A tandem queue with a gate mechanism

Zbigniew Palmowski'?3 Sabine Schlegel® Onno Boxma'+

January 28, 2002

Abstract

Inspired by a problem regarding cable access networks, we consider a two station
tandem queue with Poisson arrivals. At station 1 we operate a gate mechanism, leading
to batch arrivals at station 2. Upon arrival at station 1, customers join a queue in
front of a gate. Whenever all customers present at the service area of station 1 have
received service, the gate before as well as a gate behind the service facility open.
Customers leave the service area and enter station 2 (as a batch), while all customers
waiting at the gate in front of station 1 are admitted into the service area. For station
1 we analyse the batch size and the time between two successive gate openings, as well
as waiting and sojourn times of individual customers for different service disciplines.
For station 2, we investigate waiting times of batch customers, where we allow that
service times may depend on the size of the batch and also on the interarrival time.
In the analysis we use Wiener-Hopf factorization techniques for Markov modulated
random walks.

KEYWORDS: TANDEM QUEUE, GATE MECHANISM, BATCH CUSTOMERS, ACCESS NET-
WORKS, COLLISION RESOLUTION
2000 MATHEMATICS SUBJECT CLASSIFICATION: 60K25, 60K20, 60K15, 60K30, 68M20,
90B22, 47A68.

1 Introduction

Emerging access networks like residential cable networks with burst speeds up to 40 Mb/s
- more than 2000 times faster than an ordinary dial-up modem - will most likely provide
the next-generation data communication services, including internet access to homes and
small business. These networks are currently being standardized (e.g. DOCSIS, IEEE,
DAVIC/DVB) and therefore they are the focus of extensive research activity. Characteris-
tic for access networks is a two-stage sequential procedure for data transfer from a station
at the customers’ premises to a central node. First, a contention stage is carried out (with
other stations), in which stations that have data to transmit request a number of data

slots. This is done by growing a Capetanakis type contention tree [8]. Requests that are
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successfully received by the central node enter the second stage: they queue in a request
queue, until they are scheduled by a centralized scheduler. When scheduled, the station
can transmit the data collision-free.

Performance analysis of access networks has mainly been investigated via simulation,
see Limb and Sala [15]. Self regulation in access networks has been studied e.g. in
Kelly [14], Ormeci and Resing [21]; see also Cohen [10]. Contention trees are extensively
analysed; see, e.g., Flajolet and Mathys [12], Capetanakis [8] and Tsybakov and Mikhailov
[28]. The literature on queueing systems useful for modelling access networks is still small.
This is due to a number of complications which arise from dependencies between the
contention tree resolution and the data transmission stage.

In this paper we propose and analyse the so-called ”gated model” for access networks.
This model consists of two single server queues ()1 and ()5 in tandem. At ()1 we operate a
gate mechanism which leads to batch arrivals at (2. ()1 represents the collision resolution
procedure in the Capetanakis-Tsybakov-Mikhailov contention tree algorithm, i.e. the
procedure for determining the order of sending requests for data transmission, whereas Q)9
then represents data transmission.

In Section 2 we describe the model in detail. In Section 3 we find a number of quantities
related to (Q1: the number of customers present at the gate opening, the length of the gate
period, sojourn and waiting times. In Section 4 we analyse (J5. In particular, we find the

Laplace-Stieltjes transform of the steady-state waiting time distribution at Q2.

2 Model description and notation

We consider a tandem of two single server queues ()1 and @)2. Customers arrive at (g
according to a Poisson process with intensity A > 0. Upon arrival, they join a queue.
Entrance and departure from the service area of () is regulated by the following gate
mechanism. After being served at )y, customers enter an infinite waiting room behind
the service facility. Assume that there is a gate both behind that waiting room and in
front of the service facility. Whenever all customers present in the service area of ()1 have
received service, both gates open simultaneously. Customers from the waiting room leave
(as a batch) and enter (2. All customers waiting at the gate in front of ); are admitted
into the service area and the gates close immediately. If there are no waiting customers,
then the gates remain open and are closed immediately after the first arrival. Service at
Q1 is as follows: when there are GG,, customers present at the moment that the gate opens
for the n'® time, then these G,, customers receive service, which takes a stochastic amount
of time R(G,). Customers are not necessarily served in order of arrival, and may not

even be served one by one. However, in this paper we assume that each customer receives



individual service and that

(2.1)

R(G,) = By+...+Bg,, ifG,>0,
R(0) = By,

where the B; are i.i.d. random variables (r.v.) with distribution B(-), with mean 3, second
moment () and Laplace-Stieltjes Transform (LST) S(s). This approach to model R(G,,)
is motivated by the observation that the mean and the variance of the time needed to
resolve a contention tree are asymptotically linear in G,, as n — oo; see Denteneer and
Pronk [11] and Capetanakis [8]; see also Flajolet [12] and Janssen [13]. (Batch) Service
times at ()9 may depend on the batch size as well as on the interarrival times and will be

discussed in detail in Section 4.

3 Analysis of ()4

In this section we first analyse the number of customers present at gate openings, i.e. the
batch size of arrivals to QQ2, and the gate periods, i.e. the interarrival times at (Jo. This

then enables us to investigate waiting times of individual customers.

3.1 The number at the gate

Let A(x) denote the number of Poisson(\) arrivals during a period of length xz. Then,

from (2.1) we have

Gpi1 = A(Bl+---+BGn)7 if G, > 0,
G = A(B)), if Gn—0.

Hence, with E[z4(P)] = g(A(1 — 2)),

E[z+] = E[ABH-FBe)] _ p(G, = 0) + P(G, = 0)E["(PV)]
= E[FA(L ~2))9] = P(Ga = 0) + P(Gn = 0)8(AM1 —2)).  (3.1)

As far as workload is concerned, the gate in front of (; has no influence since it does not
matter whether customers wait directly in front of the server or whether there is a gate in
between. Therefore, the total amount of work at ()1 behaves exactly like the total amount
of work in the corresponding M /G /1 queue without gate, and the steady state distribution
of the workload exists if and only if p := A < 1. The latter statement also holds for the
number of customers at gate openings. In the sequel we assume the traffic load p to be
less than one. Denote by G the r.v. with distribution the steady state distribution of G,
and let G(z) denote the Generating Function (GF) of G. It follows from (3.1) that, for
2 <1,

G(2) = [G(BON1 — 2))) — G(0)] + GO)BA( — 2)). (3.2)



With the notation f(z) := B(A(1 — z)), this becomes, for |z| <1,
G(2) = G(f(2) = GO)(A = f(2), (3-3)

and, after one iteration,

Introduce, for |z| <1,

[i(z) == B = fj1(2)) = f(fj1(2),  7=12,...,

with fo(z) = z. Then, after k iterations, (3.3) results in

G(z) = G(fk Zl—fy
j=1

Following an argument in Boxma and Cohen [7], it is easily seen that fx(z) — 1 for kK — oo
if p < 1, and the convergence is geometrically fast so that 3721 — f;(2)] converges. Using
G(1) =1 we obtain

G( i 1- f] (3.4)

and finally
1
G(0) = — .
14327241 — £;(0)]
From (3.4) or directly from (3.2) we find via differentiation
G(0 A2p2)
1 (0) (0+ ).
—p 1—p

EG =G'(1) = —/——G(0), EG*>=

3.2 The gate period

The steady state distribution D(t) = P(D < t) of the time D between two successive gate
openings, which is the steady state interarrival time distribution at ()9, directly follows

from (2.1). Clearly, with * denoting a convolution,
ZP G =k)B*(t) + P(G=0)(1 —e )% B(¢). (3.5)

Hence the LST is given by
A

Ele”] = G(8(s)) - G(0) + G(0) 5~ A(s)
= GO - BN 41 - aBe)] Res=0. (30
j=1

In particular, from (3.6) or directly relating IED and IEG, we get

5G(0) B 2047y

BP= i) (=) R

. BD? = G(0)(



3.3 Waiting times

We now investigate the stationary waiting time W, of an individual customer at ¢);. We
consider two different service disciplines. For First-Come-First-Served (FCFS) the gate
mechanism does not matter and W; behaves like in an ordinary M/G/1 queue. Thus, the
LST of W; is given by [5]

IEefSWl — (1 — :0)5
s—A+X0(s)’
and in particular,
p B B A83
1—p 28 2(1-p)°
Alternatively, the waiting time can be considered as follows. Given that a customer finds

EW, =

a non-empty system, his waiting time is the sum of the residual time until the following
gate opening and the service times of those customers who are served before him and who
belong to the same batch of customers. We use this approach to compute the mean waiting
time EW{OS in the case of random order of service (ROS) within a batch. By this we
mean that on entering the service area a batch is ordered randomly, where each ordering
has equal probability, and is then served according to this order. Thus, the probability
of being served i'" in a batch of size k is given by 1/k. Note that there are two types
of intervals between two successive gate openings (we call these intervals gating periods).
If there are no customers waiting when the gates open, then the following gating period,
denoted by DY, consists of a residual interarrival time of the Poisson arrival process and

exactly one service time B, having distribution
D(t) = P(D° < t) = (1 —e )% B(t).

Otherwise the gating period is given by the sum of G ii.d. service times, i.e. D* =

Bi + ...+ Bg, and it has distribution

D*(t) = P(D* < t) ZP E)B**(t)/(1 — G(0)) . (3.8)

Since a gating period of type D° occurs if and only if @Q; is empty, the probability G°(0)

for a customer to arrive during such a period is given by

AL+

GY0)= ——— L —
( ) A1 + IEBbusy

:l_an

where By,sy denotes the busy period in the corresponding M/G/1 queue. Thus, with the

notation

pe = P(A(BP™) 4+ AB™)+1=k),
p;; _ P(A(D*paSt)—l—A(D*res)—l—l:k),
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where X' and XP?' denote the forward and backward recurrence time of a r.v. X, we

get

B = GO BB+ (1 GO0) B ]

oo k i—

1-0p 1—-p
_ A0
= ¢ (0)[G0(0) 0+(1- G o))( +Z;§E31 )|
+(1-G%(0 Y Y S BB i (3.9)
2]ED k=1i=11=1 k
and it remains to calculate p; and p;;. We have
e = /t | PAty 1) = k= 1) AP(BT < 4, B < t,)
P= r=

00 (o) k—1
_ —Atp+tr) (tp + t"") dp Bpast res
= e —_— <t,, B"® <t,).

/tpo ~/tT0 (k—1)! ( P )

Let b(-) denote the density of B(-). Then, see e.g. Takagi [27], p.17,

k—1
P = ﬁ/t O/t . A(tp+tr) Mb(tp—l-tr) dt, dt,

(k1)
o f/\m
= Az)¥b(z)dx . 3.10
BT e ) ) (3.10)
Analogously, with d*(-) denoting the density of the distribution of D*,

L1 11
PE=EDs ki — 1)1 X Jao

Substituting the expressions in (3.10) and (3.11) into (3.9) yields
@ =& 1 1 oo
[EWROS p 1 _/ =223 VE bl d
WHROS = (p - p? (_w +kZ:“Z:1(Z BBty © O ba) z)

+p (]ED*2 + i zk: (i—1)8 1 l/ooe)‘m()\x)k d*(z) d:v)
2ED* PIED G =11 A Jy

e M(\z)* d* () dz . (3.11)

/8(2) 1 © 0 ()\‘,L,)kf2
= (p—p2)(ﬁ+ - e ()\m)ka::Q =2 b(x) d:v)
2 ED*? B e 2 - (Afv)k *
e (2]ED*+2,\]ED*/0 e 0a) kz::?(k—% () de)
N pA  pp? ED**  pED**\  p p®
- (p_p2)(25 23 ) 2(2IED*+ 2IED*)_ 1—p 28"

where in the last step we have used

ED*? _ fP(1+p—p?)

2ED*  2B(1—p?)

which can be seen as follows. From (3.8) we get

Z P(G = k)kp/(1 - G(0)) = FEG/(1 - G(0))



and

ED*? = i P(G =K)E[(B; + ...+ By)?]/(1 — G(0))
k=1

- ZP = k) (KB —B%) + (kB)*) /(1 ~ G(0))
- ((5 - 52)]EG+52]EG2)/(1 — G(0)) .

Note that the mean waiting time is the same for FCFS and ROS. In the same way we also

get the LST of the waiting time:

Ee "I = GO(0)B [e=WT D] + (1 - G°(0))E [T | D]
© 1 e M-BW)z | _ g-wz b(x)

= 1—p4+(p—p? /
Il S VG 7%, PR

n /00 1—e_>‘1 Bz 1 _ g—wa d*(m)d
P (w))z x ED*

dz

3.4 Sojourn times

We now analyse the (stationary) sojourn time S(!) of an individual customer in Q, i.e.,
the time from arrival to the system to departure from ()1 or, which is equivalent, entrance
to Q2. Other than the waiting time, the sojourn time does not behave like in the corre-
sponding M /G /1 queue without gates. Namely, due to the gate mechanism, a customer’s
sojourn time consists of the residual gating period (unless the customer finds an empty
system upon arrival), his own service time, and the service times of the customers arriving

during both the backward and forward gating period, i.e.,

B w.p. 1 —p,
st res
SO ={ B4+ B+yi ?p 'Bor + Y0 Bopn wap. p— %, (3.12)
D *past D* res
D" + B + Zk 1 )B2k + Zk 1 ) Bopy1 wop. p?.

From this representation we obtain the LST

ast res
BeS" = (1= p)Be™? + (p— p*)Ele —w(Bree By T 5]
+p’E|e w(D* B+

A(D*past_i_D*res) B )
)

)
e
e R R T Ty
A

= (1-p)pw)+(p— p%ﬁ(w)ﬁ(w) + p*B(w)D*(w) ,

where

B(w) — ]EI:e*w(BreS%»Bl+...+BA(Bpast+Bres)):|



o0 oo o0
= / / e Wir / e—wth(Bl 4+ BA(tp+tT) < t)dP(Bpast < tp’Bres < tr)
tp=0 Jt,=0 t=0

_ /oo /OO e_wtre—)\(tp—l—tr)(l—ﬁ(w))dP(Bpast < tp’Bres < tr)
t

p=0
B(A1 = Bw))) = Bw+A(1 - Bw))
wp ’

and, analogously,

D*(w) _ E[efw(D*res+B1+...+BA(D*past+D*reS))}

D*(M1 = Bw))) = D*(w+A(1 - B(w)))
wlED*
with D* denoting the LST of D* given by D*(s) = (G(8(s)) — 1)/(1 — G(0)), see (3.8).
From (3.2) we have

= G(Bw) -5) - G(Bw)
+G(0)[8(M1 = BW))) = Bw+ A1 = Bw))],

and thus, finally,

G(BW)) = G(Aw) — w/)\)] ‘

Be 5" = B(w)(1 - p)[1+ A G0

Via differentiation, or directly from the representation (3.12), we obtain

AP (1 4 2p)
1 A AT AP
Ty

4 Analysis of ()

In this section we analyse the waiting time of a batch customer at (). The stationary
waiting time W5 of a batch customer is equal in distribution to the supremum of a Markov
modulated random walk (MMRW), where the governing Markov chain (MC) has countable
state space. We show that this MMRW can be approximated by a MMRW governed by
a MC with finite state space in the sense that the waiting time in the finite state space
model converges in distribution to the waiting time in the original model. Using Wiener-
Hopf type arguments we derive the LST of the stationary waiting time in the finite state
space model. Before we do so, we give a short description of the model and discuss the
modelling of batch service times.

The arrival process to Qo is the departure process from (Qq, i.e. the interarrival times

are the gating periods D with distribution

D(t) = i P(G = k)B*™(t) + P(G = 0)(1 — e ) x B(%), (4.1)
k=1

8



and mean
G(0
Bp_ SGO)
p(1 —p)
see (3.5) and (3.7). We assume that the system is in steady state and that the n'" batch

customer requires a service

G
B® = CyI(G, = 0) + (Z Cr + aDn) 1(Gp > 0), (4.2)
k=1

with some constant a > 0, where {C,} are independent exponentially distributed r.v.’s
with mean ¢, D,, denotes the n'! gating period, and G,, is the size of the n'! batch. By B®
we denote a generic r.v. Br(?). Note that successive service times and interarrival times
are both governed by G, so both are not i.i.d. This approach to model batch service
times at ()9 is motivated by the two-stage transmission mechanism in access networks as
described in Section 1. Before actually sending data, a station has to request the number
of slots required to send these data, which takes place in contention with other sources.
During the resolution of possible collisions stations may increase the number of requested
slots (updating). In (4.2), the C),’s represent the original amount of data, and the constant

a reflects the updating of requests during collision resolution. We are interested in the

steady state waiting time distribution. This will exist if EB? < ED, i.e. if

EB® = ¢P(G=0)+ i E[znj Cr+a(Bi+... +Bn)]P(G =n)
k=1

n=1 =
G(0) pG(0)
= c+afp) < ——=,
1— p( 2 p(1—p)
or, equivalently,
1
ct+afp <+, (4.3)

hence for
—c+ /2 + 4af?
A< A= .

2a/32

4.1 Waiting times at (),

Let W3, denote the actual waiting time of the n'® batch customer at Q. Let

So =0, Sp=>_ Xi (n>1),
k=1
where

2)

Xpi1 = B — Dy

Then {(Sy, Gp),n € N} isa MMRW. The governing MC {G,, } has state space {0,1,2,...}.

By P = (pi;) we denote its transition matrix. As in the classical case, we have

Wao=0, Wsy,=5,— min 5.

’ 0<k<n



We now specify the distribution B(-) to be an Erlang-x distribution with mean /3,
BZ Erl(k,k/0) .

This choice is motivated by results from Denteneer and Pronk [11].

Let H;(-) (i > 1) denote the distribution function of Y% _, Cy, that is
H; L Erl(i,1/c) .

Then, for i € {1,2,...} and j € {0,1,2...} it holds that

PO B <z,Y C <y Gy=j|lGp1 =1)

=1 =1
= pijFij(z)Hi(y) ,

where

pis = <m' +jj - 1) (,g/l;/i )\)M (H/;\Jr )\)j

is the transition probability p;; = P(Gy = j|Gx—1 = ) of the underlying MC {G),}, and
Fij L Erl(ki + j,5/B8 + ).
Moreover,
P(D° < 2,01 <y, Gy = j|Gr—1 = 0) = poj Foj () Hi(y) ,
where po; = p1; and Fo;(z) = (1 — e **) x Fy(z). For a distribution function F(-) and
some constant b < 1 we define the distribution function F°(z) as
F'(2) =1 - F(-z/(1-0))

i.e., if X has distribution F, then F? is the distribution of —(1 —b)X. With this notation,
by (4.1) and (4.2) the transition kernel of the MMRW {(S,,G)} is given by

Qij(r) = P(Xy, < z,Gy = j|Gr1 = i) = pijH; * Fj3(x),  i>1,
Qoj(r) = P(X), < 2,G = j|Gr—1 = 0) = pojHy * F(?j(x) .
Denote by w = (mg, 71, ...) the stationary distribution of the governing MC {G,} and by
{(Sn,Grn),n € N} the time-reversed version of the given MMRW whose transition kernel
is given by
A 7rj
Qij(z) = = Qji(z) .
T
Then from Prabhu and Tang [22], Lemma 1 and Th. 4, the steady-state limit Wy of Ws,

exists and has distribution:

W2 g sup S’n ’
n

10



where for Gy we take the steady-state version of {G,}. Consider now the MC {GX},cn

with finite state space {0,1,2,..., K} and transition matrix P¥ = (pz-lj(-), where
K
piy = pij/ >_Dij -
§=0
Define the MMRW {(SX, GE),n ¢ N} by
n
Se-=0, sF=> xf
k=1

with corresponding transition kernel

Fa) = P(X{E <2,Gf =j|GE | =1i) =pfHix Fi(z), i=1,...,K;j=0,...,K,

Qoj(z) = P(X}* <@, G = jlGIZ, = 0) = poHh + Fyy(@), j=0,... . K .
(4.4)
This means that we consider a Markov modulated queue in which conditioning on
{GE | = i,GE = j}, the interarrival and service times of the k'™ customer have dis-
tribution Fj;(z/(1 — a)) and H;(z), respectively, if i > 0, and Fy;(z) and Hy(z) if i = 0.
Denote by w/ = (zf<, ..., 7E) the stationary distribution of the governing MC {GEX}, i.e.

7K solves

K
nlpE = gk ZwiKzl.

1=0
Further, consider the time-reversed version {(5X, GX),n € IN} of the given MMRW whose

transition kernel is given by

Qff (2) = iQK(w)
) 7_‘_11{ Je °

That is,

n
S =o, SE=3% XK

k=1

and X

> A . A . 7-‘—' . .
P(X,f( < m,Gf = j\GkK_l =1) = WLKP(X,f( < x,GkK = z]G,ﬁ(_l =7). (4.5)
K3

Then we have for the stationary waiting time in this queue
K d &K
W2 = sup Sn ’
n
where for G{¥ we take the steady-state version of {GE}.

The following theorem allows us to approximate our model with countable state space

by this model with finite state space.

Theorem 4.1 The following convergence in distribution holds:

W2K2>W2 as K — +oo.

11



Proof. Let ]EZK and IE; denote the conditional expectations given that G’é( = jand G = 1,
respectively. Then, the assertion of the theorem holds, if the MMRW {(S’n, Gn)} is ergodic

and
EXXEXE>0AGE =j] s ByX1; X1 >0AG =4], as K — oo, (4.6)

see Borovkov [6], Th. 22 and Th. 23, p. 53-54. Here EX[XE; XK >0AGK =41 =0
for i > K or j > K. Condition (4.6) holds due to the choice of the kernel of the MMRW
{(SK,GK),n e N}, whereas ergodicity of {(S,,,G,)} follows from regeneration arguments
for the two-dimensional MC {(Gp,_1,Gy),n € N}. Namely, following the lines of the proof
of Asmussen [5], Th. 4.2, p. 235, we get

where 7 is the stationary distribution of {G,,} and v is the column vector with elements
V,L:EZ[Xl],’L:O,,K O

From now on we deal with the finite state space model for which we derive the LST
IE exp{—wW{}. Following Prabhu and Tang [22], de Smit [24], de Smit and Regterschot
[25], Arjas [2, 3], we first represent this quantity in terms of the LST of the ascending
ladder heights associated with the time-reversed version of our MMRW. For this quantity
an explicit expression can be obtained by solving a system of linear equations. Similar
results for exponential interarrival or service times in SM/SM/1 can be found in e.g.
Arjas [2], Neuts [20], Cinlar [9] and De Smit [24]. The analysis of waiting times in the
SM/SM/1 model for Erlang interarrival or service times, as studied in this paper, still
seems to be an open problem in general.

Let

T = min{n > 0: SX > 0}, T =min{n > 0: SX <0},

denote the first ascending ladder epoch of {S'TIL( } and the first descending ladder epoch of
{SK1 respectively. Finally, define the matrices x*(w) and x~(w) by

K

T (w) = {]Ei(exp(—wé’jlf),éTIf = j)}ij:0 , Rew >0,
and
_ o Ak K
X (w) = {]Ei(exp(—wST ), Gt = j)}ijzo , Rew <0.

Then, from Prabhu and Tang [22], Th. 4, the LST E;(exp(—wW),GE = j) for Rew > 0

is the j™ entry of the vector

T[T — xF(w)] 7' [T = x(0)]e ,

12



and thus

K
E;(exp(~wW3')) = > Ei(exp(-wWy3'), 6" = j) = e T[T—x" ()] [T-x"(0)]e, (4.7)
=0
where II = diag(7X), I = diag(e), and e = (1,...,1)". The prime denotes the transpose.
In particular, T; exp(—wW4) does not depend on the initial condition G{ = i. The
remainder of this section is devoted to the derivation of an explicit expression for the

terms on the right hand side of (4.7). To this end the following lemma is useful.

Lemma 4.1 (See Asmussen [5], Lem. 6.1, p. 216, for further generalizations.) Let Z
have an Erlang distribution Erl(n,0) and let L be a non-negative random variable which
is independent of Z and has distribution F. Then, for x > 0, the density function of the

random variable Z — L 1s given by

em—i—l 4
3 anom(B)———a™e " (4.8)
= m!

where

0j0) = [~ O e tman)

Proof. For z > 0, the density function of Z — L is given by

o 0" n—1_—6(z

Expanding (z 4+ y)" ! by the Binomial Theorem and rearranging terms yields (4.8). O

Let P, denote the conditional probability given G = k. Then from (4.4) for j > 0,

Py XE > 24y, GE =X > y)
Pi(XE>z4y,GE=1) pj-Qfix+y) pji(l—HjxFj(z+y))
Pi(XE >y) - P(XE >y Pi(XE >vy)

K 1
Pji oo(l/c)m-l- m,_—w/c
:m(z‘”mw/ e )

where the last step follows from Lemma 4.1. Hence, for j > 0,

d ‘7 - ’L 7113 c
an(XIK >z +y, G =1XF>y) = Z Z / (4.9)
m=07=0

. m
for some functions a(.

) (y), 1,m,i >0, § > 0. Similarly,

d i, —x/c
X 224y, GF =X >y) = —a\" (y)ate ™/

13



for some functions a; ’(y). Now

where

dg,(g-)(x) = de(S'K <z,GE =j T =n)

OOK N . . .
= —/0 Y P(Sf<0,...,85 e —dy, SF>0.GF =)
=0

xdP(X{ 2z +y,Gf = jIX > y).
Further note that, for all [ > 0,
P(X{ >z +y,GF =X >y)

P(XE>z+y,GK=5|GK =)
P(XE >y|GE =1)

LA S K K .
LKpjl_#P(Xl <z+y Gy =1|Gy =)

1-3K, IKP(XK<y,G{(:HGU =1)

K pli — P(X < +y,GF =1|Gf =)
L P(XE >y|GE=1) '

On the other hand, for all 5 > 0,

PiX[>z+y G =1|X{ >y)
P(X{ >z +y,GF =1|GIf =j)P(G =)
PG§ =, X[ >y)
pjy — P(X{* <z +4y,G{ =1|Gff =)
P(XE > y|G =) ’

ie., for all [ > 0,

P(X{ > 24y, Gf =X > y)
K K
P(XE >y |GE =9)
KP(XK>y|GK_l) ]( 1 =22+y,Gy ‘ 1 —y)

Thus by (4.5) and (4.9) for j > 0,

dgy? (=)
o0 K ~ ~ ~ ~
- —/ Pu(SK <0,...,85 € —dy,§5 > 0,65 | =)
0 =0

14



de(X{(>m+y,GK=jIX{(>y)

_ _/OoiiP(Xl >y|GE =)
0 KP(XK>y’GK—l)

LS e —dy, 5K > 0,65 =1)

xdPj(X{ >z 4y, G =11 XE > y)

o K
= / ZLP(XK>?J‘G J) k(glf(<0’
0 nf P(X{ > y|GF =1) B

EZ ‘

for some real matrices A%, Similarly,

LSK e —dy, 8K > 0,GE =)

Zayl" )( ) z m/c)dm_ZA z' m/cdm’

dg,(co)( ) = AECO n) _m/cdm

for some vectors A(®") . Hence, for j > 0 and Re w > 0 we have

XkJrj(w) _ ZZA / e W i m/cdm

1=0n=1
J

= ZA,(;}I’(w)Z,
i=1

for some real matrices A (i =1,..., K), where

Thus
{X’W }k 0,j= 1_ZA

where A() are real (K + 1) x K matrices fulfilling
A =0 ifj<i.

Moreover,
Xio(w) = AT (),

(4.10)

(4.11)

(4.12)

for some vector A(). Though the LST x*(w) is defined only for Re w > 0, the r.h.s. of

(4.10) and (4.12) is well-defined and analytic whenever

welC and w#—1/c.

We denote this extension also by x*(w).

Define the matrix

aw) = { [ expl-wr) d@fi @)}

15
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According to Presman [23], Arjas [2] and Miller [17, 18] the following Wiener-Hopf factor-
ization

T— P(w) = T[T — x*" ()] T[T - X~ (w)] (4.13)

holds in the region —1/¢ < Re w < 0. Under stability condition (4.3), we get from
Asmussen [4], Prop. 4.2, and Miller [19], that for Re w < 0

Spr(x” (w)) < Spr(x~(0)) =1,
where Spr(A) is the spectral radius of the matrix A. Hence
+oo
DX W)= (I-x (W)
n=0
exists for all Re w < 0. Thus from (4.13), for —1/c < Re w < 0,

(I~ ®(w)) [T - x (@)] " = (I —xtw) T

and analytically extending the functions on both sides of this identity to the region
{w:Rew < 0,w # —1/c} we have

det(I — ®(w)) =0 = det(I—x"(w))=0.

Note that
P(w) =Y (w)Z(w) ,

where Z is a diagonal matrix with the following entries

1
Zoo(w) = (et 1)’
1 .
ZZZ(CU) = m ,’l:].,...,K,

on the diagonal and

K/ 4+ )w>m'+j

_ . K o —wzT a _ K
Yii(w)—pz‘j/o ™" dFj(z) = pij <H/5+/\—(1—a

for ¢ > 0 and

o0
Yoj(w) = p@/o e " dFy;(z) = py (

K/B+ A )“ﬂ' A
KIB+X—w A—w’

From Rouché’s Theorem for matrices (see de Smit [24]) the number of roots of the equation
det(I — ®(w)) =0 (4.14)

in the region Re w < 0 is the same as the number of poles of det ®(w) = det Y (w) det Z(w),

i.e., since det Y (w) has no poles for Re w < 0, it equals the number 7 of poles of det Z(w).

We have P
. K(K+1)
=1 =1 -
T —i—E J + 5

16



Denote the roots of equation (4.14) by wy, ..., w,.

Condition 1.

wi,...,w, are all distinct and different from —1/c.

As in de Smit and Regterschot [25] we see that this condition will be always satisfied
except possibly for countably many values of one of the parameters A, ¢, 5. In all numerical
examples that we analysed, this condition was satisfied. See also de Smit and Regterschot
[25] and Cinlar [9] for further comments on this condition. Let h; be the left eigenvectors

with eigenvalue 1 of the matrix ®(w;):
hi®(w;) = h; fori=1,...,r.
From (4.13) we have
Bal = @(wi)] = hall ™[I = x* (wi)] T — x ™ (wi)] = 0.,

i.e. also

R Uyt (wi)] = hITY, =11, (4.15)
where ¥ (w) here means the extension into Re w < 0. Taking the transpose on each side
of (4.15) yields, with the notation I; = TT—'h;,

X (wi)l; = 1;, i=1,...,r. (4.16)
Define the (K 4+ 1) x (1 + K(K + 1)) matrix
A= ( A0 o A o 4@ ... g A& )

with A given above and 0 denoting a column vector of zeros, and let

/

li=(lol(w) ED(w) UT%(w) - EDN(w) ),

where I; o denotes the first element of the vector /;. Further, define matrices L = (/;) and

L = (I;). Then, (4.16) is equivalent to
AL=1L. (4.17)

Let L be a square matrix of dimension r created from those rows of L which are not

multiplied by a zero column of matrix A, i.e., L = (row(L, k)) such that
E£1+@G—-1)(K+1)+ fori=1,...,Kand j=1,...,1i.

Condition 2.

The rank of matrix L is equal to 7.

The remark made after Condition 1 also applies here. From (4.11) the number of unknown
variables in a row of matrix A is equal to r. Thus by Conditions 1 and 2 the system of
equations (4.17) has a unique solution. Summarizing, from (4.7), (4.10) and (4.17) we get

the following theorem.

17



Theorem 4.2 Under conditions 1 and 2, the LST IE;(exp(—wW{), GK = j) is the j*!
entry of the vector

K
E;(exp(—wW3')) = > Ej(exp(—wW5"),G" = j) = T[T - x" (w)] ' [T - x*(0)]e ,
§=0
where xT(w) is given by (4.10) and (4.12), and the matrices A®) are obtained by solving
(4.17).

From Theorem 4.2, the mean waiting time IEWJ® can be obtained. We use the notation
K
XE::CE:Agi’
i=1
for 5 > 0 and

0
Xli—o = CA,(C) .

Corollary 4.1 The mean waiting time IEWJ is given by

EWS = eT[I— x"(0)] 'x7e,

where
K .
Xio(0) = A,(CO) , XE(O) = ZA;ZJ) for j > 0.
i=1
Proof. Note that
EWE = —% Ee Vs ‘w:o = —% e'TI[I — x T (w)] "} [I — X+(0)]e‘w:0 .
Further, %)ﬁ(u})‘wzo = —x . Moreover,
0= Su= S]]
= @I~ X @] T T ()] T (@]
and thus
Lt @] = ([ @) ot @) - x @)
dw X w=0 X W dw® ¥ X w=0
= M—xﬂmTLEXWM‘ [T —xT(0)] " = —[T - xT(0)] "X [T —x*(0)]".

dw

w=0

Remark 4.1 Note that all considerations can be further generalized to the case that
the distribution of C} is not necessarily an exponential distribution but has a density f
satisfying f(z + y) = >, hi(z)g;(y) for some functions h; and g;. This is in particular
the case for densities that are exponential polynomials, which is, by Borovkov [6], p. 105,

equivalent to the assumption that the LST of C} is rational.

18



We have used the numerical algorithm described in this section and calculated the

mean of the waiting time for a few different parameters of our model. We take x = 2 and

g =1
A=0,5 ¢=0,5|{A=0,5 ¢=0,5|2=0,3 ¢=0,5|2=0,3 ¢=0,3
a=20,5 a=20,3 a=0,5 a=20,5
K=3 0,1965 0,1325 0,0997 0,0336
K =4 0,2070 0,1555 0,1513 0, 0805
Table 1: EWX for several parameter values
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