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Abstract

The goal of this paper is to describe metastability and nucleation for a local version
of the three-dimensional lattice gas with Kawasaki dynamics at low temperature and low
density.

Let A C Z3 be a large finite box. Particles perform simple exclusion on A, but when
they occupy neighboring sites they feel a binding energy —U < 0 that slows down their
dissociation. Along each bond touching the boundary of A from the outside, particles
are created with rate p = e 8 and are annihilated with rate 1, where j is the inverse
temperature and A > 0 is an activity parameter. Thus, the boundary of A plays the role
of an infinite gas reservoir with density p.

We consider the regime where A € (U, 3U) and the initial configuration is such that A
is empty. For large 3, the system wants to fill A but is slow in doing so. We investigate
how the transition from empty to full takes place under the dynamics. In particular, we
identify the size and shape of the critical droplet and the time of its creation in the limit
as ff — oo.
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1 Introduction and main results

In this paper we study the metastable behavior of the three-dimensional lattice gas subject
to Kawasaki dynamics. We consider the “local version” of the model, where particles live on
a finite box and are created respectively annihilated at the boundary of this box in a way
that reflects an infinite gas reservoir. Our main results generalize part of those obtained in
den Hollander, Olivieri and Scoppola [5], [6], where the two-dimensional version of the same
model was considered. In particular, we identify the size and shape of the critical droplet and
the time of its creation in the limit of low temperature and low density.

Our results are comparable with those obtained by Ben Arous and Cerf [2] for the three-
dimensional Ising model on a finite box with periodic boundary conditions subject to Glauber
dynamics. However, Kawasaki dynamics has its own characteristics, which needs to be handled
in the description of the nucleation. In particular, particle conservation on the interior of the
box represents a serious obstacle in controlling the growing and the shrinking of droplets.
Moreover, it turns out that particles can move along the border of a droplet more rapidly
than they can arrive from the boundary. This leads to a shape of the critical droplet that is
more complicated than the one for Ising spins under Glauber dynamics.

Obtaining a complete description of the typical nucleation path, as given in [2] for Glauber
dynamics, turns out to be a rather difficult task for Kawasaki dynamics. In the present paper
we do not obtain a complete description, but we do discuss in detail the geometry of the critical
droplet representing the “gate” for the transition from the metastable state to the stable state.
In this connection, a key role in our analysis is played by the discrete isoperimetric inequalities
in Alonso and Cerf [1]. With the help of the latter we are able to show that there is a special
set of values for the number of particles in the box, which we call magic numbers, such that
all optimal paths realizing the minimax between any pair of consecutive magic numbers have
a “focalization property”, namely, they must visit the special set of configurations where the
particles form a quasi-cube with a quasi-square attached to one of its faces. This focalization
property allows us to identify the gate for the nucleation.

Our main results are Theorems 1.55 and 1.58 in Section 1.6. In Sections 1.1-1.2 we define
the model, in Sections 1.3-1.4 we provide the heuristics behind the metastable behavior, while
in Section 1.5 we list the definitions and notations that are necessary to formulate the theorems
and that are used throughout the paper. In Section 1.7 we formulate some open problems.
Section 2 contains the preparations and observations that form the background of the paper,
while Section 3 provides the proof of the theorems. Section 4 looks at the motion of particles
along the border of the droplet and contains some further reflections on the geometry of the
critical droplet and on the typical nucleation path.

1.1 Hamiltonian and equilibrium

Let A C Z2 be a large finite box, let

07N = {zeA: Jy¢A: |ly—z| =1},

OtA = {z¢A: JyeA: jy—z| =1}, (1.1)

be the internal respectively the outer boundary of A, and let A_ = A\ 9~ A be the interior of
A. With each site z € A we associate an occupation variable n(z), assuming the values 0 or
1, indicating the absence or presence of a particle at z. A lattice configuration is denoted by
ne X ={0,1}* For ACA, let

Na(n) =) n(z) (1.2)

TEA



be the number of particles in A. Each configuration n € X has an energy given by the
Hamiltonian

Hn)=-U Y n@)nly) + ANa(n), (1.3)
(wy)eA”
where
A ={(z,y): z,ye A_} (1.4)

is the set of unoriented bonds in A_. The interaction, which is acting only inside A_, is a
binding energy —U < 0 for each pair of nearest-neighbor particles. In addition, there is an
activity energy A > 0 for each particle in A. (Note that H — ANy, is the Hamiltonian in
A_ with 0 boundary conditions.)

The grand-canonical Gibbs measure associated with H is

e—BH(n)
p(n) = 7 ned, (1.5)

with

Z =Y e PHm, (1.6)

nex

1.2 Kawasaki and Glauber dynamics

We next define Kawasaki dynamics on A, with a boundary condition that mimicks the effect
of an infinite gas reservoir outside A with density

p=eP (1.7)

Let b = (x — y) denote an oriented bond, i.e., an ordered pair of nearest-neighbor sites.
Define
oA = b= (z —y): x€d AycdtA}
A" = {b=(r—y): zcdtAyc o A}, (1.8)
Averie = {b=(z —y): z,y € A},

and put A*orie = g*A%ut | 9* A" U A% T, Two configurations 7,7’ € X with n # 7 are
called communicating states, written 1 <% 5/, if there exists a bond b € A* °"* such that
n' = Tyn, where Tyn is the configuration obtained from 7 as follows:

_p= (J,‘ _)y) c A% orie,
n(z) if z# 2y,

Tin(z) = nlz) ifz=vy, (1.9)
n(y) ifz =1z,
b= (o —y) € A
i = { ) 22 a1
- b= (z—y) € PA™
Tyn(z) = { ;’(z) o7 zj (1.11)



Note that, for b € A® ™ T,n is invariant under a change of orientation of b, while for
b€ 0*A°" and b € 0*A™ it is not.

The Kawasaki dynamics is defined to be the discrete-time Markov chain (7:)ien, on X
given by the transition probabilities

1 BH@)-Hm]+ ! K
PK(n,n,): ‘A*,ome|e 1f777é77a77‘_> 777
0 itn#n.nH 0,

and PX(n,n) =1 — >t PX(n,n'), where [a]; = a V0. This is a standard Metropolis
dynamics with an open boundary: along each bond touching 8~ A from the outside, particles
are created with rate p and are annihilated with rate 1, while inside A particles are conserved.
Note that any change of particles inside 0~ A does not involve any change in energy because
the interaction acts only inside A_ (see (1.3)).

Most of the present paper deals with Kawasaki dynamics. However, occasionally we will
also need Glauber dynamics, which is defined to be the discrete-time Markov chain (7:)ien,
on X given by the transition probabilities

(1.12)

1 —BHM)-Hm+ if / G
PC(n,q) ={ ™° it # wam (1.13)
0 ifn#n',n "0,
and P%(n,n) =1 — > n P%(n,n'), where now 1 # 1’ are communicating states, written

n <Y 1/, if there exists a site £ € A such that ' = T,n, where Tyn is the configuration
obtained from 7 as

o) ={ 1%, 215 (10

On A _, Kawasaki dynamics exchanges particles between nearest-neighbor sites, while
Glauber dynamics creates or annihilates particles at single sites. Thus, on A_, Kawasaki
dynamics is conservative, while Glauber dynamics is non-conservative. It is easy to verify
that both are reversible w.r.t. the grand-canonical Gibbs measure defined in (1.5).

1.3 Metastability: static heuristics
We will be interested in the regime
A € (U,30), B — oc. (1.15)

To see why this regime is metastable, we argue as follows.
In the grand-canonical Gibbs measure the configuration can be represented in terms of

spin variables. Indeed, after we make the substitution n(z) = H’+(w) in (1.3), where o(z) €
{—1,+1} is the spin variable, we can write
H(O’) - U Z 1+g(5”) 1+<27(Z'l) +A E 1+;(¢”)
(z,y)eA* TEA
T o(@aly) — (2%2) 3 o(z) + constant + boundary terms.
(z,y)eA* z€eA
(1.16)

This is a spin Hamiltonian with pair interaction J = % and magnetic field h = #. The

magnetic field vanishes when A = 3U, which corresponds to the condensation point of the



lattice gas. Indeed, at this condensation point the density of the liquid respectively the gas

phase are

) = O g = LB (117)

where m*(8) is the spontaneous magnetization in the spin language. We have m*(8) =
1—2e"'2/8[1 4+ 0(1)] as # — oo, since when we flip the spin at the origin in the configuration
o = +1 we reverse the sign of the interaction with the 6 nearest-neighbors of the origin.
This shows that e 3UVP[1 + o(1)] is the density of the lattice gas at the condensation point,
corresponding to p = e 28 with A = 3U.

Suppose next that we slightly increase the density (corresponding to 0 < 3U — A < 1),
avoiding however the appearance of droplets in terms of a restricted grand-canonical Gibbs
measure (see Lebowitz and Penrose [7], Capocaccia, Cassandro and Olivieri [4]). In other
words, we consider the grand-canonical Gibbs measure restricted to a suitable subset of con-
figurations, namely, those where all sufficiently large droplets of particles are suppressed. At
low temperature this supersaturated gas will stay rarified, so that its metastable state can
be described as an almost ideal gas phase with strong mixing properties. Let us denote by
p*(m1 X mg X m3) the probability under the restricted measure to see an m; x mg X mg droplet
centered at the origin. A rough calculation leads to

/»L*(ml X My X m3) ~ pm1m2m36,3[3Um1m2m3—U(m1m2—|—m2m3+m1m3)]’ (118)

since p is the probability to find a particle at a given site and —U is the binding energy
between particles at nearest-neighbor sites. Substituting p = =24, we obtain

wr(m1 X ma X m3) ~ e PE(m1,mz,ms) (1.19)

with
E(ml, mao, m3) = —(3U — A)m1m2m3 + U(mlmg + moms + mlmg). (1.20)
The maximum of E(m,m,m) occurs at m = %. If this ratio is non-integer, then cubic

droplets with side length m < m. have a probability decreasing in m, while cubic droplets
with side length m > m, have a probability increasing in m, where

mf:hjﬁA} (1.21)

plays the role of the three-dimensional critical droplet size. The regime A € (U,3U) corre-
sponds to m. € (1,00). In analogy with Glauber dynamics, studied by Ben Arous and Cerf
[2], we expect metastable behavior when h € (0,4J) with a critical droplet size m, = [4J/h].
This corresponds precisely to (1.15) and (1.21).

Similarly, the probability to see an I; x I3 droplet on a face of a three-dimensional droplet
is

p(Iy x lp|face) ~ plil2hBULL=U+z)] (1.22)
o)
1 (1 x lo|face) ~ e AEULL) (1.23)
with
E(l1,l2) = —(BU — A)lilo + U(l1 + 12). (1.24)



The maximum of E(I,l) occurs at [ = WL_A. If this ratio is non-integer, then square droplets
with side length [ < [, have a probability decreasing in [, while square droplets with side
length [ > I, have a probability increasing in [, where

h:[ﬁ;ézw (1.25)

plays the role of the two-dimensional critical droplet size on a face. The regime A € (2U, 3U)
corresponds to I, € (1,00), the regime A € (U,2U) to l. = 1. Note that m, € {2, — 1,2l }.
The above heuristics describes the metastable behavior from a static point of view. In
physical terms, A € (3U, c0) represents the stable gas, A = 3U is the condensation point,
A € (U,3U) represents the metastable gas, A = U is the spinodal point, and A € (0,U)
represents the unstable gas.
The most interesting part of the metastable regime is 0 < € < 1 with

e=3U - A, (1.26)

which corresponds to weak supersaturation with large [, and m..

1.4 Metastability: dynamic heuristics

Let us next consider the metastable behavior from a dynamic point of view. We want to
compare the probabilities of growing respectively shrinking for a cubic droplet of particles
with a quadratic droplet attached to one of its faces. Again, the argument will be very rough.

The energy barriers for adding respectively removing a bar (= row or column) of length [
from a two-dimensional droplet on the face of a three-dimensional droplet are given in terms
of the minimal saddles of H (see Fig. 1):

adding bar = 2A —2U =4U — 2,

removing bar = 3U + (3U — A)(1 —2) =3U +€(l — 2). (1.27)

The * in Fig. 1 indicates the minimal saddle. The two barriers in (1.27) balance at [ = %, &)
(1.25) again appears as the two-dimensional critical droplet size on a face.
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Fig. 1. Adding or removing a bar of length [ (I = 4).



Similarly, the energy barriers for adding respectively removing a face of side length m are
(see Figs. 2 and 3):

m<l.:
adding face = U@2m+3) —e(m? —m+2),
removing face = 3U +¢(m — 2),
(1.28)
m >l :
adding face = UQ2l.+3)—e(l?—1.+2),
removing face = —U(2m —2l, —3) +e(m? — 12+ 1. — 2).
8
F
o .
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F1c. 2. Adding or removing a 2 x 2 droplet on a face.

F1a. 3. Adding or removing a face of side length m (m =6, I, = 4, m. = 8).



The ** in Fig. 3 indicates the minimal saddle for adding or removing a 2 x 2 droplet (as
in Fig. 2), the *’s in Fig. 3 indicate the minimal saddles for adding or removing successive
bars (as in Fig. 1). The center of Fig. 3, consisting of a quasi-cube with a quasi-square plus
protuberance attached to a face plus a free particle, is the minimal saddle for adding a face.
The two barriers in (1.28) balance at m = 2 so (1.21) again appears as the three-dimensional

€
critical droplet size.

1.5 Definitions and notations

In the sequel we use italic capital letters for subsets of A, script capital letters for subsets of X,
and boldface capital letters for events under the Kawasaki dynamics. We use this convention
in order to keep the various notations apart.

In order to formulate our main results in Theorems 1.55 and 1.58, and to perform their
proofs, we need some definitions. These are collected in items 1-10 below.

1. Suppose that the finite box A C Z2 is large enough to amply accomodate the critical
droplet (say, it has side length > 2m,).

(i) For z € A_, let nn(z) = {y € A_: |y — z| = 1} be the set of nearest-neighbor sites of x
in A_.

(ii) A free particle in n € X is a site x € n N 9~ A or a site x € n N A_ such that
Zyenn(z)ﬂA_ n(y) = 0, i.e., a particle not in interaction with any other particle (re-
member from (1.3) that particles in the interior boundary 9~ A have no interaction with
particles in the interior A_).

(iii) A 1-protuberance in n € X is a site z € n N A_ such that Zyem(x)m\_ n(y) = 1.
A 2-protuberance in n € X is a site x € n N A_ such that Zyem(x)m\_ n(y) = 2.

For convenience we identify a configuration n € X with its support supp(n) = {z € A: n(z) =
1} and write = € 1 to indicate that n has a particle at z.

2. Given a configuration 5 € X, consider the set C(n) C R? defined as the union of the closed
unit cubes centered at the sites inside A where 1 has a particle. The maximal connected
components C1,...,Cp, m € N, of C(n) are called droplets of n. There is a one-to-one
correspondence between configurations n C A_ and sets C(n). A configuration n C A is
characterized by a set C(n), depending only on N A_, plus possibly a set of free particles in
0~ A, namely, nNO~ A. Thus, we are actually identifying three different objects: a configuration
n € X, its support supp(n) C A, and the pair (C(n),n NI~ A).

For n € X, let |n| be the number of particles in 7, y(n) the Euclidean boundary of C(n),
called the contour of n, and |y(n)| the area of y(n), i.e., the number of broken bonds in 7.
Then the energy associated with 7 is given by

H(n) = -BU - A)nnA_|+ %Iv(n)\ + ANy-(n)- (1.29)

3. A configuration whose single contour is a parallelepiped with side lengths mq,mq, mg is
denoted by P(mq,mz,m3). Throughout the sequel we use the convention m; < mg < mg
and collect the parallelepipeds in an equivalence class modulo translations and rotations. This
equivalence class is denoted by P(mi,ms,m3). A rectangle is a parallelepiped with side
lengths 1,141,129, a bar is a parallelepiped with side lengths 1,1, k.



Given integers my,mo,ms > 2 and ly,lo > 1, with m; < mg < mg3, 1 <l9, m3 >l and
mg > Iy, define:

® Ry, i,(m1,mg, m3) is the set of configurations without free particles whose single contour
in A_ is an m1 X me X mg parallelepiped plus an [; X [» rectangle attached to any face
large enough to accomodate it.

A quasi-cube is a parallelepiped with side lengths m, m+4d,m+60 withm > 1, §,0 € {0,1},
0 < 6. A cube is a quasi-cube with § = 8 = 0. A quasi-square is a parallelepiped with side
lengths 1,1,] + a with [ > 1, a € {0,1}. A square is a quasi-square with a = 0.

4. The configuration space X can be partitioned as

|A|
X =]V (1.30)
n=0
where
Vi ={n €{0,1}: Na(n) =n} (1.31)

is the set of configurations with n particles, called the n-manifold.

5. A path w is a sequence w = (wi,...,wg), K € N, w; € X for i = 1,...,k, such that
PE(wi,wip1) > 0 fori =1,...,k — 1. We write w: 7 — 1’ to denote a path from 7 to 7'
Given ¢ € X, we write ( € w when w visits (. Given A C X, we write wN A to denote the set
of sites in A visited by w.

A set A C X with |A| > 1 is connected if and only if for all 7,7’ € A there exists a path
w: n — n' such that w; € A for all 7. Any singleton is connected. Given a non-empty set
A C X, define its (external) boundary as

OA ={C ¢ A: PX(¢,n) > 0 for some n € A} (1.32)

and the first hitting time of A as
T4 =min{t > 0: n; € A}. (1.33)
6. The bottom of a non-empty set A C X is the set of global minima of the Hamiltonian H

in A, ie.,

F(A) = {n € A: H(n) = IgréiEH(C)}. (1.34)

The communication height between a pair 7,1’ € X is

®(n,n') = min max H(C). (1.35)
w: n—n' (Ew

The set of configurations realizing the minimal saddles between 7,17’ € X is
S(n,n') = {C €X: Jw —n, w3 maxH(E) =H(() = @I’(n,n')}- (1.36)

Given a connected set U C X, the communication height between n,n' € U inside U is

(I’u(ﬂaﬁ/) = min maXH(C)a (137)

win—n' (Ew
wCU

10



where w C U means that w; € U for all 4, and similarly for Sy(n, 7).
Given two non-empty sets A, 5 C X, put

—_ s !
®(A,B) = _min  ®(1.7) (1.38)
and
SAB = |J Sma). (1.39)
neA,n’eB:

@(n,n)=2(A,B)

Similarly for ®;/(A, B) and Sy (A, B). Write
(A - B)opt (1.40)

to denote the set of optimal paths realizing the minimax in X between 4 and B.

7. Given a pair 7,1’ € X, we say that W is a gate for the transition n — ' if W C S(n,7n’)
and wNW # 0 for all w € (n — 7/)opr. We say that W is a minimal gate for the transition
n — ' if it is a gate and for any W C W there exists w’ € (n — 1')gpt such that ' MW = 0.
In words, a minimal gate is a minimal (by inclusion) subset of S(n,7') that is visited by all
optimal paths.

For a given transition 7 — 7/, a priori there may be several (not necessarily disjoint)
minimal gates. We denote by G(n,7’) the union of all the minimal gates:

G(n,n') = U W. (1.41)

w: W minimal gate for n—»/

The configurations ¢ € S(n,7') \ G(n,n’) (if any) are called dead-ends. Given any path w €
(n — 1')opt passing through a dead-end (¢, there exists another path w' € (n — 7')gpt, DOt
passing through (, that plays the role of a short-cut of w.

Given two non-empty sets A, 3, we define

GAB) = |J Gmn). (1.42)

neAn eB

8. The upper index (.)/P is used to denote configurations obtained from configurations in (-)
after addition of a free particle.

Given integers mqy,mo, mg > 3 and Il1,ly > 2, with m; < mg < mg, I1 <lo, mg > Iy and
mg > l1, define:

. le1 Ij 1, (m1,m2,m3) is the set of configurations obtained from a configuration in Ry, i,

(mq1, mo, m3) by adding a free particle.

o Rfﬂz (m1,mg,m3) is the set of configurations obtained from a configuration in le1 P
(m1,me, m3) by attaching the free particle to one of the sides of the rectangle that is
attached to one of the faces of the parallelepiped, so that it becomes a 2-protuberance.

. Dip, 1, (M1, my, m3) is the set of configurations given by

DT (m1,me,m3) = {77’ €EVp: dne Rip’g(ml,mg,mg):

Iy,l2 (1.43)
Dy, (1,1) < H(n) +2U, H(n) = H(r) }

11



with n = mimoms + l1lo + 1. In words, DT (m1,mg, m3) is the set of configurations

l1,l2

7’ that can be reached from some 7 € 7?,[21”;2 (my, mo, m3) by a path w = (w1,...,wg),
k € N, in V, such that
wy =1, wp=17, max H(w)<H(n)+2U, H(n)=H(). (1.44)

1<i<k

In the subregime A € (2U,3U), going from R to D corresponds to moving particles
along the border of the droplet. Indeed, 2U is the largest multiple of U below A, and
so all moves with a maximal energy cost 2U must be taken into account, because these
moves may occur before the arrival of the next free particle (see Section 4.1 for more
details).

2 . ) . o

. Rllpgf P(m1,mga, m3) is the set of configurations obtained from a configuration in R, lp ’l;
2pr, M

D70 IP (1, my, ms) and DP} (ma,

(m1, mgo, m3) by adding a free particle. Similarly for Il

mg,mg).

o R}P, (m1,ma,m3) is the set of configurations obtained from a configuration in Rip ;2’: P

(m1, me, m3) by attaching the free particle to an external corner of the contour in
Rfﬁ Zf P(my,ma,m3) (i.e., an empty site with three nearest-neighbor particles), giving
rise to a “stable protuberance” of two nearest-neighbor particles attached to one of the

sides of the rectangle that is attached to one of the faces of the parallelepiped.

9. A particularly important set of configurations, which play the role of “critical configura-
tions” in the regime A € (2U, 3U), is given by

C* = Dlchj,lf,i (me — 1,me — e, me) (1.45)

with [, defined in (1.25), m, defined in (1.21), and

€

5= L if (%1—%>%+%{ (%)2“_&},

(1.46)
0 otherwise,

where € = 3U — A as in (1.26). The d. comes from a fine tuning: depending on the round
off error for me, either the oblate quasi-cube P(m, — 1, m. — 1, m,.) or the prolate quasi-cube
P(m¢ — 1,m¢, m.) has the lowest energy (recall (1.29)). By definition, C* C V,+ with

n* =me(me — 6c)(me — 1) + 1o(lc — 1) + 2. (1.47)

We denote by T' = T'(U, A) the energy of the critical configurations:

'=H(C") = —eme(me—0dc)(me—1)+1c(lc —1)+ 2] (1.48)
+U[me(me — 8.) + me(me — 1) + (me — 6e)(me — 1) + 21, + 3] '
(recall (1.29) and see Fig. 4).
We will see in Proposition 2.13 that
r=o((O,m), (1.49)
where
O={neX: nlx) =0z € A} (1.50)
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is the single configuration with A empty and

B={necX:nz)=1VeeA_} (1.51)

is the set of configurations with A_ full.
We note that H((J) = 0 and that B > F(X) (for A sufficiently large), where F(X)

is the single configuration with A_ full and OA_ empty (recall (1.34)). We further note
that S(O, F(X)) = S(O, M) (recall (1.39)) and that, for any ' € B, W is a gate (minimal
gate) for 0 — 7 if and only if it is a gate (minimal gate) for O — F(X). Consequently,

(O, F (X)) = G(O, M) (recall (1.42)).
Equations (1.48-1.49) imply that C* is a set of minimal saddle configurations:

S(C,m) 2 C*. (1.52)

= N
=}
““‘““:“‘!!l.

~

————
S~

/
/
/
/
/
)
/

)

F1G. 4. A critical configuration with m. = 20, [, = 10 and . = 0.

10. In Proposition 2.86 we will see that C* is a gate for the transition [1 — B. We expect

that
(1.53)

cr2¢g(0,m),
but we are unable to prove this.

1.6 Main theorems: Theorems 1.55 and 1.58
For n € X, let P, denote the law of (;)ten, given 79 = 7. Recall from (1.33) that 7, 7w are
the first hitting times of L1, M. Let

= max{0 <t <7m: n €0}, (1.54)

fom
= min{t > 9[]’.: e € C*},

,c*,m
be the last hitting time of [] prior to the first hitting time of M respectively the first hitting

time of C* afterwards. Our main theorems read as follows.
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Theorem 1.55 Fiz A € (2U,3U) such that 2U/(3U — A) is not integer, and let A be suffi-
ciently large.
(a) Let T' be the communication height between (1 and B defined in (1.48). Then

Jim P (e@—‘”ﬂ << e<F+5>ﬂ) =1 V§>o. (1.56)
(b) Let C* be the set of critical configurations defined in (1.45). Then C* is a gate for the
transition (1 — W, and

lim PD(’TD com < ’T.) =1. (1.57)
B—o0 o

Theorem 1.58 Fiz A € (2U,3U) such that 2U/(3U — A) is not integer, and let A be suffi-
ciently large. Let Q be the set of configurations whose single contour is a quasi-cube. Then,
forallm e Q,

n C P(me—1,me — 6, me) = Blim Pp(mo < ™m) =1,
—00

77 2 P(mC - 17mC - 50; mc) — /Blim ]P)"(T. < T‘:‘) = ]_. (1'59)
— 00

In words, Theorems 1.55 and 1.58 say the following:
— Theorem 1.55(a): The nucleation time from [ to M is ell o118,

— Theorem 1.55(b): The set C* is a gate for the nucleation: all paths from the metastable
state [ to the stable state B pass through this set with a probability tending to 1 as
B — oc.

— Theorem 1.58: Subcritical quasi-cubes shrink to [, supercritical quasi-cubes grow to H.

Incidentally, it follows from (1.48) that T' ~ 4U3/€? as € | 0, which identifies the nucleation
time in the limit of weak supersaturation.

The subregime A € (U,2U), corresponding to m, = 2 and [, = 1, needs to be treated
separately. Theorems 1.55 and 1.58 do carry over, but we must modify the definition of C* in
(1.45), namely,

cr = {n' € Vo: In e PP(1,2 — 6,,2):
i (1.60)
Dy, (n,m) < Hn) + U, Hn) = H(r) }

with n = 2(2 — §.) + 1. The analogue of Fig. 4 is a 2 x (2 — d.) quasi-square with a particle
attached to it anywhere plus a free particle. The difference with (1.45) is that now U is the
largest multiple of U below A, so that only moves with a maximal energy cost U must be
taken into account, because only these moves may occur before the arrival of the next free
particle.

1.7 Open problems

Theorems 1.55 and 1.58 give rise to a number of open problems:
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1. Give a complete geometric description of the set C*. In Sections 4.1-4.2 we study the
motion of particles along the border of the droplet starting from a configuration in
Rfcpil,lc (me — 1,me — d¢,me). This border motion shows that C* is rather complex.
We conjecture that (1.53) holds and that the inclusions in (1.52-1.53) are strict. In
particular, we conjecture that all configurations where the quasi-square is attached to
the “wrong” face of the quasi-cube (i.e., to the smallest face) are dead-ends in C*. In
Proposition 4.3 we show that all configurations in C* have the same circumscribing
parallelepiped as the configurations in Rlipf’ljj 7.(m¢ —1,m¢ — 6, m.) when we ignore the
free particle.

2. Identify which configurations return to [J (“subcritical configurations”) and which to
B (“supercritical configurations”). Theorem 1.58 gives a partial answer, namely, for
quasi-cubes. We will see in Proposition 2.47 that, starting from any configuration in
X'\ {00, W}, the dynamics returns to {{J, B} in a time much shorter than the nucleation
time (see also (3.18)).

3. Describe the typical nucleation path. Some discussion of the subcritical part is provided
in Section 4.3. The description of the supercritical part remains open.

4. Give corrections to the asymptotics of the nucleation time for finite 5. Bovier and
Manzo [3] provide such a refinement for Glauber dynamics, leading to an estimate of
the expected nucleation time up to and including order 1. This refinement depends on
good control of the geometry of the critical droplet.

5. Show that the same results apply when the creation and annihilation of particles at the
boundary of A occurs from an infinite gas reservoir surrounding A rather than from a
boundary mimicking this reservoir. This issue was settled in den Hollander, Olivieri and
Scoppola [5] for the two-dimensional version of the model (for the case where outside A
particles do not interact). The proof relies on delicate coupling arguments, but probably
carries over because it is largely independent of dimension.

2 Preparations

This section contains preparations for the proof of Theorems 1.55 and 1.58 in Section 3. The
main ingredients that are needed are:

— Theorem 1.55(a): The proof requires

(1) the construction of a particular path w® € (OO — M), called the reference path;
(2) the evaluation of the communication height ®(CJ, W), which is the maximal energy
attained by w¥ ;

(3) a recurrence property of Kawasaki dynamics to {{J, M} in a time exponentially
shorter than e'”.

With these three items:

(i) The upper bound on the nucleation time relies on the construction of a suitable
nucleation event that exploits items (1) and (3) (see the proof of Proposition 3.1).
Starting from any configuration, the dynamics quickly reaches the set {{], B}. From
there, if not already in M, it crosses S(CJ,M) N w¥ in a time of order e and
afterwards moves towards B without reaching again the energy ®(C],H) .
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(ii) The lower bound on the nucleation time follows by using an argument based on
reversibility that exploits item (2) (see the proof of Proposition 3.27). The proba-
bility of a path from [J to any configuration in the global minimal saddle S(CJ, W)
equals e A" times the probability of the reversed path. The latter is of order 1.

Items (1), (2) and (3) are the subject of Sections 2.2, 2.3 and 2.4 respectively. Here,
a key role is played by the isoperimetric inequalities obtained by Alonso and Cerf [1],
which are summarized in Section 2.1.

— Theorem 1.58: The proof requires information on the local minimal saddles between
quasi-squares and [ or B, which are obtained in Section 2.3 (see Proposition 2.19). For
this purpose we use a very strong property of the reference path w, namely, not only
is it optimal for the transition [1 — M, it is self-minimaz. The latter means that any

K K K K\ with 4 < 4 K K . :
segment (w;*,w;}q,.--,w;" 1,w; ) with i < j belongs to (w;* — w;*)opt, i-e., contains a
minimal saddle between its extremes and never overshoots ®(wX, w]K ) (see Proposition

2.8).

— Theorem 1.55(b): The proof is based on a focalization property (see the introduction)
that is worked out in Section 2.5 (see Proposition 2.75).

2.1 Discrete isoperimetric inequalities

We recall some definitions and results from Alonso and Cerf [1].

Definition 2.1 (Alonso and Cerf [1], Section 3)

(a) A minimal polyomino is a configuration whose single contour has minimal surface among
all those with the same volume.

(b) A principal polyomino is a configuration whose single contour is a quasi-cube with a
quasi-square attached to one face of the quasi-cube and with a bar attached to one side of the
quasi-square.

(c) A standard polyomino is a principal polyomino whose quasi-square is attached to one of
the largest faces of the quasi-cube and whose bar is attached to one of the largest sides of the
quasi-square.

Proposition 2.2 (Alonso and Cerf [1], Proposition 3.2)

For each n € N there exists a unique 6-tuple (m,l,k,§,0,a) such that:
(i) m,l,k € Ny, 6,0, € {0,1},

(i) if m=0 then 6 =60 =0, ifl=0 thena =k =0,

(1) 6 <0, k<l+a,l(l+a)+k<(m+5)(m+86), and

n=m(m+0)(m+0)+1(1+a)+k. (2.3)

Because of Proposition 2.2, it is natural to associate with each n € N a principal polyomino
whose quasi-cube has side lengths m, m 4+, m 46, whose quasi-square has side lengths [, [+ «,
and whose bar has length £.

The following discrete isoperimetric inequality is a key ingredient in our analysis.

Theorem 2.4 (Alonso and Cerf [1], Theorems 3.1.and 3.6)

(a) All principal polyominoes are minimal polyominoes.

(b) The set of minimal polyominoes of volume n coincides with the set of principal polyminoes
of volume n if and only if n is of the form “quasi-cube + quasi-square” or “quasi-cube —17.
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Item (a) of Proposition 2.4 was in fact already proved by Neves [8]. In Alonso and Cerf [1],
Conjectures 3.8 and 3.10, it is suggested what the minimal polyominoes should look like for
other values of n.

Throughout the sequel, all polyominoes are collected in equivalence classes modulo trivial
transformations, like translations and rotations of the full polyomino or, possibly, of suitable
parts of it.

As will become clear in what follows, to determine the asymptotic behavior of the nucle-
ation time (Theorem 1.55(a)) we will only need Theorem 2.4(a), whereas to obtain the gate
for the nucleation (Theorem 1.55(b)) we will need both Theorem 2.4(a) and 2.4(b). The latter
guarantees a suitable focalization property of optimal paths, based on the uniqueness (modulo
translations and rotations) of the minimal polyominoes corresponding to particular values of
the number of particles.

2.2 Reference path

We next construct a particular optimal nucleation path w¥, i.e., an element of (O — M),y
This path, which we call reference path for the Kawasaki dynamics, goes from [] to B through
a particular sequence of growing standard polyominoes.

To define wX, we first define the analogous reference path for the Glauber dynamics, which
we denote by w® = {w%} with n = 0,...,|A_|, namely,

w§ = 0,wf = {zo},..-,wi_| = F(X) e W, (2.5)

where zg is any site in A_ and {w,?v } is a growing sequence of standard polyominoes, with
|wS| = n, such that P%(wS,wS ;) > 0 and w§ C A_ for all n. The parallelepiped circum-
scribing w¢ always is a quasi-cube, while the rectangle circumscribing the two-dimensional
droplet attached to a face of the quasi-cube always is a quasi-square. The order of the direc-
tions of growth of the standard polyominoes may be picked arbitrarily and may depend on
the starting point z¢, but it is fixed.

Given a choice for w“, we can construct the path wX = (wﬁ(z) as follows:
K
who=ws, n=0,...,|A], (2.6)
and insert between each pair (wff ,wf 1), n=0,...,|]A_| — 1, a sequence of configurations
w{f,i, 1 =0,1,...,4y,, belonging to (wg)fp, that creates a particle at 3~ A and brings it to the
droplet, i.e.,
wli = ws U xl(n) (2.7)
with acgn), . ,:cz(-:) nearest-neighbor sites from 9~ A to wS,,\wS. We obviously have |wp sl =

n+1—6;0, where §; ¢ is the Kronecker symbol. For shortness, we replace the index n,i with

a single index s = s(n, i), i.e., wk, = wﬁ N

n’i n,z)

Proposition 2.8 w¥ ¢ (0 — W),,.. Moreover, Wk self-minimaz, i.e., for any 0 < s1 < s9,

d(wE, wk) = max H(WK), (2.9)
$€[81,52]

and realizes the minimal saddles between any pair of manifolds, i.e., for any 0 < ny < ng <
A,

SV, V) = H(wE). 2.1
(Vais Vi) selsnr X 0] (wy') (2.10)
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Proof. By definition, we have

(0, m) < m;'joH(wSK) = H(wk), (2.11)

S0

where sy = min{s: H(wX) > H(wX)Vs'}. Since wX is either a standard polyomino or a

standard polyomino plus a free particle, we have H (wg )=H (wgg_l) + A.
Let ng = |wsIg|. Since any path w:[] — M has to cross the ng-manifold V,,, for a first time,
we have

O(C, W) > min H(y)+A= H(wkE_ 1) + A= H(wE). (2.12)
ne ng—1
Indeed, the first equality follows from the fact that wg_l is a standard polyomino, so that,
by Theorem 2.4(a), it is a configuration of minimal energy in V,,_1. Combining (2.11-2.12),
we get (0, M) = H(wk), proving that w® € (0 — W),y
With the same argument we prove (2.9) and (2.10). Q

2.3 Height of global minimal saddle and of local minimal saddles between
quasi-cubes and empty or full configurations

According to Proposition 2.8, to evaluate the height of the global minimal saddle between
O and M it suffices to determine the maximal energy reached by the reference path w’. By
construction, this is the maximal energy of a standard polyomino plus A.

Proposition 2.13 ®(CJ,W) =T, where T is given by (1.48).

Proof. By an abuse of notation, we denote by H(n) the energy of a standard polyomino of
volume n. Let n = m(m+0)(m+0)+1(l+a)+k (recall from Proposition 2.2 that m, (, k, 6,0,
are uniquely determined by n). We have

H(n) = H3(m,m + 6,m + 0) + Ha(l,1 + ) + Hi(k), (2.14)
where (recall (1.29))

Hs(m,m+6ém+60) = —em(m+35)(m+0)
+U[m(m + 6) + m(m + 6) + (m + 6)(m + 6)],
Hy(l,l + ) = —e(l+a)+UQ2 +a), (2.15)
_ —ek+U if k>0,
Hy(k) B { 0 if k = 0.
By Proposition 2.8, we have
= Ky — A. 2.1
o(0,m) max H(wy') ogﬁ?%’i_\ H(n)+ (2.16)
Since
max H(n) = max Hs(m, m + 6,m + 0) + max Ho(l,l + o) + max Hy(k), (2.17)
0<n<|A_]| m,9,0 l,a k

we have, by a direct computation based on (2.15),
&(0), W) = Hs(me — 1,me — 8g,me) + Ha(le — 1,1,) + Hy(1) + A=T (2.18)
with d. given in (1.46). Q@

Similarly, we can compare the local minimal saddles between quasi-cubes and [ or K.
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Proposition 2.19 For any configuration n that is a quasi-cube, i.e., n = P(m,m + §, m + 0)
for some m, 9,0, the following inequalities hold:
(a) If n C P(me — 1, me — 0.,m¢), then n is subcritical, in the sense that

®(n,0) < @(n, M) =T. (2.20)
(b) If n 2 P(me — 1,m¢ — 8¢, me), then n is supercritical, in the sense that

O(n, M) < d(n,0) =T. (2.21)
Proof. By using the fact that wX is self-minimax (recall (2.9)), we immediately have

®(n,0) = max H(w;y),  ®(n,M) = max H(wy), (2.22)
s<s(n) s>s(n)

where s(n) is the time s at which wK = 5 (modulo translations and rotations). Let sy =
min{s: H(wX) = '} and note that wy, has a free particle. If n C P(m, —1,m — d.,m,), then
s(n) < sp, so that ®(n, M) = T'. Moreover, in this case

®(n,0) = max H(wX) < H(n_)+ Hao(l. — 1,1.) + Hi(1) + A < T, (2.23)

where 7_ is the maximal quasi-cube strictly contained in 7. If, on the other hand, n 2
P(m¢— 1,m¢; — d¢,me), then s(n) > sg, so that ®(n,J) = I'. Moreover, in this case

B(n,m) = max H(wK) < H(n) + Ho(l, — 1,1)) + Hi(1) + A < T. (2.24)
s$>s(n

The strict inequalities in (2.23-2.24) are immediate from (2.18), because the first maximum
in the right-hand side of (2.17) is uniquely attained at Hs(m.,mc — d¢, me — 1). Q

2.4 Reduction and recurrence

In Section 2.4.1 we introduce (maximal) cycles and paths along (maximal) cycles. In Section
2.4.2 we prove a recurrence result for general sets of configurations with a certain irreducibility
property. In Section 2.4.3 we use this result to prove that recurrence to {{J, M} occurs in a
time that is exponentially shorter than e'?. The latter proof is somewhat involved, because it
requires showing among others that Kawasaki dynamics does not want to create configurations
with internal holes.

2.4.1 Cycles and cycle-paths
Definition 2.25 A connected set C satisfying (recall (1.32))

max H () < min H (¢) = H(F(C)) (2.26)

is called a non-trivial cycle. Any set that is either a singleton {n} or a non-trivial cycle is
called a cycle.

1. It is easily seen that cycles are partially ordered by inclusion: given two cycles Cq,Co with
C1 N Cy # O, either C; C Cy or Co C Cy. The cycles containing a given 1 € X are therefore
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totally ordered by inclusion. Note that a singleton {n} can be a non-trivial cycle only when
it is a local minimum of H.

2. For a non-trivial cycle C, let
H(C) = H(F(80C)), I'(C)=H(C) - H(F(C)), (2.27)

be the energy at the bottom of 8C7respectively the energy gap between the bottoms of 9C
and C. For a trivial cycle {n}, put H({n}) = H(n), I'({n}) = 0. For n € X, let

v(n) = ®(n,Iy) — H(n) with I, ={¢ e X: H(() < H(n)} (2.28)
be the energy cost to move from 7 to a configuration with lower energy. It is easily seen that

v(n) =T(C(n), (2.29)

where C(n) is the largest cycle containing 7 such that n € F(C(n)). If 5 is not a local minimum
of H, then C(n) = 1.

3. Given V > 0, define the set Xy of V-irreducible configurations as
Xy ={neX:v(n >V} (2.30)

The complement X'\ Xy is the set of V -reducible configurations. A crucial step in what follows
is the partition of X' \ Xy into maximal (by inclusion) cycles:

X\szclLJCQU...UCn, n € N. (231)

It is obvious that
NG) <V Vi=1,...,n. (2.32)

Indeed, if T'(C;) > V, then v(n) > V for all n € F(C;), contradicting n € X'\ Xy.

4. A mazimal-cycle-path (mc-path) is a sequence (Cf,...C;) with C’;- € {C1,...,Cp} for j =
1,...,k and with C; connected to C;, through a single transition for j =1,...,k — 1. Note
that, for Kawasaki dynamics, if a non-trivial cycle appears in an mc-path, then both the
subsequent and the previous element in the mc-path must be a trivial cycle in its boundary.
An me-path (Cy,...C}) is called downhill it H(C},,) < H(Cj) for j =1,...,k—1. A collection
of cycles is called mc-connected if for any pair of cycles in the collection there is an mc-path
in the collection joining them.

For any C € {C1,...,Cp}, we denote by Q(C) the maximal (by inclusion) mec-connected
set of cycles {C{,...C,.} C {C1,...,Cp} such that ﬂ(C;) = H(C) for j =1,...,k. The reader
should think of Q(C) as a maximal set of “communicating lakes”: Q(C) is a disjoint union
of maximal cycles C;-, connected through single transitions, that all have the same value of

acy).

2.4.2 General recurrence result

Let Ty = VP, and
Ty, = min{t € No: gy € Xy }. (2.33)

Call B — f(B) superexponentially small (SES) if limg_, % log f(B) = —o0.
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Proposition 2.34 (“Xy-recurrence”) For every § > 0,

max P, > Ty e®) = sEs. 2.35
panax (T, > Tye) (2.35)

Proof. The proof uses the partition in (2.31).

1. We will show that for all n € X' \ Xy there is an event E,j; C xIOTIMNo with T = Tve%ﬂ
such that

E; C {no=n, 3t €[0,T]NNo: 1 € Xy} (2-36)
and such that, for g sufficiently large,
/ 0
. T _&'B /
;Iél)I(lP(E") >e 7, 0<d < 7" (2.37)

Proposition 2.34 follows from (2.36-2.37) because, by the Markov property,

’ 55
P > Tyet?) < (1 — e P)e?” — sEs. 2.38
ﬂgj&v (T, > Tye®”) < (1—e°7) (2.38)

2. To prove (2.36-2.37), fix n € X\ Ay. Let C = C(n) be the maximal cycle in (2.31)
containing 7, and set Hy = H(C), @ = Q(C). We will prove the following;

Claim 2.39 Q is downhill connected (via a single transition) either to Xy or to some mazimal
cycle C in (2.31) with H(C) < Hy.

Proof. The proof is by contradiction. Suppose that 0@} neither contains configurations in
Xy nor configurations in any € in (2.31) with H(C) < Hy. Now, there are no 7/ € 8Q with
H(n') = Hy, because of the maximality of Q. Moreover, dQ cannot be empty, otherwise the
dynamics cannot escape from (), which violates the ergodicity of the Markov chain because
Q C X\Xy C X. Thus, 9Q is non-empty and only contains configurations n’ with H(n') > H.
Since H(n') < Hy for all ' € Q, we conclude that @ must be a cycle in X\ Xy that strictly
contains C. But in this way we violate the maximality of C (a disjoint union of two or more
cycles cannot be a cycle). We conclude that either ) is connected to Xy or to some C in
(2.31) with H(C) < H,. v

3. We are now able to construct, for any maximal cycle C in (2.31), a downhill mc-path
(C;,...,C;) beginning with € = C and ending in Xy, in the sense that 9C} N Xy # . Indeed,
by Claim 2.39, either we follow a suitable mc-path (Ci,...,C};) in @ with constant height
H(C}) = Hy and then step downhill and directly end in Xy, or we have H(C},) < Hp, in which
case we can exploit the arbitrariness of the initial maximal cycle C to iterate the procedure.
Since the energy is bounded from below, the iteration must eventually produce a downhill
mc-path completed with a step downhill ending in Xy .

4. Consider the completed downhill mc-path (C(n),...,C},§) with { € 9C;,N Xy. We say that
(Me)ten, follows (Cq,...,Ch, &) e-regularly if it visits these maximal cycles in the prescribed
order, runs through all configurations in them, stays in each C, for a time at most e[r(cz{)“w,
and ends up in £.

Claim 2.40 For every d,e > 0 there exists Sy = Bo(d,€) > 0 such that

min P, ((nt)teNo follows (C(n),--.,Cp, ) e—regularly) > e VB > Bo. (2.41)
neEX\ Ay
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Proof. This is an immediate consequence of the following result:

Proposition 2.42 (Olivieri and Scoppola [9], Proposition 3.7) Let C be a non-trivial cycle.
(a) For every § > 0 there exist kK = k(0) > 0 and By = Po(6) > 0 such that

min P, (Tac < er(c)ﬂe‘m) >1—¢"P YB > Bo- (2.43)
neC

(b) There exist 69 > 0, ko > 0 and By > 0 such that

min P, (1 < roc, Ty < e @PemF) > 1708 g > g, (2.44)
U/ES

(c) For every § > 0 there exists By = Po(0) > 0 such that

min Py (1rsc = ) > e HIN-HEB=6 vy c ge, VB > fo. (2.45)

Indeed, items (a) and (c) (for ' € F(9C)) guarantee that the dynamics starting from anywhere

T(C})+9]

in C;-, j=1,...,k, reaches any configuration in 8C;- in a time of order el A , while item

(b) guarantees that all configurations in C’;- are hit beforehand with a probability > e~%?. Pick
€ < § to get (2.41). Q@

5. To prove (2.36), we pick n € X' \ Xy and take for E,T] the event where (1;)ten, follows the
downhill mc-path from C(n) to Xy g—regularly. Since the time needed to do so is at most

ePCNHEIB < | v\ Xy elVHIE < VE3B — e =T VB > By(6) (2.46)

M-

1

J

(recall 2.31-2.32)), (2.37) follows from Claim 2.40. Q

2.4.3 Recurrence to empty or full configurations

The following proposition implies, with the help of Proposition 2.34, that from any configu-
ration in X the Kawasaki dynamics hits [1 or B with an overwhelming probability in a time
much less than the nucleation time.

Proposition 2.47 There exists Ty < T' such that Xr, C {CJ, W}.

Proof. We will show that there exists I'g < I such that all  # [J, B are T'g-reducible (recall
(2.30)), i.e.,
Vn# 0,8 3y’ € X+ H(y') < H(n), ®(n,n') < H(n) + To. (2.48)

Suppose that 1 = [, . Then
dxg € A,yo €A, [zo —yo| =1 n(x0) = 0,n(y0) = 1. (2.49)

If yo € 07A, then 7 is actually O-reducible: it suffices to annihilate the particle at yo to
decrease the energy. We may therefore assume that yo € A_ and A_ Ny = 0.

We will first give the proof pretending that the dynamics is Glauber, i.e., particles can be
created and annihilated everywhere in A (see (1.13-1.14) for a precise definition). Afterwards
we will show how the proof can be modified when the dynamics is Kawasaki.
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I. Glauber:
1. Let w® be the reference path for the Glauber dynamics defined in Section 2.2. We have
|w¢| =i and, by Theorem 2.4(a),
wi € FVe) Vi (2.50)
Define
wi=wiUn Vi, p=inf{i >1: Hwf) <0}. (2.51)

We have w§ = [J, and without loss of generality we may pick w{ = {zo}, with z¢ given by
(2.49), and start growing from there.

2. For 1 < i < p, write (recall (1.3))
H(wi) — H(n) = [H,(ws) + Hag () + Wa,as(wi)| — [Ha, () + Hag () + Wi ()] (2:52)

where A; is the support of w¢, i.e., A; =supp{z € A: w¥(z) = 1}, A = A\ A;, Hy, is the

7
Hamiltonian in (1.3) restricted to A;, and

Wasae(n) =-U > n(@)n(y) (2.53)

is the interaction energy in 1 between A; and Af.

3. We have
Hy,(wi) = Ha,(wf') = H(wy'),
Hpe(wi) = Hpe(n), (2.54)
W ae(wi) < Wagae(n),

which hold, respectively, because w; and wz-G coincide on A;, because w; and 7 coincide on A{,
because w; contains 7. Substitution of (2.54) into (2.52) gives

H(w;) — H(n) < H(w{) — H, (n). (2.55)
Moreover,
Hp,(n) >0 V1<i<np. (2.56)
Indeed, by (2.50) we have
Ha, () 2 pin (6 = H§)  for j = G) = 1A 1. (2.57)
J

But 0 < j <pfor 1 <7 <p,since in A; N7 there is at least the empty site zy. Since p is the
smallest integer ¢ with H(w{) < 0, it follows that H(wJG) > 0. Thus, via (2.55) and (2.57),

H(w;) —H(n) < Hw) - H(wj) <Hw{) V1<i<p. (2.58)

Denoting by ®%(n,7’) the communication height between 1 and 7’ for Glauber dynamics, we
see that (2.58) in turn yields

% (n,wp) — H(n) < max H(w;) — H(n) < max H(w) =T%, (2.59)
1<i<p 1<i<p
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where I'? is the analogue of I' for Glauber. Since wy = 1 and H (wf ) <0, (2.58) gives
H(wp) < H(n). (2.60)
Equations (2.59-2.60) prove (2.48) with ’ = w, and Ty < T'%. @

II. Kawasaki:

We have to see how to modify the above argument when the dynamics is Kawasaki. The addi-
tional obstacle under Kawasaki is that, when we are growing the configuration by considering
the union of n with the standard polyominoes A; :supp(wiG ), as in (2.51), particles cannot
be created arbitrarily but have to arrive from 0~ A. We have to make sure that at any time
the configuration is such that a particle coming from the boundary can be moved to where it
is needed. This is achieved in Proposition 2.61 below.

To prove (2.48), we may restrict ourselves to n € AX3y. Otherwise, since 3U < T' (see
(1.48)), we can take I'g = 3U to get (2.48). Thus, we need to prove that any n € X3y has the
property that when the union is taken with any monotone sequence of standard polyominoes,
this union never contains closed off regions.

Proposition 2.61 If n € Xsy, then, for any 0 < i < p (see (2.51)), every empty site = in
the configuration w; = wS Un is connected to O~A by a sequence y1(= z),...,yn(€ 0~A) of
nearest-neighbor empty sites.

Proof. The proof is based on a number of technical lemmas. The key item is Claim 2.69
below.

1. We begin with some definitions (see Fig. 5):

(i) Given z¢ € R? and a lattice unit vector e; € R3, let 7, 4, be the plane orthogonal to e;
and passing through z.

(ii) Given zo € Z3 and a lattice unit vector e; € R3, let P, 4, be the slab of width 1 centered
at e, g0, i.€., the part of R3 lying between ey mo—Ler and ey w0t ber-

(iii) Given z¢ € Z® and two ordered mutually orthogonal lattice unit vectors e1,es € R3, let
L, ¢,,20 be the pencil of width 1 centered at the line in the direction e3 passing through

T, 1.e., the part of the slab P, 5, lying between w1, andm, .1, .
) 2 ’ 2

(iv) Given z¢ € Z3 and three ordered mutually orthogonal lattice unit vectors eq, ez, e3, let
Sei,z0 C R? be that one of the two halfspaces R\ P,, ., containing zg + eq;

Se1 ea,m0 C Pey,zo be that one of the two halfslabs Pe, 5, \ 7 containing xg + es;

1
€2,T0+5€2

Sei es,ea,w0 © Ly en,mo De that one of the two halfpencils Le, ¢y 5o \ 7
Ty + e3.

ntainin
83,$0+%83 conta &
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€1
e&
Seh Xo

Pe1, Xo

Selv €2, €3, Xo

Fic. 5. Three pistons.

(v) The (external) boundary of a configuration 7 is

0" n = {z &n: nn(z) Nn # 0} (2.62)

The subset of ¢ that is connected to @~ A by a sequence of empty nearest-neighbor sites
Y1,...,Yn 1s denoted by

(n)m = {x en3Iy(=x),...,yn(€ 0 A): |ly; —yjpa| =1, yj €n° Vj}, (2.63)
and the subset 7° that cannot be connected to 0~ A by
(nc)ncom — ,r)C \ (nc)com_ (264)
For B C A, define:

(vi) z € B is a B-corner if at least 3 of its nearest-neighbor sites lie outside B, i.e., |B¢N
nn(z)| > 3.

(vii) An extremal corner of B is a 4-tuple (e1, e2, €3, xo) with
1. x¢ is a B-corner;

2. e1,es,e3 are three ordered vectors such that
Se1,z0 N B =10, Sei 60,20 N1 B =10, Se1,e9,e3,m0 N B = 0. (2.65)
(viii) P(B) is the parallelepiped circumscribing B.
2. We next give some properties of the geometric objects defined above.
Lemma 2.66 For all B C A_, the number of extremal corners of B is 48.

Proof. The extremal corners of B can be determined via any choice of the three ordered
vectors e, eg, e3:
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(1) Given e;, we can find a sequence of slabs P, 4,,..., P, z,, all orthogonal to e;, by
moving a piston from 0~ A in the direction opposite to e; one unit distance at a time,
up to the first slab P,, 5, such that P, ;, N B # () (n depends on B and e;).

(2) Given ep orthogonal to e;, inside the slab P, ;. we can find a sequence of pencils
Le, o315 -+ Liey 0,4, all orthogonal to ez, by moving a piston from 0~ A in the direction
opposite to ez one unit distance at a time, up to the first L., , 3, such that Le, ¢, 2, B #
() (1 depends on B and ey, es).

(3) Given ez orthogonal to e; and e, inside the pencil L, ¢, 3, we can find a sequence of
sites Z1,...,Z; by moving a piston from 0~ A in the direction opposite to e3 one unit
distance at a time, up to the first site Z; such that Zz € Le, ¢, 3, N B (72 depends on B
and eq, e9, €3).

Put o = Z5. In this way, given three ordered vectors eq, e2, e3, we have a constructive method
to find a unique extremal corner of B, (e1,es,e3, ). Thus, the number of extremal corners
equals the number of choices for these vectors, namely, 6 x 4 x 2 = 48. Q@

Lemma 2.67 Divide A with a plane © (parallel to one of the sides of 0~ A) and consider the
two parts A’ and A" (with A'UA" = A) obtained in this way. If B C A is such that BNA' # (),

then there are at least 8 extremal corners of B whose site is in A'.

Proof. If BN A’ # (), then we use the constructive method in the previous proof by moving
a piston parallel to 7 in A’. In this way we determine a unique vector e;, the one orthogonal
to 7 in the direction of A’. We can repeat the argument to find the extremal corner for any
possible choice of e, ez, obtaining 4 x 2 = 8 extremal corners of B whose site is in A. V)

3. In what follows we use Lemma 2.67 for a suitable choice of B contained either in 7 or in
n¢, i.e., subsets of occupied or empty sites.

Lemma 2.68 Ifn € X3y, then there are no n°-corners.
Proof. If there exists an n°-corner z, then z € 817 and we can distinguish two cases:

(i) z € (n©)°™. In this case there exists a sequence of empty nearest-neighbor sites yi(=
z),...,yn(€ OTA) such that y; € n° for j = 1,...,n. So, it is possible to reduce the
configuration 7 by creating a particle in y, € ~ A, increasing the energy by A, and then
bringing it to by following the sequence y,, ..., y1, decreasing the energy by 3U (when
the particle is connected to the droplet). Since A < 3U, in this way the configuration
n is A-reduced, i.e., n € X\Xa (recall (2.30)), which contradicts the assumption that
7 € X3y because Asy C Xa.

(il) = € (n°)™°™. In this case d((n°)"°™,d~A) > 2, because d((n°)"™, (n°)™) > 2. Let
(e1,e2,€3,x0) be an extremal corner of the connected component of (1¢)"“™ containing
z, and let Se, 5, be the corresponding halfspace. We have S, z, N1 # 0, since zg €
(n©)™co™ and xo + e; € 1. Let 7 be the connected component of 7 containing zo + €.
Then Lemma 2.67 implies that 7 has at least 8 extremal corners whose site is in S¢, 4,M17.
We can move the particle at zg + e; to the empty site zp, increasing the energy by 3U.
After that, at 0 energy cost, we can move the empty site in the direction e;, always
keeping it inside Se, 5, M7, up to the first instance when it arrives in 07. After that, we
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can move it to an extremal corner of 7 whose site, say z, is in 7, decreasing the energy
by 3U and obtaining a configuration, say 7}, with the same energy as 7. Thus, the empty
site originally at x¢ in 7 is moved to z in 7. By iterating this argument we obtain a
configuration 7 with (7¢)"®°™ = (). Now we proceed as in case (i).

@

4. Let us finally prove that (w§)™™ = (), i.e., the statement of Proposition 2.61. We will
argue by contradiction.

Claim 2.69 Let 0 < i < p and w; = w& Un. If (wf)™°™ # ), then there exists at least one
extremal corner (e1,ez,e3,xo) of (wf)"°™ satisfying

xo+er €Ny, zotes €A, zo+es €A (2.70)

Proof. Abbreviate A = (w§)"™, and recall that A; = supp(w{) and ANJ~A = (. By
Lemma 2.66, there exist extremal corners of A; U A . We will prove that at least one of these
is an extremal corner of A satisfying (2.70). We distinguish two cases:

(i) P(A; U A)\ P(A;) # 0. In this case there is a direction e; such that, if we consider
the sequence of slabs P,, ;,,..., Pe, s, obtained by moving a piston from 0~ A in the
direction opposite to e1, then this piston intersects P(A;UA) before P(A;). Any extremal
corner of A with this direction e; satisfies (2.70).

(ii) P(A;UA)\ P(A;) = 0. In this case A; is not a quasi-cube and A is contained in the face
F; of the quasi-cube P(A;) where wiG is growing at its i-th step. Let e; be the vector
orthogonal to F; in the direction external to A; and let P(A; N F;) be the rectangle
circumscribing A; N F;. We have two cases.

(iil) A € P(A; N F;). In this case there is a direction ez, orthogonal to eq, such that,

if we consider the sequence of pencils L¢, ¢, 3,,-- -, Le, e,,3, In the slab F; obtained

by moving a piston from d~A in the direction opposite to eo, then it intersects A

before P(A; N F;). Any extremal corner of A with these e; and eq satisfies (2.70).
(ii2) A C P(A;NF;). In this case A is contained in the pencil, say L;, of P(A;NF;) where
wiG is growing at step 7. Let es be the the vector orthogonal to L; and to e; in the
direction external to A;. By the definition of A;, it is immediate that there exists
a vector e, orthogonal to e; and ey, and a site zy € A such that (eq,es, e3,zq) is
an extremal corner of A satisfying (2.70).

Q

5. The proof of Proposition 2.61 follows from Claim 2.69 after we note that (2.70) implies
that z( is an n“-corner, because there exist 3 nearest-neighbors of zj in 7,

rot+e €n, xot+e€n, xo+esen, (271)

which contradicts Lemma 2.68. Hence (wf)™®™ = (). Q

With Proposition 2.61 we have completed the proof of Proposition 2.47. It follows from
Propositions 2.13 and 2.47 that
r, = {0, F(X)}, (2.72)

because any configuration in B\ F(X) is 0-reducible and therefore cannot be in Ap,.
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2.5 Geometric description of minimal saddles and gates

In this section we develop the focalization property that was announced in the introduction
and we identify a gate for the nucleation, i.e., a subset of those minimal saddle configurations
the Kawasaki dynamics has to cross with high probability in its transition from the metastable
state U to the stable state . Our main result is Proposition 2.86. In Section 2.5.1 we define
magic numbers, in Section 2.5.2 we study focalization and gates, while in Section 2.5.3 we
expand the argument slightly further.

2.5.1 Magic numbers

Let d(n): N — N3 x {0,1}? be the function that associates with n the unique 6-tuple (m, [, k, 6,
0, ) appearing in (2.3). Note that d(n) is a bijection by Proposition 2.2.

A special role is played by the set N of integers n such that d(n) = (m,,0,46,0,a). Bor-
rowing terminology from nuclear physics [10], we call N the set of magic numbers. For these
numbers the principal polyominoes have the form “quasi-cube + quasi-square”.

If 7 € N, then by Theorem 2.4(b) the associated (equivalence class of) principal polyomi-
noes Rz, (M, m + 6,m + 0) (defined in Section 1.5 item 3) satisfies

__ E] S 0N\ — . _ : /
Rits (i, i+ 8,m + 0) = {n € Va: Hln) = min H(y )}. (2.73)

- We order N: N = {f1,M2,...} with iy < 7ig < ... Given 7i; € N with d(n;) = (mi,l_i,O,&-,
0;,;), we have
N1 =N + 1 ifl_,':(), ﬁHl:ﬁi—i—l_i—Fo_zi lfl_ZZl (2.74)

2.5.2 Focalization and gates
The main result in this section is Proposition 2.86. Its proof relies on the following (recall

Section 1.5 items 3 and 8):

Proposition 2.75 Fiz i and let d(n;) = (T?Li,l_i,ﬂ,gi,éi,@i).
(a) Let fi; be such that I; + &; > 1. Then Di{’l—:’igi (i, mi + i, mi + 0;) C Va2 is a gate for
Vﬁi — VﬁH_l.

(b) Let n; be such that I; + & < 1. Then R{pl-'+a'(mi,ﬁ?,i + 8;,7m; + 0;) € Vi, 41 48 a gate for

Vﬁi — Vﬁi_,’_l .
Proof. The proof comes in steps.
1. We begin with the elementary observation that, for all n € N and 7,7’ € V),
H(n) — H(n') = kU for some k € Z, (2.76)

which is immediate from (1.3) and (1.31) since Na(n) = Nx(7').

2. Next, we consider two consecutive magic manifolds.

Lemma 2.77 Fiz i and let d(n;) = (771-,172',0, 6i,0i,0;). Then all paths in (Vp, — Vi1 )opt
pass through Ry 1. 5. (s, My + 6, + 0;) C Vi, during the transition from Vg, to Vi, 41.
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Proof. Abbreviate R; = Ry, 1. 4. (i, m; + 8;,m; + 6;). Let w(n;,n;,1) be the part of the

reference path wX between the standard polyomino of volume 7; and that of volume 7; 1.
If 72; is such that I; + & > 1, which means that the corresponding polyomino is neither a

quasi-cube nor a quasi-cube plus a 1-protuberance, then by (2.74) we have 7i;+1 > 7i; + 2, and

SO
®(Vny, Vi) < max  H(n) < H(R;) + 2A — 20, (2.78)

T]EUJK (ﬁi,ﬁi+1)
because 2A is the cost to create the (7; + 1)-st and the (7; + 2)-nd particle, while —2U is the

binding energy when the (n; + 1)-st particle is attached to the droplet. Suppose that there
exists w € (Va; — Va4, )opt DOt passing through R;. We will show that, for any such w,

max H(n) > H(R;))+ A+ U. (2.79)
nEW

Equations (2.78-2.79) give a contradiction because A + U > 2A — 2U. To prove (2.79), use
that R; = F(Va,;) by Theorem 2.4(b). By (2.76), if w does not pass through R;, then the
configurations 7 € w N V;, have energy H(n) > H(R;) + U. Since the transition from V;, to
Vi;+1 comes with a further increase in energy by A due to the next incoming free particle, it
is clear that w satisfies (2.79).

If 72; is such that I; + &; < 1, then by (2.74) we have 7;;1 = 7; + 1, and so

nE€wX (7i;,fii41)
We can now repeat the previous argument via contradiction, because A + U > A. @

3. We return to the proof of Proposition 2.75(a,b):

(a) We know from Lemma 2.77 that any w € (Va; — Va,,,)opt Passes through R; C Vg, and
hence crosses Vp, 11 in sz P_ The first non-trivial subsequent move can only consist in attaching

the free particle in R{ P to the droplet in R{ P Indeed, annihilation of the free particle would
mean to return to Vy;, while without annihilation the following restrictions are in force:

(i) No other free particle can arrive before the free particle is attached, because otherwise
we would have

meaxH(n) = H(R;) +2A > H(R;) +2A = 2U > ®(Vp;, Va, 1), (2.81)
nNEW

where the last inequality uses (2.78).

(ii) It is not possible to separate a particle from one of the corners of the droplet before
attaching the free particle, since this would increase the energy by at least U (namely,
when the free particle is next to the site the particle from the corner moves to, the
energy increases by 2U — U = U), and so we would have

max H(n) > H(R;) + A+ U > H(R) + 28 = 2U > &V, Vii,)- (2.82)

After attaching the free particle we enter the set R?p " and so we are in the set

C2VRY™) = {n' € Vagsrz @yy i (n,n') < H(n) +2U} (2.83)
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for some 7 € R”".

Now, w’ visits V;, 11 for the last time in F(V5,41). Therefore, by comparison with w¥ and
using (2.78), we deduce that any path in (Vs; — Vp,,,)opt has to perform the passage from
Vi;+1 10 Vi, 1o as a single transition n — o (with 7 € V5,41, 0 € Vi, 42), where n € F(Va,4+1)
and o is obtained from 7 by creating a particle in A, so that H(o) = H(n)+ A. Moreover, it
is clear that any path in (Vy; — Vi, ,)opt cannot visit any configuration in Vy; 1 with energy
strictly larger than H(F(Vg,+1)) + 2U since, by (2.76), this would imply a value of the energy
larger than or equal to H(F(V5,+1)) + 3U, which is strictly larger than the maximal energy
in wX. So, we cannot leave Vi, +1 unless we return to Vy;. This implies that the transition to
Via;+2 has to be performed through the set (recall (1.43))

fr

U FEU®RP) | =DPP (m, i + 5, + 03). (2.84)
77672?”

To complete the proof, we note that D?”T’“i,(mi,mi + &, mi + 0;) € S(Vn;, Vay,,) since,

lili+ay
by (2.10),
D(Viys Vigy) = max H(w (s, 7i11)) = H (DFPI (i + ,mi +0) . (2.85)
(b) The proof is immediate via Lemma 2.77 and the same reasoning as prior to (2.83). Q@

We may now conclude with the main result of this section:
Proposition 2.86 C* is a gate for 1 — N

Proof. This is immediate from Proposition 2.13 and Proposition 2.75(a). @

2.5.3 Further properties of optimal paths between successive magic manifolds

In this section we prove the following extension of Lemma 2.77.

Lemma 2.87 Fiz i and let d(7;) = (4, 1;,0, 0, 0;,a;) with I; # 0. Then all paths in (Va, —
Viii1)opt Pass through the set obtained from R{pz‘-m'(mi’ m; + 8, m; +0;) by attaching the free
particle to the face of the quasi-cube containing the quasi-square.

Proof. Again we abbreviate R; = Ry, I+a (i, i + 05, i + 6;).

If w € (Va; — Vi1 )opt, then, by Lemma 2.77, w passes through szp C Vi, +1. We know
from (a) and (b) in the proof of Proposition 2.75 that the creation of another free particle or
the separation of a particle from the droplet are not possible in w before the free particle is
attached. We want now to prove that if w passes from sz P to a configuration in which the free
particle in sz P is attached to a wrong face of the droplet (i.e., a face that does not contain the
quasi-square) or to the top of the quasi-square, then w returns to R{ P before reaching Vy;, -
This goes as follows.

Let R;”" be the set of configurations that are obtained from a configuration in T\’,{ P by
attaching the free particle to a wrong face or to the top of the quasi-square (leading to a
“wrong protuberance”). We claim that any configuration o' ¢ R;”" that can be obtained
from 1 € R;™" without again separating the attached particle from the droplet has an energy
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H(n') > H(n) + 2U, which is strictly larger than ®(V;,Vs,,,). To see why this claim is
true, note that in 7 all the particles, with the exception of the attached one, have at least 3
nearest-neighbors in the cluster. To move a particle of the quasi-square while keeping it on the
same face has energy cost > 2U, because the attached particle cannot be a nearest-neighbor
of the site this particle moves to. To move a particle of the quasi-square away from the face
also has energy cost > 2U (possibly with the help of the attached particle when it is on top
of the quasi-square). To move a particle of another face again has energy cost > 2U (possibly
with the help of the attached particle when it is on that same face). Thus, we would have

Irrlleau))(H(n) =H(R;)+A—-U+2U > ®Vs;, Va, 1), (2.88)
where the inequality uses (2.78) and (2.80). This contradicts w € (Va; — Va;,1)opt- @

Lemma 2.87 is only a first step towards describing in more detail what the optimal paths
look like. The problem is to extend the focalization to manifolds that are not magic, which
is hampered by the degeneracy found in Alonso and Cerf [1] for the isoperimetric inequalities
when the number of particles is not a magic number. At present it seems too difficult to
handle this problem. Some further discussion is provided in Section 4.2.

3 Proof of main theorems

3.1 Proof of Theorem 1.55(a)
Upper bound:
The upper bound on the nucleation time in fact holds uniformly in the starting point.

Proposition 3.1

i i T+0)8) —
Bh_)ngo ;13{}3, (7‘. <e ) 1 Vo > 0. (3.2)

Proof. The proof is achieved by exhibiting a sufficiently probable nucleation event.

1. Fixne X and § >0, put T = e(r+%)ﬂ, and define the event

{rma<T}={w: 3t €[0,T): w € W}. (3.3)
We will prove that
)
min P, (rm < T) > e 1P VB> By(d). (3.4)
n

Putting Ty = e(T't98 and using (3.4) in combination with the Markov property, we get

)

max P, (rm>7) < (1- e*%ﬂ)ﬁ/T =(1- e%ﬂ)egﬁ — SES. (3.5)

2. To prove (3.4), we introduce an event

Ez; C{m<T} (3.6)
whose probability we will be able to estimate properly, namely,
0,m};m o
Ez; = U {E;{’ 8L Ny E%l’T} (3_7)
tle[oa%]
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with

E,{,D’.};.’t1 = {ww=nw&{d,B}V0O<s<t,w, €W},

E;{,D’.};D’tl = {wwy=7n,ws € {O,B} V0 <s<t1,w, =0},

_ (3.8)
B, = U

t2€[t1,%1 tae[tz,g] t4€(ts,T]

{O,m};0,t RSP gy RSPT tg ui,
{En nEf, B s nERE

where R?"? is any configuration in Ripflf i (me—1,m¢—d¢,m.) and RP" is any configuration
obtained from R%"™fP by attaching the free particle to an external corner of R?PT:/P (both
configurations are fixed arbitrarily), while, for ( € X, BC X, 0 <t < u,

Eg;u:{w: wp=C(, ws € BYt < s <u,w, € B}. (3.9)
Note that in (3.9) the lower index ¢ means that time is shifted by ¢ units.

3. Since t1,19,13,t4 in (3.8) are first hitting times, we have

Pl U {Egﬂ'};'muﬁgﬂ} = Y (PED™®L) L pELT)) (3.10)
tle[O,%] tle[O,%]

and
PE;T) = P(E,) )

R2P7fP ¢ RsPT t [ I
x ¥ % v P(EEV)P(BENE )P (BRE).

ta€fts, D] taeta, 3] talts,T]

(3.11)
On the other hand,
0,m;0,
P(Eém .;. zl) = By(romy =t)an (), (3.12)
P(E, ") = Py(romy =t)(1 —a,(n),
with
4 () = Py (1w, = O | riomy =t1) - (3.13)

We may therefore write

> AP®[PMR) L PERTY > Y Pyromy = t)[(1 - ai () + an (n)rr] (3.14)
t1€[0,2] t1€[0,%]

with
2pr, f T spr « T r
rp =P (Eg s 4) P (Eg;;“) P (E;;;4) : (3.15)
where
ESS = {wrwy = (,30 < s <t w, = £}, (3.16)
From (3.7), (3.10) and (3.14) we get
T T
P(Eﬂ) 2 Pn T{D,.} S Z rr. (317)
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4. Propositions 2.34 and 2.47 imply that

Jim min P, (T{D,.} < e(Foﬂ)ﬂ) -1 VYy>o. (3.18)
—00 nNeE

Put v = (I' — Tp)/2. Then ello+M8 < L for g sufficiently large and so it follows from (3.18)
that

. T 1
})Tg/{}Pn (T{D,l} < Z) =5 VB> FB(6). (3.19)

Thus, it remains to get a lower bound on rr.

5. Let
AD:{neXzElw:nHD: maxH(wi)<I‘}. (3.20)
]

This set is a cycle with F(9.A) 2 R?"/P~, the subset of R?P"»/P where the free particle is
in the boundary 0~ A (because H(R?"/P~) =T and removal of the free particle in R?P"/P~
leads to a configuration in Ag). Hence Proposition 2.42(a,c) and (3.18) yield

RQP‘”,fP,S%

P (ED ) >e 8 Wi >0 VB> By(d). (3.21)

Next, since there is a finite downhill path from R?P™/P to RSP", there exists a constant a > 0,
independent of 3, such that

Rovr <L
P (E o fp4> > a. (3.22)
Next, let
A.Z{neX:Hw:nHl: ma,xH(wi)<I‘}. (3.23)
1

This set is a cycle, and R*"" C Ag (as can be deduced by looking at the reference path w®
defined in Section 2.2). Since [] ¢ Ag, Proposition 2.42(b) and (3.19) yield

T\ 1
P (E;;ET‘*) > VB> f(d). (3.24)
Combining (3.15), (3.21-3.22) and (3.24) we find that
1 _g
rp > 5@6—5 P o >0 VB> B(6,0). (3.25)

From (3.6), (3.17), (3.19) and (3.25) we conclude that,

néi)?p(Eg) >e %P v§" >0 VB> Bo(6,0"), (3.26)
n

which proves (3.4). V)

Lower bound:

Proposition 3.27 limg_., P (T. > e<H>ﬂ) — 1 for all 6 > 0.
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Proof. We know from Proposition 2.13 that
(0, W) =T. (3.28)

Hence the claim follows from reversibility. Indeed, put T_ = eI'=98. Since every path
w:[0 — M has to cross d.AM, we can write

T
Po(re <T.) < Pa(roas <T-) =Y Y Pa(toa =t m =&). (3.29)
t=1 (€0 An
By reversibility, we have
Po(toag =t, m=§) = e_’B[H(f)_H(D)]Pg(nS € AnvVo<s<t, p =0). (3.30)
From (3.29-3.30) we get
Po(rm < T_) < T_|0Ap|e PH @A) -HO)] = |9 A |e~%0 (3.31)
(recall that H(OJ) =0, H(F(0AQ)) =T'), from which the claim follows. Q@

3.2 Proof of Theorem 1.55(b)

By considering the magic number 7;, = m.(m. — d.)(m,. — 1) + (I — 1), we have

Po(moc-m> ™) <Po(nn,. . ¢C") <Po(tasr < m), (3.32)

"ic+2
where Asr = {n € X:H(n) > I'}. The second inequality holds because, by Proposition
2.75(a), if nr, ., ¢ C*, then max, H(ns) > H(C*) =T. Estimate

Po(Tasr < ™m) < Po(mm > e(PM)’B) +Po(Tap < e(F+5)'B). (3.33)

The first term in the right-hand side tends to zero as § — oo by Proposition 3.1. Let ¢y > 0
be such that minyc 4, H(n) > T + €o. Then, by using reversibility as in (3.29-3.31), we may
estimate the second term in the right-hand side by

Poy(ra,p < elTH0P) < |Asple@H0fe (THels, (3.34)
which also tends to zero as  — oo when we pick 0 < § < €.

3.3 Proof of Theorem 1.58

Let n € P(m, — 1,m, — d.,m¢). Then, by Proposition 2.19(a), we have ®(n,J) < ®(n, ).
Fix 0 < ¢p < ©(n,®) — &(n,0). Then

AZmEO e X (D) < @(n, 1) + e} (3.35)
is a non-trivial cycle containing n and [, but not l. By applying the general result on cycles

in Proposition 2.42(b), we obtain the first line in (1.59). The proof of the second line in (1.59)
for the case n 2 P(m. — 1,m¢ — 6., mc) is similar.
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4 Additional path properties

In Section 1.5, Item 8, we introduced two types of sets of configurations: those denoted by R,
which are given explicitly in terms of a geometric description, and those denoted by D, which
have a more complicated definition in terms of communication height, namely, configurations
that can be reached from a configuration of type R by a path on a manifold V), for a suitable n,
with a maximal energy threshold 2U. In particular, the set of critical configurations C*, which
plays a crucial role in the present paper, is a set of type D (recall (1.43) and (1.45)). Thus, in
order to obtain geometric information on C* we need to investigate the effect of allowing this
threshold 2U, which results in a motion of particles along the border of a droplet.

In Section 4.1 we describe the border motion, both for the two- and for the three-
dimensional model. In Section 4.2 we obtain some information on the geometry of config-
urations in C*, while in Section 4.3 we offer some reflections on the tube of typical nucleation
paths.

4.1 Motion along border of droplet

A particle can move away from a droplet, travel as a free particle for awhile and then return
to the droplet, but it can also move along the border of the droplet. In fact, it can either
move on a face of the droplet, following a two-dimensional border motion, or it can move
from one face to another while staying attached to the droplet, following a three-dimensional
border motion. This border motion is a special feature of Kawasaki dynamics and plays an
important role in determining the geometry of the critical configurations and of the typical
nucleation path.

4.1.1 Two dimensions

Let us first consider the two-dimensional model, which was studied in den Hollander, Olivieri
and Scoppola [5], [6]. Here the metastable regime is A € (U, 2U). The two-dimensional border
motion is illustrated in Fig. 6: with the help of a free particle, particles can slide from one
side to another at maximal energy cost U (replacing the maximal energy cost 2U in three

dimensions).
T 1 1-

(1) (2) (3) (4) (5)

of o ol o oF

(6) (7 (8) (9) (10)
! I -
(11) (12) (13) (14) (15)

Fic. 6. Two-dimensional motion along the border of the droplet.
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In Fig. 6, pictures 3—13 show the border motion triggered by a free particle between its arrival
to (pictures 1-2) and departure from (pictures 14-15) the droplet. Note that the configurations
in pictures 3, 6, 8, 10 and 13 all have the same energy, while the energy of the configurations
in pictures 4, 5, 7, 9, 11 and 12 is U higher.

Due to this border motion, the gate for the nucleation and the tube of typical nucleation
paths are completely different from those for Glauber dynamics, where the gate is given by an
l. x (I — 1) quasi-square with a protuberance on one of the longest sides. The configurations
given by the same quasi-square but with the protuberance on one of the shortest sides are
dead-ends (see Ben Arous and Cerf [2]). In contrast, for Kawasaki dynamics the gate for the
nucleation is given by a larger set of configurations, containing the configuration given by an
(I.—1) xI. quasi-square with a protuberance on one of the longest sides plus a free particle, but
also containing the configuration given by the same quasi-square with the protuberance on one
of the shortest sides plus a free particle. Indeed, the latter is not a dead-end, since it is easy
to check that the path obtained by completing the shortest side to obtain an (I, — 1) x (I +1)
rectangle, adding a protuberance on one of the longest sides of this rectangle and sliding
particles along the border from the shortest side to the side of the protuberance (as shown in
Fig. 6) is made up of configurations having an energy smaller than the initial one.

4.1.2 Three dimensions

For the three-dimensional model studied in the present paper, the situation is more complex.
The three-dimensional border motion is illustrated in Fig. 7: when a two-dimensional droplet
with a protuberance is attached to a face near the boundary of the face, particles can slide
into this face at a maximal energy cost 2U.

Fi1g. 7. Three-dimensional motion along the border of the droplet.
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In Fig. 7, the configurations in pictures 1, 3, 5 and 6 all have the same energy, while the
energy of the configurations in pictures 2, 4, 8 and 10 is U higher and in pictures 7 and 9 is
2U higher. Between pictures 2 and 3, particles slide one by one along the edge of the cube.
Between pictures 5 and 6, the border motion connecting pictures 1 and 5 is repeated until
one bar of the two-dimensional droplet attached to the face has been completed. In pictures
7, 8, 9 and 10 a bar is moved from one side of the two-dimensional droplet to another, so
as to reach a situation similar to picture 1: a two-dimensional droplet with a protuberance
that helps to slide into the face the rest of the particles on the edge of the cube (not depicted
further). Since picture 10 has energy U higher than picture 1, this sliding can only follow a
border motion similar to the one connecting pictures 1 and 6, but cannot continue further.

In Section 4.2 we will show that the border motion cannot really deform the critical droplet,
in the sense that all the configurations of minimal energy obtained by this border motion have
the same circumscribing parallelepiped. This is only limited information, but a first step
towards understanding the geometry of C*.

4.2 Some geometry of critical configurations

Let i = m¢.(m, — 0.)(me — 1) +1.(I. — 1) + 1. For 7 € Ripﬁuc (me — 1,me — bc,me), let C’%U
be the set of configurations 1 that can be reached from 7 by a path w = (w1,...,wg), k € N,
in V5 such that
=7 = H(w;) < H(n) + 2U. 4.1
wi =1, wp="7, wax H(w;)<H(7)+2U (4.1)
From Theorem 2.4(a) we know that 7 € ]:(C%U). Hence we have (recall (1.45) and (2.84))
fp

C* = U Fe | . (4.2)

_ 2
WERlcpil,lc (mc_lymc_(sc,mc)

Proposition 4.3 For any 7 € ’Ripfl 1. (me —1,m¢ — 6c,me) and any n € f(C%U),

P(7) = P(n), (4.4)
where P(7), P(n) are the parallelepipeds circumscribing 1, 1).

Proof. Let n € f(C,%U) with 1 # 7. Then there exists a path w = (w1,...,wg), £ €N, in V5
such that
=7, wp=n, max Hw) < HD) 420, H) = Hin). (45)

First we show that, for any such w,

in |w; N P(A)| >n— 1. 4,
min jw; 0 P(@)] = 7 (4.6)

Indeed, if (4.6) fails, then there exists 1 < iy < k such that |w;, N P(7)] = 7 — 2 and
lw; N P(7)] >n—1for all 1 <4 < ip. We have

H(w;,) > H(w;i, N P(7)) +2A —2U. (4.7)

Namely, in wj,, the particle that has moved outside P(7) in the transition from w;,—1 to wj,
has no nearest-neighbor particles inside P(7), while the other particle outside P(7) has at
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most one nearest-neighbor particle inside P(7). Therefore these two particles can at most
form a dimer touching a single particle inside P(7), which gives (4.7). Now, by Theorem
2.4(b), we have

H(wi, N P(7)) > H{)in H(n)=H() - A+2U — A+ 3U, (4.8)
n'EVa_2
so that
H(wi,) > H(7) —2A +5U +2A —2U = H(7) + 3U, (4.9)

which contradicts (4.5).

From (4.6) we can deduce that either |n N P(7)| = n or [nN P(n)| = n — 1. In the first
case, since |n| = 7, we must have P(n) C P(7), and strict inclusion is not possible since all the
parallelepipeds strictly contained in P(7]) have a volume strictly less than 7. In the second
case, we must have n ¢ F (C,%U) since, by the same argument as above, we have

H(p) > HnNP@)+A - U>H®H) - A+2U0 +A U > H(7). (4.10)

V)

Let us add some comments:

(1) The set CZY contains configurations (e.g. with a free particle or with a 1-protuberance)
for which the circumscribing parallelepiped is different from P(77). However, Proposition
4.3 shows that the set ]:(C%U) does not.

(2) The configuration given by an (m. — 1) x (m. — d.) X m, quasi-cube with [, — 1 missing
particles on one edge and with an [, x [, square on one face is a configuration in F (C’%U).
Indeed, this configuration can be obtained from 7 by a three-dimensional border motion
(see Fig. 7).

(3) Proposition 4.3 fails in two dimensions: if we denote by 7 the configuration given by an
(I — 1) x I, quasi-square plus a protuberance, then there are configurations n € F (C’%] )
with P(77) # P(n) (where now P(7), P(n) denote the rectangles circumscribing 7, 7).
Indeed, 1 can be any shift of ) obtained via a path that stays inside C}]] . Fig. 8 illustrates
how, with the help of a free particle, the droplet can move up/down/left/right as a result
of a border motion. Due to Proposition 4.3, this shift is not possible in three dimensions.

)
) 2 3 B)
::] E
I S e
(8) (N (8 (9 (10)
(11) (12) (13) (14) (15)

Fic. 8. Upward movement of a 3 x 3 square.
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In Fig. 8, pictures 3-13 show the diffusive motion triggered by a free particle between its
arrival to (pictures 1-2) and departure from (pictures 14-15) the droplet. Note that the
configurations in pictures 3, 6, 8, 10 and 13 all have the same energy, while the energy
of the configurations in pictures 4, 5, 7, 9, 11 and 12 is U higher.

(4) Proposition 4.3 cannot be easily improved. There are configurations in F(C2Y) for
which the face of the droplet in 7 containing the quasi-square with the 2-protuberance
looks completely different. Such configurations can be obtained not only by completing
the row, as already noted in (2), but also by producing a completely different shape on
the face. In fact, the two-dimensional motion on the face below energy threshold 2U
is even richer than the one below threshold U illustrated in Fig. 6 and can produce all
two-dimensional droplets with the same area and perimeter (for which there is a large
degeneracy: e.g. a 5 X 4 quasi-square with a protuberance versus a 3 x 7 rectangle).
This degeneracy can in principle be described in full detail, but it is only part of the
problem to understand the geometry of the set C*. Understanding the three-dimensional
border motion is a much harder problem and is connected to the degeneracy found in
Alonso and Cerf [1] for the isoperimetric inequalities when the number of particles is
not a magic number (see the remark made below Theorem 2.4). Complete control of
this degeneracy seems to be a hard problem. As noted in (3), in three dimensions the
mobility of droplets is smaller than in two dimensions. However, the mobility along the
border of droplets is larger. Thus, the two cases are rather different.

(5) Proposition 4.3 is not sufficient to exclude from C* the configurations in which the critical
two-dimensional droplet is attached to the wrong face of the quasi-cube. We believe that
the three-dimensional motion along the border of the critical droplet is not rapid enough
to enlarge the gate as much as it does in two dimensions, but we have no proof.

4.3 Tube of typical nucleation paths

We close this paper with a heuristic discussion of the “tube of typical nucleation paths”, i.e.,
the typical behavior of the process in the time interval [0 m,7m]. For the case of Glauber
dynamics for the Ising model, Ben Arous and Cerf [2], Theorem 7.36, contains a complete
description of this tube. For the present case of Kawasaki dynamics for the lattice gas model,
we have only limited reflections to offer.

Because of (1.57), we can divide the nucleation time interval in a subcritical part and a
supercritical part:

[HD,.a T.] = [HD,.a TD,C*,.] U (TD,C*,.7 T.] (411)

We have some control over the subcritical part, due to our identification in Proposition 2.75
of the minimal saddles between consecutive magic manifolds. However, the supercritical part,
which is relatively simple for Glauber dynamics, is more complicated for Kawasaki dynamics.

— Supercritical: In two dimensions the supercritical growth for Kawasaki dynamics is
qualitatively different from that of Glauber dynamics. There are arguments showing
that, for Kawasaki dynamics, the two-dimensional motion along the border of the droplet
rapidly turns a rectangle into a square or a quasi-square, while for Glauber dynamics
this mechanism is absent. Therefore, the supercritical growth follows squares and quasi-
squares for Kawasaki, while it follows (randomly growing) rectangles for Glauber (see
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Ben Arous and Cerf [2]). In three dimensions, as noted in (4) in Section 4.2, the
motion along the border of a droplet is less rapid than in two dimensions. We therefore
believe that the supercritical growth for Kawasaki dynamics is similar to that of Glauber
dynamics.

— Subcritical: For the subcritical growth we can apply Olivieri and Scoppola [9], Theorem
2, to study the first exit from the set A in (3.20), i.e., the maximal connected set of con-
figurations containing [1 and having energy < I'. The rough idea is the following. Look
at the configurations in F(9.Ag) and look at the first descent from these configurations
to F(Ag) = [O0. The tube of typical paths making up this first descent defines a “stan-
dard cascade”, consisting of a sequence of minimax’s towards [, decreasing in energy
and interspersed with sequences of downhill paths and “permanence sets” (which are a
kind of generalized cycles). By using reversibility, we find that the exiting tube, starting
from [ and ending in A, can be obtained via a time-reversal transformation from the
tube describing the first descent to [J. More precisely, by Theorem 1.55, we know that
the minimal energy on 9.4 is attained in C* and that A only contains configurations
with a number of particles < n* = m2(m.—1)+I.(l.—1)+2. To construct the “standard
cascade” from C* to [J, we note that each configuration 7 € A that is uphill connected
to C* is obtained by removing the free particle, i.e., 7 € Dipzuc (me — 1,me,me). Let
fi=mn*—2=m2(m.— 1) +1.(. — 1), and let (n;) be a decreasing sequence of magic
numbers with 71 = 7i. Because of Proposition 2.75, we know

@(Vﬁi_l,Vﬁi) - Pz (412)
and a gate for the transition V, | — Vp,. Therefore we also know

(O, V5,) = fg%rj' (4.13)
Consider the first minimal saddle, ®((J,V;) = 'y < I'. We note that there exists
7 € F(V;s) such that 7 is contained in the maximal connected set of configurations
with energy < I'y containing 7, say C’ﬁF '. This set is the first “permanence set” of the
“standard cascade”. By considering all the successive values of ¢, we can proceed in a
similar way and find the whole standard cascade. This is the rough idea, but it seems
hard to fill in the mathematical details, again because of lack of control of what happens
on non-magic manifolds.
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