprises three slots of
the access channel. A collision occurs if more than one station attempts a transmission in a
slot. These collisions are then resolved by recursively splitting the set of colliding stations,
plus possible newcomers as explained below, into three disjoint subgroups. For this, usually, a
random mechanism is employed. This splitting continues until all tree slots are either empty or
contain a successful transmission. This splitting process can be thought of as a tree, but takes
place in time slots of the communication channel devoted to the contention resolution, so that
the nodes of the tree must be time ordered. For this, we will use the breadth first ordering, as
illustrated in Figure 4.
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Figure 3: Basic tree algorithm: slots of the tree with a collision (c) are recursively split until
all slots are empty (0) or have a successful transmission (1)

Channel I c

c 1

1|cc

0‘1’1‘0‘0’1

[

oLl

[——

Figure 4: Same tree as in Figure 3, with a breadth first ordering of the nodes

This basic tree algorithm must be complemented with a ’channel access protocol’ that
describes the procedure to be followed by stations that have data to transmit and that are not
already contending in the tree. We consider two such access protocols: free access and blocked
access. In the former protocol, access to the tree is free and any station can transmit a request
in the next node of the tree, as soon as it has data to transmit. In the latter protocol, the tree
is blocked so that new stations can only transmit requests in the root node of the tree that is
started as soon as the current tree has been completed.

The stations exhibit the following behaviour:

e A station becomes active in the contention process upon generation of a data packet. In
case of free access it will then transmit a request in the next tree node, randomly choosing
one of the three slots in this node. In case of blocked access it will wait for the next new
tree to be started and transmit its request in one of the slots of the root node of this tree.

e The station stays active until its request has been successfully transmitted.

e While active, the station can update its request (request merging). Hence, packets that
are generated at such an active station do not cause extra requests.

e After successful transmission of the request, the station becomes inactive, to become
active again upon the generation of a new data packet.

Note that request merging implies that the number of stations that can be active in con-
tention is bounded. Exactly this property makes results on the performance of contention trees
in open models, as investigated in e.g. Mathys and Flajolet [12] or Tsybakov [17], less relevant
to contention resolution in cable networks. This property also explains the approach in this
paper, which approximates the access delay in transmitting a request by means of the sojourn
time in a machine repair model.



3 Properties of the basic machine repair model

First we introduce some notation and quote some properties of the basic machine repair model;
cf. Figure 1. The total number of machines in the system is denoted by N. The machines
work in parallel and break down, independently, after an exponentially distributed working
period with parameter A\. Machines that broke down queue up in the repair queue, where
they are served first come first served by a single repairman. The repair times of machines are
exponentially distributed with parameter .

With the random variables X and Y we denote the steady state number of machines that
are in Qw (i.e., are working) and that are in Qx (i.e., are in repair), respectively. Clearly, the
number of working machines and the number of machines in repair evolve as Markov processes.
Their steady state distributions are equal to (cf. [10, 11])
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where
p = /A (2)
For the mean and variance of X and Y we have
E(X) =p(1-Bn(p)), EY)=N-EX), (3)
var(X) = var(Y) = E(X) — pBy(p)[N — E(X)], (4)
where By (p) denotes Erlang’s loss probability, which is given by
N
p" /N!
By(p) = =———. 5
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Indeed, it is well known that the number of operative machines has the same distribution as
the number of busy lines in the classical Erlang loss model.

We now turn to the moments of the sojourn time of an arbitrary machine at the repair
facility. To this end, we consider the time epoch at which an arbitrary machine breaks down
and jumps to the repair queue. Stochastic quantities related to this moment will be denoted
by a subscript 1. Thus X, is the number of working machines at this moment, and Y} is the
number of machines in repair at this moment. From the arrival theorem, see Sevcik and Mitrani
[14], it follows that the distributions of X; and Y] are given by (1), but with N replaced by

N —1:

Pk
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The sojourn time of an arbitrary machine at the repair facility equals its own repair time

plus the sum of the repair times of the machines already present at the repair facility. Thus,
denoting this sojourn time by S, we have that

Pr(X,=k)=Pr(Y; =N —1—k) = k=0,...,N—1. (6)

Yi+1

S = Z B;, (7)

with B;,i = 1,2,..., a sequence of independent, exponentially distributed random variables
with parameter u. Equation (7) enables us to obtain the Laplace-Stieltjes transform (LST) of
the sojourn time at the repair facility (see also [11]):

E(ews):fvz—le—l—j/<N—1—j>!< p ) .

=0 i i/l P+ w
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Here, we are mainly interested in the first two moments of the sojourn time. These can be
obtained by consideration of the moments of the random sum, i.e.,

E(S) = E(Y1+1)E(B)

- %(N — p(1 = By _1(p))), (9)
var(S) = E(Y; + 1)var(B;) + var(Y; + 1)E(B;)?
_ Mi (N = pBx—1(p)[N = 1= p(1 — By_1(p))). (10)

Now, for N large and N >> pu/\, By(p) goes to zero like p™ /N!. Hence, in that case, the
following are extremely sharp approximations:

E(S) =~ —%, (11)

var(S) =~ (12)

e

In Sections 4 and 5 we shall study the sojourn time distribution at () under the assumption
that the service discipline at that queue is Random Order of Service (ROS) and Gated Random
Order of Service (GROS), respectively. As was briefly indicated in Section 1, the mean sojourn
time in Qg is the same under FCFS, ROS and GROS; this is a direct consequence of Little’s
formula and the fact that the distribution of the number of customers in g is the same for any
work-conserving service discipline that does not pay attention to the actual service requests of
customers. We therefore focus in particular on the variance of the sojourn time in (). Formula
(12) shows that for the FCFS discipline, asymptotically, this variance is linear in the number
of machines and does not depend on A, the parameter of the distribution of the working times.

Remark 3.1. It is well known that the machine repair model has an insensitivity property:
The steady state distribution of the number of machines in repair only depends on the mean
working time of machines and not on the actual distribution of these working times. This
implies that the results of this section remain valid for arbitrarily distributed working times of
machines.

4 The model with ROS service discipline

Again we consider the model of Figure 1, but now the service discipline at Qg is random order
of service. For reasons that will soon become clear, we assume that the system contains not
N but N + 1 machines. The main goals of this section are: (i) to determine the LST of the
waiting time distribution at @, (ii) to relate this distribution to the sojourn time distribution
at Qg in case the service discipline is PS instead of ROS, and (iii) to determine the asymptotic
behaviour of the variance of the waiting (and sojourn) time at () under the ROS discipline.
Consider a tagged machine, C, at the moment it arrives at Q. Let Sros (Wgos) denote
the steady state sojourn (waiting) time of C' at Q. Sgos is the sum of Wxos and a service
time that is independent of Wgrpg, and hence we can concentrate on Wros. We denote by

Yl(NH) the number of machines in (g, as seen by C' upon arrival in (). Introduce

¢i(w) = E[e“Wros|y(M) — i 1 1] Rew>0, j=0,...,N—1.

We can write, for Re w > 0,

Jj=0

—_



The following set of N equations for the N unknown functions ¢q(w), ..., dx_1(w) holds:

pt(N—j-1r  (N—j-1)A
%) M+(N—j—1))\+w[u+(N—j—1))\¢j+1(w)
z 1 j
N ==t @l (14)

Notice that the pre-factors of ¢_;(w) and ¢x(w) equal zero. Formula (14) can be understood
in the following way. The pre-factor (u+ (N —j — 1)A)/(u+ (N — j — 1)A + w) is the LST
of the time until the first ‘event’: Either an arrival at Qg or a departure from Q. An arrival
occurs first with probability (N —j — 1)A\/(u+ (N — 7 — 1)\). In this event, the memoryless
property of the exponential working and repair times implies that the tagged machine C' sees
the system as if it only now arrives at QQr, meeting j 4+ 2 other machines there. A departure
occurs first with probability p/(p+ (N —j —1)A). In this event, C' is with probability 1/(j + 1)
the one to leave the waiting room and enter the service position; if it does not leave, it sees Qg
as if it only now arrives, meeting j other machines there.

We can use (14) to obtain numerical values of E(Wgos|Wgos > 0) and var(Wgros|Wgos >
0). This will be exploited in Section 6. Formula (14) can also be used to study this mean and
variance asymptotically, for N — oo. In fact, for this purpose we can also use the analysis given
by Mitra [13] for a strongly related model: The machine-repair model with processor sharing at
Qg and with N (instead of N + 1) machines. Denote the LST of the sojourn time distribution
of a machine meeting j machines at QQg, in the case of processor sharing, by ¢;(w). A careful
study of Formula (14) and the explanation following it reveals that ezactly the same set of
equations holds for ¢;(w), if in the PS case there are not N + 1 but N machines in the system.
If C' meets j machines in the PS node (D, then he leaves N —j —1 machines behind in QQy,. Now
observe that the time until either an arrival at or a departure from () occurs is exponentially
distributed with parameter y+ (N — j — 1), leading to the same pre-factor as in (14). And if
an event occurs, it is a departure from Qg with probability p/(pu+ (N —j—1)A). If a departure
from Qg occurs, C'is with probability 1/(j+1) the machine to leave. If it does not leave, it sees
Qg as if it only now arrives, meeting j — 1 machines there. Not only do we have ¢;(w) = ¥;(w),
j=0,...,N—1, but it also follows from (6) that P(Y;" ™" = j+1|;" ™ > 0) = P(v;\"V) = ),
j=0,...,N—1. The above equalities, combined with (13), imply that Wxos, conditionally
upon it being positive, in the machine-repair system with N 4 1 machines, has the same
distribution as the sojourn time under processor sharing in the corresponding system with N
machines. Adding a superscript (N) for the case of a machine-repair system with N machines,
we can write:

P(SHY > 1) = P(Whos > t|Whiot) > 0). (15)

This equivalence result between ROS and PS may be viewed as a special case of a more
general result in [2] (see [5] for another special case). In the G/M/1 queue, the sojourn time
under PS is equal in distribution to the waiting time under ROS of a customer arriving to
a non-empty system. This equivalence is in [2] extended to a class of closed product-form
networks (notice that the two-queue network in the present paper indeed is a closed product-
form network). In particular, again adding a superscript (N) for the case of a machine repair
model with N machines, it follows from [2] that

P(She > 1) = P(Whos" > t|Wink? > 0)
P(Whos' > t)
P(Whos! > 0)

t>0, (16)
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with

N-1 p*

N+1 Zi: ]
P(Whos >0) = —zNO i (17)

i=0 4!

It is easily verified that, for the machine repair model with N machines, ESgrpos = ESps =
ESrcrs, just as indicated in Section 1, the latter quantity equalling E(Y—LHZ (cf. (9)). For
example, the first equality follows after some calculation from the following relation, that is
obtained from (16) by integration over t:

(N) _ EWz(z]cv)ng)
ESPS - N+1 (18)
P(W >0)
Multiplication by ¢ and integration over ¢ in (16) yields similarly:
W(N+1)
var(SWY)) = Var(NflOS ) (19)
P(W >0)

When N is large and N > u/\, then P(W(N+1) = 0) is negligibly small. The previous for-

mula hence implies that, for N — oo, Var(Slgg)) ~ Var(WI%?g) — and hence also Var(Slgg)) ~

Var(SROS’)

For an asymptotic analysis of ]i)VVI(%](\Q9 and Var(W}%)S) we can thus immediately apply cor-
responding asymptotics of Mitra [13] for the PS-variant. Mitra [13] derives a similar set of
equations as (14), albeit for P(Sps > t|Y; = j) rather than for its LST. He writes his set of
N equations in matrix form. He shows that the corresponding matrix has N real and negative
eigenvalues puy < py_1 < ... < p. Using the equivalent of (13) for PS, he finally shows that

N
P(Sps >u) = Y azet", u >0, (20)

with a; > 0 fori =1,..., N and ¥~ , a; = 1. Hence,

P(SPS > u) < e‘““, (21)
P(Sps >u) ~ age"", U — 00. (22)

The fact that Spg is hyper-exponentially distributed immediately implies that (see Proposition
12 in [13)]),
V&I‘(SPS) Z (ESPS)Q. (23)

Hence var(Sps) = O(N?) for N — oo, which sharply contrasts with the O(N) behavior for
FCFS (cf. (12)).

5 The model with GROS service discipline

In this section, we consider the model with GROS service discipline, as illustrated in Figure
2 and described in Section 1. Again, we let Y denote the number of machines in the total
waiting area (i.e. waiting room plus waiting queue). Obviously the distribution of ¥ equals the
distribution of the number of machines in the repair queue in the standard model described in
Section 3, and is given by (1).



We will now consider the sojourn time until repair, Sgros, of an arbitrary (tagged) machine
for the model with GROS service discipline. Observe that this sojourn time consists of two
components:

Y v 41

Seros = > BV + 3 B®. (24)

Here, the random variables Bgl) and B§2) are independent, exponentially distributed service
times with parameter u. The random variable Y1(1) is the number of machines in the waiting
queue (including the one in repair) at the instant that the tagged machine breaks down. The
random variable Y1(2) + 1 equals the random position allocated to the tagged machine in the
waiting queue at the instant it is moved from the waiting room to the waiting queue.

This model is not a closed product-form network, so that an exact analysis of the sojourn
time is considerably more difficult than the analysis for the models considered above. However,
a particularly easy approximation of the first moments can be obtained, if one makes the

following two assumptions:
e The two components of Sgros in (24) are uncorrelated.

e The random variables Yl(l) and Y1(2) are uniformly distributed on 0,1, ---,Y;, where the
random variable Y] is as defined in Section 3.

Neither assumption is strictly valid; however, for the case considered in which NA > p and N
large, they appear to be good approximations.
It is now straightforward to show that

E(Saros) = (BEYY)+EMP)+1) /u (25)
= EM1)/p+1/p
(N = u/N)/n,
and that
y®
var(Sgros) = 2var(21: BM) (26)

= 2B +var(VV) /2

(05 = w6+ = 2003) (1)

&Q

Thus the average sojourn time for the model with GROS service discipline is identical to the
average sojourn time in the models previously considered. The variance of the sojourn time,
however, has an intermediate magnitude. For large NV, it is on one hand much larger than the
variance in the machine repair model with the FCFS service discipline. However, on the other
hand, it is considerably smaller than the variance in the machine repair model with the ROS
service discipline.

6 A comparison

We now turn to a comparison of the access delay due to contention resolution and the sojourn
time in the variants of the machine repair model. In this comparison, we will confine ourselves
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to the first two moments of the various distributions: we consider first moments in Section 6.1
and standard deviations in Section 6.2.

The procedures for contention resolution were described in Section 2, and the access delay
due to contention resolution is the delay experienced by stations that use contention trees for
reservation. More formally, it is defined as the number of tree slots elapsed from the moment
a station becomes active until the moment its request is successfully transmitted. As already
indicated in Section 2, there are no closed form expressions for the moments of the distribution
of the access delay. Hence, these are obtained via simulation. In these simulations, the sta-
tions execute the procedure outlined in Section 2: they become active after an exponentially
distributed inactive period with parameter A. Then they enter the contention resolution at the
earliest possible moment, as defined by the channel access protocol. Thus, we use a source
model in which each of a finite number, N, of stations generates packets according to a Poisson
process with rate A, independently of the other stations.

The average delays thus obtained are denoted ESp and E/§B, for the ’free’ and ’'blocked’
channel access protocol respectively. Likewise, the estimated standard deviations are denoted
by 6z and . The 'hat’ serves as a reminder that the moments are estimated from a simulation.
We use 1000 trees in each simulation.

The moments of the sojourn time of the various machine repair models have been obtained
in Sections 3 to 5. In utilizing the results from these sections, we will use p = log(3) for the
rate of the service time distribution. The motivation behind this value is in Janssen and de
Jong ([9], Eq. 26-27). They show that the average number of nodes to complete a tree with
n contenders is well approximated by n/log(3). Hence, the rate at which the contenders are
served can be approximated by log(3).

6.1 First moments

The average access delays for the tree models and the expected sojourn time for the machine
repair model are given in Table 1. There is only one entry in the table corresponding to the
expected sojourn time, as it is the same for all variants of the machine repair model considered.
In the table, we have varied the number of stations, N, and the total traffic intensity A := NA.
The primary purpose of this table is to compare average access delay with expected sojourn
time. Whence, the intensities are chosen so that A is well above pu, which is the case most
relevant to access in cable networks.

N =100 N =200 N =1000
AN ESp ESp ES ESp FESp ES FESp FESp ES

2.5 43.0 50.1 51.0 86.0 101.3 102.0 429.1 509.4 510.0
5.0 63.0 705 71.0 1259 141.5 142.0 629.9 710.8 710.0
10.0 73.1 80.5 81.0 146.0 161.6 162.0 729.7 811.2 810.0
16.5 77.1 84.5 849 1545 169.5 169.9 824.9 848.5 850.0

Table 1: Average access delay for reservation with free tree, ES, r, with blocked tree, ES, B, and
expected sojourn time for the machine repair model, E'S, for number of stations /N, and total
traffic intensity A

From the figures we can draw various conclusions. Firstly, and most importantly, we observe
that the expected sojourn time in the machine repair model provides an excellent approximation
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to the average access delay for reservation with contention trees. The agreement with the figures
obtained via simulations with blocked access is almost perfect; the agreement with the results
for free access is somewhat less good. The former result is closely related to a result in Denteneer
and Pronk ([6]) on the average number of contenders in a contention tree.

Secondly, we see that free access is a more efficient access protocol than blocked access in
that the average access delay with the former is smaller than the average delay with the latter.
This result parallels the result for the open model and the Poisson source model, as graphically
illustrated in Figure 16 of Mathys and Flajolet [12]. The considered variants of the machine
repair model all lead to the same expected sojourn time and are apparently not sufficiently
detailed as models to capture the first moment differences between the blocked and the free
access protocols.

Finally, we observe that all quantities investigated in Table 1 approximately display a linear
dependence on the number of stations (for the cases with N >> u/\).

6.2 Standard deviations

We next turn to a numerical comparison of the standard deviations in the various models.
These are given in table 2, again for different N and A.

Several conclusions can be drawn from the table. Firstly, we observe that the standard
deviation in either tree model changes with traffic intensity and grows approximately linearly
with the number of stations. Neither of these properties is captured by the basic machine repair
model; there, the standard deviation of the sojourn time is independent of the traffic intensity
and grows only with the square root of the number of stations in the model.

Secondly, the standard deviation of the access delay in the blocked tree model corresponds
closely to the corresponding figure for the GROS machine repair model. The difference between
the two standard deviations is approximately 15%. The results for the GROS model capture
both the dependence on the traffic intensity and the dependence on the number of machines
that is observed in the tree simulations. Similarly, the standard deviation of the access delay in
the free tree model corresponds closely to the corresponding figure for the ROS machine repair
model.

Looking more closely at the results, we see that the standard deviations obtained for the
GROS machine repair model are always larger than those obtained in the blocked tree simula-
tions. Of course, the analysis of the GROS model was completely heuristic so that it is possible
to explain the differences by the approximations involved. Our feeling here, however, is that a
fundamental limitation of the machine repair model as an approximation shows up. The batch
nature of the contention trees implies that it takes some initial time before the first successful
request is transmitted. Statistical analysis suggests that, after this initial period, successful
transmissions occur fairly uniformly over the length of the trees. Thus the variability of the
waiting period is somewhat reduced as compared to the proposed model in which the successful
transmissions occur uniformly over the full length of the tree. This also suggests that there is
an even more appropriate extension of the basic machine repair model, i.e. one in which the
transfer from the waiting room to the queue takes some time and in which the server operates
at a slightly larger speed.

Thirdly, the standard deviations with the free access protocol far exceed those with the
blocked access protocol. This result has no parallel in the open model. In fact, Figure 17 in
Mathys and Flajolet [12] shows that the standard deviation of the delay with free access pro-
tocol is below the corresponding value with blocked access for most traffic intensities. However,
for large traffic intensities just below the stability bound the order reverses and blocked access
then results in smaller standard deviations. Of course, our simulations operate at total traffic
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N =100
Tree Repair
A OF OB g OrROS OGROS

25 46.1 195 9.1 5045 22.8
5.0 680 267 9.1 70.18 30.6
10.0 784 304 91 80.13 34.6
16,5 832 315 9.1 84.06 36.2

N =200
Tree Repair
A op OB 0  OROS OGROS

25 9277 379 129 101.46 43.7
5.0 1353  52.7 129 141.20 29.6
10.0 158.2  60.3 129 161.15 67.7
16.5 167.2  62.5 12,9 169.02 70.9

N = 1000
Tree Repair
A or 0B 0  OROS OGROS

2.5 429.1 185.1 28.8 509.64 210.4
5.0 6299 261.6 288 709.39 291.7
10.0 729.7 299.2 28.8 809.34 3324
16.5 786.6 310.6 28.8 848.73 348.4

Table 2: Standard deviations of the access delay for reservation with free tree, 65, with blocked
tree, o, and standard deviations for the basic machine repair model, o, the ROS machine
repair model, orpg, and the GROS machine repair model, ogros for number of stations N,
and total traffic intensity A

intensities that exceed the stability bound for the open system.

In Table 3 we have no longer kept p = log(3). Instead, we consider u = 0.5, 1 and 2, giving
rise to p = %N , p= N and p = 2N, respectively. The next three remarks relate to these three
different cases.

Remark 6.1. Interestingly, in case p = § << N, the standard deviation, ogog, of the so-
journ time for ROS is almost identical to ES= ESgps. This can be observed by combining the
relevant entries from Tables 1 and 2 or from the entry corresponding to p = 0.5 in Table 3.
This suggests that for the considered parameter values, Srog is approximately exponentially
distributed. Indeed, the following reasoning shows that Sgos is approximately exponentially
distributed when N is large and p = £ = o(NV). In this case, the number of customers, Y, at
the repair facility is usually close to N. Hence Sgrog is the sum of a random number, L, of
exp(p) distributed service times, and L is approximately geometrically distributed with param-
eter 1/N (the tagged customer has a chance 1/j to be the next one served, if there are j — 1
other customers present). It is well known that the sum of a geometrically distributed number
of independent, exponentially distributed stochastic variables is exponentially distributed. If
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N =100 N =200 N = 1000
1% ESROS OROS ESROS OROS ESROS OROS

0.5 100 99 200 199 1000 999
1.0 8.2 10.4 11.5 15.2 25.2 34.7
2.0 097 1.10 0.99 1.13 1.00 1.15

Table 3: Mean and standard deviation of the sojourn times in the ROS model for number of
stations N and service rate u, with total traffic intensity A = NA =1

EY is reasonably close to N, the above reasoning still holds to a considerable extent: L still
is geometrically distributed, but its parameter is no longer (approximately) 1/N but a random
variable.

Remark 6.2. Let us briefly consider the other extreme case: 7 >> 1. It is easily seen, and
well known, that now P(X = N) ~ 1. The repair facility now behaves like an open M/M/1
queue with arrival rate A = N\ and service rate u. Hence ES = ESgpos &~ ﬁ In the standard
M/M/1 queue with FCFS, the sojourn time is exponentially distributed, so opcrs = ES. In
the M/M/1 queue with ROS, it follows from Cohen [4] p. 443 that the standard deviation
of the sojourn time is inflated with a factor f as compared to the standard deviation of the
standard M /M /1 queue with FCFS, where

2(A/p)?
fo [y 2
2—=A/p
The entries in Table 3 with . = 2 are relevant to this case. For this case we find that f = 1.15,
revealing a rather close agreement although & only equals 2. Furthermore, note that f — 1

for & >> 1, which again yields a coefficient of variation of Sros that approaches 1.

Remark 6.3. We finally consider the intermediate case p = N — cv/N, N — oo. This case
has already been studied by Vaulot [18] (see also Whitt [19]) for the Erlang loss model with N
servers and offered traffic p, a model that is equivalent with the machine repair model. Vaulot
[18] proved that

¢(c)

VNBy(p) = VNBy(N — ¢V/N) ~ o °€ R, N — oo, (27)
c
with ¢(c) = \/%6_02/ 2and ®(c) = == [ e~*’/2dg the standard normal density and standard
normal distribution, respectively. Substitution of (27) into (3) yields the approximations
2N
EX ~ N — /22 (28)
7r
and
2N
EY =~/ —, (29)

T
and hence (use Little’s formula EY = AgES, with A = AEX the input rate into the repair

facility):
[2N
BS ~ LT (30)

The entries in Table 3 with ;=1 (hence p = N, so ¢ = 0) are relevant for this case.
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7 Conclusion

In this paper, we started from the assumption that the sojourn time in the repair facility of the
machine repair model is related to the access delay experienced when using contention trees to
transmit requests. To substantiate this intuition, we obtained expressions for the moments of
this sojourn time and numerically compared these to the corresponding moments of the access
delay obtained through simulation. These numerical experiments showed that the expected
sojourn time in the repair stage shows a perfect match with the average access delay for both
variants of the tree procedure. It was also shown that the variance of the sojourn time in the
model with ROS service discipline gives a good approximation of the variance of the access
delay when using free trees. Similarly, the variance of the sojourn time in the model with
GROS service discipline gives a good approximation of the variance of the access delay when
using blocked trees.

In the introduction it was pointed out that data transfer in cable networks consists of two
stages and that the variance of the access delay is needed in understanding the average total
delay in the two stages together. In the present paper we have concentrated on the first stage.
To analyze the overall delay is a topic for further study.

Acknowledgement: The authors like to thank Marko Boon for doing a major part of the
numerical calculations.
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