Periodic points of nonexpansive maps: a survey
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Abstract

In this paper we survey the research on periodic points of non-
expansive maps. Since the pioneering paper [AK87] by Akcoglu and
Krengel in the nineteen-eighties remarkable progress has been made in
this field. This paper brings together the main results and it discusses
some of the open problems. At the same time we hope that it will be
an invitation for others to become acquainted with the subject.

1 Introduction

Let P be an n X n column stochastic matrix and let f : R* — R" be given
by f(x) = Pz for x € R". It is then well-known that one can use the theory
of Perron and Frobenius, concerning the eigenvalues of nonnegative matrices,
to predict the asymptotic behaviour of the sequence of iterates (f*(z)); for
x € R". Indeed one can show (see [NV99, Section 9]) that there exists an
integer p > 1 such that the sequence (f*?(z)); converges for each z € R"
to a periodic point of f, and moreover p is the order of a permutation on n
letters. There are two properties of the map f that cause this behaviour. To
begin the map f is nonnegative, that is to say it leaves the positive cone in
R™ invariant. Secondly, the map f is nonexpansive in the 1-norm, i.e.

|f(x) = f(y)l1 < ||z =yl forall z,y € R".

Here ||z||1 = >_, |2 denotes the 1-norm for z = (21,... , 2,).

Surprisingly often the nonexpansiveness property is sufficient to give this
type of asymptotic behaviour of the iterates. This is illustrated by the fol-
lowing remarkable theorem.

Theorem 1.1. Let || - || be a norm on R™ for which the unit ball is a poly-
hedron and let X C R" be closed. If f : X — X 1s nonexpansive with respect
to this norm and there exists n € X such that (|| f*(n)||)x is bounded, then the
following assertions are true.
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e For each v € X there exists p, = p > 1 such that (f*?(z)) converges
to a periodic point £ € X of f of minimal period p, that is fP(§) = &
and fI(€) # € for 0 < j < p.

e For each polyhedral norm there exists an integer p(n), which only de-
pends on the dimension, such that the minimal period of each periodic
point of f is at most p(n).

The main point of this theorem is that the nonexpansiveness property
causes the limit behaviour of the iterates of certain nonlinear maps to be
periodic. Important examples of polyhedral norms on R are the 1-norm and
the sup-norm: ||z]|ec = max; |z for z = (z1,... , zn)-

Theorem 1.1 raises a number of questions.

Question 1.1. For which nonexpansive maps f : X — X, with X C R,
is the asymptotic behaviour of the sequence of iterates (f*(x))r periodic for
each v € X?

Question 1.2. Given a polyhedral norm and a domain X C R", can one
determane the finite set of integers p > 1 for which there exist a nonexpansive
map f: X — X and a periodic point of f of minimal period p?

Of course, not every nonexpansive map exhibits this type of behaviour.
One can think, for instance, of a rotation under an irrational angle in the
plane. Such a map is nonexpansive with respect to the Euclidean norm. In
connection with the second question Nussbaum [Nus90] made the following
conjecture.

Conjecture 1.1 (Nussbaum). The minimal period of each periodic point
of a sup-norm nonexpansive map f: X — X, with X C R", is at most 2.

At present the conjecture is known to be true for the dimensions n =1, 2,
and 3 (see [LN92]).

The remainder of the paper has the following outline. In Section 2 we
give a brief history of Theorem 1.1 and provide some motivation to study
the iterative behaviour of nonexpansive maps. Section 3 is used to explain
the main ideas behind the proof of Theorem 1.1. It moreover discusses some
results concerning Question 1.2. In Section 4 we review the results on Ques-
tion 1.2 in case the polyhedral norm is the 1-norm. Subsequently we discuss
in Section 5 the connection between lattice homomorphisms and nonnegative
nonexpansive maps. We conclude with Section 6 in which some numerical
data is given.
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2 Historical remarks and motivation

Pioneering research on the behaviour of nonlinear nonexpansive maps was
done by Akcoglu and Krengel in the nineteen-eighties. In [AK87] they proved
Theorem 1.1 in case the polyhedral norm is the 1-norm. Their results however
did not provide an upper bound p(n). An upper bound was obtained by
Misiurewicz [Mis87]. In fact, he showed (in case of the 1-norm) that the
minimal period of periodic points of 1-norm nonexpansive maps f : X —
X, with X C R”, is at most n!2™, where m = 2". In his thesis [Wel87]
Weller generalised the result of Akcoglu and Krengel to polyhedral norms on
R". Thereafter various upper bounds for p(n) for different polyhedral norms
were derived by: Blokhuis and Wilbrink [BW92], Lemmens, Nussbaum and
Verduyn Lunel [LNVO01], Lo [Lo89], Martus [Mar89], Nussbaum [Nus90|, and
Sine [Sin90].

Further investigations on the periodic points of 1-norm nonexpansive maps
were made by Scheutzow. In [Sch88] and [Sch91] he showed that if f : R* —
R, with f(0) = 0, is a 1-norm nonexpansive map, then there exists an in-
teger p > 1 such that the sequence (f*?(z))x is convergent for each z € R",
and moreover p is a divisor of the least common multiple of the integers
1,2,...,2n. If in addition f leaves the positive cone in R" invariant, then p
divides the least common multiple of the integers 1,2,... ,n. Later his ideas
were further developed by Nussbaum and Scheutzow in [Nus91b] and [NS98].
The results from these papers eventually allowed Nussbaum, Scheutzow, and
Verduyn Lunel to give a complete characterization (in arithmetical and com-
binatorial constraints) of the possible minimal periods of periodic points of
1-norm nonexpansive maps f : R® — R” that leave the positive cone in R”
invariant and have zero as a fixed point (see [NSV98, Theorem 3.1]). Further
improvements for the possible minimal periods of periodic points of general
1-norm nonexpansive maps f : R* — R" were obtained by Lemmens in
[LemOla] (see also [Lem01b]). We will give a detailed overview of these result
in Section 4.

Let us now provide some motivation to study nonexpansive maps. One of
the reasons to study nonexpansive maps is that they arise in applications. For
instance, 1-norm nonexpansive maps can be used as models for diffusion pro-
cesses on a finite state space. (see [AK87] and [Nus97]). A simple example of
such a process is the following. Suppose there are n containers Cy, Cs, ... ,C,
each having an infinite volume. Let x; denote the amount of sand in container
C; and define x = (z1,...,2,) € R* to be the distribution vector. With each
container C;, where 1 < ¢ < n, a sequence of buckets (b;;);>1 is associated.
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For each bucket b;; the volume is denoted by a;;, and it is assumed that
Zaij:oo for 1 <i<n.
=1

We start the following procedure to pour sand from the containers into
the buckets. For each container C; pour sand into bucket b;; until either b;;
is full or C; is empty. If b;; is full, then pour the remaining sand in C; into
b;o until either b;y is full or C; is empty. Continue in the same manner until
C; is empty. If we let M;(x) denote the amount of sand in bucket by, after
the procedure we find that

k-1
M;i(x) = min{a;, max{x; — Z ai;,0}}, where a;o = 0.
=0

Now let v:{1,... ,n} x N— {1,... ,n} be a map. This map will serve as a
rule to pour sand from the buckets back into the containers. For each bucket
bir pour sand in container C. ). The new distribution y = (y1,...,¥n) of
sand in the containers is given by

yi= Y Ma(z) for1<j<n.
7(i7k):j

More formally, we can define a map f : K* — K" by
f(z); = Z My (z) for1<j<mnandzeK

'Y(izk):j

where K" = {z € R" : z; > 0 for 1 <i < n} is the positive cone in R*. The
map f is usually called a sand-shift map and it was introduced by Nussbaum
in [Nus97].

To see that sand-shift maps are 1-norm nonexpansive one can use a result
of Crandall and Tartar [CT80], which says: If f : X — X, where X = R*
or K", is integral-preserving, i.e. y . f(x); =Y . x; for all x € X, then f is 1-
norm nonexpansive if and only if f is order-preserving, i.e. f(x) < f(y) for all
x,y € X with x < y. Here one should read the inequalities coordinate-wise.

An interesting class of sup-norm nonexpansive maps is provided by another
observation of Crandall and Tartar [CT80]. If f : R* — R" is additive
homogeneous, i.e. f(x + hl) = f(x) + hl for all h € R and x € R, then f is
sup-norm nonexpansive if and only if f is order-preserving. Here 1 denotes
the vector in R™ with all coordinates unity. Examples are so called maz-plus
functions, which are defined as follows. Let A = (a;;) be a real n x n matrix
and let f: R® — R" be given by

f(x); = mjax{aij +z;} forl1<i<nandxzeR".
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Max-plus functions appear in various applications such as statistical mechan-
ics (see [Nus9la]) and the analysis of discrete event systems (see [BCOQ92],
[CGT79], and [Gun9g]).

Other, more general, examples of homogeneous and order-preserving maps
are maps ¢ : R* — R", where each component g(x); consists of finitely many
expressions of the form z;+c, where 1 < j < n and ¢ € R, which are joined by
A or V operations that are defined by a Ab = min{a, b} and a Vb = max{a, b}.
An example is the map ¢ : R® — R® given by

g(@)h = (22 +2) V (z3 A (21 — 3)),
g(x)g = (x1 + 1) A (x2 +5) A (23 — 6),
g(z)3 = (x1 V (23 — 3)) A ((x9 — 2) V3) for z € R3.

These maps are often called min-mazx functions. From Theorem 1.1 it follows
that the minimal period of periodic points of min-max functions ¢ : R* — R"
is bounded above by a number that only depends on the dimension n. It is
believed that for these functions the optimal upper bound is n choose [n/2]
(see [Gun98, page 25]), but at the present time no proof is known. A variety
of other applications of nonexpansive maps can be found in: [Nus90], [Nus88],
[Nus89|, and [NSO1]

Besides the applications there are theoretical reasons to be interested in
nonexpansive maps. One such reason is that there exists a connection be-
tween the iterative behaviour of nonexpansive maps and the geometry of the
underlying normed space (see [AGM89] and [DMR97]). Another reason is
that Question 1.2, concerning the possible minimal periods of periodic points
of nonexpansive maps, is related to nice problems in combinatorial geometry.

3 Limit sets of nonexpansive maps

To understand the iterative behaviour of a map f : X — X one has to study
the structure of the w-limit sets:

w(z) ={y € X :y = lim f*(z) for some integer sequence k; — oco}.

Indeed to prove Theorem 1.1 it is sufficient to show the following assertion.
If X C R"is closed, f: X — X is nonexpansive with respect to a polyhedral
norm || - ||, and (||f*(n)||)» remains bounded for some € X, then there
exists an integer p(n) such that the cardinality of w(z) is at most p(n) for
each z € X.

As X C R” is closed, the w-limits of f are closed. Moreover, since f has
a bounded orbit the nonexpansiveness of f implies that the w-limit sets of f
are bounded, and hence compact. Furthermore it is shown in [DS73] that for
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each x € X the restriction of f to w(z) is an isometry that maps w(x) onto
itself. With these observations in mind Misiurewicz [Mis87] formulated the
following property.

Definition 3.1. A set S in (R",|| - ||) has a transitive and commutative
family of isometries if there exists a commutative family I" of isometries (
with respect to || - ||) of S onto itself, such that for each x,y € S there exists
F,, el with F, ,(z) =y.

He then showed the following proposition (see [Mis87, Lemma 1]).

Proposition 3.1. Let || - || be a norm on R and let X C R™ be closed. If
f: X — X s nonexpansive with respect to this norm and there exists n € X
such that (|| f*(n)||)x remains bounded, then for each x € X the limit set w(x)
has a transitive and commutative family of isometries.

Thus, in order to prove Theorem 1.1 it is sufficient to give for each poly-
hedral norm on R™ an upper bound for the cardinality of compact sets in R
that have a transitive and commutative family of isometries.

In the next subsection we will see how an upper bound for the cardinality
of such sets is derived in case the polyhedral norm is the sup-norm. By using
the fact that for any polyhedral norm || - || on R™ the space (R",|| - ||) can
be isometrically embedded into (R™, || - || ), where m is sufficiently large, an
upper bound can be derived for any polyhedral norm.

3.1 Upper bounds for the cardinality of limit sets

We begin by recalling several definitions. A sequence z',2?,...,2™ in R" is
called an additive chain (with respect to the sup-norm) if

m—1
2" = 2™ loo = D [l2" = & |c-
i=1

The length of a sequence is the number of distinct points in it.
For each 4 = 1,... ,n a partial ordering <; on R" is defined by x <; y if
|7 = ylloo = ¥s — 7;. A sequence z',2?,... 2™ is called an i-chain if

el <t < < amor a™ < e <L <t

The set of all 7 for which the sequence z!,22%,... ,2™ is an i-chain is denoted
by I(z',2?,...,2™).
By using the definition of the sup-norm one can verify that o, 22,... , 2™ is

an additive chain if and only if I(x!,z%,... ,2™) is not empty. Furthermore, if
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a*, ... z% is a subsequence of an additive chain 2!, 22%,... , 2™ with 2% = 2!

and z** = 2™, then it is easy to show that
Iz, o 2h) = T2t ... 2™).
For each z,y € R” we define the set
W(z,y) ={z € R" : z,y, z is an additive chain}.

Further let W°(x,y) denote the interior of W(x,y) (with respect to the Eu-
clidean norm). The definition of W (x,y) is illustrated in Figure 1. It is not

Figure 1: The set W(z,y)

difficult to show that
We(z,y) ={z € W(z,y) : I(z,y,2) = I(y,z) and z # y}.
By using these definitions the following result can be stated.

Proposition 3.2. If S is a compact subset of R* and S has a transitive and
commutative family of sup-norm isometries, then W(xz,y) NS = @ for all
x,y €S with x #vy.

Proof. The argument goes by contradiction. So, suppose there exist z,y, z €
S with  # y and z € W°(z,y). Since x # y and y # z we can find £ > 0
such that ||z — 9|l > € and ||y — 2|l > €.

Define F to be the collection of additive chains in S that start with the
sequence x,y, z and that are such that the distance between any two consec-
utive points in the sequence is at least . Since S is a compact subset of R"
there exists an upper bound on the length of sequences in F, say r.

Now let 2! = x,2% =y, 2% = 2,... , 2" be a sequence of maximal length in
F. For integers 1 < k,l < rlet Fy; : S — S be a sup-norm isometry of the
commutative family that maps z* to 2!, and put 2™+ = F} 5(z").
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We claim that 22, 2%,... 2", 2" is again an additive chain and the sup-
norm distance between two consecutive elements in this sequence is at least
e. To prove this claim, we first show that the distance between consecutive
elements is at least . It suffices to verify that ||2” — 2"*!|| > . Since
z" = Fy,.(z') we have that

2" — 2™ = [[Fip(a') = Fia(Fip(2"))]leo
= ||F.(a") — Fi . (Fia(@"))]le
= |lz' — 2%[|,
so that
2" — 2" = ||z — 2%|| o0, (1)

and this shows ||z" — 27"!||s > &. From (1) it follows that

2% = 2" Mlee = [[F2(2") = Fr2(2")l

= |la* = 2"l
r—1

= Y ' =2
=1

r—1
= o =2 Moo+ D ll7" — 2™ oo
=2

r
= D lo" — 2" lw,
1=2
3 r+

and hence z2,23,... , 2" is an additive chain.
From the claim it follows that I(z? 23,...,2""!) is nonempty. Now let
i€ I(x?2®,... 2", As z € W°(z,y) we know that

I(2*,2%) = I(y,2) = I(2,y,2) = I(2', 2%, 2°).

Combining this with I(z? 23,... 2") C I(2? 23) gives i € I(z!, 22, 23).
Therefore the extended sequence z',z?%, ..., 2", 2" is an i-chain and hence
an additive chain in F. This however, contradicts the fact that r is maximal.

O

This result motivates the following definition. A set S in R” is called oo-
separated if W°(x,y) N S is empty for all x,y € S with x # y. By using this
geometric property one can now easily obtain cardinality estimates.

Proposition 3.3. If S is an oco-separated set in R™, then |S| < (n + 1)".
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Proof. Let 2,22, ... ,2™ be an additive chain S of length m. Then clearly

I(z',2*) D I(2z", 2%, 2%) D ... D I(z", 2%, ... ,a™). (2)
Observe that each inclusion in (2) is strict. Because if I(x!,2?,... 2%) =
I(z', 2%, ..., 21 for some 1 < k < m, then
I(z" 2k 2l = I(a', 2%, o5 = 1(ah, 2%, ... 2"
I(zt 2%, ... 2F) = (2t 2%) = I(a*, 2h).

Hence x' € We(z**1 2¥), which contradicts the fact that S is co-separated.
Since I(z',z%) C {1,2,...,n} we conclude that the length of every additive
chain in S is at most n + 1.

Now for z € S and 1 < i < n let h;(x) be the length of the longest
decreasing i-chain starting in x, and consider h : S — {1,... ,n 4+ 1}" given
by h(z) = (hi(x),... , hy(z)) for € S. Then for each z,y € S with x # y we
have that ||z — y||e = |2; — ¥;| > 0 for some 1 < i < n, so that h;(z) # hi(y).
Therefore h is injective and hence |S| < (n + 1)™. O

A combination of the Propositions 3.2 and 3.3 now shows that every com-
pact set in R” with a commutative family of sup-norm isometries has at most
(n + 1)" elements. This together with the observations at the beginning of
this section gives a proof of Theorem 1.1.

There exist several proofs of Theorem 1.1 in the literature. The proof
presented here is based on ideas that can be found in [BW92|, [LNVO01],
and [Mis87]. However, very different ideas were used by Martus in [Mar89).
Another nice proof of Theorem 1.1 is given by Nussbaum in [Nus90].

At this point one might wonder what the optimal upper bound for p(n)
in Theorem 1.1 is for a given polyhedral norm. This however, appears to
be a very difficult combinatorial geometric question. Of course Nussbaum’s
conjecture says that in case of the sup-norm the optimal bound for p..(n) is
2", But his conjecture is proved only for n = 1,2, and 3 (see [LN92]). The
best known general upper bound for p.(n) is n!2", which was obtained by
Martus in [Mar89].

In case of the 1-norm even less is known. Misiurewicz [Mis87] proved for
the 1-norm that py(n) < n!2™, where m = 2". Improvements on this bound
for n = 2,3,4 and 5 were given in [LNVO1]. Indeed it is shown there that
pi(n) < n™, where m = 2"7! for n > 2. But even in dimension 3 this
last bound is expected to be far from sharp. It is generally believed that
p1(n) = O(c") for some ¢ > 2.

The difficulty in case of the 1-norm is related to the fact that for a 1-norm
nonexpansive map f : X — R", with X C R”, there may not exist a 1-norm
nonexpansive map F': R* — R" that extends f (see [Kir43] or [WWT75]). For
the sup-norm however there always exists, by the Aronszajn-Panitchpakdi
Theorem [AP56], a sup-norm nonexpansive extension to the whole of R".
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3.2 Lower bounds for the maximum cardinality of limit
sets
To get some feeling for the optimal upper bound for p(n) one can try to find

examples of periodic points which have a large minimal period. To generate
such examples one can look for so called regular polygons.

Definition 3.2. A finite sequence of p distinct points 2%, 2%, ... ,2P~! in
(R™, || - ||) is called a regular polygon of size p or simply a regular p-gon if
||* T — 2| = ||a* — 2°|| for all k,1 >0,

where the indices are counted modulo p.

Of course, for every regular p-gon z°, z',...  2P~' in (R",|| - ||) the map f
given by f(z') = z*t1mdr for 0 <4 < p is an isometry with respect to || - ||,
and moreover f has a periodic point of minimal period p. On the other hand,
each periodic orbit of a nonexpansive map is a regular polygon. Therefore
the optimal upper bound for the integer p(n) in Theorem 1.1 for a given
polyhedral norm is precisely the maximum size of a regular polygon in R
under this norm.

An example of a regular 2"-gon in R” under the sup-norm is formed by the
set of vertices of the n-dimensional cube {z € R" : z; = +1 for 1 < i < n},
as the distance between any two distinct points in this set is 2. This example
shows that p(n) is at least 2" for each n > 1, and hence the upper bound
suggested in Nussbaum’s conjecture is sharp.

Regular polygons with an exponential size under the 1-norm are harder to
obtain. However, several constructions for such regular polygons were given
by Lemmens, Nussbaum, and Verduyn Lunel in [LNV01]. These constructions
yield the following result.

Theorem 3.1. For each n > 3 there exists a reqular polygon of size 3 - 2"
m R* under the 1-norm.

An example of a regular 12-gon in dimension 3 under the 1-norm is given

by the sequence 2%, —2% x', —at ..., 2° —2°, where
20 = (0,1,2), @& = (0,2,1),
2 = (1,2,0), #* = (2,1,0),
= (2,0,1), ° = (1,0,2).

Theorem 3.1 shows that p;(n) > 3-2"7! for each n > 3. At the present
time no regular p-gons in R", with p > 3-2"~! are known under the 1-norm.
Furthermore for n = 3 it can be shown that there exist regular polygons
under the 1-norm of size 1, 2, 3, 4, 5, 6, 7, 8, and 12 (see [Lem01la]), but it
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is an open problem to decide whether there exist regular polygons of size 9,
10, and 11 in this space. As an aside we like to mention that the maximum
size of a “trivial” regular polygon in R™ under the 1-norm, that is a regular
polygon in which any two distinct points are at the same 1-norm distance, is
not known. It is generally believed that the maximum size of such regular
polygons is 2n, but at present this is only proved for n = 1, 2, 3, and 4 (see
[BCL9g|, [GK&83], and [KLS00]).

4 Periods of 1-norm nonexpansive maps

In the previous section we have seen that not much is known for the possible
minimal periods of periodic points of 1-norm nonexpansive maps f : X — X
when X can be an arbitrary subset of R”. On the other hand, if X is the
whole of R" or X is the positive cone in R, then there are many detailed
results. In this section we will give an overview of these results. We begin by
discussing nonnegative 1-norm nonexpansive maps.

4.1 Nonnegative 1-norm nonexpansive maps

Motivated by the models for diffusion processes on a finite state space one
has studied in [Nus91b], [NS98], [NSV98], [NV99], and [Sch88] the set P*(n)
which consists of integers p > 1 for which there exist a 1-norm nonexpansive
map f : K* — K", with f(0) = 0, and a periodic point of f of minimal period
p. Surprisingly the set P*(n) admits a complete characterization in terms of
arithmetical and combinatorial constraints. Indeed it is shown in [NS9§]
and [NSV98| together that P*(n) is precisely the set of possible periods of an
admissible array on n symbols. Here an admissible array is defined as follows.

Definition 4.1. Let (L, <) be a finite totally ordered set and let X be a set

with n elements. For each ¢ € L let ¥; : Z — X be a map. The sequence
V= (V;:Z — X |i€L)is called an admissible array on n symbols if the
maps ¥; satisfy the following properties:

(i) For each i € L there exists an integer p; with 1 < p; < n such that the
map ¥; : Z — X is periodic with period p; and moreover 9;(s) # ¥;(t)
foreach 1 < s <t < p;.

(il) If my < mg < ... < m,y is an increasing sequence of distinct points
in L and

Ui (8i) = Uy, (Bi) for 1 <i <,
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then

T

Z(ti — s;) Z 0mod p, where p=ged({pm, : 1 <i<r+1}).

=1

Here gcd(S) denotes the greatest common divisor of the elements of the
set S. The period of an admissible array is said to be the least common
multiple of p;, where ¢ € L. Thus, if one defines for each n € N the set

Q(n) ={p € N: pis the period of an admissible array on n symbols}, (3)

then the characterization of the set P*(n) reads as follows.
Theorem 4.1 ([NSV98|, Theorem 3.1). P*(n) = Q(n) for each n € N.

The main idea behind the proof of the inclusion P*(n) C Q(n) is to relate
to each periodic point of a 1-norm nonexpansive map f : K* — K", with
f(0) =0, a so called lower semi-lattice homomorphism. Via this lower semi-
lattice homomorphism an admissible array can be constructed such that its
period corresponds to the minimal period of the original periodic point. Let
us explain this procedure in more detail.

4.1.1 Lower semi-lattice homomorphisms

We begin by collecting several definitions. On R" a partial ordering < is
defined by =z < y if x; < y; for each 1 <7 < n. In particular, we write x < y
if v <yand x # y. Of course, x < y if and only if y — x € K. Further for
z,y € R" we let x Ay be the vector in R" given by (x A y); = min{z;,y;} for
1 < ¢ < n. Similarly, x V y denotes the vector with coordinates (z V y); =
max{xz;,y;} for 1 <i <mn.

A set V C R” is called a lower semi-lattice if t Ay € V for all x,y € V.
If in addition, x Vy € V for all z,y € V, then V is called a lattice. If S
is a subset of R, then Vs denotes the smallest (in the sense of inclusion)
lower semi-lattice that contains S. The set Vs is called the lower semi-lattice
generated by S. A map ¢g:V — V, where V is a lower semi-lattice is said to
be a lower semi-lattice homomorphism if g(x)Ag(y) = g(xAy) forall z,y € V.
In a similar way lattice homomorphisms can be defined. The relation of these
notions with nonnegative 1-norm nonexpansive maps is given by the following
observation of Scheutzow [Sch88].

Theorem 4.2. Let f: K* — K" be a 1-nonexpansive map, with f(0) = 0,
and let £ € K* be a periodic point of f of minimal period p. If V C K" is the
lower semi-lattice generated by {f7(£) : 0 < j < p}, then the restriction of f
to V is a lower semi-lattice homomorphism that maps V onto itself.
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This results motivates a further study of periodic points of lower semi-
lattice homomorphisms. To do so several more notions have to be introduced.
If A is a subset of a lower semi-lattice V' in R® and there exists 3 € V such
that a < 3 for each o € A, we say that A is bounded above in V, and [ is
called an upper bound of A in V. By replacing < with > lower bounds can be
defined in the same manner. If A is bounded above in V', then there exists
a unique o € V upper bound of A in V such that v < « implies 7 is not
an upper bound of A in V', and « is called the supremum of A in V', which
will be denoted by supy (A). Analogously the infimum of A in V, denoted
infy (A), is said to be the unique lower bound « € V' of A such that no § > «
is a lower bound of A in V.

For each z in a finite lower semi-lattive V' the height of x, denoted hy (z),
is defined by

hy(x) = sup{k > 0 : there exist y°,... ,y* € V such that
yYP=randy’ <y for0<j <k} (4)
If no y € V exists with y < x, then we say that hy(z) = 0.

For every x € V put S, = {y € V : y < z}. An element z € V is called
wrreducible in V' if either S, is empty or

x > supy (Sa). (5)
If x € V is irreducible in V and S, is nonempty, then Iy (z) is said to be
Iy(x) ={i:x; > 2z}, where z=supy(S;). (6)

In case S, is empty, that is « = infy (V), then Iy (z) = {1,2,... ,n}.
Using these notions we can now state the following result of Scheutzow
[Sch88]. A proof of this version of the lemma can be found in [NS98].

Lemma 4.1. Let j € Z, let V be a finite lower semi-lattice in R, and let
f:V =V be a lower semi-lattice homomorphism of V' onto itself. If y € V
and f(y) # y, then y and f’(y) are incomparable, and hy(y) = hy(f(y)),
where hy(+) is the height function given in (4). If y is irreducible in V, then
f(y) is irreducible in V. If n €V and { € V are not comparable, and n and
¢ are irreducible in 'V, then

Iy(n) N 1y(¢) = 0. (7)

If y € V s irreducible in 'V and y is a periodic point of f of minimal period
p, then 1 < p < n.

The following technical definition forms the base from which the admissible
arrays will be constructed.
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Definition 4.2. Let W be a lower semi-lattice in R*, let ¢ : W — W be
a lower semi-lattice homomorphism, and let £ € W be a periodic point of
g of minimal period p. Let V denote the lower semi-lattice generated by
{g?(€) : 7 > 0} and let f be the restriction of g to V. A finite sequence
(y")m, C V is called a complete sequence for &, if it satisfies:

(i) For 1 <i<m we have 3" < &.
(i) For 1 <7 < m the element y" is irreducible in V.

(iii) If p; is the minimal period of ¥* under f, then p is the least common
multiple of {p; : 1 < i < m}.

(iv) For 1 < i < m we have hy(y') < hy(y"™), where hy(-) is the height
function given by equation (4).

(v) For1<i<j<m,thesets {f5(y*): k> 0} and {f*(y’) : k > 0} are
disjoint.

(vi) For 1 <i< j < m, the elements y° and y’ are not comparable.

The next result says that every periodic point of a lower semi-lattice ho-
momorphism has a complete sequence (see [NS98, Proposition 1.1]).

Proposition 4.1. If W is a lower semi-lattice inR*, g : W — W 1s a lower
semi-lattice homomorphism, and & € W s a periodic point of g, then there
exists a complete sequence for &.

Using the complete sequences one can now construct the admissible arrays.

4.1.2 Admissible arrays

Let W be a lower semi-lattice in R” and let g : W — W be a lower semi-lattice
homomorphism. Suppose that £ € W is a periodic point of g of minimal
period p. Let V denote the lower semi-lattice generated by {g?(£) : j > 0}
and let f be the restriction of g to V. Now by Proposition 4.1 there exists a
complete sequence ('), C V for £&. Moreover it follows from property (ii)
in Definition 4.2 and Lemma 4.1 that f7(y*) is irreducible in V for 1 <i < m
and j € Z, so that the set Iy/(f7(y")) (as defined in (6)) is nonempty for
1<i<mandj€Z. Letp; denote the minimal period of y* under f. Select
for 1 <i < mand 0 <j < p; an integer a;; € Iy(f(y*)), and define for
1 <7 < m and general j € Z the integer a;; by

a;; = a;x, where 0 <k <p;and j =k mod p,.

The semi-infinite matrix (a;;), where 1 < i < m and j € Z, is called an array
of £. Now there exists the following connection with the admissible arrays
on n symbols (see [NS98, Propostion 1.2]).
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Proposition 4.2. Let W be a lower semi-lattice in R*, g : W — W be
a lower semi-lattice homomorphism, and € € W be a periodic point of g of
minimal period p. Let (a;;), where 1 < i < m and j € Z, be an array of
§. Further, let L = {1,... ,m} be equipped with the usual ordering and let
Y={1,2,...,n}. If9=(¥;:Z — X |i€ L) is defined by

Y%i(j) =ai; fori€ L and j € Z,
then ¥ 1s an admissible array on n symbols with period p.

A combination of Theorem 4.2 and Propositions 4.1 and 4.2 yields the
inclusion P*(n) C Q(n). The other inclusion Q(n) C P*(n) is shown in
[NSV98]. In fact, the following stronger result is proved there.

Theorem 4.3 ([NSV98]|, Theorem 3.1). For each p € Q(n) there ewist
a sand-shift map f : K* — K" and a periodic point of f of minimal period p.

Although the set Q(n) is described in terms of arithmetical and combina-
torial constraints it is difficult to compute it. Despite this difficulty the set
Q(n) has been determined up to dimension 50 in [NV99] with the aid of a
computer. From these computations it follows that the set Q(n) has a highly
irregular structure, and therefore we do not think that there exists a simple
description of Q(n). In Table 1 in Section 6 we only show the largest elements
of Q(n) for 1 < n < 20. To conlude we like to mention that there are several
overviews of the results discussed in this subsection, see for instance [Nus97],
[Nus92|, and [VLOO].

4.2 1-Norm nonexpansive maps on the whole space

Another interesting set of periods that has been studied is the set R(n), which
consists of integers p > 1 for which there exist a 1-norm nonexpansive map
f:R* - R" and a periodic point of f of minimal period p. It turns out that
the results for nonnegative 1-norm nonexpansive maps say something about
the set R(n). More precisely, it is shown in [Sch91] and [Nus97] that R(n) C
P*(2n) for all n > 1, so that by Theorem 4.1 the inclusion R(n) C Q(2n)
holds for each » > 1. This upper bound however, is not optimal. A sharper
bound was obtained by Lemmens in [LemO0la] (see also [Lem01b]). We will
discuss this upper bound in this subsection.

To obtain a sharper bound one uses an observation, which follows from
the proof of the inclusion R(n) C P*(2n): For each p € R(n) there exist a
1-norm nonexpansive map f : K2 — K>, with f(0) = 0, and a periodic
point £ of f of minimal period p, such that f7(¢) € E*" for each 7 > 0,
where B = {(z,y) € K* x K* : x Ay = 0}. As E?™ is a lower semi-
lattice in K?" this observation and the results from the previous subsection



16 Periods of 1-norm nonexpansive maps

suggest that one should study the arrays of periodic points of lower semi-
lattice homomorphisms ¢ : W — W, where W C E*".

It turns out that one can derive two additional properties for such arrays.
These properties motivate the notion of a strongly admissible array on 2n
symbols, which we will give now. To exhibit the definition of a strongly
admissible array a final piece of notation is needed. If a € {1,2,...,2n},
then we write at =a+nif1<a<mn,anda™"=a—-nifn+1<a < 2n.

Definition 4.3. Suppose that (L, <) is a finite totally ordered set and let
Y ={1,2,...,2n}. Assume that ¥ = (¢ : Z — £ | i € L) is an admissible
array on 2n symbols, and let p; denote the period of ¥J;, for : € L. We call v
a strongly admissible array on 2n symbols if the maps ¥; satisty:

(i) If my, my are distinct elements of L and ¥,,,(s) = U, ()T, then

s—t#0 modw, where = gcd(Pmy,Pmsy)-

(ii) If my < mg < ... < m,y41 is an increasing sequence of distinct elements
in L such that

U, (5i) = ﬁmH—l (t;) for1<i<m,

and if 9., (u) = Vp,,, (v)T for some u, v € Z, then

T

Z(ti —5;)Z (v—u) mod p, wherep=ged({pm, :1<i<r+1}).

=1

The connection between the strongly admissible arrays and the arrays of
periodic points of lower semi-lattice homomorphisms g : W — W, where
W C E*, is given in the following proposition.

Proposition 4.3. Let W be a lower semi-lattice in E**, g : W — W be
a lower semi-lattice homomorphism, and € € W be a periodic point of g of
minimal period p. Let (a;;), where 1 < i < m and j € Z, be an array of
§. Further let L = {1,...,m} be equipped with the usual ordering and let
Y=A{1,....2n}. Ifv=(9;:Z — X |i€ L) is defined by

¥i(j) =ai; forie L andj € Z,
then ¥ 1s a strongly admissible array on 2n symbols with period p.

Now if one defines for each n > 1 the set

T(n) ={p € N: pis the period of a strongly admissible array
on 2n symbols}, (8)

then by using Proposition 4.3 the following theorem can be obtained.
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Theorem 4.4 ([Lem01b], Theorem 2.1). R(n) C T'(n) for each n € N.

The set T'(n) is computed for 1 < n < 10 in [LemOlal]. A list of the largest
elements of T'(n) for 1 < n < 10 is given in Table 2 in Section 6. It turns
out that 7'(n) is much smaller than Q(2n) and moreover that R(n) = T'(n)
forn =1,2,3,4,6,7, and 10. However, it is unknown whether the sets R(n)
and T'(n) are equal for all n € N. To determine R(n) up to n = 10 it only
remains to be decided whether or not 18 € R(5), 90 € R(8), and 126 € R(9)
(see [LemOlal).

5 Lattice homomorphisms and nonexpansive
maps

We saw in the previous section that there exists a strong connection be-
tween lower semi-lattice homomorphisms and nonnegative 1-norm nonexpan-
sive maps. It has been observed by Nussbaum in [Nus94] that this connection
can be extended to other nonnegative nonexpansive maps. In particular to
maps that are nonexpansive in a strictly monotone norm. A norm || - || on R"
is called strictly monotone if ||z|| < ||y|| for each 0 < x < y. More precisely
Nussbaum’s result can be stated as follows.

Theorem 5.1 ([Nus94]). If f : K* — K*, with f(0) = 0, is nonezpansive
m a strictly monotone norm and f is order-preserving, then the following
assertions are true:

e For each x € K" there ewists an integer p, = p > 1 such that (f*?(x)),
converges to a periodic point of f of minimal period p.

o If £ € K" is a periodic point of f of minimal period p, and V denotes
the lattice generated by {f7(£) : 0 < j < p}, then the restriction of f to
V' is a lattice homomorphism that maps V' onto itself.

e If & € K" is periodic point of f of minimal period p, then p € Q(n),
where Q(n) is given in (3).

It is known that in this theorem the assumption that f is order-preserving
is necessary. Indeed one can find a map f : K* — K", with f(0) = 0, which
is nonexpansive in the Euclidean norm, but not order-preserving, for which
the first assertion in Theorem 5.1 does not hold (see [Nus92, pp. 224]).

Further we like to remark that Theorem 5.1 can not be applied in case
the map f : K* — K" is nonexpansive in the sup-norm, since this norm is
not strictly monotone. In fact, there seems to be no relation between sup-
norm nonexpansive maps and lattice homomorphisms. Therefore we feel that
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different ideas are needed to obtain a good upper bound for the minimal
period of periodic points of sup-norm nonexpansive maps f : K* — K", with
f(0)=0.

Further Theorem 5.1 raises the following problem. Decide for a given
strictly monotone norm whether the set Q(n) is the optimal upper bound in
the third assertion in Theorem 5.1. At present there exist no results in this
direction, except for the 1-norm.

Another remark we like to make is that the second statement in Theorem
5.1 is suggested by the structure of the fixed point set of these nonexpansive
maps. More precisely, one can show that if f : K* — K", with f(0) =
0, is nonexpansive in a strictly monotone norm and f is order-preserving,
then {z € K" : f(x) = x} is a lattice (see [NSV98, Proposition 2.1]). This
statement is well-known and easy to see if in addition f is assumed to be a
linear map (compare [AAB93| or [Ran01]). Indeed, if z € {z : f(x) = z},
then as f is order-preserving z = f(z) < f(2V 0). Since 0 = f(0) < f(z Vv 0)
it follows that 2V 0 < f(z Vv 0). On the other hand, as f is nonexpansive
||f(2v0)|| < ||zV0]|. Therefore by using the fact that |- || is strictly monotone
we obtain f(zV0) =z V0. If we now apply the linearity of f, then it follows
from the expressions yVz = (y—2)V0+zand y Az = —((—y) V (—z)) that
{z: f(z) = x} is a lattice.

To conclude we like to mention that it is interesting to understand under
which additional assumptions a map f : R* — R*, with f(0) = 0, which
is nonexpansive in a strictly monotone norm, satisfies the first assertion in
Theorem 5.1. It is remarkable that even for linear maps there are no results
concerning this problem.

6 Numerical data

In the first table we list the largest element of Q(n) for 1 < n < 20. This
table is taken from [NV99|. The second table contains the largest element of
T(n) for 1 <n < 10 and is taken from [Lem0la]. We like to emphasize that
more detailed lists can be found in [NV99] and [Lem01a].
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