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Abstract: We prove that a Gibbs measure with a finite range interaction evolved
under a general local stochastic dynamics remains Gibbsian for a short interval of
time. This generalizes previous results for Glauber dynamics.
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1 Introduction

In [4] it is proved that the Gibbs property of a measure can be lost in the course
of the evolution under a stochastic dynamics. More precisely, if we start a high-
temperature Glauber dynamics from a low-temperature Gibbs measure, then the
Gibbs property can be lost (and sometimes recovered) in the course of the evolution.
All results in [4] are obtained for Glauber dynamics (spin-flips) and the “single-site”
character of this dynamics was strongly used. It is therefore natural to study the
time evolution of a Gibbs measure under more general stochastic dynamics, such as
Kawasaki or a mixture of Glauber and Kawasaki dynamics.

In this paper, we concentrate on the short time behavior of a Gibbs measure
under a general local stochastic dynamics. We prove that for a short interval of
time (depending on the range of the dynamics and of the range of the initial mea-
sure) a Gibbs measure with finite range interaction remains Gibbs, thus extending
Theorem 4.1 of [4]. The intuition behind this result is that for short times “almost
nothing changes”, i.e., a typical trajectory consists of a “sea” of lattice sites where
the configuration remains constantly equal to the initial one (non-active sites) and
“isolated islands” of sites where the configuration changed (active sites).

The technical tool to formalize this intuitive picture is a generalization of the
space-time cluster expansion used in the proof of Theorem 4.1 of [4]. The poly-
mer weights in this expansion are controlled for small times by the overwhelming



small probability that some activity occurred inside the polymer. The factorization
property is obtained naturally in the case of non-interacting dynamics which can
be viewed as generated by independent Poisson processes. In the interacting case,
Girsanov’s formula is used to go back to the non interacting case.

Intuitively, it is not entirely surprising that conservation of the Gibbs property
for short times is a rather robust statement, only dependent on locality. However, we
expect that the presence of transitions Gibbs-non-Gibbs is very sensitive to the type
of dynamics considered and in particular to the presence of conserved quantities.

Our paper is organized as follows. In Section 2 we define Gibbs measures and
introduce the local stochastic dynamics which we use. In Section 3 we state our
results and Section 4 is devoted to proofs. For the sake of notational simplicity,
we do the complete proof for the easiest (non-Glauber) non-interacting dynamics:
the simple symmetric exclusion process (i.e., non-interacting Kawasaki dynamics)
starting from a Gibbs measure with nearest neighbor interaction. We then obtain
the same result for general local non-interacting dynamics starting from a finite
range Gibbs measure as a rather straightforward generalization. To include the
interaction of the dynamics, we use Girsanov’s formula and treat the extra factors
due to the dynamics as an additional “interaction on trajectories”.

2 Notations and definitions

2.1 Configuration space

We consider spin systems on the lattice Z?. The configuration is given by a map
o : Z% — {0,1} where we interpret o(z) = 1, resp. o(z) = 0, as the presence,
resp. the absence, of a particle at site x. The set of all configurations is denoted
by Q = {0, I}Zd. With the product topology, this is a compact metric space. S is
denoted to be the set of all finite subsets of Z¢ and for A C Z? F, denotes the
o-field generated by {o(z) : z € A}; we write it F when A = Z%. For 0,¢ € Q, we
denote gp&pe the configuration defined by

o'(x) if x € A.
(0aéae)(@) = { £(z)  ifz & A.

The distance between z = (;);=1..4 and y = (¥;)i=1..q 1s |z — y| = Z?Zl lz; — vil,

and if |x — y| = 1, we write (zy) meaning that (zy) is a nearest-neighbor bond. For
A € S, the set of all nearest-neighbor bonds in A is denoted by

B() = {(ay) : |z —y| = Lr,y € A},
Between bonds we define a distance d; for b = (xy), b’ = (2'y/)

d(b,b") = min{|z; — xo| : 21 € {x,y}, 22 € {2, 9} }.



A function f: Q — Ris local if 34 € S, f € F4. The set of all local functions
is denoted £ and any continuous f : {2 — R is the uniform limit of elements in
L. C(Q) denotes the set of all continuous functions. For z € Z¢ 7, denotes the
configuration shifted by =z, i.e.,

(m0)(y) = o(y + ),

and similarly 7, acts on functions via (7,f)(c) = f(7,0), and on measures via
(To2)[f] = p[72 f] for any local function.

2.2 Interactions, Gibbs measures

An interaction is a map ® : § x 2 — R such that

1. D(A,) € Fu, VA€ S.

2. ® is uniformly absolutely summable (UAS), i.e., for all z € Z¢,

Zsup (A, 0)| < oco.

A>z o€

An interaction is translation-invariant if for all A € S, ®(A + x,0) = ®(A, 7,0). In
that case UAS is equivalent with

1]y =) sup|®(4,0)| < o0

A30 7€

and the set of all translation-invariant interactions form a Banach space B; with
norm || - ||;. An interaction @ is called finite range if there exists R > 0 such that
diam(A) > R implies that ®(A,-) = 0. We denote By, the set of all translation
invariant finite range interactions. Given ® € By, A € S, the Hamiltonian Hy(o|¢)
with boundary condition £ is given by the absolutely convergent series

Hy(olg) = ) ®(4,00én0),

ANAAD

also denoted H (), and the Gibbs measure 1§ (at finite volume A and boundary
condition &) is defined on (Qy, Fp) by

£
_ ZO’GQA lA(O')e_HA(U)

where the partition function



is the normalizing constant. A measure p on (€, F) is a Gibbs measure with the
interaction @, notation pu € G(®), if and only if 4§ is a version of the conditional
probabilities of p, i.e., if

15 (A) = p[A|Fpe)(€) p-as., YA € F. (2.1)

A measure is called Gibbs if it is an element of G = Ugep, G(®). (2.1) implies that
every p € G admits a continuous version of its conditional probabilities. Up to a
non-nullness requirement, this condition is necessary and sufficient (see [7], [14]). An
equivalent characterization for ;1 to be Gibbs (see [3]) is the following. For x € Z¢
let 0” denote the configuration o flipped at z, i.e.,

o*(y) = (1 = 0(2)) 00y + (1 = day)o(y).

For 11 a probability measure on (€2, F), u* denotes the corresponding transformed
measure:

[ towtdr) = [ so7)utao).

The following relation between conditional probabilities and the Radon-Nykodim
derivatives is obvious:

1
I+ (ZL_: |:0—$€Zd\m:|

plo(2)| Fza,](§) = (2.2)

and therefore the one-site conditional probabilities are continuous if and only if the

. . . (g . . .
Radon-Nykodim derivatives dd% are continuous. This gives

Lemma 2.3 p € M{(Q) is a Gibbs measure if and only if the Radon-Nikodym

. . du® . . .
derivative d#_u admits a continuous version for all x € Z.°.

Note that % € C(2) automatically implies that % is bounded away from zero

and infinity since
du® ~(dut, !
"= (%e)

2.3 Dynamics

Our dynamics are Feller processes generated by local rates. These processes have
path-space measures P, concentrating on the space D([0,¢], Q) of cadlag trajectories
w: [0,t] = Q. We focus on three cases:

1. Kawasaki dynamics (exclusion with speed change).

2. Kawasaki + Glauber dynamics (exclusion with speed change plus births and
deaths of particles).



3. General local dynamics.

Of course, 1. and 2. are contained in 3., but in the proof we will restrict to 1. and
2. and show how to generalize to 3.; this avoids us from having to set up a labyrinth
of unecessary complicated notations. We now define the different types of dynamics
more in detail.

2.3.1 Kawasaki dynamics

The particle occupations are exchanged in configuration o for nearest-neighbor
bonds (xy) at rate c¢(z,y, o). More precisely, the process is defined by the generator
L acting on f € L:

(Lf)(o) =) clz,y,0)[f(0™) = f(o)], (2.4)
(zy)

where
0Y(2) = (1 = 0,2)(1 = 0,4)0(2) + 02,,0(y) + 0y .0(x).

In words, o™ is the configuration obtained from ¢ by exchanging particle occuption
numbers at site x and y. The special "non-interacting” case, where ¢(z,y,0) = 1
for all (xy) and o, corresponds to the simple symmetric exclusion process (SSE).
We impose the following conditions on the rates:

1. Translation invariance: for all x,y € Z% 0 € Q : ¢(x,y,0) = ¢(0,y — z,7,0).
2. Strict positivity: c(x,y,0) > 0, for all (xy) C Z%, o € Q.
3. Locality: ¢z : 0+ c(z,y,0) € L for all z,y € Z%.

For v a probability measure on (€2, F), v*¥ is defined via its action on local
functions f

[ setde) = [ omwian).
We then ask

4. Detailled balance: there exists v € G with ®” € By, such that

c(z,y,0) _ dv*? _ v &Y Ty
C(J"a Y, O-xy) B dv (U) - AP |: Z ® (A’ U) P (A7 o ) (25)
An{z,y}#0

for v-almost every o € Q.

In [10], the existence of a unique Feller process P, (starting from o € Q) with
generator L is proved. We denote its semi-group by (S(t))er+:

Vt>0, Vf € L, (S()f)(0) =E[f(or)]
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and for p a probability measure, we define pS(t) via

/ f(@)(uS(t))(do) = / p(da)S(t)f (o).

The fourth condition implies that the Gibbs measure v is reversible for the process
with generator L, i.e., when started from v, the processes {o; : 0 < t < T} and
{or_: 0 <t < T} are equal in distribution, or , equivalently, L and its semi-group
S(t) are self-adjoint operators on L*(v).

In the case ¢(z,y,0) = 1 (SSE), the reversible measures v coincides with the
Bernoulli product measures v,, 0 < p < 1 corresponding to single sites interac-
tions ®” (homogeneous magnetic field). In general, v will not be unique since the
dynamics has a conserved quantity.

2.3.2 Kawasaki + Glauber

In that case, the generator is given by

(Lf)(0) =D elw,0)[f(6") = f(0)] + D clx,y,0)[f(a™) = f(o)], (2.6)
(zy)

x€Z4

where the extra birth and death rates c(z, o) satisfy

1. Translation invariance: for all x € Z4, 0 € Q : ¢(z,0) = ¢(0, 7,0).

[\]

. Strict positivity: c¢(z,0) > 0, for all z € Z¢, o € Q.
3. Locality: ¢, : 0 — ¢(x,0) € L for all x € Z4.
4. Detailled balance: for the measure v € G with ® € By, of Section 2.3.1.,

c(z,0)  dv”

c(x,0%)  dv (

o) = exp [Z (A, 0) — (A, 07) (2.7)

A3z

for v-almost every o € Q.

The special case ¢(x,y,0) = ¢(x,0) = 1 corresponds to simple symmetric exclusion
with independent births and deaths of particles. In that case, the Bernoulli measure
Vi is reversible.

2.3.3 General local dynamics

We consider a set of transformations 7y such that every 1" € 7y is a local bijection
T:Q — Q, ie., there exists A(T) € S with (T(0))(y) = o(y) for all y & A(T).
To T € Ty, we associate the rate ¢(T, o) which is assumed to be a strictly positive
function of . We then define the generator corresponding to the set 7y as



Vo eQ (L)) =3 3 ewT,0)f(To) - f(o) (28)
z€Z4d TET,

where T, = {r,0oTyo7r , : Ty € To} and for T € T,, T = 7, 0Ty o1 ,, and
c(x,T,0) = ¢(Ty, 7_0). This definition insures translation invariance of the dy-
namics. In words, this dynamics acts as follows: at each site x, we locally transform
the configuration o according to the transformation 7, at rate c(z,T;,0). The
particular non-interacting case ¢(x,T,,0) = 1 corresponds to application of the
transformation 7}, at the event times of independent rate one Poisson processes. In
that case, the Bernoulli measure Vi is reversible. In the interacting case, we can
impose the existence of a reversible v € G with ®” € By, i.e., v satisfies

dvl,  oz,T;,0)

dv c(z,T,, T o)’

where vT, is defined via

/ Fo)WTa(do) = / F(Too)v(do), Vo € Z9.T, € T..

2.4 Poisson representation of non-interacting cases

In the non-interacting case (SSE, SSE + BD, ¢(T,0) = 1), we have a simple repre-
sentation of the process generated by a generator L° in terms of independent rate
one Poisson processes. We describe this representation here in the three different
cases.

Simple symetric exclusion process (SSE):
L'fo) =Y [f(e™) = f(o)]. (2.9)
(zy)

Given a collection of independent (rate one) Poisson processes indexed by nearest
neighbor bonds, {N/™ : ¢ > 0, (zy) € B(Z?)}, a version of the process with gener-

at?r >L0 is obtained by applying o — ¢ at each event time of the Poisson process
Ntwy .

SSE + birth and death (SSE + BD):
L°f(o) =D [f(0™) = f(o)] + D _[f(6") = f(o)]. (2.10)
(zy) x

The collection of independent (rate one) Poisson processes {]\ft(:’;y> :t >0, (xy) €
B(Z%)} U{Nf® :t > 0,z € Z%} is now indexed by both bonds and sites. A version

of the process with generator L° is obtained as follows: at the event times of Ntm’),
apply o — o™, at the event times of N, apply o — o”.
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General case:

L'f(o) =) > [f(To) = f(o)]. (2.11)

z TET:

Consider the collection of independent (rate one) Poisson processes {N/ : ¢t > 0,T €
Tz, x € Z%}. A version of this process is obtained by applying o — T'o at the event
times of N1

3 Result and sketch of proof

We consider a local dynamics with generator (2.8), and corresponding reversible
Gibbs measure v. We start the dynamics from a Gibbs measure p. To avoid triv-
ialities, the interaction ®* € By, is chosen such that G(®*) # G(®"), i.e. ®* and
®¥ are not physically equivalent. We then have

Theorem 3.1 There ezists ty = to(P*, D¥) such that for all t < to, p = uS(t) is a
G'ibbs measure.

The rest of the paper is devoted to the proof of Theorem 3.1. The main steps are:

1. Non-interacting case: SSE.

2. Non-interacting case: SSE + BD.

w

. Interacting case: Kawasaki + Glauber.

W

. General case.
We consider A € §, o € (), and abbreviate

Halo) =D [04(A,0) — 0"(A,0)]

ACA

and with a boundary condition & € €2,

Hi(o) = D [O(A, oaéac) — D¥(A, 0nése)]-

ANAA#D

We also denote PA for the path-space measure of the process in volume A and E»
the corresponding expectation. The following lemma is proved in [4].

Lemma 3.2 If, for x € Z%, the sequence of functions

IEA1c [67{/\(0})]

o

Ui,:o— 715:9[6%1\(00]

converges uniformly as A 1+ Z% to a function UF, then U¥ is a continuous version of

—déﬂfz; and the measure pS(t) is Gibbs.



The strategy to prove that W3 ; converges uniformly is to obtain a convergent cluster
expansion of
InE2 [e7alor)] = Z a(T)w' (T).
rcA

where a(T") are combinatorial (o-independent) factors and w! (T') are cluster weights.
As long as t is sufficiently small, the configuration o; can be seen as a sea of the
initial configuration oy = ¢ and isolated islands where something changed. The
cluster weights w’ (I") are then controlled for small ¢ > 0 via the Kotecky-Preiss
criterion ([6]), uniformly in o. This will give us the uniform convergence of the

series
> " a(I) sup [wh(I)]

I'sz
and the version

7 = exp { D a(D)[wh (D) — wh (D) |

I'sz

of the Radon-Nikodym derivative of dus(t)*

duS(t) *

4 Proof of the theorem

4.1 Non-interacting case SSE
4.1.1 &* nearest neighbor

By Lemma (3.2), it suffices to prove the uniform convergence of

]Eé\z [e’HA(at)—?-LA(a)]
]Eg [67{/\(0'15)77{/\(0')]

for ¢ small enough. We remind the notation H, (o) = >, ,[®P*(A4,0) — PV(A, 0)]
which in this case (®” = 0) reduces to Hp(0) = > ,-,[®*(A,0)]. For a given
realization w of the Poisson process {NJ : 0 < s < t,b € B(A)}, we define the set of
active bonds by

Alw) = {b € B(A): 3 € B(A)s.t. d(b,¥') <1and N!+ Nb > o}. (4.1)
Next we decompose A(w) into disjoint maximally connected components
A(w) = Uiz a7i(w).

We denote by 0v the (n.n.) inner boundary of a connected set of bonds 7 and
with these notations, we can write, using the independence of the Poisson processes
{N;y:0<s<t,be B(A)}:

B [exp(aton ~#alo)] = 3 {T[wbea}e ™ 2)

(717---7n)cCA 1=1
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where the sum 7. . -\ is over all the compatible (disjoints) maximal compo-
nents ; (or polymers in [6]) of A. The weights are given by

wh(y) = B} [exp(H3 (02) — HI (0)) Fy (w) ] e (4.3)
and
F(w) = 1{7 is a maximally connected component of A(w)}
= (H 1N;=0) Gy (w)
bedy

with G, = I{Vb, ' € v,db,b) < 1,N} + N,f,}. The factor €'l arises from the
probability

P2y =0, Vb € B(A) \UL,%i| = exp{ —t[|B(1)] - Z 7l -

In order to apply the Kotecky and Preiss formalism ([6]) and to write down a
convergent (uniformly in o) expansion of the logarithm of the series in (4.2) for ¢
small enough, it suffices to prove that the weights satisfy the bound

w ()] < e (4.4)

where ¢(t) — 400 as t | 0 and is independent of 0. To obtain this bound (4.4),
we use the following estimates

sup [exp(H €) = 5 n)] < ePIC (15)

a.§.n

(where we can choose e.g. C(®") = 23", |[®||s) , and that Ic > 0,a(d) >
0,¢(d) €]0,1[ such that

)6(d)|7|. (4.6)

1P’£ [N,f =0, Ybe B(A)\ U?:ﬂi] < C’(l _ ool

To see this, first take d = 1; the event is then simply that of any two nearest neighbor
bonds at least one had a Poisson event, i.e., we can choose a(1) = 2,¢(1) = 4. For
general d, any cube of size 2 contained in v must have at least one Poisson event.
Combining (4.3), (4.5) and (4.6), we obtain an estimate (4.4) if

(@) .
C’(l —e_a(d)t> eleC®) < 1 (4.7)

which is realized as soon as ¢ is small enough, i.e. 0 < ¢ < ¢, with ¢ty = to(®"). For
such a t, we can write

IE} |exp(H(6) = HIm)] = D a(D)uh(T)(< )

I' m.i.CA

11



where the sum over I' runs over all clusters, i.e., multiindices of compatible contours
7. The cluster weights w? (I") and w!.(I") differ only for clusters I' containing .
Moreover, since the estimate is uniform in o, we have

l L(D)| = 0.
AITI%ld Z a(T) Sl;p w,(T)| =0
A32,TNACH0
Therefore, writing
x B}, [eMa(7)—Ha()] t t
V(0) = gt =00 2 WO -wiOlf @9
g TeAI'sz

we conclude uniform convergence of U5 (o) as A 1 Z% for t < t,.

4.1.2 &* finite range

In this case, we redefine the set of active bonds
A(w) = {b e b(A): W, d(b V) < R, and Nj(w) > o}

where R, is the range of the interaction of the starting Gibbs measure. We then
decompose
A=ULi

into maximally (n.n.) connected contours and define the R inner boundary, resp.
interior, of v to be dgy = {x € v, Iy & 7, | — y| < R}, resp 75 = v\ Ory. With
these notations, we still have

B! [exp(a(o) ~ Halo)] = 32 30 ko) e,

(717---7n)cCA =1

where
wh (1) = B} [exp(H3 (01) — H3(0)) Fy ()] exp!™

but
F(w) = I{v is a maximally connected component of A(w)}

(I tri=0) Goa@)

beEORY

is now written as

with
Gz (w) = I{Vb €72, T € 4%, d(b, V) < R,N! + N, > 0}.

Here we have the estimate

&I
E{r [F’Y(w)] < (1 . eft(RJrl)d) (R+1)d (49)
< (0- ¢~ UR D)) T ) e (4.10)

12



From this estimate we obtain again like in (4.4)
b ()] < ¢ (O

where a(R,t) — oo as t | 0.

4.2 Non-interacting case SSE + BD

We consider the general case with ®* finite range. We need to redefine the active
bonds. Given a trajectory w of the process we call a site x active if there exists
a bond b € B(A) such that d(z,b) < R, and N}(w) > 0 or there exists a site
y € A such that d(z,y) < R, and N] > 0. We denote again A(w) = {z €
A, x is active} and decompose it A(w) = U v;, where ; are the mutually disjoints
maximally connected components of A. To set up a similar expansion, we introduce
the following notation: for A € S, denote

§(A) = |[{(zy) 1z € Ay € A}| +A] (4.11)

With these notations, we write:

B [exp(ralo)  Halo))] =S L S {[[wi)

(V1,1 )eCA  i=1
where
wy () = Ey [exp(H](01) — H](0)) F, (w)] €0 (4.12)
with
F,(w) = I{y is a maximally connected component of A(w)}.

It is then easily verified that
where a(R,t) — oo as t | 0. Here, since |£(7)| < C|vy|, we obtain
lwt ()] < e~ (B

where o/ (R,t) — oo as t | 0.

4.3 General non-interacting case

We consider general local dynamics as introduced in (2.11) and start from a Gibbs
measure for a general finite range interaction ®* € By, with range R,. The range
Ry of the dynamics generated by the transformations in 7; is defined as the radius of
the minimal ball B(0, Rq) with center 0 such that for all T" € Ty, A(T) C B(0, Ry).
We define R = max{ R4, R(®*)} and introduce the set of active sites for a trajectory
w € D([0,¢t],2):

A(w) ={z € A:3y € A, d(z,y) < Rand N} > 0 for some T € U, T, with A(T) > y}.
The same expansion as in Section 4.2. now applies after redefining

§(A) = |{T : M(T) c A}|.

13



4.4 General case

We consider general local dynamics as introduced in Section 2.3.3., with a Gibbs
measure v for a finite range interaction ®” as reversible invariant measure. We use
Girsanov-formula (see [1] or [11]) to go back to case 4.3. Denote P2 for the path-
space measure on D([0,¢],€2,) of the interacting process in volume A, and ]P’éo for
the path-space measure of the non-interacting case. We have

d]P)A t t
7 (w) :exp{z Z/ logc(x,T,ws)stT—i—/ (e(x, T,ws) — 1)ds} (4.13)
P zeATeT, V0 0
and hence
E} [exp{?—[/\(at)}] =
t t
E(?’O [exp{’HA(at) + Z Z (/ log c(z, T, ws)ANT +/ (e(x, T, ws) — l)ds) }]
zeATeT, 70 0

(4.14)
This can be written in the form E, (exp{U}}) where U is defined on trajectories
w € D([0,1],24) by

Up(w) = Halw®) + D> (/Ot log ¢(x, T, wy)dNT + /Ot(c(x,T, wy) — 1)ds) :

zeATET,
(4.15)
We can now expand in a similar way the logarithm of the expectation
g (exp(Uy(w) — Uy (0)) (4.16)

where & denotes the trajectory constantly equal to the initial o. In order to obtain
fatorisation of the polymer weights, first introduce a new range related to the region
affected by the transformations 7', to the finite range potential ®*, and to the range
R' of the rates c¢(z,T,-) and define

R = max{R,, R4, R'}.

Using this R we define the active sites A(w) as in section 4.3 and decompose them
into maximally connected components ;. The only additional problem in the con-
troll of the polymer weights are the additional Girsanov factors, i.e., the polymer
weights are given by the same expression as in (4.12), with H,(o;) replaced with
Ul (w) and H, (o) replaced with Uf (). To control the Girsanov factors in these
weights, use

Epo [exp{ > D /01t log e(x, T, ws)stTJr/Ot(c(:c,T, w;) = 1)ds}| < eohl

zey TET,

where 0 < a < oo. This estimate is an immediate consequence of the fact that under
the measure ]P)Z,o {NT :T € T,z € v} are independent rate one Poisson processes.
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