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Abstract

We show that an i.i.d. uniformly colored scenery on Z observed along
a random walk path with bounded jumps can still be reconstructed if
there are some errors in the observations. We assume the random walk is
recurrent and can reach every point with positive probability. At time k,
the random walker observes the color at her present location with prob-
ability 1 — 6 and an error Y}, with probability 6. The errors Y3, k > 0,
are assumed to be stationary and ergodic and independent of scenery and
random walk. If the number of colors is strictly larger than the number
of possible jumps for the random walk and § is sufficiently small, then
almost all sceneries can be almost surely reconstructed up to translations
and reflections.

1 Introduction and result

We call a coloring of the integers Z with colors from the set C := {1,2,...,C}
a scenery. Let (Sp;k € Ny) be a recurrent random walk on Z. At time k
the random walker observes the color £(Sk) at her current location. Given
the color record x := (£(Sk);k € Np), can we almost surely reconstruct the
scenery ¢ without knowing the random walk path? This problem is called
scenery reconstruction problem. In general, one can only hope to reconstruct
the scenery up to equivalence, where we call two sceneries £ and & equivalent
and write £ & ¢’ if € is obtained from £’ by a translation and/or reflection.
Early work on the scenery reconstruction problem was done by Kesten in [14].
He proved that a single defect in a 4-color random scenery can be detected if the
scenery is i.i.d. uniformly colored. Reconstruction of typical 2-color sceneries
was proved by Matzinger in his Ph.D. thesis [22] (see also [24] and [23]): Almost
all i.i.d. uniformly colored sceneries observed along a simple random walk path
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(with holding) can be almost surely reconstructed. In [15], Kesten noticed that
the proof in [22] heavily relies on the skip-freeness of the random walk. In [21],
Lowe, Matzinger and Merkl showed that scenery reconstruction is possible for
random walks with bounded jumps if there are sufficiently many colors.

In this article, we prove that scenery reconstruction still works if the obser-
vations are seen with certain random errors. We make the same assumptions on
scenery and random walk as in [21]: The random walk can reach every integer
with positive probability and is recurrent with bounded jumps, and there are
strictly more colors than possible single steps for the random walk. To keep
the exposition as easy as possible, we assume in addition that for the random
walk maximal jump length to the left and maximal jump length to the right
are equal; we believe that the results of this paper remain true without this
assumption. At time k the random walker observes color £(Sy) with probability
1—4, whereas she observes an error Y, with probability ¢. If the errors are inde-
pendent of scenery and random walk, the occurences of errors are i.i.d. Bernoulli
with parameter § and Yy, k& > 0, is stationary and ergodic, then for all § suf-
ficiently small, almost all sceneries can be almost surely reconstructed up to
translations and reflections.

More precisely, we consider the following setup: Let ¢ €]0,1[. Let p be a
probability measure over Z with finite support M. With respect to a probability
measure Ps, let S = (Si; k € Ny) be a random walk starting at the origin with
independent p-distributed increments. We assume that E[S;] = 0 and M has
greatest common divisor 1; hence S is recurrent and can reach every z € Z
with positive probability. Let £ = ({x;k € Z) be a family of ii.d. random
variables, uniformly distributed over C. Let X := (Xi;k € Ny) be a sequence
of i.i.d. random variables taking values in {0,1}, Bernoulli distributed with
parameter §, and let Y := (Yj;k € Ny) be as sequence of random variables
taking values in C which is stationary and ergodic under Ps. We assume that
(&, 8,X,Y) are independent. The scenery observed with errors along the random
walk path is the process ¥ := (Xx; k € Ny) defined by xx := xr = &(Sk) if X, =0
and Y := Y if X = 1. Our main theorem reads as follows:

Theorem 1.1 If |C| > | M|, then there exists &, > 0 and a map A : CY0 —
C% which is measurable with respect to the canonical sigma algebras, such that
Ps (A(x) = &) =1 for all § €]0,61].

If 6 = 0, there are no errors in the observations. In this case, the assertion
of Theorem 1.1 was proved by Lowe, Matzinger, and Merkl in [21].

Closely related coin tossing problems have been investigated by Harris and
Keane [7] and Levin, Pemantle, and Peres [17]. The present paper has to a
large extend been motivated by their work and a question of Peres who asked
for generalizations of the existing random coin tossing results for the case of
many biased coins.

Let x" := (x};k € No) be a coin tossing record, obtained in one of the
following ways: a) a (two-sided) fair coin is tossed i.i.d., or b) at renewal times
of a renewal process a coin with bias # is tossed and at all other times a fair
coin. Can we almost surely determine from x’ whether we are in case a) or b)?



Let u,, denote the probability of a renewal at time n. Harris and Keane in [7]
showed that if 7, u2 = oo then we can almost surely determine how x' was
produced, whereas this is not possible if > u? < oo and @ is small enough.
Levin, Pemantle, and Peres in [17] showed that to distinguish between a) and
b) not only the square-summability of (u,) but also 6 is relevant. They proved
that for some renewal sequence (u,) there is a phase transition: There exists
a critical parameter 6, such that for |#] > 6, we can almost surely distinguish
between a) and b), whereas for || < 6. this is not possible.

The problem we address in this paper can be seen as a generalization of
the following coin tossing problem: We have C' different coins v1,v2,---,7c
each one with C different faces 1,2,...,C. Coin ~; has distribution pu; which
gives probability 1 — § + §/C to face i and probability §/C to each remaining
face. For all z € Z we choose i.i.d. uniformly among 71,7, ... ,vc a coin ((2).
Let (Sk;k € Ny) be a random walk on Z fulfilling the conditions described
above, independent of (. We generate a coin tossing record x' := (x};k € No)
by tossing the coin ((Sy) at location Sj at time k. Then x’ has the same
distribution as y defined above, if we choose Y}, i.i.d. uniformly distributed over
C. Theorem 1.1 implies that we can almost surely determine ¢ up to equivalence
from the coin tossing record x’, as long as § is small enough.

Research on random sceneries started by work by Keane and den Hollander
([13] and [5]) who studied ergodic properties of a color record seen along a
random walk. Their questions were motivated among others by the work of
Kalikow [12] in ergodic theory. More recently, den Hollander, Steif [4], and
Heicklen, Hoffman, Rudolph [8] contributed to this area.

A preform of the scenery reconstruction problem is the scenery distinguishing
problem (for a description of the problem see [15]) which started with the ques-
tion whether any two non-equivalent sceneries can be distinguished. This ques-
tion was asked by Benjamini and independently by den Hollander and Keane.
The problem has been investigated by Benjamini and Kesten in [2] and [14].
Howard in [11], [10], [9] also contributed to this area. Recently, Lindenstrauss
[18] showed the existence of uncountably many sceneries which cannot be re-
constructed.

Lowe and Matzinger [20] proved that two-dimensional sceneries can be recon-
structed if there are enough colors. In the case of a 2-color scenery and simple
random walk with holding, Matzinger [25] showed that the reconstruction can
be done in polynomial time. By a result of Lowe and Matzinger [19], recon-
struction is possible in many cases even if the scenery is not i.i.d., but has some
correlations. In [16], Lenstra and Matzinger showed that scenery reconstruction
is still possible if the random walk might jump more than distance 1 with very
small probability and the tail of the jump distribution decays sufficiently fast.

The exposition is organized as follows. In Section 2, we introduce some
notation and we formally describe our setup. Section 3 describes the structure of
the proof of Theorem 1.1: By an ergodicity argument, it suffices to find a partial
reconstruction algorithm A’ which reconstructs correctly with probability >
1/2. To construct A’, we build partial reconstruction algorithms A™, m >
1, which reconstruct bigger and bigger pieces of scenery around the origin.



Section 4 contains the proofs of the theorems from Section 3. The core of the
reconstruction is an algorithm Alg™ which reconstructs a finite piece of scenery
around the origin given as input finitely many observations, stopping times and
a small piece of scenery which has been reconstructed earlier. Section 5 contains
the definition of Alg™. In Section 6, we show that Alg™ fulfills its task with high
probability.

2 Notation and setup

In this section, we collect frequently used notation.

Sets and functions: The cardinality of a set D is denoted by |D|. We write
f|D for the restriction of a function f to a set D. For a sequence S = (s;;4 € I)
we write |S| := |I| for the number of components of S. If s; is an entry of S, we
write s; € S; sometimes we write s(i) instead of s;. For events By, k > 1, we
write liminfy,_. o By := U2, N2, By for the event that all but finitely many
By}’s occur.

Integers and integer intervals: N denotes the set of natural numbers; by
definition, 0 ¢ N. We set Ny := NU {0}. If z € R, we denote by |z]| the
largest integer < x. Unless explicitly stated otherwise, intervals are taken over
the integers, e.g. [a,b] ={n € Z:a <n < b}, [a,b[={n €Z:a < n < b}.
Sceneries: We fix C > 2, and denote by C := {1,...,C} the set of colors.
A scenery is an element of CZ. A piece of scenery is an element of C! for a
subset I of Z; here I need not be an integer interval. The cardinality of the
set I is called the length of the piece of scenery. We denote by (1); the piece
of scenery in C! which is identically equal to 1. For I = {iy,is,...,ir} C Z
with i, < is < ... < i3 and a piece of scenery & € C! we define £_. to be the
piece of scenery ¢ read from left to right and £ to be £ read from right to left:
€= (E(i)3j € [1,K]) and £ = (E(ir_1): ] € [1, K]).

Equivalence of sceneries: Let ¢ € C! and ¢ € CI' be two pieces of sceneries.
We say that ¢ and ' are equivalent and write ¢ ~ 1’ iff I and I' have the
same length and there exists a € Z and b € {—1,1} such that for all k € I we
have that a+bk € I' and ¢ = ¢} ;. We call ¢ and o' strongly equivalent and
write ¢ =" if I' = a + I for some a € Z and ¢ = ¢, ,, for all k € I. We say
¥ occurs in ' and write ¢ C o’ if ¢p = ¢'|J for some J C I'. We write ¢ < ¢’
if ¢ = ¢'|J for some J C I'. If the subset J is unique, we write ¢ < .
Random walks, random sceneries, and random errors: Let y be a prob-
ability measure on Z with finite support M. We assume that |[M| < |C|, i.e. the
number of colors is strictly larger than the number of possible jumps of the
random walk. We assume max M = |min M|, and we write L := max M for
the maximal jump length of the random walk. Let Q5 C Z"0 denote the set of
all paths with jump sizes Si+1 — Sk € M for all k € Ny. We denote by @, the
distribution on (2,)"° of a random walk (Sy; k € Ny ) starting at 2 with ii.d. in-
crements distributed according to u. We assume that ), (k) = 0 and M



has greatest common divisor 1, consequently the random walk is recurrent and
can reach every integer with positive probability.

The scenery & := (&3 k € Z) is id.d. with & uniformly distributed on C.
Let X := (Xi;k € Ny) be a sequence of i.i.d. Bernoulli random variables with
valuesin {0,1}. If X}, = 0, then at time k the random walk observes color £(Sk),
whereas if X;, = 1 an error occurs in the observations at time k: the random
walker observes Y}, where Y := (YV; k € Ny) is a sequence of random variables
taking values in C. We assume that (£,5,X,Y) are independent and realized
as canonical projections on Q := (C% Q,,{0,1}"o,CN0) with the product o-
algebra generated by the canonical projections and probability measures Ps , :=
I/®Z®Q$®B§9N° ®A, 8 €10,1], z € Z; here v denotes the uniform distribution on
C, Bs the Bernoulli distribution with parameter § on {0,1} and A a probability
measure on CN° such that the left-shift is measure-preserving and ergodic with
respect to A\. We abbreviate Ps := Ps and P := F. .

We call x := (xx := &(Sk); k € Ny) the scenery observed along the random
walk path; sometimes we write £ o S instead of xy. We define x := (xx; k € No),
the scenery observed with errors along the random walk path, by

~ Xk ifX]CZO,
Xk= vy, if X, =1.

For a fixed scenery ¢ € C% we set Pf 1= 8@ Qo @ BN @\, where 6 denotes
the Dirac measure at £&. Thus P§E is the canonical version of the conditional

probability Ps(-|¢). We use P§ and Ps(-|€) as synonyms; i.e. we never work with
a different version of the conditional probability Ps(:|).

Admissible paths: Let I = [i;,i2] be an integer interval. We call a path
R € Z! admissible if R;y1 — R; € M for all i € [i1,i2 — 1]. We call R(i1) the
starting point, R(i2) the endpoint, and |I| the length of R.

Words: We call the elements of C* := U,en,C™ words. If w € C™, we say that
w has length n and write |w| = n.

Ladder intervals, ladder paths, and ladder words: A ladder interval is
a set of the form I N (a + LZ) with a bounded interval I and a modulo class
a+L7Z € Z/LZ. Let I be aladder interval. We call a path R of length |I| which
traverses I from left to right or from right to left a ladder path or a straight
crossing of I. The ladder words of a scenery & over I are (¢|I)_. and (&|I)—.

Filtration and shift: We define a filtration over Q: G := (G,;n € Ny) with

Gn = o(Xx; k € [0,n]) is the natural filtration of the observations with errors.
We define the shift 8 : CNo — CNo gy s p(- + 1).

2.1 Conventions about constants

All constants keep their meaning throughout the whole article. Unless otherwise
stated, they depend only on C' and u. Constants «, 7, €, &, ¢1, ¢3 and n; play a
special role in the constructions below; we state here how they are chosen. All
other constants are denoted by ¢;, ¢ > 3, §;, €;, @ > 1.



e We choose v > 0.

e We choose ¢3 €]1, 72 [ and € €]0,™*[ with

M :=min {1/30,£1/90,[InC —Ine¢x —In(C — 1)]/(901In C)},
where £1 is as in Lemma 6.7.

e We choose ¢; € N to be a multiple of 36 with ¢; > 27/[InC' —Incy —1In(C' —
1) — 9010 C).

o We set € := ¢ €.

e We choose a > max{y,1+ v — [3¢1In ftmin]/In 2}, where we abbreviate
Hmin = min{p(i) : i € M}.

e Finally we choose n; € N, n; > min{25,¢3}, large enough that 2™ >
e L2V for all n > ny and ea(ny) + (2e3(n1)) /2 + 300, cqe " < 1/2
holds, where c3 is defined in Theorem 3.5, 2(n;) in Lemma 4.3, e5(ny) in
Theorem 3.3 and ¢4 and ¢5 in Lemma 4.4.

3 The structure of the reconstruction

In order to prove Theorem 1.1, we reduce the problem of reconstructing the
scenery successively to simpler problems. Theorems 3.1 and 3.2 below show
that it suffices to find algorithms which do only partial reconstructions. Proofs
are postponed to later sections: Sections 5 and 6 are dedicated to the proof of
Theorem 3.5, all other statements of this section are proved in Section 4. Our
first theorem states that it suffices to find a reconstruction algorithm A" which
reconstructs correctly with probability > 1/2:

Theorem 3.1 If there exist 6, > 0 and a measurable map A’ : CNo — C% such
that Ps (A'(x) = &) > 1/2 for all § €]0,61[, then there exists a measurable map
A CNo — CZ such that Ps (A(X) = &) =1 for all § €]0,6,].

The idea is to apply the reconstruction algorithm A’ to all the shifted ob-
servations #%(Y), i > 0. By the hypothesis and an ergodicity argument, as k
tends to infinity the proportion of sceneries A'(6°(y)) for i € [0, k[ which are
equivalent to £ is strictly bigger than the proportion of sceneries which are not
equivalent to . Therefore we are able to reconstruct the scenery.

We build the algorithm A" required by Theorem 3.1 by putting together a
hierarchy of partial reconstruction algorithms A™, m > 1. The algorithm A™
tries to reconstruct a piece of scenery around the origin of length of order 2"
with (n.,;m € N) recursively defined as follows: We choose ny as in Section 2.1,
and we set for m > 1

Mgy = 20Vl (3.1)



Definition 3.1 For m > 1 and a measurable map f : CNo — C[=3:2"":3:2""] ye

define

E;Zconst,f = {€|[_2n,,, ) 2nm] = f()Z) = €|[_4 - 20 ) 4- 2nm]} . (32)
Bl onst ¢ 1s the event that the reconstruction procedure f reconstructs cor-

rectly a piece of scenery of length of order 2" around the origin. Note that
any finite piece of scenery occurs somewhere with probability 1 because the
scenery is i.i.d. uniformly colored. Therefore it is crucial to reconstruct a piece
of scenery around the origin.

Theorem 3.2 Suppose there exist 6 > 0 and a sequence of measurable maps
AmoccNo — l=32"32" ] > 1 such that for all § €]0, 6,
liminf ET

reconst,. A"
m— 00

- = liminf (B2, NEZEL) Ps — a.s., (3.3)

reconst, A™ center
m— 00

where EAL = {AMTL(Q)|[-3 - 27,3 - 2" ] = A™(Y)}. Suppose further that

center

Ps ( U (B, A,,,)c> <1/2  for all § €]0,6]. (3.4)

m=1

Then there exists a measurable map A’ : CNo — C% such that Ps (A'(Y) =~ £) >
1/2 for all § €]0, 61].

In the following, we explain how we construct maps A" satisfying the as-
sumptions of Theorem 3.2. The task of A' is to reconstruct a piece of scenery
of length of order 2" around the origin with high probability. It is shown by
Lowe, Matzinger, and Merkl in [21] that the whole scenery can be reconstructed
with probability one in case there are no errors in the observations. They only
prove existence of a reconstruction procedure, but do not explicitly construct
an algorithm. In [26] we construct an algorithm which even works in polyno-
mial time: A finite piece of scenery around the origin can be reconstructed with
high probability from finitely many error-free observations; the number of ob-
servations needed is polynomial in the length of the piece of scenery which is
reconstructed. We prove:

Theorem 3.3 For infinitely many n € N there exists a measurable map
AP CLO22E L 132032 o tha

initial *
ca(m) = P ({E-27,27) 2 A (1I[0,2-21207]) 2 gll—4-27,4-27]}")
satisfies lim,,_ o, 3(n) = 0.

As an immediate consequence of Theorem 3.3 a piece of scenery around the
origin can be reconstructed with high probability even if there are errors in
the observations. As long as the probability § to see an error at a particular
time is sufficiently small, the probability to see no errors in the first 2 - 212"
observations is close to 1. The following corollary makes this precise:



Corollary 3.1 Let A? and e3(n) be as in Theorem 3.3. There exist §3(n) >

initial

0 such that for all § €]0,62(n)|

initial

P ({€11-2",2") % Ayt (1I[0,2-22°7]) < €[4 27,4 27]}°) < 225 (n).
We will choose A' := A.. .. The maps A™, m > 2, will be defined
inductively. Given a partial reconstruction algorithm A™ we define stopping
times which tell us when the random walker is in some sense “close” to the
origin: We compare A™(x) with A™(0'(Y)), i.e. we compare the output of A™
if the input consists of the observations collected by the random walker starting
at the origin and the observations starting at time ¢. If both outputs agree
up to equivalence on a sufficiently large subpiece, then with a high chance, the
random walker is - on an appropriate scale - close to the origin.

The stopping times constructed from A™ are used to reconstruct a piece of
scenery around the origin of length of order 2™m+! which is much larger than the
piece of scenery reconstructed by A™; recall our choice of n,, (3.1). Whenever
the stopping times indicate that the random walk is “close” to the origin, we
collect significant parts of the observations of length ¢y n,,. If we have sufficiently
many stopping times, the random walk will walk over the same piece of scenery
over and over again. This allows us to filter out the errors in the observations.
Once this is done, the obtained words are put together like in a puzzle game.
The words are used to extend the piece of scenery of length of order 2" which
has been reconstructed by A™.

Formally we define stopping times in the following way:

Definition 3.2 For m € N and a measurable map f : CNo — ¢l=32"",3:2""]
with the property that f(X) depends only on x|[0,2 - 2129mn [ we define

T H(Y) = {t € [0, 212ammt1 _ 9. 9l2an, [ : Jw e cl=2"2"" ] gyceh that}
h = :

w = f(X) and w = f(0°(X))
Let t(1) < t(2) < -+ be the elements of T}”“()Z) arranged in increasing order.
We define the sequence T;”Jrl(f() = (T;Zj%i);k > 1) by

Y

ka+1(>~<) _ t(2 . 22"”1+1k) +2. 212anm Zf 2. 22n1u+1k S "]1*71+1(>~<)
f 912041 otherwise.

T}"‘H(fc) is a sequence of G-adapted stopping times with values in [0, 2120‘""'“] ;
the stopping times depend only on | [0,2'2*"»+1[. We define the event that a
sequence of stopping times fulfils the task of stopping the random walk “close”
to the origin (on a rather rough scale).

Definition 3.3 Forn € N and a sequence 7 = (1i; k > 1) of G-adapted stopping
times we define the event El) =

stop
yan
() {7 (0) <2227, 1S(m ()] < 2%, 75(%) + 2 2°" < (%) for j <k}
k=1



The next theorem states that given an appropriate partial reconstruction
algorithm f, the stopping times T;”“ fulfil their task with a high probability.
By the definition of T}”“7 we stop at time t + 2 - 2127w iff f(¢) and f(0'(%))
agree on a large enough subpiece. Therefore, for the stopping times to stop
the random walk close to the origin, it is necessary that f(x) is a correctly
reconstructed piece of scenery around the origin. Since we apply f often to
obtain enough stopping times, we need that given a scenery &, there is a high
enough chance for the random walk on ¢ to be stopped correctly, i.e. f must
reconstruct correctly with high enough probability conditional on £. This is why

we need the event {P§ I:E:Z,Sonst’f | f] 2 %} in the following theorem.
Theorem 3.4 Let m > 1, and let f : CNo — CLI=32""32""] pe o measurable

map with the property that f(x) depends only on X|[0,2 - 212%™ [, We have for
all 6 €]0,1]

m g1, TP T m 1 —Nm
P5 <<Ereconst,f \ Estop ! ) n {P5 [Ereconst,f | E] Z 5}) S € .

The next theorem shows that there exist partial reconstruction algorithms
Alg" (the reader should think of n = n,,) with the following properties: Given
stopping times which stop the random walk close to the origin, finitely many
observations with errors and a small piece of scenery v close to the origin, Alg”
reconstructs with high probability a piece of scenery around the origin of length
of order 2™, If the reconstruction is succesful, the output of Alg™ contains v in
the middle. The reader should think of v as a piece of scenery that has been
reconstructed before.

Theorem 3.5 For all n € N there ezists a measurable map

Alg™ - [0’212an]N % 62-212“" % U cl=knkn] _, o[-3:2",3:2"]
k>e1 L

with the following property: There exist constants cs, 03, cg,cr > 0 such that for
alln > e3, 6 €]0,63] and for any sequence 7 = (1i; k > 1) of G-adapted stopping
times with values in [0,2'2%"]

Py (E"’T EXT ) < cge” ",

stop reconstruct

where BT

reconstruct -

For all ¢ € CUFmknl with k > ;L and ¢ =< €|[-2",2"] we have
gl[=2,2" < Alg" (1, x| [0,2- 2" [, ) < €|[-4-2",4-27]. '

Furthermore if £|[—2",2"] < Alg"(7, x| [0,2-2'2"[ ¢) < £|[—4-2",4-2"] holds,
¥ € Clormknl with k > ¢ L, ¢ < €] [—27,2"] and &][-2",2"] # (1)[_an 201, then
we conclude that Alg" (1, x| [0,2 - 212°" [, 4)|[—kn, kn] = 1.



To motivate the allowed range for the abstract arguments 7 in this theorem,
recall that the T} (Y)’s in Definition 3.2 take their values in [0,2"2"]. We are
now able to deﬁne A™ m > 1, which fulfill the requirements of Theorem 3.2.

Definition 3.4 We define A™ : CNo — Cl=32"" 32" and sequences T™! =
(Tg”“; k> 1) recursively for m > 1 in the following way:

° Al( ) Am

initial

in Theorem 3.3,

(X1[0,2 - 2122m1[) with ny as in Section 2.1 and Al as

o T™HY() =T (%) with T as in Definition 3.2,

o AMTL(R) = Algtt (T (X), X][0,2 - 2120mmtt [ A™ () with Alg™m+
as in Theorem 3.5.

Theorem 3.6 There exists 61 > 0 such that the sequence (A™;m € N) defined
in Definition 3.4 fulfils (3.3) and (3.4) for all § €]0, 61].

All theorems of this section together yield the proof of our main theorem:
Proof of Theorem 1.1. By Theorem 3.6, the assumptions of Theorem 3.2
are satisfied. Hence the assumptions of Theorem 3.1 are satisfied and Theorem
1.1 follows. =

4 Proofs

In this section, we prove the statements from Section 3 with the exception of
Theorem 3.5 which will be proved in Sections 5 and 6.

Lemma 4.1 The shift © : Q — ,
is measure-preserving and ergodic with respect to Ps for all 6 €]0,1].

Proof. Let 6 €]0,1[. By assumption, Y, k > 0, is stationary and ergodic under
Ps. Xy, k>0, isii.d., hence stationary and ergodic under Ps. By Lemma 4.1
of [21], (&, 5) — (&(- +5(1)), S(-+1) — S(1)) is measure-preserving and ergodic
with respect to P. The claim follows from these three observations and the fact
that (¢,5,X,Y) are independent. m

Proof of Theorem 3.1. Let §; and A’ : CNo — C? be as in the hypothesis
of the theorem, and let § €]0,61][. We define for k& € N measurable maps A}, :
CNo — C% as follows: If there exists j € [0, k[ such that

[{i € [0,k[: A'(6'(X)) = A" (6" (X)) }| > |{i € [0,k[: A'(6°(R)) % A'(6?(X))

then let jo be the smallest j with this property, and define A}, (y) := A’(670(x)).
Otherwise define A} (X) to be the constant scenery (1);cz. Finally we define
A:CNo = C% by

A(R) = {

limy o Al (x) 1if this limit exists pointwise,
(D)jez else.
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As a limit of measurable maps, A is measurable. For & € N we define

1 k—1

Zii= 7 Y WA O'(0) ~ &)

=0

here 1B denotes the indicator function of the event B. It follows from Lemma 4.1
that the sequence 1{A’(#*(Y)) ~ ¢}, k > 0, is stationary and ergodic because
it can be written as a measurable function of the sequence ©%(¢, 5, X,Y), k >
0; note that £ =~ &(- + Si). Hence we can use the ergodic theorem and our
assumption to obtain Ps-almost surely:

lim 7, = Py (A(R) % ) > 1/2 (41)
Note that if Z; > 1/2, then A} (x) ~ £. By (4.1) there exists a.s. a (random) kg

such that Zj, > 1/2 for all k > ko, and hence A} (Y) = A} (X) = &; recall that
we chose the smallest possible jp in the definition of A). Thus a.s. A(Y) =& ®

Proof of Theorem 3.2. We say a sequence (¢"; m € N) of pieces of sceneries
converges pointwise to a scenery ( if lim inf,,_. o, domain({™) = Z, and for every
z € Z there is m, > 0 such that (™ (z) = {(z) for all m > m..

Let §; and A™ be as in the hypothesis of the theorem, and let § €]0,6;[. We
set A'(x) := limy,—oo A™(X) if this limit exists pointwise on Z; otherwise we
set A'(Y) := (1);ez. Being a pointwise limit of measurable maps, A’ : CNo — CZ

is measurable. We abbreviate E™ := EZ | o 4w, and define the events

B, = {ell=2m,27] <1 €][—4- 20 4 9mm])
We claim:
1. liminf,, .o EJ}, holds Ps-a.s.,
2. If the event (liminf,, .o EJ,) N (oo E™ holds, then A'(x) = &.

Together with the assumption Ps[US°_; (E™)°] < 1/2 these two statements
imply that Ps (A'(x) = &) > 1/2 which yields the claim of the theorem.
Proof of claim 1: We show for any integer intervals Iy # I with |I;| = |I2|

P ~ E|L,) < 2-C7 1613, (4.2)

First we define f; : [0, |I;|[— I; for j = 1,2 to be the unique translation which
maps [0, |Z;|[ onto I;. An argument similar to the proof of (6.26) below shows
that there exists a subset J C [0,|I;|[ of cardinality |J| > |I;|/3 with fi(J) N
f2(J) = 0. Since &, k € Z, are i.i.d. with a uniform distribution, we conclude

P(Eln = €|I) < P(E1(7) = €| fal)) = ¢l < O IB13,
Since &|1; ~ €|l means &[T} = £|I or E|I; = (E|I2)™ with (€|I2)” denoting the

piece of scenery obtained from &|I> by reflection, estimate (4.2) follows.
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We apply (4.2) for I; = [-2"m,2"»] and all integer intervals I C [—4 -
2mm+1 4. 2mm41] [y £ [, of length |I;| = |Io] = 2 - 2™ + 1; there are not more
than 8 - 2™m+1 choices for Is. We obtain

P((E,)°) < 8- 2mm+1 2. 022" +1/8 < g, 92V 22" 3,

which is summable over m; recall C' > 2 and (3.1). Hence by the Borel-Cantelli
lemma (EJ}, )¢ occurs Ps-a.s. only finitely many times ; this proves claim 1.

Proof of claim 2: By the assumption of this claim, there is a (random) M
such that the events E}, and E™ hold for all m > M. By the assumption of
Theorem 3.2, M can be chosen in such a way that E™%! holds for all m > M,
too. Consequently, A™H1(g)|[-3 2" ,3-2"m] = A™(x) for all m > M and it
follows that

A CON=k, K] = A" (0)[[F, k] (4.3)

for all £ > 1 and all m large enough. In particular, lim,,_, ., A™(x) exists.

Since E™ and EjE, hold, A™(X) <1 §|[—4-2™",4-2""]. Hence there exists
a unique map h™ : Z — Z of the form z — a, + bpx with a,, € Z and
bm € {—1,1} that maps A™(¥) onto a subpiece of {|[—4-2"m,4.2™m]. It follows
from (4.3) that A™ is independent of m and maps A’(x) to £&. This finishes the
proof of claim 2. m

Proof of Theorem 3.3. By Theorem 1.1 of [26], we know that there exists
B > 0 and for infinitely many n € N there exists a measurable map A

clo2nT+2:220 [, 01=5:2"5:2"] gych that limy—oo P ([E2]°) = 0, where

ini

By = {g] [-277, 277 < AL (xl[0,2n +2-2%77)) < €] [-10-27,10- 2"}
Small modifications in the proof of Theorem 1.1 in [26] prove our claim. We
remark that alternatively, we could work directly with the maps A, from [26]
without adjusting the constants; all proofs in the remainder of the article go
through, but the notation becomes more cumbersome.

Proof of Corollary 3.1. We estimate the probability under consideration by
intersecting with the event By := {Xk =0forall k € [0, 2.212an [} that there
are no errors in the first 2 - 2129" observations: For any § > 0 we have

1= Ps (€1[-2",2"] 2 Afjuia (X]0,2-2207]) 2 €[4 -2",4-27])

initial
< 1= Ps ({€][-2",2"] 2 Al (X1[0,2-27297]) < g][-2"2,2"F%]} N By)
= 1-6(n)P (&[-2",2"] 2 Aliiar (X[[0,2 - 2'297]) < g|[—27+2,27F2])
= 1-6(n)(1—es(n));

with 8(n) := (1 — 6)22""" and e3(n) as in Theorem 3.3. We choose 65(n) > 0
such that the last expression is bounded above by 2e¢3(n) for all § €]0,62(n)[. =

Proof of Theorem 3.4. The proof is very similar to the proof of Theorem
3.11 in section 7 of [21] (Our Theorem 3.4 is the analogon of their Theorem 3.11
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for our setting). The errors in the observations do not require adaptations of
their arguments; note that the errors are independent of scenery and random
walk and occurences of errors are i.i.d. Bernoulli. m

The rest of this section is dedicated to the proof of Theorem 3.6. Throughout
we assume, A™, m > 1, are as in Definition 3.4, and we set §; := min{és, 62(n1)}
with 63 as in Theorem 3.5 and 62(n1) as in Corollary 3.1. We set for m > 1

E™ = Bl onst, Am - (4.4)

Definition 4.1 For é €]0,6:[ we define events of sceneries

= = {eec® R [E)]€ < 2eatm)) ],
%= () {eec nEm g > 5= R [E BT | <o
m=2

{“CZ‘Pé “E’”‘l \ Bz 0 {P5 [Em11g] 2 %}H Se‘"é“},

= = () {eec:p[Brtn (BTN ET) | €] < (o) TR

m=2

m=2

= — mbA=6 =S
= = EnEinzg,
where e€3(ny) is as in Theorem 3.3 and cg and c¢; are as in Theorem 3.5.

Note the similarity between these events and the bounds in Corollary 3.1,
Theorems 3.4 and 3.5. The following lemma provides a link between bounds
with and without conditioning on the scenery ¢:

Lemma 4.2 ([21], Lemma 4.6) Let A be an event, r > 0, and let Q be a
probability measure on Q. If Q(A) < r?, then Q (Q(A|£) >r) <.

Lemma 4.3 For all n € N there exist eo(n) > 0 with lim,, . €2(n) = 0 such
that Ps (€ ¢ Z°) < ea(ny) for all § €]0,6,].

Proof. Let § €]0,6;[. Using Corollary 3.1 and Lemma 4.2 for Q = Pjs, we
obtain

Ps (€ ¢ E9) < (2e3(m))'/>. (4.5)

An application of Theorem 3.4 with f = A™ yields for m > 2

n m— 1 —n
P§<(E’"1\Est7o"é )ﬂ{Pg[E 1|5]25}>§e

An application of Lemma 4.2 with () = P;s yields

2) < Y emrm/? <emesm (4.6)
m=2
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for some constant cg > 0, recall our choice of n,, (3.1). Let m > 2, and recall
the definition of the event E™. " from Theorem 3.5. By Definition 3.4,

reconstruct
we have that A™ () = Alg™" (T™(x), X|[0,2 - 22" [,9)) with ¢ == A™~!(X).
By our choice of ny, (|¢| —1)/2 = 3-2"=1 > ¢in,, L. If E™~! holds, then
¥ < €| [-2"m,2™]. Hence the inclusion

Em 1 (EmT \Em) C EmT \En,,,,Tm’ (47)

stop stop reconstruct

holds. Together with Theorem 3.5 the last inclusion implies

Py (B"1 0 (E™ \E™)) < Po (Bt \ Elitomoract) < coe™7".

stop stop reconstruct

Another application of Lemma 4.2 yields for some constant cg > 0

< Z (06)1/26_67”"’/2 <e™00m, (4.8)

m=2
The claim of the lemma follows from (4.5), (4.6), and (4.8); recall e3(n) — 0 as

n—oo. N

Lemma 4.4 For all § €]0,61[, £ € 2%, and m > 2 the following holds for some
constants cq,c5 > 0:

Py(E™ 1| €) > 1 — (2e3(m))'/? - Z cae” S > 2 (4.9)

N =

Ps(E™™'\ E™ | £) < cye™ 5™, (4.10)

Proof. Let 6§ €]0,6;[ and & € Z°. We prove (4.9) and (4.10) simultaneously by
induction over m: For m = 2 it follows from ¢ € =9

Pi(E'€) = 1-P[(E") |¢] 21— (2e5(m))/* > 1/2  (411)

recall our choice of ny from Section 2.1. Thus (4.9) holds for m = 2.
Suppose (4.9) holds for some m > 2. Then we have

P < R [Em B |+ e m £
< ()P T 4 e < ggeesnn (12)

for some constants c4,c5 > 0; for the first term we used ¢ € =5 and for the
second term we used ¢ € =5 and our induction hypothesis (4.9). Using (4.12)
and our induction hypothesis (4.9) we obtain

Ps(E™|€) > Ps(E™'|¢€) —P(s(Em_1 \E™[§)

1
> 11— (2e3(m)! Zcecn">
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for the last inequality we used our choice of n;. This completes the induction
step. m

Proof of Theorem 3.6. Let § €]0,6;[; recall our choice §; = min{ds, 62(nq1)}.
By Theorem 3.5 we know that whenever the events E™~! and E™ hold and

§I[=27m, 2" ] # (1)[—2nm 2nm], then EZ holds. Since Ps-a.s. £ # (1)z, rela-
tion (3.3) holds. Using Lemma 4.3 we have

Py ( [_OJ (Em)c> < P (E¢E)+Ps <{f €e='}n [_OJ (Em)c>
2(N1 P, E™)¢ dPs. .
< el >+/{§EEE} 5<mU1< ) f) . (4.13)

To bound the integrand, we use Lemma 4.4: For all £ € Z° and k > 1, we obtain

k
Ps < U (E™)°

m=1

k+1
6) < B ((B') )€+ > P(E™'\E™|¢)

m=2
k+1
< (2es(m) 4+ ) g, (4.14)

m=2

and taking limits as k — 0o, we conclude

Ps < D (E™)°

m=1

5) < (2e3(m)'/? 4+ > caemomm

m=2

Together with (4.13) the last estimate yields (3.4):

Ps ( U (Em)c) < ea(n) + (2e3(n1))/? + Z cae” N L %; (4.15)

m=1 m=2

for the last inequality we used that ni is chosen as in Section 2.1. m

5 The key algorithm of the reconstruction

In this section, we define algorithms Alg™ for which Theorem 3.5 holds. We fix
n €N
For two words w,w’ € C* of the same length we define their distance

d(w,w’) := [{k € [L, |w]] : wi # wy}]; (5.1)

d(w,w') is the number of places where w and w’ disagree. Clearly, d is a metric.

When the random walk observes a piece of scenery and § is small, the ob-
servations with errors differ “typically” from the errorfree observations in only
a small proportion of the letters because the probability to see an error at a
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particular time is small under Ps. Since the random walk observes a given piece
of scenery very often, we are able to filter out the errors using a majority rule
[

The following notions will be used in this context. For w = wiwsy ... w,, €
C™ we define Cut(w) := ws ... wm—1; Cut(w) is obtained from w by cutting off
the first and the last letter.

Definition 5.1 Let W = (w;;1 < j < K) € (€™ be a vector consisting of
K words of length eyn. For i € [1,c1n] we define f;(W), the favorite letter at
position i, to be the element in C which most of the first 2™ words in W have
at position i. If there is no unique letter with this property, then we define the
favorite letter to be the smallest one. Formally, we set

W)=k iff {j €127 : w;(@) = k}| = max [{j € [1,27"] s w; (i) = K}

and k is the smallest element in C satisfying the last equality; here w;(i) de-
notes the i'" letter of the word w;. We set f(W) := fy(W)fo(W) ... forn(W).
Furthermore, we define f*(W) :=

Cut(f(W)), if K> 27 and max;e( 2ve) d(Cut(w;), Cut(f(W))) < en
(=D,crn—2), otherwise.

f*(W) equals the word Cut(f(7W)) which is composed of the favorite letters
iff the vector W has sufficiently many components and each of the first 27
words in W differs from f(WW) in not more than en letters. In the proof of
Lemma 6.9 below it will be essential that we use Cut(f(W)) and not f(W) in
the definition of f*(W). Note that —1 ¢ C so that (—1)[1 ¢,n—o differs from all
words w € C1" 2,

The algorithm Alg™ which will be defined below takes input data
re 0,227 e, and e |J clrmrnl, (5.2)
k>ei L

First we define the set of all observations of length 3¢;n which are collected
within a time horizon of length 227 after a time 7,k € [1,2%"]:

Definition 5.2 We define Collection™(1,n) :=
{(wl,wg,w;;) € (€™ : 3k € [1,2°"] such that wywows C n|[re, 7 + 22"[} :

The set PrePuzzle™(7,n) contains only (w;,ws,ws3) € Collection™(r,n) with
the following property: If (wf,w),w}) € Collection™(7,n) and w] and w} are
“not too different” from wq and ws respectively, then w) is “not too different”
from ws. Formally:

Definition 5.3 We define PrePuzzle™(T,n) :=

(w1, ws,ws) € Collection™(r,n) : If (w},w),ws) € Collection™(1,n) with
d(wy,w]) < 2en and d(ws, ws) < 2en, then d(wq,wh) < 2en. '
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Definition 5.4 For an element (wy,w2,ws) € PrePuzzle™(1,n) we denote by
S2 o (wi,wy, w3) the sequence of (random) times s € U2 e, 7 + 22" — 3ein]
such that wiwiwl = n|[s,s + 3cin| € PrePuzzle"(1,n), d(wi,w]) < 2en, and
d(ws,w3) < 2en; we assume that the elements of the sequence S, (w1, w2, ws3)

are arranged in increasing order. We define
List? , (w1, w2, w3) := (nl[s + c1n, s + 2cinf;s € Sﬁn(wl,wg,w3))

to be the sequence with components n|[s + cin,s + 2cin| indezed by the set
Sﬁn(wl,wg,wg). We set

PuzzleLists™ (r,n) := {List} , (w1, ws,w3) : (w1, wy, ws) € PrePuzzle"(t,7)} .

Clearly, wy € List? (w1, w2,w3). Note that List; (w1, ws,w3) is a sequence,
and not a set. If by coincidence observations 7n|[s + ¢in,s + 2¢in| coincide
for two different values of s, we want to keep them both. The components of
Listfm(wl ,wa, ws) are close to we in d-distance because we assumed (w1, ws, w3)
€ PrePuzzle™(r,n).

Definition 5.5 We define Puzzle™(r,n) := {f*(W) : W € PuzzleLists"(1,n)}.

Puzzle™(7,n) is the set of all words of length ¢;n — 2 which are obtained by
the majority rule f* from the lists in PuzzlelLists™(r,7n). We use the words in
Puzzle™(7,n) like the pieces in a puzzle game to reconstruct a piece of scenery.
We want the piece of scenery reconstructed by Alg™ to contain in the middle
the piece of scenery ¢ from the input data of the algorithm.

Definition 5.6 For ¢ € Cl=%"*"] we define SolutionPiece™(t,n,v) :=

w € Cl=32"32"1 . w|[—kn,kn] = ¢ and for all ladder intervals T C
[-3-2™,3 2" with |I| = cin — 2 we have (w|I)—. € Puzzle™(T,n) '

We will see in the proof of Lemma 6.4 below that under appropriate conditions,
there is precisely one element in SolutionPiece™(7,n, ).

Definition 5.7 We define

Alg™ - [0’212an]N % 62-212“" % U cl=kn.kn] _, o[-3:2",3:2"]

k>c1L
as follows: If SolutionPiece™(7,m,v) is not empty, then we define Alg™(r,m,¥)
to be its lexicographically smallest element. Otherwise we define Alg™(T,n,v) to

be the constant scenery (1);_g.an 3.2n]-

6 The key algorithm reconstructs correctly
In this section, we prove Theorem 3.5. Throughout we fix n € N. We assume

that 7 € [0,2'22"]N is a sequence of G-adapted stopping times. Recall that &
was chosen in Section 2.1.
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6.1 Definition of the key events

In this subsection, we collect the definitions of all the “basic” events which we
will need to prove the correctness of Alg™. The event B’ .. holds if the
random walk traverses all paths of length 3cin in the region where we want
to do the reconstruction. B .. . - makes sure that there are not too many
mistakes in the words in Collection™(7,m). B[’4er air &ives a lower bound for
the d-distance of two different ladder words in the neighborhood of the origin.
majority Saranties that the majority decision f* is not corrupted by the errors
in the observations. If Bl j.ou: holds, then we can distinguish ladder words
from the region where we want to reconstruct from observations which are read
further outside. Bj,, ., implies that there are "signal words” which can be read
only left from a certain point z € Z or only right from a certain z € Z; this
event allows use to reconstruct all ladder words in a region around the origin.
stemight often SUATantees that certain ladder paths are traversed often enough.
We arranged the definitions of the events in alphabetical order so that the
reader can easily find them while following the proofs in the next two subsec-
tions. We suggest to have a quick look at the definitions, and then to skip ahead

to the next subsection and look up definitions when needed.

Definition 6.1 For z € Z and n such that cin € N, we denote by w. _. , the
ladder word of length cin starting at z read from left to right, and by w. _ , the
word w., . » read from right to left:

W —om = (E(z+EkL)jk € 0,an])— and w.— n:=(ws—n)—.
Note that w._(.;n—1)1,—,, is the ladder word of length c¢i;n ending at z.
Definition 6.2 We define

For any admissible piece of path R € Z1031L with starting

B oains =  point in [—7-2",7-2"] there exists t € U3 [y, i, + 22" —

3ein] such that R(i) = S(t + i) for all i € [0,3¢1n]

Definition 6.3 We define
t

B istakes 1= { Z Xy <en forallt € [eyn —1,2- 21297 [} .

k=t—cin+1

Definition 6.4 We define

Br Va1, € [-8-2",8:2"] and Viy,iy € {«,—} with
ladder diff =™ ) (5 41) # (29,42) we have AW, i1 )35 Way in,n/3) > 10

Definition 6.5 Let Z; denote the set of ladder intervals I C [—7-2",7-2"] of

length cin. For wi,ws € C'™ and I € I, we denote by S,{,T’m = (si[“;i > 1)
Sf;;wa = (si[“;i > 1)) the sequence of all times s € U%il [Tk,Tk + 227 301n]
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such that S|[s + c1m, s + 2cin| is a straight crossing from left to right (right to
left) of I and d(X|[s + (i — 1)ein, s +icin[,w;) < 2en for i =1,3. We assume

that the components of Sw1 ws and Swr ws @re arranged in increasing order. We
define
I I .
B:l;omy = ﬂ ﬂ (B:nTJ (wy,w3) N B::nTJ (wl,wg)) with

wi,w3zECL™ €Ty,

If| ot w3| > 27 then Yj € [1,can — 1] the
(wi,w3) ==

gm <2m/

Bn,‘r.,l_,
following holds: E 1 X, I

mayj

+ecintjg

and BZHTJ[ (w1, w3) defined analogously.

Definition 6.6 We define B”

outsideout -

Vz € [-5-2",5- 2", for any admissible piece of path R € ([-2L-2?",2L-
227\ [=6 - 27, 6 - 270/l and Vi € {—,—} we have that d(€ o
Ra wz,i,n/Z) > 3en
Definition 6.7 We define BJ, .o, straight ‘=
For any admissible piece of path Ry € [—7 - 2", 7 - 2"]1%e1nl which is
not a ladder path there exists an admissible piece of path Ry € [—8 -
27,8 - 27]l0ernl yith Ry(0) = Ri(0), Ra(cin — 1) = Ry(ein — 1) and
d(§ o Ry,£0 Ry) > 5en
Definition 6.8 We define
;gnals = s1gn I,— n B;gn r,— n B51gn l,— n B51gn r,— with
Vz € [-6-2",6-2"] and for any admissible piece of path
Ml = < Re[=20-22" 2L - 22"l with R(eyn — 1) > 2 we
have that d(§ o R, w._(c,n—1)L,—,n) > 5en

Vz € [-6-2",6-2"] and for any admissible piece of path
Blywr—. = (R e[=2L-2" 2L 220l with R(0) < z we have p
that d(€ o R,w. . ») > 5en
Vz € [-6-2",6-2"] and for any admissible piece of path
Ml = < Re[-20-22 2L 2270l with R(0) > z we have
that d(§ o R, wz_(cln_l)L7<_7n) > 5en
Vz € [-6-2",6-2"] and for any admissible piece of path
Blyne. = {(Re[-2L-2%"2L 220l with R(eyn — 1) < z we
have that d(§ o R,w.,— ,,) > 5en

Definition 6.9 We denote the collection of ladder intervals I C [—6-2™,6 - 27]
of length 3cin by Jr. For I € Jr,, we denote by S_.(I) (S—(I)) the sequence
of all times s € U3, [, T, + 22™ — 3cin] such that S|[s,s + 3cin] is a straight
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crossing from left to right (right to left) of I; we assume that the components of
S_.(I) and S—(I) are arranged in increasing order. We define

BT = () {IS=(D)| > 27" and |S_(I)| > 27"}.

straight often
IeJL

6.2 Combinatorics

In this subsection, we prove that Alg™ reconstructs correctly in the sense that
the event B0 ruet holds, under the assumption that E and all the “basic”

events defined in the previous subsection hold. We abbreviate
X" =x|[0,2-2""].

The task is split in four parts: Lemma 6.1 states a property of the elements
in the set PrePuzzle™(r, ™). Lemma 6.2 shows that all words in Puzzle" (7, x™)
which are observed while the random walk is approximately in the region of the
scenery which we want to reconstruct, are ladder words. Lemma 6.3 states that
Puzzle™ (7, x™) contains all the ladder words we need. Finally Lemma 6.4 shows
that the reconstruction works.

Definition 6.10 We say (w1,ws2,ws) € Collection™(r,X™) is read while the
random walk is walking on J C Z if there exists t € U}%il [Tk,Tk + 227 — 301n]
such that S(t + j) € J for all j € [0,3cin| and wiwsws = X|[t,t + 3cin[. If we
know the time t, we say that (wy,ws,ws) is read during [¢,t 4+ 3cin|.

Definition 6.11 We define E 7

preladder =

If (w1, wa,ws) € PrePuzzle™(1,X™) and there exists t € U%il [T, T +
22" — 3eyn] such that (wy, w2, ws) is read during [t,t + 3cin| while the
random walk is walking on [—=7-2™,7 - 2™, then S|[t +c1n,t + 2ein| is a
ladder path.

Lemma 6.1 For all n € N the following holds:

n,t n,T n n
Epreladder 2 Ballpaths n Bfew mistakes n Brecogn straight -

and B

recogn straight hold. Let
(w1, ws,w3) € PrePuzzle™(,x"), and suppose there exists t € U2_| [rg, T +
227 — 3¢yn] such that the triple (wy, w2, ws3) is read during [¢, ¢+ 3c;n[ while the
random walk is walking on [-7-2",7-2"].

Let R;(j) := S(t+ (i — 1)esn + j) for j € [0,¢1n| and @ = 1,2,3. Then
|R:(j)| <7-2™for all j € [0,cin| and

d(éoR;,w;) <en fori=1,2,3 (6.1)

Proof. Suppose the events B™" B

n
all paths’ ' few mistakes>

n
because B, ictakes

holds. We have to show that R, is a ladder path. Suppose
not. Since By o, straight 1OldS, there exists an admissible piece of path Rj €

[-8 27,8 27]0c17] with the same starting and endpoint as Ry and

d(€ o Ry, € o RY) > ben. (6.2)
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Since B:ﬁ;aths holds and the concatenation Ry R,Rj3 is an admissible piece of

path with starting point in [—7 - 2", 7 - 2], there exists ' € U7_ | [rg, T, + 2" —
3cyn] such that Ry Ry R3(i) = S(t' +4) for all ¢ € [0,3cyn[. Using the triangle
inequality, we obtain

d(wa, X|[t" + ein, t' +2c1n]) > d(ws, X|[t' + ein, t’' + 2¢1n]) —en
= d(ws, {0 Ry) —en
> d(foRy,E0Ry) —d(ws, 0 Ry) —en
> b5en —en —en = 3en; (6.3)

for the first inequality we used that Bf . i.i.kes 10lds, and for the last inequal-
ity we used (6.2) and (6.1). The fact that B iakes DOlds together with
inequality (6.1) yields

d(wy, X|[t',t +en]) < d(w, x|[t',t +cin]) +en
= d(wy,£oRy)+en < 2en.

By the same argument, d(ws, x|[t' +2c1n,t' + 3ci1n[) < 2en. Together with (6.3)
this contradicts (wy, w2, ws) € PrePuzzle™(7,x"). Hence Ry is a ladder path. =

Definition 6.12 We define

[r (List] on (w1, w2,w3)) € C"2 1 (wy, wa, w3) €
PrePuzzle™ (1, X™) and  I(wi,wh, wk) €

Puzzlel (T, X") = PrePuzzle™(1,X") such that d(wi,w}) < 2en,;,
d(ws,ws) < 2en and (w,wy,wy) is read while the

random walk is walking on Z \ [—6 - 2™,6 - 2™].
Puzzle™ (7,X") \ [Puzzle] (1, X") U {(=1)1,c1n—2 }] -

Puzzlel (1, X™)
Note that Puzzle' (7, x™), i = 1,2, together with {(_1)[17611’1-—2]}7 form a par-
tition of the set Puzzle™(r,x"). If we are given an element of Puzzle™(r, x™),

we cannot decide to which set of the partition it belongs. Nevertheless the sets
Puzzlel (7, x™), i = 1,2, will be useful in the following.

Definition 6.13 We define

T | If wy € Puzzle} (1,X™), then wy < &|[-7-2",7-27]
onlyladder *™ 1\ ynd wsy is a ladder word )

Let ¢19 > 0 be chosen in such a way that for all n > ¢
3cinL < 2™, (6.4)
Lemma 6.2 For all n > c19 the following holds:

n,T n,T n n n,T
Eonly ladder 2 Epre ladder n Bfew mistakes n Bladder diff n Bmajority'
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n,T n n
Proof. Let n > ¢19, and suppose the events Epre ladder> Biow mistakess Dladder diff

and BlU7 o hold. Let (wy,ws,w3) € PrePuzzle™(r,X") and abbreviate W :=
List? o (w1, w2, ws3). Suppose f*(W) € Puzzley(r,x"). Let w;, € W. Then
there exist w}, w} such that (wi,w), w}) € PrePuzzle™ (7, x™), d(wi, w}) < 2en,
and d(ws,w}) < 2en. By definition of Puzzlel (7, X™), at least once the random
walk is in [—6-2",6 - 2"] while it reads (w},w), ws). Since the random walk
jumps at most a distance of L in each step, it can move in 3¢yn steps at most a
distance of 3¢ynL < 2™. Hence (w],w}, wy) is observed while the random walk
is walking on [-7-2",7-2"]. Using that E 7 4., holds, we obtain that w} is
observed while the random walk is walking on a ladder word. Since B ictakes

holds, there exists a ladder word wy < £|[—7 - 2™, 7 - 2"] such that
d(wl, W) < en. (6.5)

Suppose wy € W. Then by the above argument, there exists a ladder word
Wy X &|[-7-2",7-2"] such that

d(wh , ms) < en. (6.6)

Since (w1,ws,w3) € PrePuzzle™(r,x™), we have that d(wj,ws) < 2en and
d(wz,wy) < 2en. Hence

d(w), wh) < den. (6.7)
Using the triangle inequality, (6.5), (6.7) and (6.6) we obtain

(@2, wh) + d(wh, wy) + d(wy, Dy)

en + 4en + en = ben. (6.8)

d(@g, U_)Q)

ININ

If Wy # ws, then it follows from B[} 4c, aig that d(@z,w2) > 10en, which con-
tradicts (6.8). Hence wy = Ws.

We have shown that any w) € W is observed while the random walk reads
the ladder word w,. Hence for j € [0,cin[, wh(j) equals @Wy(j) or an error in
the observations. Since by assumption, f*(W) # (=1)[1,c;n—2), W has at least
27" components; recall the definition of f* (Definition 5.1). An application of

B:l’;-’l(wl,wg) with I equal to the ladder interval underlying w, shows that

more than half of the first 27" words in W have j*® letter equal to @ (j).
Consequently, f(W) = @s, and since Bf., nistakes 1OdS, f*(W) = Cut(@,). m

Definition 6.14 We define E. qder :=
{Vz e [-5-2",5-2"]: Cut(w. — »n), Cut(w,,— ) € Puzzle"(T,x")} .
Lemma 6.3 For all n > c19 the following holds:

n,t n,t n n,T n
Eallladder 2 B n Bfew mistakes nB NnB

all paths majority signals
n,T n,t
ﬁBs‘r,raight often n Estop .
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Proof. Let n > ¢19 and z € [-5-2",5-2"]. Suppose the events Bﬂ’lTp“hS,

B»T. . . B" BT and E7 hold. We will prove

n
Bfew mistakes? majority’ signals? straight often? stop
Cut(w.,— ») € Puzzle"(r,x™). The proof for w, _ , is similar. We define

W1 = Wz—cynL,—,n;» W2 1= Wz, — n, W3 = Wz4cynl,—,n-

Clearly, wiwows is the ladder word of length 3¢in starting at z — ¢ynL and
ending at z + (2¢yn —1)L. We define R : [0,3¢cin[— Z by R(i) = z—cinL +iL.
Then R is a ladder path with starting point z — ¢ynL > —6 - 2™ and endpoint
z+ (2e1m — 1)L < 6 - 2™ by our choice of z and n; recall (6.4). Furthermore
o R = wiwyws. Since BT - holds, there exists t € UFZ) [1, 7 + 22" — 3ci7]
such that R = S|[t,t + 3cin][. We set

Wi = X|[t+ (i — Dein,t +icyn[  fori=1,2,3. (6.9)

Since Bstmght often, 110lds, there are at least 27" different t’s with this prop-
erty. Fix t. Clearly, (W1 4, W24, Ws,) € Collection™(7,x™). We want to show
(W1 ¢, Wa,Ws ) € PrePuzzle™(r,x™). The word w;; differs from w; only by

errors in the observations. Since Bf istakes 20ldS,

d(w;, W; ) <en fori=1,2,3. (6.10)

Suppose (wi,wj,ws) € Collection™(7,x™) and d(w},w; ;) < 2en for i = 1,3.
Then there exists ' € U2_ [7, T + 22" — 3¢in] such that wjwhwl = X|[t', ¢ +
3cin[. Using (6.10) and the triangle inequality, we obtain

d(wiawz) S d(w:la@i,t) + d(ﬁ}i,tawi) S d(wiaﬁ}\i,t) +en S 3en fori = 173

We set I := [t',t' + einf, I3 := [t' + 2¢1m, t’ + 3ein[. Since B holds,

few mistakes

d(& o S|I;, w;) d(& o S|I;, w;) + d(w}, w;)

<
< en+d(wi,w;) <4en fori=1,3. (6.11)

Since E, holds, |S(7)] < 27, and for all i € [0,2%"[, |S(m +1)| < 2"+ L-2*" <
2L - 22" because each jump of the random walk has length < L. Hence we can
use that Bl - holds for w1 = w._¢,nr,— n (n0te that |z — L| < 6-2") and
S|I; to conclude from (6.11) that S(¢ + ¢in —1) < z— L. Similarly, we can use
that Bf,, , _ holds for w3 = WigeynL,—,n (note that |z + cynL| < 6-2") and
S|I5 to conclude that S(t' 4+ 2c1n) > z+ cynL. The only path of length ¢in 42
from z— L to z+cynL is the ladder path which visits precisely the points z+iL,
0 <i<en —1. Hence w) is observed with errors by the random walk walking
on the ladder word ws. Using the fact that B holds and (6.10), we

obtain

few mistakes

d(wh, W) < d(wh, ws) + d(we, Wa ) < en +en = 2en.

Consequently, (W1 ¢, Wa ¢, Ws,) € PrePuzzle™(r, x™). We set

T PPN
W = List] ;n (W14, Wa e, W3,t)-
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Clearly, W € PuzzleLists™ (7, X™). Consider w; s for s # t. Recall that there are
at least 27 — 1 different s with this property. By the triangle inequality and
(6.10), d(W;,s, Ws ¢) < d(W;,s, w;)+d(w;, W; ) < 2enfori =1,2,3. Consequently,
(W15, W2,5,Ws3,5) € W, and we conclude that W has at least 27" components.
Suppose wy, € W. Then there exist w}, ws with d(w, ;) < 2en fori=1,3
and (w],wh,ws) € PrePuzzle™ (7, X™). We have shown above (after (6.10)) that
under these conditions, w) must be observed while the random walk reads the
ladder word wo. In particular, for j € [0,e1n[, wh(j) = wa(j) or wh(j) is an
error in the observations. Since B;Llii’[(’li)\lyt,’lﬁgﬁt) holds for the ladder interval

I ={z+iL;i € [0,¢;n[}, in more than half of the words in W the 5! letter
equals wa(7). Consequently, the 50 letter of f(W) equals ws(j), and we have
proved that Cut(ws) € Puzzle™(r,x™). m

Recall the definition of E™7 from Theorem 3.5.

reconstruct

Lemma 6.4 For all n > c10 with c1g as in (6.4) the following holds:

n,T n,T n,T n n
Ereconstruct 2 Eonlyladder N Ea.llladder N Bfew mistakes N Bladder diff

nB], cNEL

outside ou stop*

n,T n,T n
Proof. Let n > ¢19, and suppose all the events E_ 11 1 qders Ealiladders Bladder diffs

n n n,T —kn,kn
few mistakes’ Boutside out’ and Estop hold. Let 1/1 € C[ | for some k 2 ClnLv

and suppose ¢ < £|[—2",2"]. There exist a € [-2",2"] and b € {—1,1} such
that for all j € [—kn, kn]

(i) =&@+bj) and a+bjeE[-2",2"]. (6.12)

First we show w := (£(a+bj);j € [-3-2",3-2"]) € SolutionPiece™ (7, X, ¥).
By (6.12), v = w|[—kn,kn]. Let I C [-3-2",3-2"] be a ladder interval of
length ¢yn — 2. The image of I under the map j — a + bj is a ladder interval
which is contained in [—4-2",4-2"] because |a| < 2". Since E}}| j4., holds,
(w|I)—. € Puzzle™(r,x™). Consequently, w € SolutionPiece” (1, X", %), and in
particular, SolutionPiece™ (7, X", %) is not empty.

It remains to show that ¢|[—2",2"] < w =< ¢|[—4-2",4 - 2"] for any el-
ement w € SolutionPiece™ (7, x™,%). Let w € SolutionPiece™ (7, x",%). Then
w|[—kn, kn] = ¢, and it follows from (6.12) that for all j € [—kn, kn]

w(j) = £(a+ bj). (6.13)

Suppose we prove (6.13) for all j € [-3-2",3-2"]. Then we know there is
precisely one element in SolutionPiece™(r, ", %). Since ¢ < £|[—2",2"], there
are more than 2-2" letters to the left and to the right of ¢ in w, and consequently
&|[-2",2"] X w. On the other hand, in w, there are less than 3 - 2™ letters to
the left and to the right of 9. Hence w < £|[—4 - 2™,4 - 2"].

Thus, to finish the proof, it suffices to verify (6.13) for all j € [-3-2",3 - 2"].
We have already seen that (6.13) holds for all j € [—kn, kn]. Suppose we know
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that (6.13) holds for all j € [—s, s] for some s € [kn,3 - 2" — 1]. We set

w; = (w|l})- with I; ;== (—s—1+4L;i € [0,c1n — 2]),
w, = (w|l,)= with I, :=(s+ 14+ (i—cin+3)L;i € [0,e1n — 2[);

note that I; denotes the ladder interval of length ¢;n — 2 which contains —s — 1
as leftmost point, and I, denotes the ladder interval of length ¢;n — 2 which
contains s + 1 as rightmost point. The words w; and w, are well defined be-
cause cynL < || = 2kn + 1. Since w € SolutionPiece™ (7, X", %), we have
wy, w, € Puzzle™ (7, ™). Note that w; and w, have both precisely ¢;n — 3 points
in common with w|[—s, s]; w; extends w|[—s, s] one letter to the left, and w,
extends w|[—s, s] one letter to the right.

Suppose w; € Puzzlel(7,%x™). Then we have w; = f*(W) for some W =
List? ¢ (w1, ws, ws3) and there exists (w],ws,ws) € PrePuzzle” (7, x") such that
d(w;,w) < 2en, for i = 1,3 and (w},w),w)) is read while the random walk is
walking on Z \ [-6 - 2,6 - 2"]. Thus, there exists t € U?_| [rx, 7 + 22" — 3¢1n]
such that |S(t + j)| > 6-2™ for all j € [0,3¢in[ and wh = x|J with J =
[t + cin,t + 2cin[. Using that EJ., holds, we know that |S(7:)| < 2™ for
all k. Since the random walk jumps a distance < L in each step, it follows
that |S(t + j)| < 2"+ L-22" < 2L-2%" for all j € [0,3cin[. For a word w =
Wiwy . .. Wy, € C™ of length m > ¢1n/2, we define Last(w) := Wp—cin/241 -+ - Wi
to be the word consisting of the last ¢;n/2 letters of w. Let z € [-5-2",5-27]

and ¢ € {«, —=}. Since B istakes a0d B0 oue hold, we obtain
d(LaSt(CUt(wé))v wz,i,n/Z) = d(LaSt(CUt(ﬂj)): wz,i,n/2) (614)

> d(Last(Cut(x|J)), s in/2) — €N > 3en — en = 2en.
By definition of f*(W), d(Cut(f(W)), Cut(w)) < en for all w € W. Hence
d(Last(wy), Last(Cut(ws))) < en. (6.15)
Combining (6.14) and (6.15), we obtain

d(Last(w;), w, ;,n/2) d(Last(Cut(w})), w. ; »/2) — d(Last(w;), Last(Cut(w})))

2
> 2en —en =en. (6.16)

Recall that w; is a ladder word of w of length ¢;n — 2 and the ¢;n — 3 right-most
letters of w; overlap with w|[—s,s]. Using that (6.13) holds for all j € [—s, $]
together with |a| < 2™ and |s| < 32", yields Last(w;) < &|[-4-2",4 - 2"]. This
contradicts (6.16), which implies that Last(w;) is different from any ladder word
of {|[-4-2",4-2"]. We conclude w; € Puzzley(r,X"). Since E}[ |, 4., holds,
wy XE[[=7-2™,7-2"], and w; is a ladder word of &.

Suppose (6.13) does not hold for j = —s — 1. Let I; ¢ denote the image of I;
under the map j — a-+bj. Then £|I; ¢ # w;; more precisely, {|I; ¢ and w; disagree
in precisely one point, namely the leftmost point {(a+b(—s—1)) # w;(0). Thus
we found two ladder words of length ¢;n—2 in £|[—7-2",7-2"] which disagree in
precisely one point. Consequently, there exist z,z’ € [-8-2",8-2"], i,i’ € {«
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,—} with (z,i) # (2,4") such that {|I; ¢ = Cut(w,,; ) and w; = Cut(w,r i1 ).
Consequently, there exist zq, 2o € [-8-2",8-2"], i1,iy € {«, —} with (21,41) #
(#2,142) such that the two ladder words consisting of the last c1n/3 letters of £|I; ¢
and w; respectively, equal w., ;, n/3, W2, i,,n/3, respectively. Since Byl aip
holds, w., i, n/3 # Wx,,i,,n/3 Which is a contradiction. We conclude that (6.13)
holds for j = —s — 1.

To see that (6.13) holds for j = s+1, one applies the above argument with @
defined by @(j) := w(—j) for j € [-3-2™,3-2"] in place of w. By the induction
principle, (6.13) holds for all j € [-3-2",3-2"]. m

6.3 The basic events have high probabilities

In this subsection, we prove that the events B™ defined in Subsection 6.1 have
a probability which is exponentially small in n. For some events B™ this is
only true under the assumption that Esrz’oTp holds, i.e. if the stopping times stop
correctly. We treat the events from Subsection 6.1 in alphabetical order.
Recall that unless otherwise stated, constants depend only on the distribu-
tion of the random walk increments and the number of colors of the scenery. In

particular, the constants ¢; in this section do not depend on n.

Lemma 6.5 There exists a constant cy1 > 0 such that for all n > cq1,

P (E7 \ Blians) <€
Proof. We have P(Sy = Sy = 0) > 0 because the random walk has a positive
probability to make first a step of maximal length L to the right and then a
step of maximal length L to the left. Hence 2 divides the period of the random
walk, and the period must be 1 or 2. Therefore there exists c¢; > 0 such that
for all n > ¢;2 and for all z,z € [-7-2",7-2"], the random walk starting at x
can reach z with positive probability in 227~1 or 22"~ + 1 steps:

P, (S22 ) =zor S(2** ' +1)=2) > 0. (6.17)

We denote by R the set of all admissible pieces of path R € Z[0:3c1[ with
starting point in [-7-2",7-2"]. For R € R and t € Ny, we define the event

E(t,R):={S(t+1i)=R(i) Vi € [0,3¢cin[ or S(t +1+1i) = R(i) Vi € [0,3cin[}.

Let n > max{ci2,c10} with ¢1p as in (6.4), and let k € [1,2°"]. We set ty,, :=
e + 2271 and we define random variables Y (R) as follows: If |S(7;)| < 2™ and
E(tk,n, R) does not hold, then we set Y3 (R) = 0. Otherwise we set Y3(R) = 1.

Using the definitions of Eg;, and B[} ., we see that

Jon
Egiop \ Bliipams € U Eiiop 0 {Z Yi(R) = 0} C J Been(R)  (6.18)
ReR k=1 ReR
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with
M
Ey(R) = () {ISn] < 2", 71 +2-2" < 7., Vi(R) =0}
k=1

for M € [1,2%"]. Let R € R. Since n > ¢jp, we have 3¢cin < 2™ by (6.4).
Hence t;, + 1+ 3cin = 7 + 1 + 22"~ 4+ 3¢in < 1 + 22", Consequently,
{6 +2-22" < 71 JNE(tg n, R) € Fron, s here Fy, := 0(S;, X434 € [0, k]) denotes

Tre41’
the natural filtration of random walk and observations with errors. Using the

strong Markov property at time 7, we obtain
PIEy(R)] < P [Ex—1(R) N {|S7,| < 2", 7a—1 + 2" <7, Yar(R) = 0}]
=P [Ex1(R) N {|S (3] < 2" 11 4+ 2" < 1ar } N E(tar,n, R)°]
<P [Ea1(R) N {IS (7}1)] < 27} Ps(oy, (B2, RY)]
<P[Ey_1(R)] max P,[E(2*""' R)].

z€[—27,27]
An induction argument yields
gan
P (Eyen(R)) < [ max, ]Pz(E(QQ”_l,R)”)] . (6.19)
z€[—2m,2n

To estimate the right-hand side of (6.19), let b € N be minimal and let h € N
be maximal such that P(S; — Sy € b+ hZ) = 1. We set 02 := E[(S1 — S0)?],
and L, := {(mb+ hy)/\/m : y € Z}. By the local central limit theorem ([6],
page 132, Theorem (5.2)),

m 1 >
VOLPY (CC S NS S (R | P
h vm V2mo? 202
We apply this with m € {22771 22n=1 4 1} 4 := (Ry — x)//m and Ry equal to
the starting point of R. Note that |Ry| < 7-2" so that |Ry — z|/v/m < 16 for all

2
_(1;(7,;:2) ) > 0. We conclude that
there exist constants ¢13 > 0 and ¢14 > max{c2, 10} such that for all n > ¢14

lim sup
m— 0o yeL

m

r € [-2",2"]. Hence min,c[_on 2n) Rer €XD (

. 2n—1y __ 2n—1 _
xe[72£rg£l],ReRPZ (5(2 ) = Rp or S(2 +1) = Ry)
S@ ) Ry-z _ S@'+1)  Ry-z

= min P = or =
z€[—2m,2"],RER ( \/22n71 \/22n71 \/221’1.—1 +1 \/2271—1 + 1)
> ep2n (6.20)

We set pmin := min{u(j) : j € M}; recall that p is the distribution of the
random walk increments Spi1 — Si. The probability that the random walk
starting at Ry follows the path R for the next 3cyn — 1 steps is bounded below
by uifilnnfl. Thus, (6.20) yields

: 2n—1 — 3 -1 _ — 3
xe[fzggg],ReRPx(E(Z LR Z o2 Mg = 6152 gy
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with ¢15 := cj3pu .. Combining the last inequality with (6.18) and (6.19), we
obtain

P (B \ Bians) < IRI(=cis2 i)

< (142" + DMP™ Lexp (2°7In (1 — 152 "ppct)) . (6.21)

Note that choosing a path in R one has 14 - 2™ 4+ 1 possible starting points
and |supp(p)| = |[M] possibilities for each step of the path. Using the estimate
In(1 — z) < —z, we obtain

(621) < 2n+4|M|351n exp _6152(a_1)n/~1'13nci1nn:| — 2n+4|M|3cln exp [_015661071]
and the last expression is < e~™ for all n sufficiently large because ¢16 = (o —
1)In2 4+ 3¢y In pimin > 0 by our choice of . ®

Lemma 6.6 There exist 84 > 0 such that for alln € N and § €]0, 64]

P§ ((Bfrgw mistakes)c) S e .

Proof. Using Definition 6.3 and our convention ¢ = ¢;& we obtain

t
(Bf?ew mistakes)C = U { Z Xk > Clan} . (622)

te€lcin—1,2-212an] (k=t—cin+1

Recall that X, k& > 0, are i.i.d. Bernoulli random variables with parameter §
under Ps. Hence Ejs [ch:t_qn_l_l Xk] = ¢16n. By the large deviation principle
(see e.g. [3]), we have for all § €]0, ]

Ps ( Z Xy > cls_n) <exp(—Is(€ — 6)cin) (6.23)

k=t—cin+1
with rate function

X

Is(z) = (1 — z)log (%) + zlog (%) ,x €]0,1]. (6.24)

Combining (6.22) with (6.23) we obtain for all § €]0, £]
Ps ((Bfrgw mistakes)c) < exp ([1 + 12&"] In2— Ig(é - 5)617%) .

Since

}ir%lg(s"— 6) = lim(1 — &+ 6)log

1—-8446
6—0

T } + (£ = 6)log [5_6] = +00,

1)
there exists 84 €]0,&[ such that [1+12a]ln2—I5(€—6)e; < —1 for all § €]0, b4].
The assertion of the lemma follows. =

We will need the following lemma in the proofs of Lemmas 6.8, 6.10, and
6.13.
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Lemma 6.7 There exist €1,c17(e') > 0 such that for all m with egm € N,
e €]0,e1[, w € C%™L and for any admissible piece of path R € Z1%c1l the
following holds:

P(d(€ o R,w) < c12'm) < cra(e') (e2)°™ max P((€ o R)JJ = w]J),

where the mazimum is taken over all subsets J C [0, cym[ with cardinality |J| =
cam — |eie'm| and co is as in Section 2.1.

Proof. Let m be such that e;m € N, let w € [0 and let R € Z[0cml
be an admissible piece of path. If d(£ o R,w) < c¢ie'm, then ¢;m — [¢1e'm|

letters of € o R and w agree. Since there are (Lcilsf”m J) possibilities of choosing

cim — |c1e'm| out of ¢ym letters, we have

crm

P(d(éo R,w) < cie'm) < ( > m}aXP((f o R)|J = w|J),

lere'm ]

where the maximum is taken over all subsets J C [0,¢;m| with cardinality
cam — |eie'm]|. By Stirling’s formula ([1], p.24, formula (3.9)) we have for
k€N, k! = 2rkFt1/2e=*+0(0) with §(k) €]0,1[ and limy_., (k) = 0. Thus

<Lcj1£7'7:nj> < c17(5')(p<%>clm

with p(z) = 2~ %(1 —2)~ (=) and some constant ¢;7(¢’) > 0 independent of m.
Note that ¢ is continuous at 0 with ¢(0) = 1, and recall that ¢ €]1,C/(C —1)[.
There exists €1 such that p(x) < ¢g for all  €]0,e1[. Note that [cie'm|/(e1m) <
¢'. The claim follows. m

Lemma 6.8 There exists a constant cig > 0 such that for allm € N
P ((Blaader air)?) < c1se ™.
Proof. Let
Ti={ (i1, 22,02) € (=828 2] x {y =1 (s1,00) £ (22,2) |
By Definition 6.4,

(Blrdder ain)” = U {d(w2, i, n/3: Wy i5,m/3) < 10en}. (6.25)
(21,01,22,12)ET

Let (z1,41,22,i2) € J. For k = 1,2 we set o := +1 if i =—, 0 := —1 if
i, =—, and we set fi(j) := 2z + oxjL for j € [0,¢1n/3[. First we prove that
there exists a subset J C [0,¢1n/3[ of cardinality |J| > ¢1n/9 such that

AN f2(T) = 0. (6.26)
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We distinguish two cases. Case z; = 2z9: By assumption, iy # i5. Hence o1 # 02,
and we conclude that (6.26) is satisfied for J =]0,c1n/3[.

Case z1 # zo: We show by induction over k € [1,c¢in/9] that there exists J
with |J| > k such that (6.26) holds. For k = 1 the set J = {0} has the required
property. Suppose there exists J' with |J'| = k € [1,¢1n/9 — 1] such that (6.26)
holds. The sets J! := f;i(J'), i = 1,2, have cardinality |J]| = |J'| < e1n/9 — 1.
We set

J={j €0,ein/3[: f1(§) & JL U J3, fo(4) & Ji, and f1(§) # f2(3)} -

Then |J| > ein/3 —|J{ U Js| —|Ji| =1 = e1n/3 — 3(e1n/9 — 1) — 1 = 2; note
that there exists at most one j with f;(j) # f2(j). In particular J is not empty.
Let j € J, and set J := J' U {j}. Since fi(j) ¢ Ji, we have |J| = |J'| + 1.
It follows from fi(j) & J5 U {f2(j)} that fi(§) & f2(J). Similarly, it follows
from fo(j) & J1 U{f1(4)} that fo(j) &€ fi(J), and we have proved that (6.26)
holds for J. By the induction principle, (6.26) holds for a set J C [0, ¢1n/3[ of
cardinality |J| = e1n/9.

Let J C [0,c1n/3[ with |J| = ¢1n/9 such that (6.26) holds. Then the words
w, i /3 fe(J), k= 1,2, are independent. Note that P({, = &) = 1/C for
k # k'. We use Lemma 6.7 with m := n/9, ¢’ := 90e/¢; and R equal to the
ladder path underlying w., ;, /3 to obtain

P (d(w21,i1,n/3|f1(‘])) w22,i2,n/3|f2(‘])) < 105")
017(905/61)(62)c1n/9c[105nj7c1n/9- (627)

P(d(w”’1,i1,n/37wzz,iz’n/?,) < 105“)

IN N

Since the intersection in (6.25) is taken over 4(16-2" + 1) possible pairs (z1,i1),
(22,12), it follows from (6.27) that

P(Blaqer air) < 4(16 - 2™ + 1)2e17(90e /e1)(cg) 1/ 2 C 0 mean/o,

Note that C'11%e"] < exp (10enInC). Let ¢15 > 0 be chosen in such a way that
4(16 - 27+ 1)2617(908/01) < 61822n. Then

n n[21n2410eIn C+(c1/9)[lnca—In C
P(Bl ader air) < c1s€ : (cx/Om ez I

Since 2In2+ 10eInC + (¢1/9)[Incz — In C] < —1 by our choice of € and ¢y, the
claim follows. m

Lemma 6.9 There exist constants ci19,05 > 0 such that for all n > c19 and
6 €]0, 65]

P§ ((Br?;;—‘jority) ) S e "
Proof. Recall the notation from Definition 6.5. Let wy, w3 € C*™, I € Z,. Let

ri, ¢ > 1, denote all the times s € U}%il [Tk +ein, T + 227 — 2cln] such that
S|[ri,r; +cin] is a straight crossing of I from left to right. Clearly, the intervals
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[ri;7i + cin[, ¢ > 1, are pairwise disjoint. Let H := o(r;, ;i > 1). Since S
and X are independent, we know that conditioned on H, the random variables
Xr4j,12>1,7€0,cin[, are i.i.d. Bernoulli with parameter 6 under Ps.

We obtain the random variables s ~+ecyn, i > 1, from r;, i > 1, by checking
whether d(x|[r; + (k — 2)ein,r; + (k — Degnf,wy) < 2en for £ = 1,3. Since
at time r; + ¢cyn — 1 the random walk is at the right endpoint of I and at
time 7;11 at the left endpoint of I, the time interval [r; + ¢in — 1,7,41] has
length > ¢yn. Consequently, the time intervals [r;,r; + cin|, [Fig1, 741 + 11|
have a distance > ¢;n — 2 from each other. Since £,5,Y are independent
of X, we conclude that X|[s/~ + kein,s'= + (k + L)ewn[, k = 0,2, i > 1,
is independent of o(X — +c1n+j§j € [1,ean — 1[,i > 1). Hence conditioned

on H _O'(S +en, i, X8 + kein, sI= + (k+ Denf;i > 1,k =0, 2) the

random variables X r_. ¢ ,4;, j € [1,cin — 1], are i.i.d. Bernoulli with param-
eter 6 under Ps.

By the large deviation principle (see e.g. [3]), we have for all § €]0,1/2[ and
n € N Ps-almost surely on the set {|Si~ | >27"}

27m
Ps (ZXSﬂ_Clnﬂ- >27/2 H) <exp(—Is(1/2 = 6)2") (6.28)
i=1

with rate function I given by (6.24). Since

. . [1/2+46
;1_{%[5(1/2—6) —%%(1/2+5)10g T; ] +(1/2—6)log{

1/2-8] _,
6 - Y

there exists §5 > 0 such that Is(1/2 — 6) > 1 for all § €]0, 55[ It follows from
(6.28) that for all § €]0,65] Ps-almost surely on the set {|S]> .| > 27"}

27"
Ps (ZXSi+Cln+j > 27”/2
=1

Consequently, Ps (Efwl Xeiteintj 2 27”/2) < exp (—2""). By Definition 6.5,
By .. =B NBY _ with

majority maj,— maj,—

B ={85 1 <2myu () () B (wi,ws)

w1, w3€ECL™ [€T

H) <exp(—2""). (6.29)

and B™". _ defined analogously. Hence

maj,—

2™ n
[ nnJ7 ] U U U {| w1, w3| > 2vnszsz+c1n+j > %}

w1, w3z €C1™ I€T, jE[l,c1n—1] =1

Since there are less than 14 - 2™ ladder intervals in 7, it follows that

Fs ((Bn’T~ ) ) <14 2"¢ nC?* " exp (—27M).

maj,—
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We choose 19 > 0 large enough that 14 -2"¢;nC?¢1 ™ exp (—27™) < e~ ™/2 for all
n > ci19. The claim follows. m

Lemma 6.10 There exist constants cao,c21 > 0 such that for all n > c1g (with

c1p as in (6.4))
P((B(:Lutside out)c) S 0216_820n'
Proof. We set

7= l(iR):Re ([<2L-2%",2L-2*"]\[-6-2", 6-2"])[%c17/2] admissible
" | piece of path, z € [-5-2"5-2"],i € {«—,—} '

By Definition 6.6,

(Bgutside out)C = U {d(f o R7 wz,i,n/2) < 38“} y

(z,i,R)ET
and consequently,
P((Bgutside out)c) S |j|( mg)xejp (d(f ° R’ w27i7n/2) < 36") . (630)

Let (z,i,R) € J, and let n > ¢19. The piece of scenery £ o R depends only
on §|[-2L - 2" 2L - 2*"] \ [—-6-2",6-2"], whereas w,;,/» depends only on
E[-5-2" —einL/2,5- 2™ + ¢;nL/2]. Since n > c19, cynL/2 < 2™ by (6.4),
and therefore w. ; ,,/o depends only on £|[—6-2",6 - 2"]. Since the scenery & is
i.i.d. uniformly colored, {oR and w. ; ,, /2 are independent and P(¢; = &) = 1/C
for j # j'. Thus

P (E(R(j)) = wa i ny2(j) Vi€ J) = Clenlzein/2

for any subset J C [0,c;n/2] with cardinality |J| = e1n/2 — |3en]. Applying
Lemma 6.7 with ¢’ = 6¢/¢; and m = n/2, we obtain

P (d({ oR W, ;) < 3£n) < c17(68/c1)(02)61’1/2CL35”J_61“/2. (6.31)
The cardinality of || satisfies
|7] < 2(10- 2" + 1)4L - 22" (C — 1)""/? (6.32)

for the following reason: There are 10 - 2™ 4+ 1 possible values for z, 2 possible
values for i and at most 4L - 227 possible starting points for R. An admissible
piece of path has at each step at most |[M]| < C' — 1 possible steps; recall that
there are strictly more colors than possible steps for the random walk. Hence
the number of possible paths R is bounded by 4L - 2%" (C' — 1)em/2,

Clearly, 37 < e(3s7InC) We choose ¢z > 0 such that ¢;7(6e/c1)2(10 -
2" + 1)4L - 22" < ¢q - 2%". Combining (6.30), (6.31), and (6.32), we obtain

cin/2
c n(31n eln c(C -1
P ((Bg, )7) < core (3In2+3¢In C) <72( g )> .

outside out

32



Finally, we set cop := — (3 In2+3enC + (¢;/2)In (#)), and the claim

follows because cog > 0 by our choice of ¢ and ¢;. =
We will need the following lemma in the proof of Lemma 6.12.

Lemma 6.11 There exists coo such that for all n > coo and for any admissible
piece of path R € Z1%<l with R(0) < R(cin — 1) there exists an admissible
piece of path R € 719" such that R(0) = R(0), R(cin — 1) = R(ein — 1), and
the first cin/3 steps of R are steps of mazimal length L to the right.

Proof. Let R € Z!%“"[ be an admissible piece of path. We set z := R(0),
y:= R(cin —1); note z < y.

Suppose R contains at least ¢;n/3 steps of maximal length L to the right.
Then we define R € Z[0¢" to be the admissible piece of path starting at = and
ending at y obtained from R by permuting the order of the steps in such a way
that all the steps of maximal length L to the right are at the beginning.

If R contains less than ¢;n/3 steps of maximal length L to the right, then

2cin 2cin

y—xﬁ(%—l)L—% (L-1)< el — (6.33)
In this case, let Ry € Z%%l denote the path which starts at  and goes with
maximum steps to the right until it reaches the interval |y — L,y]. In other
words, R;(0) =z, Ry(t1 — 1) €]y — L,y], and for all s € [0,¢; — 1] we have that
Ri(s+1)— Ry(s) = L. Let y' := Ry(t; — 1) be the endpoint of R;. We have
(ty — 1)L < y — z and using (6.33), we obtain

2cin
3L

t g%chln— 1. (6.34)

As we noticed already in the proof of Lemma 6.5, the random walk has
period 1 or 2. Thus there exists co3 such that for all z €]y — L,y] there exists
an admissible piece of path of length < cy3 starting at z and ending at y.
If furthermore the random walk is aperiodic, then ¢s3 can be chosen in such
a way that for all z €]y — L,y] there exist admissible pieces of path of even
and odd length < co3 starting at z and ending at y. We choose c22 such that
min {% -2, 2;—1L" - 2} > co3 for all n > cos.

Case 1: The random walk is periodic (with period 2). Let Ry € ZI[0:%l
be an admissible piece of path starting at y’, ending at y with #3 < co3. The
concatenation R; R3 is an admissible piece of path starting at z, ending at y of
length ¢; + ¢35 < c¢;n — 1 by (6.34). By assumption, R also starts at  and ends
at y. Thus by periodicity we have that | := |R| — |[R; R3] > 0 is even. Let Ry
be the admissible piece of path starting and ending at y’ which makes first 1/2
steps of length L to the right and then /2 steps of length L to the left. We set
R:= Ri1R>R5. We have |R1R2| >cin—coz > 2+ 201n/3. Since all steps of Ry
and half of the steps of Ry are maximum steps to the right, R contains at least
c1n/3 steps of maximal length L at the beginning. By construction, R starts at
x and ends at y.
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Case 2: The random walk is aperiodic. Let Rs € Z[%%l be an admissible
piece of path starting at y', ending at y of length #3 < cy3. We may assume that
t3 is even iff ¢yn — t1 is even. Then ¢yn — t; — t3 is even, and we can define R,
as before. The same argument as above shows that R := R;RyRs3 fulfills the
claim. m

Lemma 6.12 There exists caq such that for all n > coq

n c —n,
P (( recogn straight) ) < cige )
c1g 18 specified in Lemma 6.8.

Proof. Let c24 := max {c10,c22} with co2 as in Lemma 6.11, and let n > coq.
We will show that the following inclusion holds:

Bliader air € Bre (6.35)

recogn straight -

The claim follows then from Lemma 6.8.

Suppose the event BP .. 4 holds. Let By € [=7-27, 72" " be an
admissible piece of path which is not a ladder path. We set z := R;(0) and
y := Ry(e1m —1). We have to show that there exists an admissible piece of path
Ry, € [-8-2",8- 2"][0’6“1{ with starting point z, endpoint y, and d(§ o Ry,£ o
Ry) > 5en. We assume that < y. The case x > y is reduced to this case by
considering the reversed path k — R;(cin — 1 — k). By Lemma 6.11 applied to
Ry, there exists an admissible piece of path Rs € Z[%"[ such that R3(0) = z,
R3(cin — 1) = y and the first ¢1n/3 steps of Rz are steps of maximal length L
to the right. Since y — x # (cin — 1)L, at least one step of R3 is not a step of
maximum length to the right. We construct an admissible piece of path R4 by
permuting the steps of R3. We set R4(0) := z. The first step of Ry is the first
step of R3 which is not a step of maximum length to the right. Formally we set
j:=min{i € [1,ein[: R3(i) — R3(i — 1) # L}, and define

[ Rs(3), if i € [0,e1n[\[1, 4]
Ra(i) '—{ Rz(i— 1)+ Rs(j) — Rs(j — 1), ifi€[L,7].

Clearly, R4 is an admissible piece of path of length ¢;n with R4(0) = z and
Ri(cin — 1) = y. Using that R4 jumps in each step at most a distance of L,
we obtain that [R4(7)] < |R4(0)| + cinL =z + cynL < 8- 2™ for all 7 € [0,c1n]
because cinL < 2" for n > ¢19. The same is true for Rs.

Since Rj3 starts with ¢yn/3 steps of maximum length L to the right, we
have that & o Rs|[1,c1n/3] = w,yp, . n/3, and by definition of Ry, we have
§o Ryl[l,c1n/3] = wyr . /5 With &' = o + R3(j) — R3(j — 1). By construction,
R3(j) — R3(j — 1) # L so that x + L # «’. Since R3 and R4 take only values in
[-8-2™,8-2"], we have that © + L,z' € [-8-2",8-2"]. Using that B qer air
holds, yields d(wy4r,— n/3,War,— n/3) > 10en, and by the triangle inequality,
we get that £ o Ry cannot have a distance smaller than 5en to both £ o R3 and
& o Ry. Hence there exists ¢ € {3,4} such that d({ o Ry, o R;) > 5en. Let
R := R; in the definition of B™ [ ]

recogn straight *
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Lemma 6.13 There exist constants cos,ca6 > 0 such that for all n € N

P ((Bla)) < czse™ "

signals

Proof. We show that there exist ca5, cog > 0 such that for all n

c C25 ¢,
P ((Blignr,—)) < e ™ (6.36)
Analogously, one proves statements for B3, | ., Bg,, ., and Bg,, . . The
claim follows from these four inequalities and the definition of B nas- We set

R = {(z,R) L2 €[-6-2",6-2", R € [-2L-22,2 - 22n) e admis-} _
sible piece of path with R(0) < z

By Definition 6.8,

( ggmw)c = U {d(o Ryw, ) < 5en}. (6.37)
(z,R)ER

Let (z,R) € R. By Definition 6.1, w, _, (k) = {(z + kL). Note that R(k) <
z + kL for all k € [0,¢in[: For k = 0 this is true by assumption. Suppose
R(k) < z+ kL holds for some k € [0,¢;n — 1[. Since the maximal jump length
of Ris L, we obtain R(k+1) < R(k)+ L < z+ (k+ 1)L, and the claim follows
by induction.

We prove by induction over the cardinality of J, that

P((EoR)|J =w. . ,|J) =CV (6.38)

for any J C [0, cin[: For J = {j} we use that {(R(j)) and w. . ,(j) = &(z+jL)
are independent because R(j) < z+jL. Suppose (6.38) holds for any J C [0, c1n|
with |J| = k for some k € [1,¢;n — 1[. Let J' C [0,¢1n] with |J'| = k4 1, and
let j := maxJ’. Then £{(z + jL) is independent of £(z + j'L), j' € J'\ {j}, and
of &(R(j")), j' € J', because R(j') < z+ j'L < z+ jL. Hence

P(((oR)|J =w.,—n|lJ') = Cilp((f o R)J'\{j} = w.— I\ {j})
o~ () = ¢l /']

)

for the second but last equality with used the induction hypothesis. We use
Lemma 6.7 with ¢’ := 5¢ and m := n to obtain

P (d(€ o Ryw.._. ) < 5en) < e17(5e/er)(ez) el —en, (6.39)

It is easy to see that the cardinality of R is bounded by (122" + 1)(4L - 2*" +
1)(C — 1)*™ Combining this with (6.37) and (6.39), we obtain

P ((B2

sign,r,—

)) < err(5efer)(12 -2 + 1) (4L - 22" + 1)) <#)m
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We choose cz5 such that c;7(5e/e1)(12 - 2™ + 1)(4L - 22™ + 1) < 25237 /4 for all
n € N. Then

P((Bn )6) < %en[3ln2+561n0] <C2(C_ 1))

sign,r,— C

We set cog : = — (3 In2+5¢InC +¢; In (CQ(%A))). Since c36 > 0 by our choice
of ¢ and ¢;, the claim follows. =

Lemma 6.14 There exists a constant cayr > 0 such that for all n > car

—n
P ( stop \ Bstl'ught often) <e .

Proof. Recall Definition 6.9. We will show for all n sufficiently large,

(Esriorp ( M {5~ > 2””}>> <e /2. (6.40)

IeJrn

A similar consideration shows that the same estimate is true if we replace S—.(I)
by S—(I), and the claim then follows from the definition of BJ 7 ¢ ofien- Since
the proof is very similar to the proof of Lemma 6.5, we will omitt some of the
details.

Let I € J;,. We denote by R’ the ladderpath in Z[%3¢1" which traverses I

from left to right. For ¢t € Ny we define the event E(¢,I) :=
{S(t+1i)=R'(i) Vi € [0,3cin[ or S(t + 1 +1i) = R'(i) Vi € [0,3cin[} .

Let n > c19 with cjp as in (6.4), and let k € [1,29"]. We set tj , := 7 + 22"}
and we define random variables Y, (I) as follows: If |S(7y)| < 2™ and E(tg,n, )
does not hold, then we set Yj(I) = 0. Otherwise we set Y3 (I) = 1. By Definition
6.9, we have

Egop (ﬂ {ls—( |>27"}> c |J Eann {ZY/@(I) <27"}
k=1

IeJrn IeJrn
27 n j.Q(Ut*’Y)n
c Y UEin > Vi(I)=03p. (6.41)
IeJr j=1 k=(j—1)2(a¢=7)n 41

Using the strong Markov property and induction (see the proof of Lemma 6.5,
in particular (6.19), for a similar argument) we obtain for n > ¢19 and m, M €
[1,2°"] with m < M

M—m+1
Yi( P (B2 1) }
( Swp {Z kl }) Le[—g}g?f(s-zﬂ] (B 1))

(6.42)
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By the local central limit theorem, there exist constants ca7, cag > 0 such that
for all n > cy7

i P, (S(22" 1) = S(227 71 4 1) = 2) > 0527 6.43
L (S( )=z or S( +1)=2) > eog (6.43)

The probability that the random walk starting at  makes 3¢;n — 1 consecutive
steps of maximum length to the right equals u(L)3°1"~!. Since all intervals in
Jr, are contained in [—6-2",6 - 2"], we obtain

min  min P, (E(2271 1)) > ¢252 " u(L)30" ™ = 9927 pu(L)31™
Lo, pain (E( ) = 2827 " (L) 202" (L)

with cag := cogp(L) L. Combining the last inequality with (6.42), we obtain

M
P (Erip {Z Yi(I) =0}> < (1= eap2 mp(LyPrm) M7 (6.44)

k=m

From (6.41) and (6.44) it follows that

ola=r1n

S 24+[1+7]’ﬂ- [1 _ 6292—nu(L)351n]

P |Egy, [ M {ls-D)] =27}

IeJrn

< 24+[1+7]”exp [2("‘*7)"ln [1 — 0292*”M(L)361"]]

< 24 exp [—0292[0‘_1_7]“/1(11)381“] < 24 exp [—cpge®™] < €7 /2

for all n sufficiently large because czp = (¢ — 1 —7)In2+4 3¢y In u(L) > 0 by our
choice of . =

6.4 Alg" reconstructs with high probability

Proof of Theorem 3.5. Suppose £|[—2",2"] < Alg" (T, X| [0,2 . 212°‘n[,1/1) <
€[4 -27,4-2". Assume ¢ € Cl=FF with k > ¢/ L, ¢ < €| [-2",2"], and
assume | [=2",2"] # (1);_2n 2] Then Alg"(, x| [0,2 - 2"2°" [, ¢)|[—kn, kn] =
¥ by the definition of Alg™ (Definition 5.7) and the definition of SolutionPiece™
(Definition 5.6).

In order to show that Alg" reconstructs with high probability, we combine
Lemmas 6.4, 6.3, 6.2, and 6.1 to obtain

n,T n,T n,T n c n c
Estop \ Ereconstruct g (Estop \ Bmll pmths) U (Bfew mis‘mkes) U (Bladder diff)
n c
U (Bmmjorlty) (Bout51de out) U ( signals)
c n,T
u ( recogn str'ught) (Estop \ Bstrught often) :

The claim follows from Lemmas 6.5, 6.6, 6.8, 6.9, 6.10, 6.12, 6.13, and 6.14. =

37



References

[1]
2]

[3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

E. Artin. The Gamma Function. Holt, Rinehart and Winston, 1964.

I. Benjamini and H. Kesten. Distinguishing sceneries by observing the
scenery along a random walk path. J. Anal. Math., 69:97-135, 1996.

F. den Hollander. Large deviations. American Mathematical Society, Prov-
idence, RI, 2000.

F. den Hollander and J. E. Steif. Mixing properties of the generalized
T, T~ '-process. J. Anal. Math., 72:165-202, 1997.

W. Th. F. den Hollander. Mixing properties for random walk in random
scenery. Ann. Probab., 16(4):1788-1802, 1988.

R. Durrett. Probability: Theory and Ezamples. Duxbury Press, Second
edition, 1996.

M. Harris and M. Keane. Random coin tossing. Probab. Theory Related
Fields, 109(1):27-37, 1997.

D. Heicklen, C. Hoffman, and D. J. Rudolph. Entropy and dyadic equiva-
lence of random walks on a random scenery. Adv. Math., 156(2):157-179,
2000.

C. D. Howard. Detecting defects in periodic scenery by random walks on
Z. Random Structures Algorithms, 8(1):59-74, 1996.

C. D. Howard. Orthogonality of measures induced by random walks with
scenery. Combin. Probab. Comput., 5(3):247-256, 1996.

C. D. Howard. Distinguishing certain random sceneries on Z via random
walks. Statist. Probab. Lett., 34(2):123-132, 1997.

S. A. Kalikow. T, T~! transformation is not loosely Bernoulli. Ann. of
Math. (2), 115(2):393-409, 1982.

M. Keane and W. Th. F. den Hollander. Ergodic properties of color records.
Phys. A, 138(1-2):183-193, 1986.

H. Kesten. Detecting a single defect in a scenery by observing the scenery
along a random walk path. In Ité’s stochastic calculus and probability the-
ory, pages 171-183. Springer, Tokyo, 1996.

H. Kesten. Distinguishing and reconstructing sceneries from observations
along random walk paths. In Microsurveys in discrete probability (Prince-
ton, NJ, 1997), pages 75-83. Amer. Math. Soc., Providence, RI, 1998.

A. Lenstra and H. Matzinger. Reconstructing a 4-color scenery by observing
it along a recurrent random walk path with unbounded jumps. Eurandom,
2001. In preparation.

38



[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Levin, R. Pemantle, and Y. Peres. A phase transition in random coin
tossing. Preprint, 2001.

E. Lindenstrauss. Indistinguishable sceneries. Random Structures Algo-
rithms, 14(1):71-86, 1999.

M. Léwe and H. Matzinger. Reconstruction of sceneries with correlated
colors. Eurandom Report 99-032, 1999.

M. Léwe and H. Matzinger. Scenery reconstruction in two dimensions with
many colors. Eurandom Report 99-018, 1999.

M. Lowe, H. Matzinger, and F. Merkl. Reconstructing a multicolor random
scenery seen along a random walk path with bounded jumps. Eurandom
Report 2001-030, 2001.

H. Matzinger. Reconstructing a 2-color scenery by observing it along a
simple random walk path with holding. PhD thesis, Cornell University,
1999.

H. Matzinger. Reconstructing a three-color scenery by observing it along a
simple random walk path. Random Structures Algorithms, 15(2):196-207,
1999.

H. Matzinger. Reconstructing a 2-color scenery by observing it along a
simple random walk path. Eurandom Report 2000-003, 2000.

H. Matzinger. Reconstructing a 2-color scenery in polynomial time by
observing it along a simple random walk path with holding. Eurandom
Report 2000-002, 2000.

H. Matzinger and S. W. W. Rolles. Reconstructing a random scenery in
polynomial time. Preprint.

39



