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Abstract

The Significance Analysis of Microarrays (SAM) software is a very practical tool for
detecting significantly expressed genes and controlling the proportion of falsely detected
genes, the False Discovery Rate (FDR). However, SAM tends to find biased estimates of
the FDR. We show that the same method with the data replaced by rank scores does
not have this tendency. We discuss the choice of the rank score function in view of the
power of this nonparametric multiple testing procedure. Moreover, we introduce a testing
formalization of the popular 2-fold rule. This testing procedure is more selective than
the basic procedure and it enables the scientist to make a stronger statement about the
selected genes than with the 2-fold rule. All procedures are illustrated with the example
one-class data available in the SAM software.

1 Introduction

Tusher et al. (2001) introduced Significance Analysis of Microarrays (SAM) as a sta-
tistical technique for finding significant genes in microarrays. This technique aims to
control the False Discovery Rate (FDR), which is the proportion falsely rejected null hy-
potheses among all rejected null hypotheses. Within the microarray framework a null
hypothesis usually corresponds to a statement like ’the gene is not (differentially) ex-
pressed’. Usage of SAM is enhanced by the free SAM Excel add-in that is available via
http://www-stat.stanford.edu/̃ tibs/SAM. SAM has the potential of becoming a stan-
dard technique and is already used in some medical studies (see e.g. Sørlie et al. (2001)).
SAM has, according to Pan et al. (2001) and Efron et al. (2000), one major disadvantage:
estimation of the number of significant genes is biased, especially when this number is
relatively large. This was our main motivation for developing Significance Analysis of
Microarrays using Rank Scores (SAM-RS).

There is a close connection between SAM and the FDR-based approach introduced by
Benjamini and Hochberg (1995). In fact, SAM is a version of this approach which controls
the critical levels for the multiple testing procedure in a specific way. Other approaches
for finding significantly expressed genes are: strong control of the family wise error rate
(FWE), which is discussed in Dudoit et al. (2000), and various modelling techniques (e.g.
mixture models: Pan et al. (2001), ANOVA: Wolfinger et al. (2001), empirical Bayesian:
Efron et al. (2001a)). Control of the FWE implies control of the probability that any
gene is falsely called significant under any mixture of expressed and non-expressed genes.
While, as opposed to the FDR-based approaches, strong FWE control really controls the
type I testing error, it can be too conservative. Hence, there is a trade-off between type I
error and lack of power. As for the modelling techniques: obviously, these may give more
insight in the structure of the set of genes and dependencies between gene expressions
than the direct multiple testing approaches, but they are more complex, often problem
specific and usually rely on assumptions on the distributions of the gene expressions.

SAM deals with dependency between gene expressions by assuming that the dependency
structure is the same under the alternative hypotheses as under the null hypotheses. A
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more complex approach to handle dependency was developed by Storey and Tibshirani
(2001) in the context of the positive FDR.

Within an empirical Bayesian setting Efron et al. (2001b) used a Wilcoxon rank-sum
statistic, because they prefer to use permutation based estimates of the null density above
using normal-theory. We show that within the SAM framework, use of rank statistics is
not only preferable because of their distribution-freeness property, but even more so to
obtain unbiased estimates of the expected number of falsely called genes. Hence, SAM-RS
allows for better control of the FDR. The choice for Wilcoxon rank scores may very well be
too discrete; using normal rank scores, which are inverse standard normal transformations
of the ranks, may be more sensible. It is well-known in nonparametric testing theory that
normal rank score statistics are asymptotically as efficient under normality as t-statistics.
More importantly, it was demonstrated by Klotz (1963) that even for small sample sizes
the efficiency of a normal scores test is high. Using an example data set provided by the
SAM software, we observe in section 4 that also in this dependent multiple testing setting
the normal rank score statistics do their work well for n = 8. A very practical point of
SAM-RS is that it easily fits into the SAM software.

In section 3 we propose two procedures that incorporate more selective criteria within the
statistical tests as opposed to the often used ‘2-fold rule’, which is applied outside the
multiple test as an extra criterion for genes to be called. The proposed procedures are
illustrated with example data sets.

We discuss SAM-RS for paired data and one-class data, and discuss how to adapt SAM-RS
to other data structures as unpaired two class data, quantitative response and censored
data in section 5.

2 SAM-RS for paired data

Microarray data analysis is usually concerned with a huge number of genes, denoted by p,
and a small number of experimental objects or conditions (like persons or time since start
of treatment), denoted by N . In case of one-class data, Zij is the gene expression for the
ith gene and jth experimental object. For paired data, we define Zij = Xij−Yij , where Xij

and Yij are gene expressions for the same experimental objects, but under one different
condition, for instance before and after treatment. Moreover, let Zi = (Zi1, . . . , ZiN ).
Denote the distribution function of Zij , j = 1, . . . , N by Fi having mean µi. SAM and
SAM-RS are used for multiple testing of

H0i : µi = 0 against H1i : µi 6= 0 (1)

for i = 1, . . . , p.

2.1 SAM algorithm for rank statistics

The SAM procedure is described in Tusher et al. (2001) and in a more general setting in
Chu et al. (2001). Let us now discuss SAM-RS which is highly similar to SAM.

Let T be a linear signed-rank statistic:

T (Zi) =

N
∑

j=1

sgn(Zij)a(R(|Zij |)), (2)

where R(|Zij |) denotes the rank of |Zij | in Zi and a(u) is a rank score function. Function
a(u) = u results in the popular Wilcoxon signed-rank statistic. First, compute ri = T (Zi)
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for i = 1, . . . , p. Let r(i) be the ith order statistic in ~r = (r1, . . . , rp). Now, obtain B
permutation versions of ~r by multiplying the scores within one column by -1 or +1 with
equal probability. The correlation structure between genes is maintained by using the same
multiplication factor within an experimental object. Denote the realization of r(i) in the

bth sign permutation version by rb
(i) and calculate expected null scores r̄(i) =

∑B
b=1 rb

(i)/B.

Then, estimate the number of rejections under H0i for given threshold t:

Null(t) = med
b=1,...,B

(

#{i : |rb
(i) − r̄(i)| > t}

)

, (3)

where medb=1,...,B denotes the median over all permutations b = 1, . . . , B. Similarly, we
have the actual total number of rejections for given t:

Total(t) = #{i : |r(i) − r̄(i)| > t} (4)

. Changing t allows for control of the proportion of false rejections, the False Discovery
Rate,

FDR(t) =
False(t)

Total(t)
=

π̂0Null(t)

Total(t)
, (5)

where π̂0 is the estimated proportion of true null hypotheses. Hence, the higher π̂0,
the larger the proportion of genes falsely called under the null hypotheses. FDR(t) is
calculated for several values of t. When FDR(t′) is at the aimed level for t = t′, those
genes for which |r(i) − r̄(i)| > t′ are called significant.

SAM-RS differs from SAM by using a linear signed-rank statistic instead of the t-type
statistic

di =
Z̄i

si + s0
,

where Z̄i =
∑N

j=1 Zij/N , si = {
∑N

j=1(Zij − Z̄i)/(N(N − 1))}1/2 and s0 is a fudge factor
(see Chu et al. (2001) for its definition). The fudge factor is a positive number; adding it
to si prevents di from becoming very large when si is very small. Substitution of r by d
in the procedure above results in the SAM procedure.

Originally, SAM used upper bound π̂0 = 1. The latest SAM software (versions 1.10 and
higher) defines

π̂0 = min

(

1,
#{ri ∈ (q25, q75)}

0.5p

)

, (6)

where q25 and q75 are the 25% and 75% quantiles of the joint permutation distribution of
the ri’s. The choice for these quartiles and corresponding coefficient of p : (75−25)/100 =
0.5 is rather arbitrary. Other pairs of quantiles (qλ∗100, q(1−λ)∗100) can be used. Storey
and Tibshirani (2001) deal with finding the optimal value of λ with respect to a mean
square error criterion. In order to adapt to the SAM software, we apply estimation (6) in
SAM-RS too.

In principle, estimation of the proportion rejections under the null hypotheses does not
have to be based on the median as in (3), but instead may also be based on the average:

Null′(t) =
1

B

B
∑

b=1

#{i : |rb
(i) − r̄(i)| > t}.

In SAM, use of median based Null(t) instead of Null′(t) makes the estimation more robust
against outliers in the data. Since the rank transformation in SAM-RS already results in
robustness against outliers, we could use Null′(t) instead of Null(t) in SAM-RS with the
benefit of a more precise estimation. However, to stay within the framework of the SAM
software, we also use (3) for SAM-RS.
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2.2 Bias of SAM and unbiasedness of SAM-RS

With an example Pan et al. (2001) showed that SAM may result in biased estimates
FDR(t). This is due to bias in estimations of both Null(t) and Total(t). When Zij and
Zi′j originate from two different distributions F0 and F1, then the expected (with respect
to F0 and F1) permutational distributions of di and di′ are not the same. Hence, because
the distribution of d(i) depends on the joint distribution of all di’s, we have, under equally
likely +1, -1 permutations

E
[

d(i)|all Zij from F0

]

6= E
[

d(i)|Zij from F1 6= F0 for some i
]

, (7)

where expectation is computed first with respect to the distributions of the Zij ’s and
then with respect to the permutational distribution of the signs. Therefore, d(i)’s for
which the corresponding Z’s originate from F0 are compared with wrong average scores
d̄(i) =

∑B
b=1 db

(i)/B, since for some b’s the Z’s corresponding to db
(i) may not originate

from F0. Then, the number of d(i)’s for which |d(i) − d̄(i)| > t and the median of the

number of db
(i)’s for which |db

(i) − d̄(i)| > t are too large. Therefore, inequality (7) affects

both Null(t) and Total(t).

Since the permutational distribution of rank score statistic ri does not depend on the
distribution functions of the Zij ’s, we have, under equally likely +1, -1 permutations

E
[

r(i)|all Zij from F0

]

= E
[

r(i)|Zij from F1 6= F0 for some i
]

. (8)

Hence, estimation of Null(t) is unbiased in SAM-RS. Moreover, comparing r(i) with r̄(i)

to obtain Total(t) is fair, because r̄(i) does not depend on the distribution functions of
the Z’s.

2.3 Choice of rank score function

Definition (2) gives us the freedom to choose a suitable rank score function a(u). Wilcoxon
rank scores, i.e. a(u) = u, are the most commonly used rank scores in nonparametric
testing. However, the resulting statistic might be too discrete. Normal rank score statistics
are less discrete and slightly more powerful against normal alternatives. These scores are
based on the inverse standard normal cumulative distribution function Φ−1. The normal
signed-rank scores are defined as:

a(u) = Φ−1
(1

2
+

1

2(N + 1)

)

.

It is also possible to use locally most powerful rank statistics for an arbitrary null density
f0, as developed in (Hájek et al., 1999, sec. 3.4). For example, one might consider to
estimate f0 with a normal mixture as in Pan et al. (2001), and base the rank scores
on this estimate. A disadvantage of this approach is the need to model f0. Moreover,
although testing with those rank scores is still distribution-free, the whole procedure is
not truly distribution-free anymore, because the scores are based on f̂0.

3 The k-rule: A more selective procedure

Instead of testing µi = 0, one might consider a more selective procedure by testing
simultaneously

H−

0i : µi − ksi = 0 against H−

1i : µi − ksi > 0 and

H+
0i : µi + ksi = 0 against H+

1i : µi + ksi < 0.
(9)

4



This procedure tends to select genes with means well separated from zero in terms of the
number of standard errors with higher probability than those of which the means are close
to zero. Similar to (4), the rejection region consists of those genes for which

r−(i) − r̄−(i) > t or r+
(i) − r̄+

(i) < −t,

where r−(i) (r̄−(i)) and r+
(i) (r̄+

(i)) are defined as r(i) (r̄(i)) in section 2.1, but here these (aver-

age) signed-rank score sums are computed from data Zij −ksi and Zij +ksi, j = 1, . . . , N,
respectively. This is a not an exact, but instead conditional distribution-free procedure:
given si, we have, under the null hypotheses, equally probable sign permutations. Hence,
equality (8) is only true when expectations under F0 and F1 are computed condition-
ally on the observed si’s. Also, using the sample standard error might be slightly unfair
for some genes, because subtracting si does not have the same consequences for genes
with symmetrical distributions as for those with very skewed distributions. However, it
is good to have a procedure that selects genes with small standard errors relatively more
frequently than those with large standard errors, without making (further) assumptions
on the underlying distribution functions. We refer to this procedure as k∗SE SAM-RS,
where ’SE’ stands for standard error.

Alternatively, one could standardize gene expressions first and then test the null hypothe-
ses above with si = 1 for all i. In fact, standardization has no effect on the rank scores
within one gene. Hence, one can immediately test simultaneously

H−

0i : µi − k = 0 against H−

1i : µi − k > 0 and

H+
0i : µi + k = 0 against H+

1i : µi + k < 0.
(10)

Then, selection of the genes is solely done on the basis of deviation larger than k from zero.
This procedure is exact distribution-free. We refer to it as k SAM-RS. When applied on
log2-ratios of gene expressions, k SAM-RS for k = 1 is the testing analogue of the popular
2-fold rule, which is available in the SAM software. In Sam version 1.10 and higher one
may define a threshold fold value that is used as an extra selection criterion outside the
statistical test.

Use of k∗SE SAM-RS and k SAM-RS within SAM software is somewhat more complicated
than for SAM-RS, because the current SAM software does not do one-sided testing. Also,
control of the FDR(t) has to be done simultaneously on the set of genes for which H−

0i is
rejected and on the set of genes for which H+

0i is rejected. Finally, the formula for π̂0 as
defined in (6) is incorrect, because it is based on two-sided testing of µi = 0. However,
let us shortly explain how one can still apply k∗SE SAM-RS, and hence also k SAM-RS,
within the SAM software.

First, one needs to create two data sets: D− with ksi subtracted from Zij and D+

with ksi added to Zij . Then, apply signed-rank statistic (2) to both data sets. Let
False−(t),Null−(t) and Total−(t) be the one-sided equivalents of False(t),Null(t) and
Total(t), which are defined in section 2.1. Rejection criteria rb−

(i) −r̄−(i) > t and r−(i)−r̄−(i) > t

determine the number of positively called genes for the bth sign permutation under H−

0i,
Null−(t), and the total number of positively called genes for the data, Total−(t), respec-
tively. When one uses a symmetric rank score function, we have in expectation, under
the sign permutation distribution Null−(t) = Null(t)/2, because for every permutation
of the signs, there is one equally likely sign permutation for which the order of the rank
statistics inverses and hence also the number of negatively and positively called genes in-
verses. SAM software does not return Null(t), but it does return False(t) and (incorrect)
π̂0. From (5) we observe that Null(t) is found by dividing False(t) by π̂0.
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Next, we have to compute the number of false rejections in favor of H−

1i, False−(t) =
π̂−

0 Null−(t), where π̂−

0 is interpreted as one minus the proportion true H−

1i. Analogous
to (6) we may estimate

π̂−

0 = min

(

1,
#{r−i ∈ D− : r−i ≤ q75}

0.75p

)

.

Unfortunately, this number can not be computed from the SAM software output. How-
ever, one might use π̂−

0 = 1 as an upper bound. In many cases this will not be so bad,
because the proportion true H−

1i is often small due to the fact that H−

1i : µi − ksi > 0 is
a rather strong statement when k > 0.

For finding Total−(t) we use the number of positively called genes in D−, which is returned
by the SAM software. Then,

FDR(t) =
False−(t) + False+(−t)

Total−(t) + Total+(−t)
,

where False+(−t) and Total+(−t) are obtained from the analysis of D+. Repeating this
procedure for several values of t enables one to control the FDR(t) for multiple simulta-
neous testing of (9).

4 Example data sets

We discuss two example data sets: firstly, a simulated data set and secondly, the example
one-class response data set provided in the SAM software. Like in the output of SAM,
we report FDR(t) in percentages.

The simulated data set consists of 500 gene expression data for 8 experimental objects.
The first 400*8 values of Zij are drawn from standard normal distribution F0 = N(0, 1),
whereas the last 100*8 values are drawn from Gamma distribution F1 = Γ(4, 1/8), which
has mean 1/2. Hence, a proper procedure should find approximately 100 significantly
expressed genes.

Suppose that the target FDR is 1%. Running SAM on the simulated data set results
in a FDR(t) = 1.20% and False(t) = 0.76 when selecting 69 genes. SAM-RS finds 100
significant genes at FDR(t) = 0.77% and False(t) = 0.77. SAM returns FDR(t) = 5.19%
and False(t) = 5.29 when selecting 102 genes. Hence, in this case, the skewness of F1

leads to dramatic overestimation of False(t) and FDR(t) when using SAM.

Next, we compare the results of SAM and SAM-RS for the example one-class response
data set in the SAM software. This data set consists of 1000 gene expression data for
8 experimental objects. For both SAM and SAM-RS we used 500 sign permutations to
obtain False(t) as outlined in section 2.1. We show that SAM-RS selects less genes than
SAM, because it does not underestimate FDR(t), but it finds the important ones. Using
a target FDR of 1%, SAM selects 401 genes for t = 0.533, with FDR(t) = 1.227% and
False(t) = 4.920. SAM-RS selects 360 genes for t = 1.085, with FDR(t) = 1.017% and
False(t) = 3.660. Figure 4 demonstrates that SAM-RS, which returns 172 negatively
expressed genes, finds all top genes among the 207 negatively expressed ones returned
by SAM. This figure shows that SAM-RS does a good job with respect to SAM, because
the 35 negatively expressed genes not returned by SAM-RS are the ones that have the
least negative scores in SAM. We see a similar picture for the positively expressed genes.
In this example, the bias in the estimation FDR(t) by SAM is not large. SAM would
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Figure 1: Number of most negatively significant genes called by SAM against the fraction of
those genes also found by SAM-RS

select 363 genes, hence almost the same number as SAM-RS, for FDR(t) = 0.806% and
False(t) = 2.926. Hence, the bias in the estimation of FDR(t), with respect to the unbiased
SAM-RS FDR(t) is approximately 1.017-0.806=0.211, which corresponds to a relative
underestimation of (0.211/1.017) ∗ 100% = 21%.

We also applied k SAM-RS for k = 1 to SAM’s example one-class data set. Using
t = 0.734 in both D− and D+ and using upper bounds π̂−

0 = 1 and π̂+
0 = 1, we found

False−(t) ≈ Null−(t) = 1.824/(0.228 ∗ 2) = 4 and False+(t) ≈ 1.984/(0.248 ∗ 2) = 4. This
procedure finds 29 positive significant genes in D− and 27 negative significant genes in
D+. Therefore, FDR(0.734) ≈ (4+4)/(27+29) = 14.3%. In this case, it is not possible to
obtain a smaller value of FDR(t) due to the discreteness of the test as discussed in section
2.3. Finally, we applied the threshold k = 1 after the testing procedure to those 360 genes
selected by SAM-RS in the previous example. This procedure, which corresponds to the
2-fold rule when the data are log2 ratios, results in 160 genes called. The latter procedure
is less selective than k SAM-RS, because log2 ratios of those genes called need not to be
significantly larger than 1 or smaller than -1. Since the additional criterion is not included
within the test, control of FDR(t) is with respect to hypotheses (1). Hence, control of
FDR(t) with respect to the entire selection procedure is somewhat lost.

5 Other data structures

Let us shortly discuss some other data structures on which SAM-RS and the k-rules can
be applied. All rank statistics are discussed and defined in Hollander and Wolfe (1999).

In case of unpaired two-class data one should use a two-sample linear rank statistic like
the Wilcoxon rank-sum statistic. In a combined ordered sample, this is the sum of ranks
corresponding to one of the two samples. Like for the one-class data it may be better
to use a less discrete statistic like the Van der Waerden (normal scores) statistic which
applies an inverse normal transformation to the ranks. Then, the joint null distribution
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is obtained by permuting columns instead of signs. For class sample sizes n1 and n2 there
are

(

n1+n2

n1

)

equiprobable permutations.

When the data are quantitative and one wants to test for correlation between response
and the experimental conditions, Kendall’s rank correlation coefficient or the less discrete
Spearman’s rank correlation coefficient can be used. In case of quantitative data, the
experimental conditions correspond to a natural ranking, for instance ranking by time or
temperature. Kendall’s rank correlation coefficient is based on the number of inversions,
which is the number of pairs (i, j) : i < j < N for which response Yi is smaller than
response Yj , whereas experimental condition Xi is larger than condition Xj . Spearman’s
rank correlation coefficient is based on the sum of squares of differences between the ranks
of the experimental conditions and the corresponding ranks of the responses. Then for
both rank correlation coefficients we have, under the null hypothesis: ’no rank correlation’,
that all N ! permutations of the columns are equally likely.

For randomly censored two-class survival data, the Log-rank (or Mantel) statistic is the
most common option. This conditional test compares the number of failures of one of
the two samples with the expected number of failures under the null hypothesis given the
total number of failures within the combined sample at each failure time. In this case a
slight problem may occur: rank scores will not be the same for every gene, because these
are computed conditionally on the censoring structure within each gene. If the censoring
distributions are the same for each gene, then equality 8 is still true and the FDR(t)
computation stays unbiased. If not so, FDR(t) is (slightly) biased.

6 Discussion

We have observed that SAM-RS is a useful alternative to SAM. Due to its distribution-
freeness it returns unbiased estimates of the FDR and it is robust against outliers in the
data. Moreover, it fits nicely in the SAM software; one only has to transform the data
to rank scores. When N is too small, SAM-RS might be too discrete and not powerful
enough. Exact definition of ’too small’ depends on the data structure, on the test statistic
and on the proportion truly expressed genes in the data. Distributions of signed-rank and
rank correlation statistics are often less discrete than those of two-sample rank statistics
because of the larger numbers of permutations, 2N and N ! versus

(

N
n1

)

. We recommend to
use normal scores based rank statistics instead of Wilcoxon-type statistics, because their
distributions are less discrete. We observed that N = 8 was sufficiently large to detect
top genes with SAM-RS in the example one-class data set provided by the SAM software.

The new procedures k SAM-RS and k∗SE SAM-RS include more stringent selection crite-
ria in the test. These procedures result in sets of genes with mean expressions significantly
larger than k or k∗SE. Using a threshold k or k∗SE outside the test, which corresponds
to k-fold rules for logarithmic data, results in sets of genes with mean expressions that
are larger than this threshold and significantly larger than zero. Hence, application of k
SAM-RS or k∗SE SAM-RS instead of the additional threshold procedure gives the scien-
tist the opportunity to make a stronger statement about the selected genes. Needless to
say, the k and k∗SE criteria can also be incorporated into ’normal’ SAM.

Good news is that SAM-RS can easily be carried out by using the SAM software. All
that is required is preprocessing of the data by transformation of the Zij ’s to signed-rank
scores. The author has written a Mathematica notebook that deals with this transfor-
mation and with exchanging the gene expressing data with Excel, which is the plat-
form for the SAM software. This notebook is freely available from the author’s web-site:
http://www.win.tue.nl/̃ markvdw.
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