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Jüri Lember and Heinrich Matzinger

EURANDOM
P.O. Box 513 - 5600 MB Eindhoven, The Netherlands

Abstract

We consider randomly obtained observations from an infinite binary code (scenery). We provide a test
that, with high probability, allows us from a finite string of observations determine the localization
of the observed data. The main result of the paper is used to solve the following problem asked by
Kesten: is it possible to reconstruct a 2-color scenery along the path of a recurrent random walk with
jumps. In the subsequent paper the present result will be used to show the existence of the asked
algorithm. Furthermore, the result of the paper directly implies that almost all independent sceneries
can be distinguished when they are red along a random walk.
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5.1 Definition of g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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1 Introduction and Result

1.1 Introduction

A (one dimensional) scenery ξ is a coloring of the integers Z with C0 colors {1, . . . , C0}. Two sceneries
ξ, ξ′ are called equivalent, ξ ≈ ξ′, if one of them is obtained from the other by a translation or reflection.
Let (S(t))t≥0 be a recurrent random walk on the integers. Observing the scenery ξ along the path of this
random walk, one sees the color ξ(S(t)) at time t. The scenery reconstruction problem is concerned with
trying to retrieve the scenery ξ, given only the sequence of observations χ := (ξ(S(t)))t≥0. Quite obviously
retrieving a scenery can only work up to equivalence. For an overview about scenery reconstruction we
refer the reader to an excellent survey in [13].
In the present paper we consider the following problem: can a 2-color scenery be reconstructed, if it
is observed along a random walk with jumps. Among others, this question was asked by H. Kesten in
[13]. The main result of this paper, Theorem 5.3, is an important ingredient for solving the above-stated
problem. Furthermore, it has another direct implication: it shows that we can distinguish 2 independent
i.i.d. sequences observed along a path of a recurrent random walk with jumps.
Before explaining the main result, let us briefly mention a few people as well as some of their work in
this area: Benjamini [1], Burdzy, Harris [5], Heicklen [6], [2], den Hollander [4], [3], Hoffman [6], Howard
[9], [8], [7], Kalikow [10], Keane [5], [11], Kesten [12], [1], [14], Levin [16], Lindenstauss [17], Rudolph [6],
Pemantle [16], Peres [16], Spitzer [14], Steif [4].
Furthermore, the following people have been working on scenery reconstruction: Loewe[18], Merkl [19],
Rolles [23], Le Ny[15], Redig [15].
The research in scenery reconstruction was first motivated by the general problem of studying the prop-
erties of the color record χ. In particular, the research on scenery reconstruction started with the scenery
distinguishing problem. The question was raised independently by Benjamini and by den Hollander and
Keane. Later Kesten asked, whether one can recognize a single defect in a random scenery.
In order to provide an answer to Kesten’s question, Matzinger in his Ph.D. thesis [20] proved a somewhat
stronger result: typical sceneries can be reconstructed a.s. up to equivalence. The sceneries in Matzinger’s
setup are independent uniformly distributed random variables. He showed that almost every scenery can
be almost surely reconstructed. In [13], Kesten noticed that Matzinger’s proof in [20] heavily relies on
the skip-free property of the random walk. He asked whether the result might still hold in the case of a
random walk with jumps. Merkl, Matzinger and Loewe in [19] gave a positive answer to Kesten’s question
under a particular assumption: there are strictly more colors than possible single steps for the random
walk.
The two color case, (C0 = 2) is more difficult than the case investigated by Merkl, Matzinger and Loewe in
[19]. Although several arguments in [19] do not use the fact that there are more than 2 colors, the central
idea hopelessly fails in the 2-color case. To overcome the problem, the existence of a certain localization
test becomes crucial. To provide such a test is the objective of the present paper. In a follow-up paper
we will present the other ideas necessary for the 2-color scenery reconstruction with jumps.

1.2 Main assumptions

We define the main concepts of the paper: scenery, random walk and observations. Also, some notations
will be introduced.

* Scenery ξ = {ξ(z)}z∈Z is a family of i.i.d. Bernoulli random variables with parameter 1/2. We often
use ψ for a non-random scenery, i.e. ψ ∈ {0, 1}Z is a value of random element ξ.

* In this paper, S = {S(t)}t∈N is a recurrent random walk, that visits every integer z with positive
probability. We assume S starts at origin, i.e. S(0) = 0. Another important assumption is that S
has only a finite number of steps (”bounded jumps”). More precisely, we assume that the set {z :
P (S(1)− S(0) = z) > 0} is finite. Throughout this paper we denote

L := max{z : P (S(1)− S(0) = z) > 0}.
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Thus L stands for length of the maximum jump.
To simplify some proofs we also assume that S is symmetric (however, we do not believe that the
symmetricity is necessary).
The random walk S and scenery ξ are independent.

* We denote by χ the observations :

χ := ξ (S (0)) , ξ (S (1)) , ξ (S (2)) , . . .

and we interpret χ as a random function from N to {0, 1}, so that χ(k) := ξ (S (k)) for all k ∈ N.

* Let f : D → I be a map. For a subset E ⊂ D we shall write f |E for the restriction of f to the set E.
Thus, when [a, b] ∈ Z is an integer interval and ξ is scenery (resp. ψ is a non-random scenery), then
ξ|[a, b] (resp. ψ|[a, b]) stands for the random vector (ξ(a), . . . , ξ(b)) (resp. for vector (ψ(a), . . . , ψ(b))).
We also denote ξ|[0, b] = ξb

0. Similarly, we often denote χ|[0, b] = χb
0.

* Let a = (a1, . . . , aN ), b = (b1, . . . , bN+1) be two vectors with lengths N and N + 1, respectively. We
denote a 4 b, if

a ∈ {(b1, . . . , bN ), (b2, . . . bN1)}.
Thus, a 4 b if a can be obtained from b by ”removing the first or the last element”.

1.3 The theorem

The main result of the paper is the following theorem:

Theorem 1.1 There exists constants c > 0 (not depending on n), N < ∞, m(n) > n, the maps

g : {0, 1}m+1 7→ {0, 1}n2+1

ĝ : {0, 1}m2+1 7→ {0, 1}n2

and the sequence of events En
cell OK ∈ σ(ξ(z)|z ∈ [−cm, cm]) such that:

1) P (En
cell OK) → 1

2) For all n > N and ψn ∈ En
cell OK we have:

P
(

ĝ(χm2

0 ) 4 g(ψm
0 )

∣∣∣ S(m2) = m, ξ = ψn

)
> 3/4.

3) g(ξm
0 ) is an i.i.d. binary vector where the components are Bernoulli with parameter 1/2.

Theorem says that there exists functions g and ĝ as well as a set of typical sceneries, En
cell OK, such that

1) 2) and 3) hold. The function g, applied to the (piece of) underlying scenery, ξm
0 , will be referred as

g-information vector. It contains enough information about ξm
0 : the vectors g(ξm

0 ) and g(ξ2m+2
m+1 ) are

equal with probability (1/2)n, only. The latter follows from the statement 3) of the theorem. On the
other hand, the information g(ξm

0 ) can be successfully estimated by ĝ function: the statement 3) ensures
that, conditioning on the event {S(m2) = m}, the probability of ĝ(χm2

0 ) 4 g(ψm
0 ) is bigger than 1/2,

provided that ψm
0 is typical. Thus, in this case ĝ(χm2

0 ) is a good estimator of g(ψm
0 ). The construction of

ĝ will be referred as g-information reconstruction algorithm. The statement 1) of theorem concerns
the set of typical sceneries, En

cell OK. These are the sceneries, for which the reconstruction algorithm
successfully works. The statement 3) says that, by increasing n, one can make the set En

cell OK as large
as one wants.
As mentioned, the g-information and ĝ-estimators are the main issues for reconstructing the 2-color
scenery observed along a recurrent random walk with jumps.
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The paper is organized as follows. In order to explain the main ideas of the g-information reconstruction
algorithm, in the following section we consider an simplified example. We hope that this example helps
to understand the main structure of the algorithm.
In Chapter 2 we prove many auxiliary results needed for the following. In particular, the chapter 2 deals
with the signal probabilities.
In Chapter 3 we consider the set of typical sceneries: En

cell OK. We prove that P (En
cell OK) → 1.

Chapter 4 is devoted to the random walk - we investigate the typical behavior of the random walk (and
observations) under the condition {S(m2) = m}.
Finally, in Chapter 4 we formally define the functions g and ĝ and we prove that the g-reconstruction
algorithm works, i.e. we prove the main theorem.

1.4 3 colors example

1.4.1 Setup

The main goal of this paper is to define the g- information reconstruction algorithm as well as to
prove that this works. Before starting it, in this section we present a simplified case.
Let ξm

0 and χm2

0 denote the piece of scenery ξ|[0,m] and the first m observations χ|[0,m], respectively.
Recall that we want to construct two functions g : {0, 1}m+1 → {0, 1}n2+1 and ĝ : {0, 1}m2+1 → {0, 1}n2

such that

1) with high probability
P

(
ĝ(χm2

0 ) 4 g(ξm
0 )

∣∣∣ S(m2) = m
)

.

2) g(ξm
0 ) is an i.i.d. binary vector where the components are Bernoulli with parameter 1

2 .

In other words, 1) states that, with high probability, we can reconstruct g(ξm
0 ) from the observations,

provided that random walk S goes in m2 steps from 0 to m. (Remember that ĝ(χm2

0 ) 4 g(ξm
0 ) means that

ĝ(χm2

0 ) and g(ξm
0 ) are equal up to one bit.) Thus the function ĝ represents a ”reconstruction algorithm”

which tries to reconstruct the information g(ξm
0 ).

Since this is not yet the real case in which we are interested in this paper, during the present subsection
we will not be very formal. For this subsection only, let us assume that the scenery ξ has three colors
instead of two. This is our simplifying assumptions introduced for tutorial reasons. Thus, we assume
that {ξ(z)} satisfies all of the following three conditions:

a) {ξ(z) : z ∈ Z} are i.i.d. variables with state space {0, 1, 2},
b) exp(n/ ln n) ≤ 1/P (ξ(0) = 2) ≤ exp(n)),

c) P (ξ(0) = 0) = P (ξ(0) = 1).

We define m = n2.5(1/P (ξ(0) = 2)). Because of b) this means

n2.5 exp(n/ ln n) ≤ m(n) ≤ n2.5 exp(n).

The thus defined scenery distribution is very similar to our usual scenery except that sometimes (quite
rarely) there appear also 2’s in this scenery.
We now introduce some necessary definitions.

Let z̄i denote the i-th place in [0,∞) where we have a 2 in ξ. Thus z̄1 := min{z ≥ 0|ξ(z) = 2},
z̄i+1 := min{z > z̄i|ξ(z) = 2}. We make the convention that z̄0 is the last location before zero where we
have a 2 in ξ. For a negative integer i < 0, z̄i designates the i + 1-th point before 0 where we have a
2 in ξ. The random variables z̄i-s are called signal carriers. For each signal carrier, z̄i, we define the
frequency of ones at z̄i. By this we mean the (conditional on ξ) probability to see 1 exactly after en0.1
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observations having been at z̄i. We denote that conditional probability by h(z̄i) and will also write h(i)
for it. Formally:

h(i) := h(z̄i) := P
(
ξ(S(en0.1

) + z̄i) = 1
∣∣∣ξ

)
.

It is easy to see that the frequency of ones is equal to a weighted average of the scenery in a neighborhood
of radius Len0.1

of the point z̄i. That is h(i) is equal to:

h(i) :=
∑

z∈[−Len0.1
,Len0.1

]
z 6=z̄i

ξ(z)P
(
S(en0.1

) + z̄i = z
)

(1.1)

(Of course this formula to hold assumes that there are no other two’s in [z̄i − Len0.1
, z̄i + Len0.1

] except
the two at z̄i. This is very likely to hold, see event En

6 2 below).
Let

gi(ξm
0 ) := I[0,0.5)(h(i)).

We now define some events that describe the typical behavior of ξ.
* Let En

6 2 denote the event that in [0,m] all the signal carriers are further apart than exp(n/(2 ln n)) from
each other as well as from the points 0 and m. By the definition of P (ξ(i) = 2), the event P (En

6 2) → 1
as n →∞.
* Let En

1 2 be the event that in [0,m] there are more than n2 + 1 signal carrier points. Because of the
definition of m, P (En

1 2) → 1 as n →∞.

When En
1 2 and En

6 2 both hold, we define g(ξm
0 ) in the following way:

g (ξm
0 ) := (g1 (ξm

0 ) , g2 (ξm
0 ) , g3 (ξm

0 ) , . . . , gn2+1 (ξm
0 ))

Conditional on En
1 2 ∩ En

6 2 we get that g (ξm) is an i.i.d. random vector with the components being
Bernoulli variables with parameter 1/2. Here the parameter 1/2 follows simply by symmetry of our
definition [to be precise, P (gi (ξm

i ) = 1) = 1/2 − P (h(i) = 1/2), but we disregard this small error term
in this example] and the independence follows from the fact that the scenery is i.i.d. [indeed, gi(ξm

0 )
depends only on the scenery in a radius Len0.1

of the point z̄i and, due to E6 2, the points z̄i are further
apart than exp( n

2 ln n ) > L exp(n0.1)].
Hence, with almost no effort we get that when En

1 2 and En
6 2 both hold, then condition 2) is satisfied.

To be complete, we have to define the function g such that 2) holds also outside En
1 2∩En

6 2. We actually
are not interested in g outside En

1 2 ∩ En
6 2 - it would be enough that we reconstruct g on En

1 2 ∩ En
6 2.

Therefore, extend g in any possible way, so that g (ξm
0 ) depends only on ξm

0 and its component are i.i.d.

1.4.2 ĝ-algorithm

We show, how to construct a map ĝ : {0, 1}n2 7→ {0, 1}n and an event EOK ∈ σ(ξ) such that P (EOK) is
close to 1 and for each scenery belonging to EOK the probability

P
(
ĝ(χm2

0 ) 4 g(ξm
0 )|S(m2) = m

)
(1.2)

is also high. Note, when the scenery ξ is fixed, then the probability (1.2) depends on S.
The construction of ĝ consists of several steps. The first step is the estimation of the frequency of one’s
h(i). Note: due to E6 2 we have that in the region of our interest we can assume that all the signal carriers
are further apart form each other than exp(n/(2 ln n)). In this case we have that all the 2’s observed in
a time interval of length en0.3

must come from the same signal carrier. We will thus take time intervals
T of length en0.3

to estimate the frequency of one’s.
Let T = [t1, t2] be a (non-random) time interval such that t2 − t1 = en0.3

. Assume that during time T
the random walk is close to the signal carrier z̄i. Then every time we see a 2 during T this gives us a
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stopping time which stops the random walk at z̄i. We can now use these stopping times to get a very
precise estimate of h(i). In order to obtain the independence (which makes proofs easier), we do not take
all the 2’s which we observe during T . Instead we take the 2’s apart by at least en0.1

from each other.
To be more formal, let us now give a few definitions:

* Let νt1(1) denote the first time t > t1 that we observe a 2 in the observations χ after time t1. Let
νt1(k + 1) be the first time after time νt1(k) + en0.1

that we observe a 2 in the observations χ. Thus
νt1(k + 1) is equal to min{t|χ(t) = 2, t ≥ νt1(k) + en0.1}. We say that T is such that we can significantly
estimate the frequency of one’s for T , if there are more than en0.2

stopping times νt1(k) during T . In other
words, we say that we can significantly estimate the frequency of one’s for T , iff νt1(e

n0.2
) ≤ t2 − en0.1

.

* Let X̂t1(k) designate the Bernoulli variable which is equal to one iff χ(νt1(k) + en0.1
) = 1. When

νt1(e
n0.2

) ≤ t2 − en0.1
we define ĥT the estimated frequency of one’s during T in the following obvious

way:

ĥT :=
1

en0.2

en0.2∑

k=1

X̂t1(k).

Suppose we can significantly estimate the frequency of one’s for T . Assume En
6 2 ∩ E1 2 hold. Then all

the stopping times νt1(e
n0.2

) stop the random walk S at one signal carrier, say z̄i. Because of the strong
Markov property of S we get then that, conditional on ξ, the variables Xt1(k) are i.i.d. with expectations
hi. Now use Höffding inequality to see

P (|ĥT − h(i)| > e−n0.2/4) ≤ exp(−(2en0.2/2)).

Hence, with high probability, ĥT is a precise estimate for h(i).
The obtained preciseness of ĥT is of the great importance. Namely, it is of smaller order than the
typical variation of h(i). In other words, with high probability |h(i)− h(j)| is of much bigger order than
exp(−n0.2/4), i 6= j. To see this, consider (1.1). Note that, for each z, µi(z) := P (S(en0.1

) + z̄i = z) is
constant, and, conditional under the event that in the radius of L exp(n0.1) are no more 2’s in the scenery
than z̄i, we have that ξ(z̄i + z) are iid Bernoulli variables with parameter 1

2 . Hence

V ar[h(i)] ≤
∑

[−Len0.1 ,Len0.1 ]

1
4

(
µ0.2(z)

)2

.

Since our random walk is symmetric we get that
∑

z∈[−Len0.1 ,Len0.1 ]
1
4 (µ0.2(z))2 is equal to 1/4 times the

probability that the random walk is back at the origin after 2en0.1
time. By the central local theorem that

probability is of order e−n0.1/2. This is much bigger than the order of the precision of the estimation of
the frequencies of one’s, e−n0.2/4. Since h(i) is approximately normal, it is possible to show that with high
probability all frequencies h(0), h(1), . . . , h(n2+1) are more than exp(−n0.11) apart from 1

2 . Moreover, by
the similar argument it is possible to show: if {z̄i}i∈I is the set of signal carriers that S encounters during
the time [0,m2], then for each pair i, j ∈ I, the frequencies of ones satisfy |h(i) − h(j)| > exp(−n0.11).
Let En

3 2 be the set on which both statements holds.

Define EOK := En
1 2 ∩ En

3 2 ∩ En
6 2. From now on we assume that EOK hold and we describe the ĝ-

construction algorithm in this case :

Phase I) Determine the intervals T ⊆ [0, m2] containing more than en0.2
two’s (in the observations.) Let

Tj designate the j-th such interval. Recall that these are the intervals where we can significantly estimate
the frequency of one’s. Let K designate the total number of such time-intervals in [0, m2].
Let π(j) designate the index of the signal carrier z̄i the random walk visits during time Tj (due to En

6 2,
the visited signal carriers are further apart than Len0.2

from each other and, hence, there is only one
signal carrier that can get visited during time Tj . Thus the definition of π(j) is correct.)
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Phase II) Estimate the frequency of one’s for each interval Tj , j = 1, . . . ,K. Obtain thus, based on the

observations χm2

0 only, the vector (ĥT1 , . . . , ĥTK
) =

(
ĥ(π(1)), ĥ(π(2)), . . . , ĥ(π(K))

)
. Here, ĥ(i) denotes

the estimate of h(i), obtained by time interval Tj , with π(j) = i.

The further construction of the ĝ-reconstruction algorithm bases on an important property of the mapping
π : {1, . . . , K} → Z - with high probability π is a skip free walk, i.e. |π(j) − π(j + 1)| ≤ 1. Hence, the
random walk during time [0,m2] is unlikely to go from one signal carrier to another without signaling
all those in-between. By signaling those in-between, we mean producing in the observations for each
signal carrier z̄i a time intervals of length en0.3

for which one can significantly estimate the frequency of
one’s h(i). In particular, the skip-freeness implies that π(1) ∈ {0, 1}. The skip-freeness of π is proved in
Theorem 5.2.
Let π∗ := min{π(j) : j = 1, . . . , K}. Now π∗ ≤ 1. Let π∗ := max{π(j) : j = 1, . . . , K}. If S(m2) = m,
then, by En

1 2, π∗ > n2.

Phase III) Apply clustering to the vector (ĥT1 , ĥT2 , . . . , ĥTK
), i.e. define

Ci := {ĥTj : |ĥTj − ĥTi | ≤ 2 exp(−n0.12)}, f̂i :=
1
|Ci|

∑

j∈Ci

ĥTj , i = 1, . . . , K.

By En
3 2, we have 5 exp(−n0.12) < exp(−n0.11) < |h(i) − h(j)|, if n is big enough. Hence, ĥTj ∈ Ci iff

π(i) = π(j). Thus, for each different i, j either Ci = Cj or Ci ∩ Cj = ∅. Hence, f̂j is the average of all
estimates of h(π(j)) and, therefore, f̂j is a good estimate of h(π(j)). Obviously,

f̂i = f̂j iff π(i) = π(j). (1.3)

Thus, we can denote f̂(z̄i) := f̂j , if π(j) = i and (1.3) implies f̂(z̄i)) 6= f̂(z̄j), if i 6= j.
After phrase III we, therefore, end up with a sequence of estimators f̂(z̄π(1)), . . . , f̂(z̄π(K)) that correspond
to the sequence of frequencies h(π(1)), . . . , h(π(1)). Or, equivalently, j 7→ f̂j is a path of a skip-free random
walk π on the set of different reals {f̂(z̄π∗), . . . , f̂(z̄π∗)}.
The problem is that the estimates, f̂(z̄π(1)), . . . , f̂(z̄π(K)) are in the wrong order, i.e. we are not aware
of the values π(j), j = 1, . . . , K. But having some information about the values π(j) is necessary for
estimating the frequencies h(1), . . . , h(n2 + 1). So the question is: How can get from the sequence
f̂(z̄(π(1)), . . . , f̂(z̄π(K)) the elements f̂(z̄1), . . . , f̂(z̄n2+1)? Or, equivalently: after observing the path of π

on {f̂(z̄π∗), . . . , f̂(z̄π∗)}, how can we deduce f̂(z̄1), . . . , f̂(z̄n2+1)?

1.4.3 Real scenery reconstruction algorithm

We now present the so-called real scenery reconstruction algorithm - ARn. This algorithm is able to
answer to the stated questions up to the (swift by) one element.
The algorithm works due to the particular properties of π and {f̂(z̄π∗), . . . , f̂(z̄π∗)}. These properties
are:

A1) π(1) ∈ {0, 1}, i.e. the first estimated frequency of one’s, f̂1 must be either an estimate of h(1)
or of h(0). Unfortunately there is no way to find out which one of the two signal carriers z̄0 or z̄1 was
visited first. This is why our algorithm can reconstruct the real scenery up to the first or last bit, only;

A2) π(K) > n2. This is true, because we condition on S(m2) = m and we assume that there are at
least n2 + 1 2-s in [0,m] (event En

1 2);
A3) π is skip-free;
A4) f̂(z̄i) 6= f̂(z̄j) ∀j 6= i, i, j ∈ {π∗, . . . , π∗}.

Algorithm 1.2 Let κ = (κ1,κ2, . . . ,κK) be the vector of real numbers such that the number of different
reals in κ is at least n2 + 1. The vector κ constitutes the input for ARn.
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Define R1 := κ1. From here on we proceed by induction on j : once Rj is defined, we define Rj+1 : κs,
with s := 1 + max{j : κj = Rj}. Proceed until j = n2 + 1 and put

ARn(κ) :=
(R2,R3, . . . ,Rn2+1

)
.

The idea of the algorithm is very simple: take the first element κ1 of κ and consider all elements of the
input vector κ that are equal to κ1 and find the one with the biggest index (the last κ1). Let j1 be this
index. Then take κj1+1 as the first output and look for the last κj1+1. Let the corresponding index be
j2 and take κj2+1 as the second output. Proceed so n2 + 1 times.
Let us proof that the algorithm ARn works. In our case the input vector is f̂ := (f̂1, . . . , f̂K).

Proposition 1.1 Let {f̂(z̄π∗), . . . , f̂(z̄π∗)} and π satisfy A1), A2), A3), A4). Then

ARn(f̂) ∈ {(f̂(z̄1), . . . , f̂(z̄n2)), (f̂(z̄2), . . . , f̂(z̄n2+1))}, i.e. ARn(f̂) 4 (f̂(z̄1), . . . , f̂(z̄n2+1)).

Proof. By A1) we have that the first element of the input vector, f̂1, is either f̂(z̄1) or f̂(z̄0). Consider
the first case. Thus R1 = f̂(z̄1). Proceed by induction: suppose that Rj = f̂(z̄j), j < n2 + 1. Let i(j)
be the index of the last f̂(z̄j) in vector f̂ . By A2), i(j) < K. Since π is skip-free and ends to the right of
n2, we have that after the last visits of f̂(z̄j), the next observation must be f̂(z̄j+1). Hence, in this case,
(R1, . . . ,Rn2+1) = (f̂(z̄1), . . . , f̂(z̄n2+1)) and ARn(f) = (f̂(z̄2), . . . , f̂(z̄n2+1)).
Similarly, if the first element of the f̂ is f̂(z̄0), then (R1, . . . ,Rn2+1) = (f̂(z̄0), . . . , f̂(z̄n2)) and ARn(f) =
(f̂(z̄1), . . . , f̂(z̄n2)).

Phase IV) Apply ARn to f̂ . Denote the output ARn(f̂) by (f1, . . . , fn2). By Proposition1.1 we know

(f1, . . . , fn) 4 (f̂(z̄1), . . . , f̂(z̄n2+1). (1.4)

Now recall that we are interested in reconstructing the gi(ξm
0 ) := I[0,5)(h(i)) rather than ĥ(i). Thus,

having estimates for h(z̄i), namely f̂(z̄i), we use the obvious estimator for gi: I[0,0.5)(fi).

Phase V) Define the final output of ĝ

ĝ(χm2

0 ) :=
(
I[0.5,1](f1), . . . I[0.5,1](fn2)

)
.

Recall that because of En
3 2, with high probability all random variables h(1), . . . , h(n2 +1) are more than

exp(−n0.11) apart from 1
2 . Since exp(−n0.11) is much bigger than the preciseness of our estimate, with

high probability we have f̂(z̄i) < 0.5 iff h(z̄i) < 0.5. By (1.4) this means

ĝ(χm2

0 ) =
(
I[0.5,1](f1), . . . I[0.5,1](f2

n)
)

4
(
I[0.5,1](h(z̄1)), . . . I[0.5,1](h(zn2+1))

)
= g(ξm

0 ).

Hence, when EOK holds, then ĝ is properly defined and the probability (1.2) is high. Since we are not
interested in ĝ when EOK does not hold, we extend the definition of ĝ arbitrary to Ec

OK .
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2 Whole truth about signal probabilities

In the previous section we considered the case where the scenery has three colors {0, 1, 2}. The places of
the 2’s where called the signal carriers. The i-th such place was denoted by z̄i. In reality we have only
two colors 0 and 1. Thus, we need to show that with 2 colors we also manage to define signal carriers z̄i

in such a way that the following holds:

a) Whenever the random walk passes close to a signal carrier, we can recognize that the random walk is
close to a signal carrier point by looking at the observations ( with high probability).

b) The probability to think that one recognizes a signal carrier when one is actually not close to one is
so small that this type of mistake never happens up to time m2.

c) When we pass a signal carrier we are able to estimate its frequency of one’s with high enough precision
(with high probability).

In the present section we define and investigate an important concept related to the signal carriers -
Markov signal probability.

2.1 Definitions

In this subsection we will define the main notions of the section: delayed signal probability, strong
signal probability and Markov signal probability. We also give a few equivalent characterizations of these
concepts, and we try to explain their meaning. In the end of the subsection we give a formal definition
of the frequency of ones.
At first, some definitions.

* Let D ⊂ Z and let ζ : D −→ {0, 1}. For example, ζ can be the original scenery, ξ or the observations,
χ.
Let T = [t1, t2] ⊂ D be an integer interval of length at least 3. Then we say that T is a block of ζ iff we
have that

ζ (t1) = ζ (t2) 6= ζ (t) , ∀t ∈]t1, t2[

We call t2 − t1 the length of the block T . The point t1 is called the beginning of the block. For example,
T is a block of ζ with length 4, if ζ|T = 01110.

* Let T = T (χ) ⊂ N be a time interval, possible depending from observations. For example, T can be a
block of χ or T = [t, t+n2] can be a time interval of length n2+1 such that χ(t) = χ(t+1) = · · · , χ(t+n2).
Let I ⊂ Z be an integral interval (a location set). We say that T was generated (by S) on I, iff
∀t ∈ T, S(t) ∈ I.

* We now define the delayed signal probability. To simplify the notations afterwards, define

M = M(n) := n1000 − n2, M̃ := n1000 − 2n2.

Fix an z ∈ Z and let Sz denote the random walk translated by z, i.e. for all t ∈ N, Sz (t) := S (t) + z.
We define the random variable δd

z in the following way:

δd
z := P

(
ξ (Sz (M)) = · · · = ξ

(
Sz

(
n1000 − 1

))
= ξ

(
Sz

(
n1000

)) ∣∣∣ξ
)

. (2.1)

In other words, δd
z is the conditional probability (conditional on ξ) to observe only one color in time

interval [n1000 − n2, n2] if the random walk starts at z. We shall call δd
z delayed signal probability at

z.
During time n1000 the random walk can not move more than Ln1000. Thus, δd

z depends only on the
scenery ξ in the interval

[
z − Ln1000, z + Ln1000

]
. Let, for each z ∈ Z

Iz := [z − Ln1000, z + Ln1000]. (2.2)
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We have that δd
z is a random variable which is measurable with respect to σ(ξ(s)|s ∈ Iz). Since the

distribution of ξ is translation invariant, the distribution of δd
z does not depend on z.

* For some technical reason only, we need a stronger version of the delayed signal probability. Again, let
z ∈ Z. We define the strong signal probability at z, δ̃d

z , as follows

δ̃d
z := P

(
ξ(Sz(M)) = · · · = ξ(Sz(n1000)), Sz(M + 1), Sz(2), . . . , Sz(n1000) ∈ [z − LM̃, z + LM̃ ]

∣∣∣ξ
)
.

Note that δ̃d
z is measurable with respect to the sigma algebra σ(ξ(s)|s ∈ [z − LM̃, z + LM̃ ]).

Also note that, obviously, δc
z ≥ δ̃c

z. However, the difference is not too big. Indeed, by Höffding’s inequality
(see below), we have that, for some constant d > 0

δd
z − δ̃d

z = P
(
ξ(Sz(M)) = · · · = ξ(Sz(n1000)), ∃s ∈ {M, . . . , n1000} : |z − Sz(s)| > LM̃

∣∣∣ξ
)

≤ P
(
|S(M)| > L(M̃ − n2)

)
≤ exp(−dn999).

(2.3)

* We now define the Markov signal probability at z.
Let z ∈ Z. Roughly speaking, the Markov signal probability at z, denoted by δM

z , is the conditional (on
ξ) probability to have (at least) n2 + 1 times the same color generated on Iz exactly n1000 − n2 after
we observe n2 + 1 times the same color generated on Iz. In this formulation the part ”after we observe
a string of n2 + 1 times the same color generated on Iz” needs to be clarified. The explanation is the
following: every time there is in the observations n2+1 times the same color generated on Iz, we introduce
a stopping time νz(i). The position of the random walk at these stopping times defines a Markov chain
with state space Iz. As we will prove later, this Markov chain {S(νz(k))}k≥1 converges very quickly to
a stationary measure, say µz. So, by ”M after we observe n2 + 1 times the same color generated on Iz”
we actually mean: ”M after starting the random walk from an initial position distributed according to
µz”. Since the distribution of S(νz(i)) converges quickly to µz, δM

z is close to the probability of observing
n2 + 1 times the same color generated on Iz exactly M after time νz(i). In other words, δM

z is close
to the conditional (on ξ) probability of the event that we observe only one color in the time interval
[νz(i) + n1000 − n2, νz(i) + n1000] and that during that time interval the random walk S is in Iz. Thus
(for k big enough) δM

z is close to:

P
(
χ(νz(i) + M) = · · · = χ(νz(i) + n1000) and S(νz(i) + M), . . . , S(νz(i) + n1000) ∈ Iz|ξ

)
(2.4)

The ergodic theorem then implies that on the long run the proportion of stopping times νz(i) which are
followed after M by the n2 + 1 observations of the same color generated on Iz converges a.s. to δM

z .
Actually, to make some subsequent proofs easier, we do not take a stopping time νz(i) after each n2 + 1
observations of the same color generated on Iz. Rather we also ask that the stopping times be apart by
at least en0.1

.
In order to prove how quickly we converge to the stationary measure, we also view the explained notions
in terms of a regenerative process. The renewal times will be defined as the stopping times, denoted by
ϑz(k), which stop the random walk at the point z − 2Len0.1

. To simplify some proofs, we also require
that there is at least one stopping νz(i) between ϑz(k) and ϑz(k + 1). Thus ϑz(0) denotes the first visit
by the random walk S to the point z − 2Len0.1

. We define νz(1) to be the first time after ϑz(0) where
there happens to be n2 + 1 times the same color generated on Iz. Then, ϑz(1) is the first return of S to
z − 2Len0.1

after νz(1) and so on. Let us give the formal definitions of all introduced notions.

* Let ϑz(0) denote the first visit of S to the point z − 2Len0.1
. Thus

ϑz(0) = min{ t ≥ 0|S(t) = z − 2Len0.1}.

* Let νz(1) designate the first time after ϑz(0) where we observe n2 +1 zero’s or one’s in a row, generated
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on Iz. More precisely:

νz(1) := min
{

t > ϑz(0)
∣∣∣∣

χ (t) = χ (t− 1) = ... = χ
(
t− n2

)
and S(t− n2), S(t− n2 + 1), . . . , S(t) ∈ Iz

}

Once νz(i) is well defined, define νz(i + 1) in the following manner:

νz(i + 1) := min
{

t > νz(i) + en0.1
∣∣∣∣

χ (t) = χ (t− 1) = ... = χ
(
t− n2

)
and S(t− n2), S(t− n2 + 1), . . . , S(t) ∈ Iz

}

* Let ϑz(k) denote the consecutive visits of S to the point z − 2Len0.1
provided that between two visits

random walk S generates (at least once) n + 1 consequtive 0-s or 1-s on Iz. More precisely,

ϑz(k + 1) := min{t > ϑz(k)|S(t) = z − 2Len0.1
,∃j : ϑz(k) < νz(j) < t}, k = 1, 2 . . . .

Basically, the definition above says: if ϑz(k) is defined, we wait until we observe n2 + 1 same colors
generated on Iz. Since S(ϑz(k)) = z − 2Len0.1

, then the first n2 + 1 same colors generated on Iz can
not happen earlier than en0.1

times after ϑz(k). This means, the first n2 + 1 same colors generated on Iz

can not happen earlier than en0.1
times after last stopping time νz, say νz(i) (this happens before ϑz(k)).

Thus, the first n2 + 1 same colors generated on Iz is actually νz(i + 1). Observing νz(i + 1), we just wait
for the next visit of S to the z − 2Len0.1

. This defines ϑz(k + 1).

* Let Xz,i, i = 1, 2, . . . designate the Bernoulli variable which is equal to one if exactly after time M the
stopping time νz(i) is followed by a sequence of n2 + 1 one’s or zero’s generated on Iz. More precisely,
Xz,i = 1 iff

χ(νz(i) + M) = χ(νz(i) + M + 1) = · · · = χ(νz(i) + n1000)

and
S(j) ∈ Iz ∀j = νz(i) + M, . . . , νz(i) + n1000

* Define κz(0) := 0. Let κz(k) designate the number of stopping times νz(k) occurring during the time
from ϑz(0) to ϑz(k). Thus κz(k) is defined by the inequalities:

νz(κz(k)) ≤ ϑz(k) < νz(κz(k) + 1).

For all k, S(ϑz(k)) = z − 2Ln1000. Hence, for all i, ϑz(k) 6= νz(i) and the inequalities above are strict.

* Define the following variables:

Xz(k) =
κ(k)∑

i=κ(k)+1

Xz,i, Zz(k)=κ(k)− κ(k − 1), k = 1, 2, . . .

Thus, Zz(k) is the number of stopping times occurring during the time interval from time ϑz(k − 1) to
time ϑz(k). Note that Zz(k) ≥ 1, ∀k. The random variable Xz(k) designates the number of such stopping
times which, during the same time interval, have been followed exactly after time M by a sequence of
n2 + 1 0’s or 1’s generated on Iz. Note that conditional on ξ the variables Xz(1), Xz(2), . . . are i.i.d. and
the same holds for Zz(1), Zz(2), . . ..

* We define:

δM
z :=

E [Xz(1)| ξ]
E [Zz(1)| ξ] (2.5)

We call δM
z Markov signal probability at z.

In the following we give some equivalent forms of (2.5).
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Note that conditional on ξ, Xz,i is a regenerative process with respect to the renewal κz(k). Hence,
conditioning on ξ, we have

lim
r→∞

r∑

i=1

Xz,i

r
= lim

k→∞

κ(k)∑

i=1

Xz,i

κ(k)
= lim

k→∞

∑k
i=1 Xz(i)∑k
i=1 Zz(i)

=
E [Xz,1| ξ]
E [Zz,1| ξ] . a.s. (2.6)

We count (up to time r) all sequences of length n2 + 1 of one’s or zero’s, generated on the interval Iz

according to stopping times νz(i), k = 1, 2, . . .. Among such sequences, the proportion of those sequences
which are followed after exactly time M by another sequence of n2 + 1 zero’s or one’s generated on the
interval Iz converges a.s. to δM

z , as r goes to infinity.

On the other hand, the limit in (2.6 ) can be represented as follows. Fix ξ and z. Let Yi := S(νz(i)),
i = 1, 2, . . . denote the Markov chain obtained by stopping the random walk S by νz(i). The state space
of Yi is Iz. Because of the nature of S, Yi is finite, irreducible aperiodic and, therefore, ergodic Markov
chain.

Let µz denote the stationary distribution of {Yk}. In the present section the z is fixed, so we skip this from
the notations and write µ. The measure µ is an discrete probability measure on Iz, so µ = (µ(j))j∈Iz .
For each state, j ∈ Iz define the hitting times τj(l), l = 1, 2, 3, . . .. Formally,

τj(1) := min{i ≥ 1 : Yi = j}, τj(l) := min{i > τj(l − 1) : Yi = j}, l = 2, 3 . . . .

Hence,

1
r

r∑

i=1

Xz,i =
∑

j

Nj(r)
r

1
Nj(r)

Nj(r)∑

l=1

Xz,τj(l),

where Nj(r) := max{l : τj(l) ≤ r}, r = 1, 2, 3, . . .. Since τj(l), l = 1, 2, 3, . . . is a (delayed) renewal process
with the corresponding renewal numbers Nj(r) and with the expected renewal time 1

µ(j) we get

Nj(r)
r

→ µ(j) a.s..

On the other hand, Xz,i is a regenerative process with respect to each τj(l), l = 1, 2, 3, . . .. Hence

1
Nj(r)

Nj(r)∑

l=1

Xz,τj(l) → E[Xz,τj(2)], as r →∞ a.s..

Since E[Xz,τj(2)] = P (Xz,τj(2) = 1). The latter equals

P
(
Sj(M), Sj(M + 1), · · · , Sj(n1000) ∈ Iz and ξ(Sj(M)) = ξ(Sj(M + 1)) = · · · = ξ(Sj(n1000)

)
.

This can be rewritten as ∑

l∈Iz

P (j, l)δz(l),

where P (j, l) := P (S(M) = j − l) and

δz(l) := P

(
Sl(0), Sl(1), . . . , Sl(n2) ∈ Iz and ξ(Sl(0)) = ξ(Sl(1)) = . . . = ξ(Sl(n2))

)
(2.7)

Hence

δM
z =

∑

j∈Iz

µ(j)P
(
Sj(M), Sj(M + 1), · · · , Sj(n1000) ∈ Iz, ξ(Sj(M)) = · · · = ξ(Sj(n1000)

)
(2.8)
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or
δM
z =

∑

j,l∈Iz

µ(j)P (j, l)δz(l). (2.9)

Using the same notation, we have an equivalent form of delayed signal probability

δd
z =

∑

l=Iz

P (z, l)δz(l). (2.10)

The formula (2.9) can be interpreted as follows: let U be a random variable with distribution µz and
let S be a random walk, independent of U . Let SU denote the translation of S by U , i.e., for each t,
SU (t) = U + S(t). Then (2.9) states

δM
z = P

(
ξ(SU (M)) = · · · = ξ(SU (n1000)) and SU (M), · · · , SU (n1000) ∈ Iz|ξ

)
. (2.11)

Thus, δM
z is a limit-version of (2.4).

* We now define the frequency of ones. To obtain the consistency with the Markov signal probability,
we formally define the frequency of ones in terms of regenerative processes. However, we also derive the
analogue of (2.11), which explains the meaning of the notion.
Let Uz,i = ξ(S(νz(i) + en0.1

)) and define

Uz(k) =
κ(k)∑

i=κ(k)+1

Uz,i.

Now, let

h(z) :=
E(Uz(1)|ξ)
E(Zz(1)|ξ) .

The random variable h(z) is σ(ξ(i) : i ∈ [z − L(n1000 + en0.1
), z + L(n1000 + en0.1

)]- measurable; h(z) is
called as frequency of ones at z. As in (2.6), conditioning on ξ, we have

lim
r→∞

r∑

i=1

Uz,i

r
= h(z) a.s..

With the same argument as above, we get

lim
r→∞

1
r

r∑

i=1

Uz,i = lim
r→∞

∑

j

Nj(r)
r

1
Nj(r)

Nj(r)∑

l=1

Uz,τj(l) =
∑

j

µ(j)E(Uz,τj(2)).

Now,

E(Uz,τj(2)) =
i=j+Len0.1

∑

i=j−Len0.1

ξ(i)P (Sj(i))

and, therefore

h(z) =
∑

j=Iz

µ(j)
j+Len0.1

∑

i=j−Len0.1

ξ(i)P (Sj(i)) =
z+L(n1000+en0.1

)∑

i=z−L(n1000+en0.1 )

ξ(i)
∑

j=Iz

µ(j)P (Sj(en0.1
) = i). (2.12)

Now, it is easy to see that in terms of U and S as in (2.11), i.e. U and S are independent, U has law µz,
we have

h(z) = P (ξ(U + S(en0.1
)) = 1) = E[ξ(U + S(en0.1

))|ξ], (2.13)
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2.2 Auxiliary results

In the present section we investigate the relations between δM
z and δd

z . Note that they only depend on
the scenery ξ in the interval [z − Ln1000, z + Ln1000]. In other words,

δM
z , δd

z ∈ σ
(
ξ(j)|j ∈ [z − Ln1000, z + Ln1000]

)
.

The distribution of both δM
z and δd

z does not depend on particular choice of z. Hence, w.l.o.g., in the
following we consider the point z = 0, only.

Define pM := max{P (S(M) = z)|z ∈ Z}.
We call a block big, if its length is bigger than n

ln n .

Proposition 2.1 For any cδ ∈ [pM , 2pM ] we have that the following holds:

a P (δd
z ≥ cδ) ≤ exp(−αn/ ln n), where α := ln(1.5)

b P
(
δd
z ≥ cδ

) ≥ (0.5)n > exp (−n)

c If all blocks of ξ|[z − Ln1000, z + Ln1000] are shorter than n/ ln n + 1, then δd
z < cδ. Formally:

{
δd
z ≥ cδ

} ⊆ {
[z − Ln1000, z + Ln1000] contains a big block of ξ

}

d Conditional on
{
δd
z ≥ cδ

}
it is likely that [z − Ln1000, z + Ln1000] contains at most 0.5 ln n big blocks

of ξ. More precisely:
P

(
Ec

δ,z

∣∣ δd
z ≥ cδ

) ≤ (
2Ln1000

)0.5 ln n
(0.5)−0.5n

where
Eδ,z :=

{
[z − Ln1000, z + Ln1000] has less than 0.5 ln n big blocks of ξ

}

In order to prove the Proposition 2.1, we use the following lemma. The proof of it can be found in [18]

Lemma 2.1 There exists a constant a > 0 such that for each t, r ∈ N, for each subset I ⊂ Z, and for
each j ∈ I and for every mapping ζ : Z −→ {0, 1} we have the following implication:

if all blocks of ζ in I are shorter or equal to r, then

P

(
ζ (Sj (0)) = ζ (Sj (1)) = · · · = ζ (Sj (t))

and Sj (0) , Sj (1) , ..., Sj (t) ∈ I

)
≤ exp

(
−at

r2

)
.

Proof that c holds: W.l.o.g. assume z = 0. Suppose that the length of all blocks of ξ|[−Ln1000, Ln1000]
is at most n/ ln n. Let I := [−Ln1000, Ln1000]. Denote δ(l) = δ0(l), where δ0(l) is as in (2.7). If the all
the blocks in I are not longer than n/ ln n we get by Lemma2.1 that for all j ∈ I

δ(j) ≤ exp
(
− an2

(n/ ln n)2
)

= n−a ln n.

By (2.10) we get that

δd
0 =

Ln1000∑

j=−Ln1000

P (0, j)δ(j) ≤
Ln1000∑

j=−Ln1000

P (0, j)n−a ln n ≤ n−a ln n (2.14)
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The expression on the right side of the last inequality is of smaller order than any negative polynomial
order in n. By the local central limit theorem pM is of order n−

M
2 . Thus, for n big enough

δd
0 < pM ≤ cδ.

Proof that a holds: W.l.o.g. assume z = 0. Define the event

Ez := {ξ(z) = ξ(z + 1) = · · · = ξ(z +
n

ln n
)}

Part c states that
{δd

0 ≥ cδ} ⊆
⋃

z∈[−Ln1000,Ln1000]

Ez.

Thus,

P
(
δd
0 ≥ cδ

) ≤
Ln1000∑

z=−Ln1000

P (Ez).

Now, clearly

P (Ez) = exp
(
− ln(2)n

ln n

)

So,

P (δd
0 ≥ cδ) ≤ 2Ln1000 exp

(
− ln (2) n

ln n

)
. (2.15)

The dominating term in the product on the right side (2.15) is exp (− ln (2) n/ ln n). Hence, for n big
enough, the expression on the right side of (2.15) is smaller than exp(− ln(1.5)n

ln n ).

Proof that b holds: It is suffices to prove that

P (δd
z ≥ 2pM ) ≥ (0.5)n.

W.l.o.g assume z = 0. Define E := {ξ(0) = ξ(1) = · · · = ξ(n)}. We are going to show that

E ⊆ {δd
0 ≥ 2pM} and P (E) ≥ exp(−n).

Recall the definition of δ(j). If E holds, then for any j ∈ [0, n] we have

δ(j) ≥ P
(
Sj(t) ∈ [0, n], ∀t ∈ [0, n2]

)

Now, because of the central limit theorem, there is a constant b > 0 not depending on n, such that for
all j ∈ [n/3, 2n/3] we have:

P
(
Sj(t) ∈ [0, n], ∀t ∈ [0, n2]

)
> b.

By the local central limit theorem, again, for all j ∈ [n/3, 2n/3] we have, for n big enough, that

P (0, j) ≥ pM

2
. (2.16)

Using (2.10) and (2.16) we find that when E holds, then

δd
0 ≥

2n
3∑

j= n
3

bP (0, j) ≥ bnpM

6
(2.17)
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For n big enough, obviously the right side of (2.17) is bigger than 2pM . This proves E ⊆ {δd
0 ≥ 2pM}.

Furthermore, we have that P (E) = 0.5n. The inequality 0.5n > exp(−n) finishes the proof.

Proof that d holds: W.l.o.g. assume z = 0. For a block T , the point inf T is called the beginning
of the block. Let t1, t2, . . . denote the beginnings of the consecutive big blocks in [−Ln1000,∞). Define
t0 := −Ln1000 and gi := ti − ti−1, i = 1, 2, . . . . So, gi measures the distances between consecutive big
blocks. Clearly, gi-s are iid. Note,

Ec
δ,0 ⊂

{0.5 ln n∑

i=1

gi ≤ 2Ln1000
}
⊂ ∩0.5 ln n

i=1

{
gi < 2Ln1000

}
.

Note

P (g1 < 2Ln1000) ≤
Ln1000−1∑

z=t0

P (a big block begins at z) ≤ 2Ln1000(0.5)
n

ln n .

Hence,
P (Ec

δ,0) ≤ P (gi ≤ 2Ln1000)0.5 ln n =
(
2Ln1000

)0.5 ln n(0.5)0.5n.

Combining this with b, we get

P (Ec
δ,0|δd

0 > cδ) ≤
P (Ec

δ,0)

P (δd
0 > cδ)

≤ (
2Ln1000

)0.5 ln n(0.5)−0.5n → 0.

Lemma 2.2
P

(
δd
z ≥ cδ

) (
2Ln1000

)−0.5 ln n ≤ 2P
(
δd
z ∧ δM

z ≥ cδ(1−O(M− 1
2 ))

)
.

2.3 Proof of Lemma 2.2

In the present subsection we prove Lemma 2.2. During the rest of the section we assume z = 0.
At first we define fences.

Fences

* An interval [t, t + 4L− 1] ⊂ D is called a fence of ζ, if

0 = ζ(t) = ζ(t + 1) · · · = ζ(t + L− 1) 6= ζ(t + L) = · · · = ζ(t + 2L− 1) 6=
ζ(t + 2L) = · · · = ζ(t + 3L− 1) 6= ζ(t + 3L) = · · · = ζ(t + 4L− 1)

The point t + 2L is the breakpoint of the fence. So, T is a fence of ζ corresponding to the L = 3, iff
ζ|T = 000111000111.

Let z0 := −Ln1000 and let zk, k = 1, 2, . . . be defined inductively: zk denotes the breakpoint of the first
fence of scenery ξ in [zk +4L,∞). We call the points zk the breakpoints of consecutive fences (of scenery
ξ). Define li := zi− zi−1, i = 1, 2, . . . and N := max{k : zk−1 ≤ Ln1000} < Ln1000. The random variables
li measure the distances between the breakpoints of consecutive fences, they are iid. Let l := Ln1000−zN ,
l ≤ lN+1. The moment generating function of l1, say M(λ), does not depend on n and it is finite, if λ > 0
is small enough. Let M := exp(λl1) < ∞ and choose C > 1 such that λC > 1. Now define the event

Eb := {l, li ≤ Cn, i = 1, 2, . . . , N}

and apply the large deviation inequality to see P (l1 > Cn) = P (λl1 > λCn) < Me−λCn. Now,

P (Ec
b) ≤

Ln1000∑

i=1

P (li > Cn) = Ln1000P (l1 > Cn) < Ln1000Me−λCn.
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Applying b, we get

P (Ec
b |δd

0 ≥ cδ) ≤ P (Ec
b)

P (δd
0 ≥ cδ)

≤ Ln1000Me(1−λC)n → 0. (2.18)

Mapping

Let O denote the all possible pieces of sceneries in I := [−Ln1000, Ln1000], i.e. O := {0, 1}I . The random
variables δd

0 , δM
0 as well as the events {δd

0 > cδ}, Eδ,0, Eb depend on the restriction of the scenery in I,
only. Hence they can be defined on the probability space (O, 2O, P ), where P stands for the normalized
counting measure.
Define

C := {δd
0 > cδ} ∩ Eδ,0 ∩ Eb ⊂ O.

Hence C consists of all pieces of sceneries, η, with the following properties: δd
0(η) is bigger than cδ, number

or big blocks is less than 0.5 ln n and the gaps between the breakpoints of the consecutive fences in I is
at most Cn.

Let η ∈ C and let z0, z1, . . . , zN be the breakpoints of consecutive fences (restricted to I) of η. Since
η ⊂ Eb, we have N ≥ 2Ln999. Now partition the interval I as follows:

I = I1 ∪ I2 ∪ · · · ∪ IN ∪ IN+1, (2.19)

where Ik := [zk−1, zk − 1], k = 1, . . . , N, IN+1 := [IN , Ln1000]. Let l(Ik) := zk − kk−1 denote the length of
Ik. We shall call the partition (2.19) the fence-partition corresponding to η. The fences guarantee that
any block of η, that is longer than L is a proper subset of one interval Ik. Since η ∈ {δd

0 > cδ} ∩ Eδ,0,
there is at least one and at most 0.5 ln n big blocks. Let I∗k , k = 1, . . . N∗, N∗ ≤ 0.5 lnn denote the
k − th interval containing at least one big block. Similarly, let Io

k , k = 1, . . . , N + 1 − N∗ denote the
k − th interval with no big blocks. Clearly, most of the intervals Ik are without big blocks, in particular∑

k l(Io
k) > Ln1000. Define

jo := min{j :
j∑

k=1

l(Io
k) > Ln1000}.

To summarize - to each η ∈ C corresponds an unique fence-partition, an unique labelling of the interval
according to the blocks, and, therefore, unique jo. We now define a mapping B : C → O as follows:

B(η) := (η|Io
1 , η|Io

2 , . . . , η|Io
jo , η|I∗1 , . . . , η|I∗N∗ , η|Io

jo+1, . . . , η|Io
N+1−N∗).

We also define the corresponding permutation

Πη : I → I, Πη(I) = (Io
1 , Io

2 , . . . , Io
jo , I∗1 , . . . , I∗N∗ , Io

jo+1, . . . , I
o
N+1−N∗).

Thus, B(η) = η ◦Πη.
Since all big blocks of η are contained in the intervals, Ik, the mapping B keeps all big blocks unchanged,
it just removes them closer to the origin.
The mapping B is clearly not injective. However, B(η1) = B(η2) implies that the fence-partitions
corresponding to η1 and η2 consists of the same intervals, with possibly different order. Also the intervals
with big blocks (marked with star) are the same, but possibly differently located. Moreover, the ordering
of the similarly marked blocks corresponding to η1 and η2 are the same (i.e. if the 8-th interval, I8, of
the partition corresponding to η1 is the 20-th interval, I20, of the partition corresponding to η2, then
their marks are the same. If I8 in its partition is the seventh interval with o (I8 = Io

7 in the partition
corresponding to the η1), then the same block in the second partition must be also the seventh interval
with o (I20 = Io

7 in the partition corresponding to η2). Therefore, the partition corresponding to η1 and
η2 differ on the location of the star-intervals, only. Since the number of intervals is smaller than 2Ln1000
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and the number of star-intervals is at most 0.5 ln n, the number of different partitions with the properties
described above, is less than (2Ln1000)0.5 ln n. This means

|B(C)|(2Ln1000)0.5 ln n > |C|. (2.20)

Proof of Lemma 2.2: Because of the counting measure and (2.20) we get

P (B(C))
P (C) =

|B(C)|
|C| > (2Ln1000)−0.5 ln n.

By Propositions 2.2 and 2.3,

P (B(C)) ≤ P
(
δd
0 ∧ δM

0 ≥ cδ(1−O(M− 1
2 ))

)
.

By (2.18) and d, of Proposition 2.1, we get

P (C)
P (δd

0 > cδ)
= P (Eδ,0 ∩ Eb|δd

0 ≥ cδ) > 0.5,

provided n is big enough. These relations yield

P
(
δd
0 ∧ δM

0 ≥ cδ(1−O(M− 1
2 ))

)
≥ (2Ln1000)−0.5 ln n · 0.5 · P (δd

0 > cδ).

The lemma is proved.

Proposition 2.2 For any ς ∈ B(C) we have

δd
0(ς) ≥ cδ[1−O(M− 1

2 )].

Proof. Let ς ∈ B(C). Choose η ∈ B−1(ς). Let {Ik} be the fence-partition corresponding to η. Let
δη
z (l), δς

z(l) denote the probabilities defined in (2.7), with ξ replaced by η and ς, respectively. As already
noted, because of the fencing-structure, any sequence of consecutive one’s or zero’s can be generated on
the one interval Ik, only. More precisely, if l ∈ Ik, then

δη
0 (l) = P

(
Sl(0), . . . , Sl(n2) ∈ Ik , η(Sl(0)) = . . . = η(Sl(n2))

)
. (2.21)

By the argument of the proof of c of Proposition 2.1, we get that each interval without big blocks, Io
k ,

has the property: the probability of generating n2 + 1 consecutive zeros or ones is smaller than n−a ln n.
In other words δη

0 (l) ≤ n−a ln n, ∀l ∈ Io, where Io := ∪kIo
k . Denote I∗ := ∪kI∗k . Now, by (2.10) and

(2.21) we have
δd
0(η) =

∑

l∈I

P (0, l)δη
0 (l) =

(∑

l∈Io

+
∑

l∈I∗

)
P (0, l)δη

0 (l)

≤
∑

l∈Io

P (0, l)n−a ln n +
∑

l∈I∗
P (0, l)δη

0 (l)

≤ n−a ln n +
∑

l∈I∗
P (0, l)δη

0 (l) ≤ n−a ln n + pM

∑

l∈I∗
δη
0 (l).

Since η ∈ C, δd
0(η) ≥ cδ ≥ pM , we have

∑

l∈I∗
δη
0 (l) ≥ cδ − n−a ln n

pM
≥ 1− n−a ln n

pM
= 1−O

( √
M

na ln n

)
, (2.22)

Clearly O(
√

M
na ln n ) = o(n−α), for all α ≥ 0.
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Now consider ς = M(η). Let J1, J2, . . . JN+1 denote the new location of intervals Ii after applying
mapping Πη to I. Fix an j ∈ I and let j ∈ Jk. The equation ς|Jk = η|Ik and (2.21) imply

δς
0(j) = P

(
Sj(0), . . . , Sj(n2) ∈ I, ς(Sj(0)) = · · · = ς(Sj(n2))

)

≥ P
(
Sj(0), . . . , Sj(n2) ∈ Jk, ς(Sj(0)) = · · · ς(Sj(n2))

)

= P
(
Sl(0), . . . , Sl(n2) ∈ Ik, η(Sl(0)) = · · · = η(Sl(n2))

)
= δη

0 (l),

where l = Π(j) ∈ Ik. This means δς
0(j) ≥ δη

0 (Πη(j)), ∀j ∈ I. In particular,
∑

j∈Jk

δς
0(j) ≥

∑

l∈Ik

δη
0 (j) (2.23)

If I1 = J1 and IN+1 = JN+1, i.e. the first and last intervals do not contain big blocks, then, obviously,
(2.23) is an equation.
Let J∗ = Πη(I∗), i.e. J∗ is the union of all intervals with big blocks in the new location. The length
of I∗ (and, therefore, that of J∗) is at most 0.5Cn ln n. Thus, J∗ is at most Cn + 0.5Cn ln n from the
origin. Let n be so big, that Cn + 0.5Cn ln n ≤ n2. Then, j ≤ n2 for each for each j ∈ J∗. Denote

po = min{P (S(M) = i) : |i| ≤ n2}.
Now from (2.22) and (2.23) we get

δd
0(ς) =

∑

j

P (0, j)δς
0(l) ≥

∑

j∈J∗
P (0, j)δς

0(j) ≥
∑

l∈I∗
P (0, j)δη

0 (l)

≥ po

∑

l∈I∗
δη
0 (l) ≥ (cδ − n−a ln n)

po

pM
= cδ(1− pM − po

pM
− n−a ln npo

cδpM
)

= cδ[1−O(M− 1
2 )]−O(

√
M

na ln n
) = cδ[1−O(M− 1

2 )].

Proposition 2.3 For any ς ∈ B(C) we have

δM
0 (ς) ≥ cδ[1−O(M− 1

2 )].

Proof. We use the notation and the results of the previous proof. By the representation (2.8) we have

δM
0 (ς) =

∑

i,j∈I

µ(i)P (i, j)δς
0(j) ≥

∑

i,j∈J∗
µ(i)P (i, j)δς

0(j) (2.24)

where µ = {µ(i)}i∈I is the stationary measure of Yk = S(ν0(k)), k = 1, 2, . . ..

Use LCLT to estimate

min
i,j∈J∗

P (j, i) ≥ min{P (i, j) : |i− j| ≤ n2} ≥ c√
M

exp
(−dn2

M

)−O(M−1)

=
c√
M

(
1−O

(n2

M

))−O(M−1) = pM

(
1−O(

1√
M

)
)
.

(2.25)

with d, c being constants not depending on n.
Hence, because of (2.24), (2.22) and (2.25)

δM
0 (ς) ≥µ(J∗)[pM

(
1−O(

1√
M

)
)
]
cδ − n−a ln n

pM

=µ(J∗)
(
1−O(

1√
M

)
)
(cδ − n−a ln n) = µ(J∗)

(
1−O(

1√
M

)
)
cδ.

(2.26)
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We now estimate µ(J∗). We shall show that

P (Yk+1 ∈ J∗|Yk = j) ≥ 1− o(M−1) ∀j ∈ I.

Then µ(J∗) =
∑

j P (Yk+1 ∈ J∗|Yk = j)µ(j) ≥ 1− o(M−1) and, by (2.26)

δM
0 (ς) ≥ µ(J∗) ≥ (1− o(M−1))cδ[1−O(M− 1

2 )] = cδ[1−O(M− 1
2 )].

Estimation of µ(J∗)

Fix an j ∈ I and define ν as the first time after en0.1
when n2 + 1 consecutive 0-s or 1-s are generated on

I. Formally,

ν := min
{

t ≥ en0.1
∣∣∣ χ (t) = χ (t− 1) = ... = χ

(
t− n2

)
and Sj(i) ∈ I,∀i = t− n2, . . . , t

}

where χ = ς ◦ Sj . Clearly
P (Sj(ν) ∈ J∗) = P (Yk+1 ∈ J∗|Yk = j).

Thus, it suffices to estimate P (Sj(ν) ∈ J∗).

At first note, by (2.22) and (2.23) we get
∑

j∈J∗ δη
0 (j) → 1. Since |J∗| ≤ n2 (and n is big enough), we

deduce the existence of j∗ ∈ J∗ such that

δη
0 (j∗) >

1
n3

. (2.27)

Then, note that because of the fences we have

{Sj(ν) 6∈ J∗} = {Sj(ν − n2), . . . , Sj(ν) ∈ I\J∗, χ(ν − n2) = · · · = χ(ν)}.

Now, let τk be the k-th visit after time en0.1 − n2 to the interval I. Let τ∗k be the k-th visit after time
en0.1 − n2 to the point j∗. Define the events

Fk := {Sj(τk − n2), . . . , Sj(τk) ∈ I\J∗, χ(τk − n2) = · · · = χ(τk)}, k = 1, 2 . . .

F ′k = ∪n2000−1
i=0 {Sj(τk + i) = j∗}, k = 1, 2, . . .

F ∗k = {χ(τ∗k ) = · · · = χ(τ∗k + n2)}, k = 1, 2, . . .

We consider the events

E1 := {ν > τn2020} ∪ {Sj(ν) ∈ J∗}, E2 := {τ∗n10 ≤ τn2020 − n2}, E3 := ∪n10

k=1F
∗
k

The event E1 ensures that within first n2020 visits of Sj to I no consecutive 0’s or 1’s were generating
on I\J∗. The event E2 ensures that before time τn2020 − n2 the random walk visits at least n10 times
the point j∗. Finally, the event E3 ensures that during these n10 visits of j∗, at least one of them is a
beginning of n2 consecutive 0’s or 1’s. If these events hold, then ν ≤ τn2020 and Sj(ν) ∈ J∗. Thus

E1 ∩ E2 ∩ E3 ⊂ {Sj(ν) ∈ J∗}.
We now give the upper bounds to the probabilities P (E1), P (E2), P (E3).

1) Note, Ec
1 ⊂ ∪n2020

k=1 Fk, implying that P (Ec
1) ≤

∑n2020

k=1 P (Fk). For each k,

P (Fk) =
∑

l∈I\J∗
P [Sl(0), . . . , Sl(n2) ∈ I\J∗, ς(Sl(0)) = · · · = ς(Sl(n2))]×

× P (Sj(τk − n2) = l).
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There is no big blocks in I\J∗, hence by the argument of c

P [Sl(0), . . . , Sl(n2) ∈ I\J∗, ς(Sl(0)) = · · · = ς(Sl(n2))] ≤ n−a ln n,

implying that
P (Ec

1) ≤ n2020−a ln n.

2) To estimate P (E2) we use Höffding’s inequality. Let By CLT there exists a constant p > 0 not
depending on n such that P (F ′k) ≥ p. Also note that F ′k and F ′l are independent if |k− l| ≥ n2000. Hence,
the set {F ′k}, k = 1, . . . , n2020 contains a subset {F ′ki

} i = 1, . . . n20 consisting of independent events. Let
Xi := IF ′ki

. Now, τn2018 + n2000 ≤ τn2019 ≤ τn2020 − n2, if n is big enough. This means

{n18∑

i=1

Xi ≥ n10
}
⊂ E2.

Now, when n is big enough, we have

P (Ec
2) ≤ P

(n18∑

i=1

Xi < n10
)

= P
(n18∑

i=1

(Xi − EXi) < n10 −
n18∑

i=1

EXi

)

≤ P
(n18∑

i=1

(Xi − EXi) < −(n18p− n10)
)
≤ P

(n18∑

i=1

(Xi − EXi) < −n17
)
≤

≤ exp(−2n34

n18
) = exp(−2n16).

3) Note F ∗l , F ∗k are independent, if |k − l| > n2 Let {F ∗ki
}, i = 1, 2, . . . , n7 be a subset of {F ∗k } consisting

on independent events, only. By (2.27), P (F ∗k ) > 1
n3 , ∀k. Now

P (Ec
3) ≤ P (∩n7

i=1F
∗
ki

) =
n7∏

i=1

(1− P (F ∗ki
)) ≤

(
1− 1

n3

)n7

. (2.28)

The right side of (2.28) is smaller than (0.5)n4
if n is big enough.

Thus,
P (Sj(ν) ∈ J∗) ≥ 1− [n2020−a ln n + exp(−2n16) + (0.5)n4

]

= 1−O(n−2020+a ln n) = 1− o(M−1).

2.4 Corollaries

We now determine an important figure - the critical value cr. Since we choose it within the interval
[pM , 2pM ], it has all properties stated in Proposition 2.1 and Lemma 2.2. However, we also have to
ensure that with high probability the signal probabilities δd

z and δM
z are significantly away from cr. By

”significantly” we mean that the difference between these probabilities and cr is bigger a polynomially
small quantity in n. This polynomially small quantity will be denoted by ∆. Thus, cr must be properly
chosen and that will be done with the help of Corollary 2.2.
At first, some preliminary observations.

Proposition 2.4 For any j > 2, there exists an interval [a, b] ⊂ [pM , 2pM ] of length pM/
(
nj+2

)
such

that
P (δd

0 < b|δd
0 ≥ a) ≤ 1

nj
(2.29)
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Proof. We do the proof by contradiction. Assume on the contrary that that there exists no interval
[a, b] ⊂ [pM , 2pM ] of length l := pM/nj+2 such that (2.29) is satisfied. Let ai := pM + il, i = 0, . . . , nj+2.
Since [ai, ai+1] ⊂ [pM , 2pM ] is an interval of length l, by assumption

P (δd
0 ≥ ai+1|δd

0 ≥ pM + ai) ≤
(
1− 1

nj

)
, i = 1, . . . , nj − 1.

Now, by b) of Proposition 2.1

e−n < P (δd ≥ 2pM ) =
nj+2−1∏

i=0

P (δd
0 ≥ ai+1|δd

0 ≥ ai) ≤
(
1− 1

nj

)nj+2

. (2.30)

Since (1− 1
nj )nj

< e−1, we have (1− 1
nj )nj+2

< e−n2
. Thus, (2.30) implies e−n < e−n2

- a contradiction.

Corollary 2.1 Let [x, y] ⊂ [pM , 2PM ] be an interval of length l. Then there exists an subinterval [u, v] ⊂
[x, y] of length l

e2n such that

P (δd
0 < v|δd

0 > u) ≤ 1
en

. (2.31)

Proof. The proof of the corollary follows the same argument that the proof of Proposition 2.4: (2.31)
together with the statement b) of Proposition 2.1 yield the contradiction: exp(−n) < P (δd

0 ≥ 2pM ) ≤
P (δd

0 ≥ v) ≤
[(

1− 1
en

)en]en

< exp(−en).

The next proposition proves the similar result for δM
0 ∧ δd

0 . Since we do not have the analogue of b) of
Proposition 2.1, we use Lemma 2.2, instead.

Proposition 2.5 Let [a, b] ⊂ [pM , 2pM ] be such that 2pM − b > pMO(M− 1
2 ). For any i > 2 there exists

an interval [x, y] ⊂ [a, b] with length (b− a) /ni+2 such that, for n big enough

P (δM
0 < y|δM

0 ∧ δd
0 > x) ≤ P (δM

0 ∧ δd
0 < y|δM

0 ∧ δd
0 > x) ≤ 1

ni
. (2.32)

Proof. Suppose that such a (sub)interval does not exists. Then follow the argument of the previous
proof to get

P
(
δM
0 ∧ δd

0 ≥ 2pM (1−O(M− 1
2 ))

)
≤ P

(
δM
0 ∧ δd

0 ≥ b
) ≤

(
1− 1

ni

)ni+2

< exp(−n2). (2.33)

By Lemma 2.2 and b) of Proposition 2.1

P
(
δM
0 ∧ δd

0 ≥ 2pM (1−O(M− 1
2 ))

)
≥ 0.5(2Ln1000)−0.5 ln n exp(−n). (2.34)

For n big enough, the right side of (2.34) is bigger than e−2n. This contradicts (2.33).

The following corollary specifies cr and ∆.

Corollary 2.2 Let ∆ :=
(
pM/8

)
n−10054, ∆̃ = ∆e−2n. Then there exists cr ∈ [pM + ∆, 2pM −∆] such

that, for n big enough, simultaneously,

P
(
δd
0 ≥ cr −∆

) ≤ exp((lnn)3)P
(
δd
0 ∧ δM

0 ≥ cr −∆
)
; (2.35)

P (δM
0 < cr + ∆|δM

0 ∧ δd
0 ≥ cr −∆) ≤ n−10000 (2.36)

and
P (δd

0 < cr −∆ + ∆̃|δd
0 ≥ cr −∆) ≤ exp(−n). (2.37)
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Proof. By Proposition 2.4 there exists an interval [a, b] ⊂ [pM , 2pM ] of length pM/n52 such that

P (δd
0 ≥ b)

P (δd
0 ≥ a)

= P (δd
0 ≥ b|δd

0 ≥ a) > 1− 1
n50

> 0.5. (2.38)

We now consider the interval [a, a+b
2 ]. Note that

2pM − a + b

2
≥ b− b + a

2
=

b− a

2
=

pM

2n52
> pMO(M− 1

2 ).

Now use Proposition 2.5 with i = 10000 to find a subset [x, y] ∈ [a, a+b
2 ] with length l := b−a

2 n−10002 =
pM

2 n−10054 such that (2.32) holds.
Let us now take z = x + l

4 . By Corollary 2.1, there exists an subinterval [u, u + ∆̃] ∈ [x, z] with length
l

4e2n such that
P (δd

0 < u + ∆̃|δd > u) ≤ exp(−n). (2.39)

Now take ∆ := l
4 =

(
pM/8

)
n−10054, cr := u + ∆. Since [cr −∆, cr + ∆] ⊂ [x, y], we have that

P (δM
0 < cr + ∆|δM

0 ∧ δd
0 > cr −∆) ≤ P (δM

0 ∧ δd
0 < cr + ∆|δM

0 ∧ δd
0 > cr −∆) ≤

P (δM
0 ∧ δd

0 < y|δM
0 ∧ δd

0 > cr −∆) =
P (∆− cr < δM

0 ∧ δd
0 < y)

P (δM
0 ∧ δd

0 > ∆− cr)
≤

P (y > δM
0 ∧ δd

0 > x)− P (x ≤ δM
0 ∧ δd

0 ≤ cr −∆)
P (δM

0 ∧ δd
0 > x)− P (x < δM

0 ∧ δd
0 ≤ cr −∆)

≤ P (y > δM
0 ∧ δd

0 > x)
P (δM

0 ∧ δd
0 > x)

=

P (δM
0 ∧ δd

0 < y|δM
0 ∧ δd

0 > x) ≤ 1
n10000

.

Hence, (2.36) holds.
Since u = cr −∆, we also have that (2.37) holds.
It only remains to show that the chosen cr also satisfies (2.35).
Clearly ∆ > 2pMO(M− 1

2 ) > crO(M− 1
2 ). That implies

P
(
δd
0 ∧ δM

0 ≥ cr(1−O(M− 1
2 )

)
≤ P (δd

0 ∧ δM
0 ≥ cr −∆).

Combine this with Lemma 2.2to get

P (δd
0 ≥ cr)0.5(2Ln1000)−0.5 ln n ≤ P (δd

0 ∧ δM
0 ≥ cr −∆) (2.40)

Since [cr −∆, cr + ∆] ⊂ [a, b] we have

P (δd
0 ≥ a) ≥ P (δd

0 ≥ cr −∆) ≥ P (δd
0 ≥ cr) ≥ P (δd

0 ≥ b).

Now, by (2.38)
P (δd

0 ≥ cr)
P (δd

0 ≥ cr −∆)
≥ P (δd

0 ≥ b)
P (δd

0 ≥ a)
> 0.5.

The latter together with (2.40) implies

P (δd
0 ≥ cr −∆) ≤ 0.25(2Ln1000)0.5 ln nP (δd

0 ∧ δM
0 ≥ cr −∆) (2.41)

Now, the relation
0.25(2Ln1000)0.5 ln n ≤ exp((lnn)3)

together with (2.41) establishes (2.35).
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3 Scenery-dependent events

In the present section we define and investigate the signal points and Markov signal points. We show that
with big probability the location of the signal points follows certain clustering structure. This structure
gives us the desired signal carriers in 2 colors case.

3.1 Signal points

We are now going to define the Markov signal points, strong signal points and signal points - these are the
location points, where the corresponding signal probabilities are above the critical value cr. The Markov
signal points form the core of the signal carriers, the (strong) signal points will be used in our proofs. In
an oversimplified way, we could say that the Markov signal points are places in the scenery ξ where the
conditional probability to see in the observations some rare unusual pattern is above cr. The unusual
pattern is basically a string of n2 same colors.
In the present subsection, with the help of the signal points, we define many other important notions,
and we also investigate their properties.

In the following, ∆ and cr are as in Corollary 2.2. In particular, ∆ = pM

8 n−10054.

* A (location) point z ∈ Z is called signal point, if δd
z > cr −∆.

* A (location) point z ∈ Z is called strong signal point, if δ̃d
z > cr −∆.

* A (location) point z ∈ Z is called Markov signal point, if

δd
z > cr −∆ and δM

z > cr −∆.

* We call a Markov signal point z regular, if δM
z > cr + ∆.

* Let z̄1 be the first Markov signal point in [0,∞). Let z̄k be defined inductively: z̄k is the first Markov
signal point in [z̄k−1 + 2Ln1000,∞). Let z̄0 be the first (smallest) Markov signal point in (−∞, 0]. And
let z̄−k be defined inductively: z̄−k is the first Markov signal point in (−∞, z̄−(k−1) − 2Ln1000]. Thus
. . . , z̄−2, z̄−1, z̄0, z̄1, z̄2, . . . is a sequence of ordered random variables which we shall call as signal carriers
points.

* For given z, the set

Nz := [z − L(n1000 + en0.3
), z − L(n1000) ∪ (z + Ln1000, z + L(n1000 + en0.3

)]

is called the neighborhood of z.

* We say that the neighborhood of z is empty, if Nz does not contain any block of ξ longer than n0.35 .
Thus, {Nz is empty } ⊂ σ(ξi, i ∈ Nz).

* We say that z has empty border, if the set Iz− [z− M̃, z + M̃ ] does not contain any block of ξ longer
than n0.35. Thus, {Nz is empty } ⊂ σ(ξi, i ∈ Iz − [z − M̃, z + M̃ ]).

* Let p, p̃ and pd be the probability, that a fixed point is Markov signal point, strong signal point or
signal point, respectively.
From (2.3), part a) of Proposition 2.1 and by (2.35) of Corollary 2.2 we know

pd − exp(−dn999) < p̃ ≤ pd; (3.1)

p ≤ pd ≤ exp(− αn

ln n
); (3.2)

pd

p
≤ exp((lnn)3). (3.3)
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* We now define a construction, which we are going to use later.
For each j = 0, 1, 2, . . . , 2Ln1000 partition the set Z ∩ [−Ln1000 + j,∞) into adjacent integer intervals of
length 2Ln1000. Let Ik,j denote the k-th interval of the partition who’s first interval starts at −Ln1000+j.
Thus,

I1,j = [j − Ln1000, j + Ln1000], I2,j = [j + Ln1000 + 1, j + 3Ln1000 + 1],

I3,j = [j + 3Ln1000 + 2, j + 5Ln1000 + 2],

. . .

Ik,j = [j + kLn1000 + k − 1, j + (k + 2)Ln1000 + k − 1].

Let zj,k denote the midpoints of Ik,j . Hence

zj,1 = j, zj,2 = j + 2Ln1000 + 1, . . . , zj,k = j + 2kLn1000 + (k − 1).

For, each j, the intervals Ik,j , k = 1, 2, . . . are disjoint. Thus, the events

{zk,j is a Markov signal point}, k = 1, 2, . . .

are independent with the same probability p.

Let k′ denote the integer valued random variable that shows the index of the first interval Ik,0 which
has its midpoint being a Markov signal point. By such a counting we disregard the first interval. Thus,
k′ > 1 and, formally, k′ is defined by the relations

δz2,0 ∧ δM
z2,0

≤ cr −∆, . . . δM
zk′−1,0

∧ δd
zk′−1,0

≤ cr −∆, δM
zk′,0

∧ δd
zk′,0

> cr −∆

Clearly, k′ − 1 is a geometrical random variable with parameter p and, hence, Ek′ = 1
p + 1.

* Let Z be the location of the first Markov signal point after 2Ln1000. Recall z̄1 is the location of the
first Markov signal point after 0 Note, that for each i ≥ 0, we have

P (z̄1 ≤ i) < P (∪i
j=0{i is a Markov signal point}) ≤ pi (3.4)

and
P (Z ≤ i) ≤ p(i− 2Ln1000), i ≥ 2Ln1000. (3.5)

From (3.4) and (3.2) we get

P (z̄1 ≤ 2Ln1000) ≤ p2Ln1000 ≤ 2Ln1000 exp(− αn

ln n
) → 0. (3.6)

* We now estimate EZ. For this note: Z ≤ zk′,0 = 2k′Ln1000 + k′ − 1 and

EZ ≤ (
1
p

+ 1)2Ln1000 +
1
p
≤ 3

p
Ln1000. (3.7)

From (3.3) we get

EZpd ≤ 3
pd

p
Ln1000 ≤ 3Ln1000 exp((lnn)3).. (3.8)

On the other hand by (3.5) we have, for each x, EZ ≥ xP (Z ≥ x) ≥ x(1 − px). Now, take x = (2p)−1

and use (3.2) to get

EZ ≥ 1
4p
≥ 1

4
exp(

αn

ln n
). (3.9)

* Take m(n) = pn2.5EZq.
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By (3.3) and b) of Proposition 2.1 we get

n2.5EZ ≤ 3Ln1002.5

pd
exp((lnn)3) ≤ 3Ln1002.5 exp((ln n)3 + n) < exp(2n),

implying
1
4

exp(
αn

ln n
) ≤ m < exp(2n), (3.10)

provided n is big enough.

* We now define the random variables we are going to use later

Xz := I{δd
z >cr−∆, δM

i >cr−∆}, z = 0, 1, 2, . . . .

Thus, Xz indicates, whether z is a Markov signal point or not. The random variables Xz are identically
distributed with mean p.
We now estimate the number of Markov signal points in [0, cm], where c > 1 is a fixed integer, not
depending on n . For this define

E0 :=
{ cm∑

z=0

Xz ≤ n10000
}

.

Thus, when E0 holds, then the interval [0, cm] contains at most n10000 Markov signal points.
To estimate P (E0) we use Markov inequality and (3.7)

P (Ec
0) = P

( cm∑

i=0

Xi > n10000
)

<
(cm + 1)p

n10000
≤ c(n2.5EZ + 1)p + 1

n10000

< c3Ln1002.5−10000 + (c + 1)n−10000 = o(1).

* Finally, define Z0 < Z1 < · · · < Zk < · · · as follows:

Z0 := 0, Z1 := Z, and, then, let Zk+1 be the first Markov signal point that is greater than 2Ln1000 + Zk.

Note: the differences: Z, Z2 − Z1, Z3 − Z2, . . ., Zk+1 − Zk, . . . are iid. Also note:

{No Markov signal points in [0, 2Ln1000]} = {Zi = z̄i for all i} := En
s . (3.11)

From (3.6) we know that
P (En

s ) → 1. (3.12)

3.2 Scenery-dependent events

We are now going describe the typical behavior of the signal points in the interval [0, cm]. Here c > 1
is a fixed integer, not depending on n. Among others we show that, with high probability, for all signal
carrier points z̄i in [0, cm] the corresponding frequencies of ones, h(z̄i), vary more than e−n0.11

(events
Ēn

3 and Ēn
4 below). We also show that, with high probability, all signal points in [0, cm] have empty

neighborhood.
All the properties listed below depend on the scenery, ξ, only. Therefore we refer to them as the scenery
dependent events.
We now define all scenery dependent events, Ēn

1 , . . . , Ēn
9 and prove the convergence of their probabilities.

All the events will be defined on interval [0, cm] where c > 1 is a fixed integer. Thus, if a point z is such that
Nz 6∈ [0, cm], then by the neighborhood of z we mean Nz ∩ [0, cm]. This means Ēn

i ∈ σ(ξz : z ∈ [0, cm]).
The exact value of c will be defined in the next chapter (in connection with the event En

2,S). During this
chapter, c is assumed to be any fixed integer bigger than 1.
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At first, we list the events of interest:

Ēn
1 := {z̄n2+1 ≤ m};

Ēn
2 := {every signal point in [0, cm] has an empty neighborhood};

Ēn
3 := {every pair z̄1, z̄′ of signal carrier points in [0, cm] satisfies : |h(z̄)− h(z̄′)| ≥ e−n0.11

if z̄ 6= z̄′};

Ēn
4 := {every signal carrier point z̄, in [0, cm] satisfies : |h(z̄)− 1

2 | ≥ e−n0.11};

Ēn
5 := {every signal point z ∈ [0, cm] satisfies δM

z 6∈ [cr −∆, cr + ∆]};

Ēn
6 := { for all signal carrier points z̄i in [0, cm] we have EZn11001 ≥ |z̄i − z̄i+1| ≥ EZn−11001};

Ēn
7 := {no signal carrier points in [m− EZn−11001,m + EZn−11001 ∧ cm] ∪ [0, EZn−11001]};

Ēn
8 := {every strong signal point in [0, cm] has empty border};

Ēn
9 := {every signal point in [0, cm] is a strong signal point}.

Proof that P (Ēn
1 ) → 1

If Ēn
1 holds, then in [0,m] we have more than n2 signal carrier points .

Define random variables Z0 < Z1 < · · · < Zk < · · · as in (3.11). Let En
1a := {Zn2+1 ≤ m}. Since

Es ∩ En
1a ⊂ Ēn

1 , it suffices to show that P (En
1a) → 1. To see this, we use Markov inequality:

P (Enc
1a ) = P (Zn2+1 > m) ≤ EZn2+1

m
≤ (n2 + 1)

n2.5
→ 0.

Proof that P (Ēn
2 ) → 1

Ēnc
2 = { there exists a signal point in [0, cm] with non− empty neighborhood}.

Clearly,

Ēnc
2 = ∪cm

z=0E2(z), where E2(z) := {z is a signal point and Nz is not empty}.
For each z, the events {Nz is empty} and {δz > cr −∆} are independent. Thus, for each z,

P (E2(z)) = P (δz > cr −∆)P (Nz is empty) = pdP (Nz is not empty).

We obviously have P (Nz is empty) = P (No is empty) and

P (No is not empty) =

P (No contains at least one block longer than n0.3) < 2L exp(n0.3)2−n0.35
.

Hence, from (3.8)

P (Ēnc
2 ) ≤ cmpd2L exp(n0.3)(

1
2
)n0.35 ≤ 6cn2.5L2n1000 exp((lnn)3 + n0.3)2−n0.35

= 6cL2n1002.5 exp(n0.3 + (lnn)3)2−n0.35 → 0,
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if n →∞.

Proof that P (Ēn
8 ) → 1

For each z, the events {δd
z > cr − ∆} and {z has empty border } are independent. Now use the same

argument as in the previous proof.

Proof that P (Ēn
5 ) → 1

Note
Ēnc

5 = {there exists a non− regular Markov signal point z ∈ [0, cm]}.
As in the previous proof, write

Ēn
5 = ∪cm

z=0E5(z), where E5(z) := {z is a non− regular Markov signal point}.

For each z,

P (Ec
5(z)) = P (δM

z ∧ δd
z > cr −∆)P (δM

z ≤ cr + ∆|δM
z ∧ δd

z > cr −∆)

= pP (δM
z ≤ cr + ∆|δM

z ∧ δd
z > cr −∆).

From (2.36) of Corollary 2.2 we have:

P (δM
z ≤ cr + ∆|δM

z ∧ δd
z > cr −∆) ≤ n−105

.

Thus, from (3.7) P (Ēnc
5 ) ≤ cmpn−105 ≤ c(n2.5EZ + 1)pn−105

= c3Ln1002.5−100000 + cpn−105 → 0, as
n →∞.

Proof that P (Ēn
9 ) → 1

We use the same argument as in the previous proof. Note

Ēnc
9 = {there exists a signal point z ∈ [0, cm] that is not strong signal point}.

As in the previous proof, write

Ēnc
9 = ∪cm

z=0E9(z), where E9(z) := {z is a non− strong signal point}.

Recall (2.3): δ̃d
z > δd

z − exp(−dn999). Since, for n big enough, exp(−dn999) < ∆̃ = ∆exp(−2n), we get

δ̃d
z > δd

z − ∆̃.

Now, for each z,

P (E9(z)) = P (δd
z > cr −∆)P (δ̃d

z ≤ cr −∆|δd
z > cr −∆)

= pdP (δ̃d
z ≤ cr −∆|δd

z > cr −∆) ≤ pdP (δd
z − ∆̃ ≤ cr −∆|δd

z > cr −∆)

≤ pdP (δd
z ≤ cr −∆ + ∆̃|δd

z > cr −∆).

By (2.37) of Corollary 2.2 we now have

P (E9(z)) ≤ pd exp(−n).

Hence, by (3.8)

P (Ēnc
9 ) ≤ cmpd exp(−n) ≤ pdc(EZn2.5 + 1) exp(−n) ≤ c3Ln1000 exp (ln n)3 exp(−n) + o(1) = o(1).
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Proof that P (Ēn
6 ) → 1

Consider random variables Z0 < Z1 < · · · < Zk < · · · as in (3.11). Let N = max{i : Zi ≤ cm}. Define

En
6b := {Zi − Zi−1 ≤ EZn10001, i = 1, 2, . . . , n1000} (3.13)

Ēn
6c := {Zi − Zi−1 ≥ EZn−11001, i = 1, 2, . . . , n1000} (3.14)

and note
Es ∩ En

6b ∩ En
6a ∩ {N ≤ n10000} ⊂ Ēn

6 .

Since E ⊂ {N ≤ n10000}, we get P (N ≤ n10000) → 1. We also know that P (Es) → 1. Thus, it suffices to
show that P (Enc

6b ), P (Enc
6c ) → 0 as n →∞. Now, by Markov inequality and (3.5) and (3.7):

P (Enc
6b ) = P (∃1 ≤ i ≤ n10000 such that : Zi − Zi−1 > EZn10001)

≤ ∑n10000

i=1 P (Zi − Zi−1 > EZn10001) = n10000P (Z > EZn10001) ≤

n10000 EZ
EZn10001 = 1

n ;

P (Enc
6c ) = P (∃ 1 ≤ i ≤ n10000 such that : Zi − Zi−1 < EZn−11001)

≤ ∑n10000

i=1 P (Zi − Zi−1 < EZn−11001) ≤ n10000P (Z < EZn−11001) <

pEZn−1001 ≤ 3Ln1000−1001 = 3L
n .

Proof that P (Ēn
7 ) → 1

Consider the event
{no signal carrier points in [0, EZn11001]}.

Every signal carrier point is a Markov signal point. Hence, for the proof suffices to show, that with high
probability there is no Markov signal points in the interval [0, EZn11001].
Now, by (3.4) and (3.7)

P (No Markov signal points in [0, EZn11001]) =

P (Zo > EZn−11001) ≤ pEZn−11001 ≤ 3Ln−11001+1000 = o(1).

Thus P (No Markov signal points in [0, EZn−11001] → 1..
Now repeat the same argument for intervals [m,m− EZn−11001] and [m,m + EZn−11001].

3.3 Proof of P (Ēn
3 ) → 1 and P (Ēn

4 ) → 1

The proof relies on the rate of convergence in local central limit theorem (LCLT). In the next subsection
we present some technical preliminaries related to the proof.

3.3.1 Some preliminaries

Let S be symmetric random walk with span 1. Denote pN (k) = P (S(N) = k). The random walk S has
lattice +\ − z,z ∈ Z; its variance is σ2.
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Local CLT (Petrov, 75, Thm 6 p.197):

sup
k

∣∣∣σ
√

NpN (k)− 1√
2π

exp{− k2

2σ2N
}
∣∣∣ = O(

1√
N

)

or

sup
k

∣∣∣pN (k)− 1
σ
√

N
√

2π
exp{− k2

2σ2N
}
∣∣∣ = O(

1
N

).

Denote

qN (k) :=
1

σ
√

N
√

2π
exp{− k2

2σ2N
} |k| ≤ LN.

Let tN := (ln N)b, b > 1.
We estimate

|p2
N (k)− q2

N (k)| ≤ (pN (k) + qN (k)) sup
k
|pN (k)− qN (k)|

≤ [2qN (k) + O(
1√
N

)]O(
1
N

) = O(
1√
NN

)

and
L
√

N∑

k>tN+j

[p2
N (k)− q2

N (k)] ≤ (L
√

N)O(
1√
NN

) = O(
1
N

), j = −tN , · · · , tN .

Estimate

p2
N (k)∑

k>tN+j p2
N (k)

≤ p2
N (k)

∑L
√

N
k>tN+j p2

N (k)
≤ q2

N (k) + O( 1
N )

∑L
√

N
k>tN+j [p

2
N (k)− q2

N (k)] +
∑L

√
N

k>tN+j q2
N (k)

≤ O( 1
N )

∑L
√

N
k>tN+j q2

N (k)−O( 1
N )

,

for all k and j = −tN . . . , tN .
Now,

L
√

N∑

k>tN+j

q2
N (k) =

1
2σ2πN

L
√

N∑

k>tN+j

exp(− k2

σ2N
)

and
L
√

N∑

k>tN+j

exp(− k2

σ2N
) ≥

L
√

N∑

k>2tN

exp(− k2

σ2N
) >

L
√

N∑

k>2tN

exp(−L2

σ2
) = M(L

√
N − 2tN ).

Thus, for each j = −tN . . . , tN ,

sup
k

p2
N (k)∑

k>tN+j p2
N (k)

≤ O( 1
N )

K
N (L

√
N − 2tN )−O( 1

N )
=

K4

K1

√
N −K2tN −K3

= O(
1√
N

) (3.15)

where K,K1,K2,K3,K4 are constants.

Let µ be a probability distribution on {−tN ,−tN + 1, . . . , 0, . . . , tN − 1, tN}. Consider the convolutions

uN (k) =
tN∑

j=−tN

pN (k − j)µj , k = −(LN − tN ), . . . , LN + tN . (3.16)
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If pN (k) ≥ pN (k + 1) for all k ≥ 0, then for each k > tN , we have bounds

pN (k + tN ) ≤ uN (k) ≤ pN (k − tN ). (3.17)

In this case,
tN+LN∑

k>tN

uN (k) ≥
N∑

l>2tN

pN (l).

And from (3.15), taking j = tN we may deduce that

sup
tN <k

u2
N (k)∑

k>tN
u2

N (k)
≤ sup

0<k

p2
N (k)∑

k>2tN
p2

N (k)
≤ O(

1√
N

). (3.18)

Generally, choose an atom λ := µj > 0. Then

uN (k) ≥ λpN (k + j), u2
N (k) ≥ λ2p2

N (k + j)

and
tN+LN∑

k>tN

u2
N (k) ≥ λ2

N∑

k>tN+j

p2
N (k). (3.19)

Since supk>tN
u2

N (k) ≤ supk>0 p2
N (k), we get from (3.15)

sup
tN≤k

u2
N (k)∑

k>tN
u2

N (k)
≤ sup

k

p2
N (k)

λ2
∑

k>tN+j p2
N (k)

= O(
1

N
1
4
). (3.20)

In particular, from (3.20) follows
∑

u3
N (k)∑

u2
N (k)

√∑
u2

N (k)
≤ max

k
uN (k)

∑
u2

N (k)∑
u2

N (k)
√∑

u2
N (k)

≤ max
k

uN (k)√∑
u2

N (k)
≤ O

( 1
N

1
4

)
. (3.21)

Suppose that arrays uk := uN (k) and vk := vN (k), tN < k ≤ LN + tN both satisfy (3.21). Then
∑

(u3
k + v3

k)∑
(u2

k + v2
k)

√∑
(u2

k + v2
k)
≤ max{uk, vk}

∑
(u2

k + v2
k)∑

(u2
k + v2

k)
√∑

(u2
k + v2

k)
(3.22)

≤ max{max
k

uk√∑
u2

k

, max
k

vk√∑
v2

k

} = O(N− 1
4 ) (3.23)

Let us make one more observation. Since exp(−9t2N
2σ2N ) → 1, there exists a c′ > 0 such that

exp(
−9t2N
2σ2N

) > c′

for each N big enough. Thus, there exists a constant c > 0 such that

pN (k) >
c√
N

, ∀|k| ≤ 3tN

Take λ as previously. Then

uN (k) ≥ p(k + j)λ ≥ cλ√
N

.

Hence there exists C > 0: u(l) ≥ C√
N
∀l such that |l + j| ≤ 3tN .

In particular

uN (k) ≥ C√
N

, −2tN ≥ k ≤ 2tN . (3.24)
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3.3.2 Proof that P (Ēn
3 ) → 1

Define the random variables z1, z2, . . . as follows: z1 is the first Markov signal point in [0,∞), zk is the
first Markov signal point in [zk−1 + en0.3

,∞). Note that a.s. there are infinitely many such points.
From the signal carrier part we know that, if each Markov signal point in [0, cm] has empty neighbor-
hood,i.e. Ēn

2 holds, then they form clusters which have the radius at most 2Ln1000 and lie at least en0.3

apart from each other. In this case all signal carrier points in [0, cm] coincide with zi-s defined above.
We define the event

En
3a :=

{
for each i, j ≤ n10000, i 6= j we have |h(zi)− h(zj)| ≥ exp(−n0.11)

}

and note
En

3a ∩ Ēn
2 ∩ E ⊂ Ēn

3 .

Since P (Ēn
2 ∩ E) → 1, it suffices to show that P (En

3a) → 1 as n →∞.

Consider zi, zj , i 6= j. For simplicity denote them as z and z′ Let

εn := exp(−n0.11).

Consider the event
En(i, j) := {|h(z)− h(z′)| ≥ εn}.

For each y ∈ Z, define the random vector:

ξn(y) :=
(
ξ(y − Ln1000 − en0.1

), ξ(y − Ln1000 − en0.1
+ 1) . . . ξ(y + Ln1000)

)
.

Now, let ξn := ξn(z) and ξ′n := ξn(z′). They are independent.

fn :=
z+L(n1000+en0.1

)∑

k=z+Ln1000+1

un(k)ξ(k), f ′n :=
z′+L(n1000+en0.1

)∑

k=z′+Ln1000+1

u′n(k)ξ(k),

where

un(k) :=
z+Ln1000∑

i=z−Ln1000

P (Si(en0.1
) = k)µi, u′n(k) :=

z′+Ln1000∑

i=z′−Ln1000

P (Si(en0.1
) = k)µ′i

and µi, i = z − Ln1000, · · · , z + Ln1000 and µ′i, i = z′ − Ln1000, · · · , z′ + Ln1000 denote the atoms of the
stationary measure corresponding to z and z′, respectively.
Recall that by (2.13)

h(z) :=
z+L(n1000+en0.1

)∑

k=z−L(n1000+en0.1 )

un(k)ξ(k), f ′n :=
z′+L(n1000+en0.1

)∑

k=z′−L(n1000+en0.1 )

u′n(k)ξ(k).

Note that conditioning on ξn, the coefficients un(k) become constants.
[More precisely, fn has the same distribution as

f̃n :=
L(n1000+en0.1

)∑

k>Ln1000

ũn(k)ξ(k),

with

ũn(k) :=
Ln1000∑

j=−Ln1000

P (Sj(en0.1
) = k)µ̃j =

Ln1000∑

j=−Ln1000

P (S(en0.1
) = k − j)µ̃j ,
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with µ̃ := {µ̃j} := {µz+j}, −Ln1000 ≤ j ≤ Ln1000 being random probability measure independent of
ξLn1000+1, . . . ξen0.1 . In this setup the conditioning on ξn means the conditioning on µ̃.]
Hence

P
(fn − Efn√

Dfn

≤ x|ξn

)
= P

(∑L(en0.1
+N1000)

k>Ln1000 un(k)(ξ(k)− 1
2 )

1
2

√∑L(en0.1+N1000)
k>Ln1000 u2

n(k)
≤ x|ξn

)
,

where (un(k)) are the fixed coefficients of type (3.16) (with N = en0.1
, b = 10000). Now Berry-Esseen

inequality for independent random variables (see, e.g., Petrov, Thm 3, p.111) states

sup
x

∣∣∣P
(∑

un(k)(ξ(k)− 1
2 )

1
2

√∑
u2

n(k)
≤ x|ξn

)
− Φ(x)

∣∣∣ ≤ A

∑
u3

n(k)∑
u2

n(k)
√∑

u2
n(k)

, (3.25)

with some constant A not depending on n and un(k)-s. By (3.21) (with N = en0.1
, b = 10000), the right

side of (3.25) is bounded by O(e
−n0.1

4 ). Here Φ stands for the standard normal distribution function.

By similar argument, conditioning on (ξn, ξ′n) and using (3.22) instead of (3.21) we have

sup
x

∣∣∣P
(fn − f ′n − µn

σn
≤ x|ξn, ξ′n

)− Φ(x)
∣∣∣ = O(e

−n0.1
4 ), (3.26)

with µn := E(fn − f ′n), σn :=
√

Dfn + Df ′n (fn and f ′n are independent.)
Denote now gn := hn − fn, g′n := h′n − f ′n. The event En(i, j) can now be rewritten

Ec
n(i, j) := {fn − f ′n ∈ gn − g′n + [−εn, εn]}.

Given ξn and ξ′n, the random variable gn − g′n is a constant. By (3.26) we have

P (Ec
n(i, j)|ξn, ξ′b) = P

(
f ′n−fn−µn

σn
∈ gn−g′n+[−εn,εn]−µn

σn
|ξn, ξ′n

)
≤

2 supx

∣∣∣P
( f ′n−fn−µn

σn
≤ x|ξn, ξ′n

)− Φ(x)
∣∣∣ + sup

{
Φ(a)− Φ(b)

∣∣a− b = 2εn√
2πσn

}
≤

O(e
−n0.1

4 ) +
√

2
π

εn

σn
.

Next, we estimate the standard deviation σn. For that note: because of (3.24) u2
n(z + Ln1000 + 1) ≥

C2e−n0.1
, u′2n (z′ + Ln1000 + 1) ≥ C2e−n0.1

if n is big enough. Thus,

σn =
√

Dfn + Df ′n =
1
2

√∑
u2

N (k) +
∑

u′2N (k) >
1
2

√
2C2en0.1 =

√
2Ce

−n0.1
2 .

Hence, for n big enough there exists a constant C2 < ∞ such that
√

2
π

εn

σn
≤ 1√

π
exp(−n0.11 +

n0.1

2
) ≤ C2 exp(−n0.05). (3.27)

Thus, (3.27), (3.26) give

P (En(i, j)) ≤ O(e
−n0.11

4 ) + O(e−n0.05
) = O(e−n0.05

).

Now, by definition
En

3a = ∩n10000

i,j,i 6=jE
n(i, j)

and

P (Enc
3a ) ≤

n10000∑

i,j,i6=j

P (Enc(i, j)) < n20000O(e−n0.05
) = o(1).
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Outline of the proof that P (Ēn
4 ) is close to one

Denote the Use (3.25) to get

P (Ēnc
4 |ξn) = P (|fn + gn − 0.5| ≤ εn|ξn) = P (fn + gn ∈ [0.5− εn, 0.5 + εn]|ξn)

= P (fn ∈ [(0.5− gn)− εn, 0.5− gn + εn]|ξn)

= P
(fn − Efn√

Dfn

∈
[0.5− Efn − gn − εn√

Dfn

,
0.5− Efn − gn + εn√

Dfn

]
|ξn

)

≤ 2 sup
x

P
(fn − Efn√

Dfn

≤ x|ξn

)
+ sup

{
Φ(a)− Φ(b)

∣∣∣a− b =

√
2
π

εn√
Dfn

}

≤ O(e
−n0.1

4 ) +

√
2
π

εn√
Dfn

= O(e−n0.05
),

because
√

Dfn > C exp(−n0.1

2 ). The rest of the proof goes as previously.

* In the following we consider the scenery dependent events defined on [−cm, cm]. Do do that, we define
the events Ẽn

i , i = 1, . . . , 9, where Ẽn
i is defined exactly as Ēn

i , with [−cm, 0] instead of [0, cm].
Finally, we define the events

En
i := Ẽn

i ∩ Ēn
i .

The results of the present section show that ∀ i = 1, . . . , 9,

P (En
i ) → 0, n →∞.

3.4 What is the signal carrier?

Let us briefly summarize the main ideas of the previous sections.
Basically, a signal carrier is the place in the scenery, where the probability of generating at n2 + 1 same
colors is high. However, it is clear that such a place can not be too small. In the 3-color example the
signal carrier depends on the one bit of the scenery, only. Now, in 2-color case it takes many more bits
to make the scenery (locally) atypical. We saw in Proposition 2.1 that for z to be a signal point, it is
necessary that the interval Iz has at least one big (longer than n/ ln n) block of ξ. Thus, a point z being
a (Markov, strong) signal point, is actually the property of ξ|Iz and it depends on at least n/ ln n bits.
If z is a signal point, then the scenery ξ is atypical in the interval Iz: δd

z is high. Thus, signal points would
be the candidates for the signal carriers, if, for each z, we could estimate δd

z . The latter would be easy,
if we knew when the random walk visits z. Then just take all such visits and consider the proportion of
those visits that were followed by n2 +1 same colors after M steps. Unfortunately, we do not know when
the random walk S visits z. But we do know (we observe) when S generates blocks with length at least
n2. Thus we can take these observations (times) as the visits of (the neighborhood of) z and estimate
the probability of generating n2 + 1 same colors M step after previous n2 + 1 same colors. This idea
yields the Markov signal probability. The problem now is to localize the area where the random walk
(during a given time period) can generate n2 + 1 same colors in observations. If this area were too big,
we could neither estimate the Markov signal probability nor to understand where we are. To localize the
described area, we showed (event En

2 ) that signal points have empty neighborhood. In the next section
we shall see that the probability to generate n2 + 1 same colors on empty neighborhood is very small.
This means, if S is close to a signal point z, then, with high probability, (and during a certain time
period) all n2 + 1 same colors in observations will be generated on Iz. The fact that all signal points
have also empty borders (events En

8 and En
9 ) makes the latter statement precise. Thus, a Markov signal

point seems to be a reasonable signal carrier. But which one? Note, if z is a Markov signal point, i.e.
Iz contains at least one big block, then, very likely the point z + 1 is a Markov signal point, too. In
other words, Markov signal points come in clusters. However, when En

2 holds, then each point in such a
cluster has empty neighborhood. On the other hand, for z to be a Markov signal point, it is necessary
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to have at least one big block of ξ in Iz. This means that the diameter of every cluster of Markov signal
points is at most 2Ln1000. And the distances between the clusters are at least L(en0.3 −n1000). Hence, in
2-color case one we should think of signal carriers as the clusters of Markov signal points (provided En

2

holds, but this holds with high probability). However, to make some statements more formal, for each
cluster we have one representant, namely the signal carrier point. Since the diameters of clusters is at
most 2Ln1000, our definition of signal carrier points ensures that different signal carrier points belong to
different cluster. If the cluster is located in [0,∞), then the signal carrier point is the most left (smallest)
Markov signal point in the cluster; if the cluster is located in (−∞, 0), then signal carrier point is the
right most (biggest) Markov signal point in the cluster. The event En

7 ensures that there are no Markov
signal points in the 2Ln1000-neighborhood of 0, so z̄1 and z̄0 belong to the different clusters, too. The
exact choice of a signal carrier point is irrelevant. However, it is important to note that given a cluster,
everything that makes this cluster a signal carrier cluster (namely, the big blocks of scenery) are inside
the interval Iz̄, where z̄ is the signal carrier point corresponding to the cluster. In particular, all blocks
in observations that are longer than n2 will be generated on Iz̄. This means that signal carrier points, z̄i

(or the corresponding intervals, Iz̄i
serve as the signal carriers as well. At least, if we are able to estimate

δM
z̄i

with great precision. This is the subject of the next section.
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4 Events depending on random walk

In the previous section we saw: if all scenery dependent events hold, then the signal carrier points are
good candidates for the signal carriers. In this case the signal is an untypically higher Markov signal
probability. Hence, to observe this signal, we must be able to estimate the Markov signal probability. In
the present section we define these estimators and in the next section we will see that they perform well,
if the random walk, S, behaves typically. We describe the typical behavior of S in terms of several events
depending on S. The main objective of the present section is to show that the (conditional) probability
of such events tends to 1.

4.1 Some preliminaries

As argued in subsection 3.4, the main idea of the estimation of Markov signal probability is very simple -
given a time interval T , consider all blocks in the observations χ|T that are bigger than n2. Among these
observations calculate the proportions of such blocks that after exactly M step were followed by another
such block. The time interval used by such estimation must be big enough to get precise estimate but,
on the other hand, it must be in the correspondence with the size of (empty) neighborhood. Recall that
the neighborhood Nz consisted of two intervals of length Len0.3

. Hence, the optimal size of the interval
T is en0.3

.
We now define the necessary concepts related to the described estimate - stopping times (that stop when
at least n2 +1 same colors were observed) and the Bernoulli variables that show the whether the stopping
times were followed (after M step) by another n2 + 1 same colors or not. For technical reasons after
stopping the process, we wait at least en0.1

steps until we look for the next block.

* Let t > 0 and let ν̂t(1) be the smallest s ≥ t such that

χ(t) = χ(t− 1) = · · · = χ(t− n2). (4.1)

We define the stopping times ν̂t(i), i = 2, 3, . . . inductively: ν̂t(i) is the smallest t ≥ ν̂t(i− 1) + en0.1
such

that (4.1) holds.

* Let Xt,i be the Bernoulli random variable that is one iff

χ(ν̂t(i) + M) = χ(ν̂t(i) + M + 1) = ... = χ(ν̂t(i) + M + n2).

Let T = T (t) := [t, t + en0.3
]. Define

δ̂M
T =

{
1

en0.2

∑en0.2

i=1 Xt,i if ν̂t(en0.2
) < t + en0.3 − en0.1

0 otherwise.
(4.2)

* We now define some analogues of ν̂t and Xt.
Let z ∈ Z and t ∈ N.

Let νz,t(1) designate the first time after t where we observe n2 zero’s or one’s in a row, generated on the
interval Iz. More precisely:

νz,t(1) := min
{

s > 0
∣∣∣∣

χ (s) = χ (s− 1) = · · · = χ
(
s− n2

)
S(j) ∈ Iz, ∀j = s− n2, . . . , s

}
.

Once νz,t(i) is well defined, define νz,t(i + 1) in the following manner:

νz,t(i + 1) := min
{

t ≥ νz,t(i) + en0.1
∣∣∣∣

χ (s) = χ (s− 1) = ... = χ
(
s− n2

)
S(j) ∈ Iz, ∀j = s− n2, . . . , s

}
.
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* Let Xz,t,i, i = 1, 2, . . . designate the Bernoulli variable which is equal to one if exactly after time M the
stopping time νz,t(i) is followed by a sequence of n2 + 1 one’s or zero’s generated on Iz. More precisely,
Xz,t,i = 1 iff

χ(νz,t(i) + M) = χ(νz,t(i) + M + 1) = · · · = χ(νz,t(i) + n2) and

S(νz,t(i) + M), . . . , S(νz,t(i) + n1000) ∈ Iz.

Define

δ̂M
z,t :=

1
en0.2

en0.2∑

i=1

Xz,t,i.

As argued in subsection 2.1, {S(νz,t,i)} is an ergodic Markov process with state space Iz and with the
stationary measure Iz. Hence,

1
j

j∑

i=1

Xz,t,i → δM
z , a.s.

Now we can apply some large deviation inequality to see that if j ≥ exp(n0.2), then δ̂M
z,t gives a very

precise estimate of δM
z .

The problem is that the random variables Xz,t,i and, hence, the estimate δ̂M
z,t is a priori not observable.

This is because we cannot observe whether n2 + 1 same colors in observations were generated on Iz or
not. Thus, we can not observe neither νt,z(i) nor Xt,z,i. However, the event En

3,S , stated below, ensures
that with high probability δ̂M

z,t is the same as δ̂M
T , provided that during the time interval T , the random

walk S is close to z (the sense of closeness will specified later).

* We now define the estimates for the frequency of ones. Again, we define a general, observable, estimate:
ĥt and its theoretical, a priori not-observable counterpart: ĥz,t.

Define

ĥt :=

{
1

en0.2

∑en0.2

i=1 χ(νt(i) + en0.1
) if, ν̂t(en0.2

) < t + en0.3 − en0.1

0 otherwise.
,

ĥz,t :=
1

en0.2

en0.2∑

i=1

χ(νz,t(i) + en0.1
).

* Finally, we define the stopping time that stop the walk, when a new signal carrier is visited.

Let . . . , z̄−1, z̄0, z̄1, . . . denote the signal carrier-points in R. Denote Ii := Izi and let ρ(k) denote the k-th
visit of S to the one of the intervals Ii in the following manner: when an interval Ii is visited, then the
next stop is on the different interval.
More precisely, let ρ(0) be the first time t ≥ 0 such that S(t) ∈ ∪iIi. Denote I(ρ(k)) the interval Ii

visited by ρ(k). Then define ρ(k) inductively:

ρ(k + 1) = min{t > ρ(k)|S(t) ∈ ∪iIi, S(t) /∈ I(ρ(k))}.

4.2 Random walk-dependent events

In this section we define the events that characterize the typical behavior of the random walk S on the
typical scenery on interval [−cm, cm]. The (piece of) scenery ξ|[−cm, cm] is typical if it belongs to the
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all scenery-dependent events En
i , i = 1, . . . , 9. Recall, that the events En

i are the same as Ēn
i defined in

Section 4.2 with [0, cm] replaced by [−cm, cm]. Also recall that c > 1 is an arbitrary fixed constant not
dependent on n, and m = pn2.5EZq.
Hence, throughout the section we consider the sceneries belonging to the set

Ecell OK := ∩9
i=1E

n
i . (4.3)

Clearly, Ecell OK depends on n. We know that P (Ecell OK) → 1 if n →∞.

Let ψ : Z→ {0, 1} be a (non random) scenery. Let Pψ(·) designate the measure obtained by conditioning
on {ξ = ψ} and as well as on

{
S(m2) = m

}
. Thus,

Pψ(·) := P (·|ξ = ψ, S(m2) = m). (4.4)

Let P (·|ψ) denote P (·|ξ = ψ).
We now list the events that describe the typical behavior of S. The objective of the section is to show:
if n is big and ψn :=: ψ ∈ Ecell OK then all listed events have big conditional probabilities Pψ.
The events depending on random walk are:

En
1,S :=

{
S(m2) = m

}
;

En
2,S :=

{∀t ∈ [0,m2] we have that S(t) ∈ [−cm, cm]
}

;

E3,S := {∀t ∈ [0,m2], it holds : δ̂M
T ≤ cr, if δd

S(s) ≤ cr −∆ ∀s ∈ T (t)};

E4,S := {ρ(n25000) ≥ m2};

En
5,S := {∀k ≤ n25000 we have: if ρ(k) ≤ m2 then ν̂ρ(k)(en0.2

) ≤ ρ(k) + en0.3 − en0.1};

En
6,S :=





for any t ∈ [0, m2] satisfying χ(t) = · · · = χ(t + n2)
there exists s ∈ [t, t + n2] such that S(s)

is contained in a block of ξ bigger than n0.35



 ;

En
7,S(z, t) =

{∣∣∣δ̂M
z,t − δM

z

∣∣∣ < e−n0.12
}

, z ∈ Z, t > 0;

En
7,S := ∩cm

z=−cm ∩m2

t=0 En
13,S(z, t);

En
8,S(z, t) =

{∣∣∣ĥz,t − h(z)
∣∣∣ < e−n0.12

}
, z ∈ Z, t > 0;

En
8,S := ∩cm

z=−cm ∩m2

t=0 En
8,S(z, t);

We now estimate the conditional probabilities of all listed events. In most cases prove statements like
Pψ(En

j,S) → 1. This means: for arbitrary sequence ψn ∈ En
cell OK we have

lim
n

P (En
j,S |S(m2) = m, ξ = ψn) = 1.

4.3 Proofs

At first note that by LCLT, we have

P (E1,S) =
1
m

+ O(
1

m2
).
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Clearly, E1,S does not depend on ξ, i.e. P (E1,S |ψ) = P (E1,S). Using (3.10) we get

P (E1,S |ψ) ≥ exp(−2n)−O(exp(−4n)) ≥ exp(−3n). (4.5)

From (4.5) follows that for any event E,

Pψ(E) =
P (E, S(m2) = m|ψ)
P (S(m2) = m|ψ)

≤ P (E|ψ)
exp(−3n)

. (4.6)

Proposition 4.1 For each ε > 0 there exists c(ε), independent of n, such that for each ψ, Pψ(En
2,S) ≥

1− ε, provided n is big enough.

Proof. At first note, that, for each n, the event En
2,S is independent of the scenery ψ. Thus,

Pψ(En
2,S) = P (En

2,S |S(m2) = m).

Define
En

a (c) = {∀t ∈ [0, m2] we have that S(t) ≤ cm}

En
b (c) =

{∀t ∈ [0, m2] we have that S(t) ≥ −cm}
Clearly,

En
2,S = En

a (c) ∩ En
b (c).

We now find c, not depending on n such that Pψ(Enc
a (c)), Pψ(Enc

b (c)) ≤ ε
2 .

Let us define the stopping time ϑ
ϑ := min{t|S(t) > cm}.

Let for all j ∈ 1, . . . , L

pj := P
(
S(m2) = m, ϑ ≤ m2 and S(ϑ) = cm + j

)

We have that

P
(
Enc

a (c) ∩ En
1,S

)
=

L∑

j=1

pj

Our random walk, S, is symmetric. By the reflection principle, for all j ∈ 1, . . . , L we have

pj = P (S(m2) = cm + j + (cm + j −m) = 2cm + 2j −m, ϑ ≤ m2 and S(ϑ) = cm + j).

Thus pj ≤ P
(
S

(
m2

)
= 2cm−m + 2j

)
and

P
(
Enc

a (c) ∩ En
1,S

) ≤
L∑

j=1

P
(
S(m2) = m(2c− 1) + 2j

)
. (4.7)

By LCLT, for big m, the right side of (4.7) can be made arbitrary small in comparison to P
(
S

(
m2

)
= m

)
by taking c big enough. In other words, there exists c , not depending on n such that

∑L
j=1 P

(
S

(
m2

)
= 2cm + m + 2j

)

P (S (m2) = m)
≤ ε

2
.

This means
P

(
Enc

a (c) ∩ En
1,S

)

P
(
En

1,S

) = Pψ (Enc
a (c)) ≤ ε

2
.
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The similar argument gives Pψ (Enc
b (c)) ≤ ε

2 .

* Note, that the choice of c does not depend on n. From now on, we fix c such that Proposition 4.1 holds
with ε > 1

8 . This particular c is used in the definition of all scenery-dependent events and, therefore, in
the definition of Ecell OK as well as in the definitions En

4,S , En
5,S .

* In the following we use often the following versions of Höffding’s inequality:
Let X1, . . . , XN be independent random variables with range in [a, b]. Denote their sum by SN . Then

P (|SN − ESN | ≥ ε) ≤ 2 exp(−2
ε2

N(b− a)2
) ≤ exp(−d′ε2

N
);

P (
1
N
|SN − ESN | ≥ ε) ≤ 2 exp(−2

ε2N

(b− a)2
) ≤ exp(−d′ε2N).

(4.8)

For our random walk, this is

P (|S(N)| ≥ ε) ≤ 2 exp(− ε2

4L2N
) ≤ exp(−dε2

N
)

P (|S(N)
N

| ≥ ε) ≤ 2 exp(−ε2N

4L2
) ≤ exp(−dε2N),

(4.9)

for some d′, d > 0.

We also use the following results: let X1, . . . , XN be iid random variables with mean 0 and finite variance
σ2. Let M+

n = maxi=1,...,N Si, Mn = maxi=1,...,N |Si|. Then

M+
N

σ
√

N
⇒ sup

0≤t≤1
Wt, and

( MN

σ
√

N
,
S(N)
σ
√

N

)
⇒ ( sup

0≤t≤1
|Wt|, W (1)), (4.10)

where Wt is standard Brownian motion. It is well-known that ∀x > 0, P (sup0≤t≤1 Wt ≤ x) = 2Φ(x)− 1.

Proof that lim infn Pψ(En
4,S) ≥ 1− 1

8

For each n, fix an arbitrary ψn ∈ En
cell OK. Since ψn ∈ En

cell OK ⊂ En
6 , we have that every pair z̄i 6= z̄j of

signal carrier points in [−cm, cm] satisfies

|z̄j − z̄i| ≥ EZn−11001.

During this proof, let µ := EZ.

Let
Ea,4(k) := {|ρ(k + 1)− ρ(k)| ≥ (µ)2n−25000}

Ea,4 := ∩n25006

k=0 Ea,4(k).

Since m ≤ n2.5µ + 1, we have n25006 × µ2n−25000 = µ2n6 > m2 and, therefore,

Ea,4 ∩ En
2,S ⊂ En

4,S . (4.11)

By Proposition 4.1, for n big enough, Pψ(En
2,S) ≤ 1

8 . Thus,

Pψ(Enc
4,S) ≤ Pψ(Enc

4,a) + Pψ(Enc
2,S) ≤ 1

8
+

n22506∑

k=0

Pψ(Enc
a,4(k)). (4.12)
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We now bound Pψ(En
a,4(k)).

Note that for each Ti, Tj , i 6= j, we have

inf{|t− s| : t ∈ Ti, j ∈ Tj} ≥ µn−11001 − 2Ln1000. (4.13)

By (3.9), µ2 > n25000. This means, µ > n12500 ≥ 2Ln12002. The latter implies, that

µn−11001 − 2Ln11001 ≥ µn−11002. (4.14)

Denote N(n) := µ2n−25000. From (4.13) and (4.14):

{|ρ(k + 1)− ρ(k)| < N} ⊂ {sup
l≤N

|S(l)| > µn−11001 − 2Ln11001}

⊂ {sup
l≤N

|S(l)| > µn−11002}.

Now use the following maximal inequality to estimate

P (max
l≤N

|S(l)| > µn−11002) ≤ 3max
l≤N

P
(
|S(l)| > µ

3
n−11002

)
. (4.15)

By Höffding’s inequality, for each l ≤ N

P
(
|S(l)| ≤ µ

3
n−11002

)
≤ exp(−dµ2n−22004

9l
) ≤ exp

(−dµ2n−22004

9N

)

≤ exp
(−dn2500−22004

9
)

= exp
(−dn2996

9
)
.

Hence,

P (Ea,4(k)) ≤ exp
(−dn2996

9
)
, P (Ea,4) ≤ n22506 exp

(−dn2996

9
)
.

By (4.6), we get

Pψ(Enc
a,4) ≤ n22506 exp

(
3n− dn2996

9
)
.

The right side of the last inequality tends to 0 if n →∞. Relation (4.11) now finish the proof.

Proof that Pψ(En
3,S) → 1

Let t ≥ 0 be an integer and define the stopping times ν̂o
t (1), ν̂o

t (2), . . . as follows:
ν̂o

t (1) is the smallest time s ≥ t + en0.1
and

χ(s− n2) = χ(s− n2 + 1) = · · · = χ(s) and δd
S(s) ≤ cr −∆. (4.16)

Once ν̂o
t (k) is well defined, define ν̂o

t (k + 1) to be the smallest time s ≥ ν̂o
t (k) + en0.1

such that (4.16)
holds.

Let Xo
t,k be the Bernoulli variable which is equal to one iff

χ(ν̂o
t (k) + M) = χ(ν̂o

t (k) + M + 1) = · · · = χ(ν̂o
t (k) + M + n2).

Finally define

δ̂M
o,t :=

1
en0.2

en0.2∑

k=1

Xo
t,k.
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Let
En

3,S(t) :=
{

δ̂M
o,t < cr

}
.

Clearly,
⋂

t∈0,...,m2

En
3,S(t) ⊆ En

3,S , imlpying P (Enc
3,S |ψ) ≤

m2∑
t=0

P (Enc
3,S(t)|ψ), (4.17)

where ψ is an arbitrary fixed scenery.

Note, for any fixed scenery ψ, the random variables Xo
t,1, X

o
t,2, . . . are clearly independent (but not

necessarily identically distributed). However, for each i, E(Xo
t,i|ψ) ≤ cr −∆, implying that

cr − 1
en0.2

en0.2∑

i=1

E(Xo
t,i|ψ) ≥ ∆.

Recall ∆ = pM

n10054 . We know that ∆ ≥ n−β , where β is an integer bigger than 11000. Thus, by (4.8)

P (Enc
3,S(t)|ψ) = P (δ̂M

o,t ≥ cr|ψ) = P
( 1

en0.2

en0.2∑

i=1

Xo
t,i ≥ cr|ψ

)

≤ P
( 1

en0.2

en0.2∑

i=1

(Xo
t,i − EXo

t,k) ≥ ∆|ψ
)
≤ exp(−d′∆2en0.2

)

≤ exp
(− (d′n−2βen0.2

)
)
.

Now, use (4.6), (4.17) and (3.10) to get

Pψ(Enc
3,S) ≤ m2 exp(−d′n−2βen0.2

+ 3n) ≤ exp
(
7n− (d′n−2βen0.2

)
) → 0,

as n →∞.

Proof that Pψ(En
6,S) → 1

En
6,S(t) =





if χ(t) = χ(t + 1) = · · · = χ(t + n2)
then ∃s ∈ [t, t + n2] such that

S(s) is contained in a block of ξ longer than n0.35



 .

We have that
En

6,S =
⋂

t∈[0,m2]

En
6,S(t)

and thus

Pψ(Enc
6,S) ≤

m2∑
t=0

Pψ(Enc
6,S(t)).

Note

Enc
6,S(t) =





∀s ∈ [t, t + n2] the random walk S(s)
is contained in a block of ξ with length at most n0.35

and χ(t) = χ(t + 1) = · · · = χ(t + n2)



 .

Now, fix a scenery ψ. Let I = Z/ ∪ B(ψ), where B(ψn) is a block of ψ bigger than n0.35 and the union
is taken over all such blocks. Note I = ∪kIk, where Ik are disjoint intervals, at least n0.35 far from each
other. Thus, if S(t) ∈ Ik, then S(t + s) 6∈ Il for each l 6= k and for each s = 1, . . . , n2.
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Hence

P (Enc
6,S(t)|ψ) =

∑

j∈I

P
(
S(t), . . . , S(t + n2) ∈ I and χ(t) = · · · = χ(t + n2)|S(t) = j

)
P (S(t) = j)

∑

k

∑

j∈Ik

P
(
Sj(0), . . . , S(n2) ∈ Ik and χ(t) = · · · = χ(t + n2)

)
P (S(t) = j).

By Lemma 2.1 there exists a constant a > 0 not depending on n such that, for each j,

P
(
Sj(0), . . . , S(n2) ∈ Ik and χ(t) = · · · = χ(t + n2)

)
≤ exp

(
− an2

n0.7

)
. (4.18)

Then
P (Enc

6,S(t)|ψ) ≤ exp(−an1.3)

Thus, by (4.6)
Pψ(Enc

6,S(t)) ≤ exp (−an1.3 + 3n) → 0

and by (3.10)
m2 exp(−an1.2 + 3n) ≤ e7n−an1.3 → 0.

Proof that Pψ(En
7,S) → 1

Preliminaries
Recall the definitions of stopping times involved:
ϑz(k), k = 0, 1, . . . stands for consecutive visits of S to the point z−2Len0.1

, provided that between ϑz(k)
and ϑz(k + 1) at least once n2 + 1 same colors have been generated on Iz;
νz(1) (νz(i), i = 2, 3, . . . ) is the first time after ϑz(0), (after νz(k − 1) + en0.1

) observing n2 + 1 same
colors generated on Iz.
In Section 2.1 the stopping times ϑz(k), νz(i) as well as random variables Xz,i were used to define the
random variables κz(k), Xz(k) and Zz(k). The latter were used to define δM

z .
We now fix an arbitrary time moment t and we define the counterparts of all above-mentioned stopping
times and random variables starting from t.
In Section 4.1 we already defined the t counterpart of νz(i) and Xz,i, namely νz,t(i), and Xz,t,i, i = 1, 2, . . ..
Recall that in the definition of νz,t(1), the starting point ϑz(0) was replaced by t, the induction for νz,t(i)
is the same as the one for νz(i), i = 2, 3, . . ..
The Bernoulli random variables Xz,t,i were defined exactly as Xz,i with sopping times νz,t(i) instead of
νz(i).
We now define the t-counterpart of ϑz(k), k = 0, 1, . . ..
* Let ϑz,t(0) = t and let

ϑz,t(k) := {min s > ϑz,t(k − 1) : S(s) = z − 2Len0.1
, ∃j : s > νz,t(j) > ϑz,t(k − 1)}.

We now use ϑz,t(k) to define the t-analogues of κz, Zz and Xz.
* More precisely, let κz,t(0) = 0 and let κz,t(k) be defined with the inequalities

νz,t(κz,t(k)) < ϑz,t(k) < νz,t(κz,t(k) + 1).

Now, the definition of Zz,t and Xz,t is straightforward:

Xz,t(k) =
κz,t(k)∑

i=κz,t(k−1)+1

Xz,t,i, Zz,t(k) = κz,t(k)− κz,t(k − 1), k = 1, 2, . . .
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Note that, if ξ is fixed, then, for all t > 0, the random variables Xz,t(1),Xz,t(2), . . . are independent and
the random variables Xz,t(2),Xz,t(3), . . . are i.i.d. with the same distribution as Xz(k). The same holds
for Zz,t(1), Zz,t(2), . . .. Also note, that Zz,t(k) ≥ 1, k = 1, 2, . . ..
Hence, for all t > 0,

δM
z = δM

z (ξ) =
E(Xz,t(2)|ξ)
E(Zz,t(2)|ξ) = lim

k→∞

∑k
i=1 Xz,t(i)∑k
i=1 Zz,t(i)

.

We are now going to show that for each ξ, t, z, the first en0.2
observations of Xz,t,i are enough to estimate

δM
z (ξ) very precisely, i.e. δ̂M

z,t is close to δM
z .

Fix z, t, ψ and denote

Zk := Zz,t(k), Xk := Xz,t(k), Xi := Xk,t,i, EX = E(X2|ψ), EZ = E(Z2|ψ), P (·) = P (·|ψ).

Thus
δM
z = δM

z (ψ) =
EX
EZ .

Let a = pe3n0.1q and define

Za
k = Zk ∧ a, X a

k = Xk ∧ a, EX a := E(X a
2 |ψ), EZa := E(Za

2 |ψ).

Finally, define
∆ := e−

n0.2
4 .

We consider the events

E7,a =
{
Zk ≤ a, k = 1, 2, . . . , en0.2

}

E7,b =
{∣∣X a

1 + · · ·+ X a
k

k
− EX a

∣∣ ≤ ∆
3

, ∀k ∈ [
en0.2

a
, en0.2

]
}

E7,c =
{∣∣Za

1 + · · ·+ Za
k

k
− EZa

∣∣ ≤ ∆
3

, ∀k ∈ [
en0.2

a
, en0.2

]
}

.

First step
At first we show that

E7,a ∩ E7,b ∩ E7,c ⊂ En
7S(z, t). (4.19)

Let ı̄ be (random) number defined by the inequalities

Z1 + · · ·+ Zı̄ ≤ en0.2
< Z1 + · · ·+ Zı̄+1. (4.20)

Since Zk ≥ 1, we have ı̄ ≤ en0.1
. Let k̄ := Z1 + · · ·+ Zı̄. Now,

δ̂M
z,t =

∑en0.2

i=1 Xi

en0.2 =

∑ı̄
k=1 Xk +

∑en0.2

i=k̄+1 Xi

k̄ + en0.2 − k̄
=

1
ı̄

∑ı̄
k=1 Xk + 1

ı̄

∑en0.2

i=k̄+1 Xi

k̄
ı̄ + en0.2−k̄

ı̄

.

Denote

∆I := E(X a −X ) +
1
ı̄

ı̄∑

i=1

(Xi − EX a) +
1
ı̄

en0.2∑

i=k̄+1

Xi,

∆II := E(Za −Z) +
1
ı̄

ı̄∑

i=1

(Zi − EZa) +
1
ı̄

en0.2∑

i=k̄+1

Zi.
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Thus,

δ̂M
z,t =

EX + ∆I

EZ + ∆II
.

Suppose now, that E7a holds. Then, for each i = 1, . . . , en0.2
, we have Zi = Za

i , Xi = X a
i . From (4.20)

then follows that en0.2 ≤ ı̄a, i.e.

en0.2 ≥ ı̄ ≥ en0.2

a
. (4.21)

When ı̄ = en0.2
, then en0.2 − k̄ = 0, otherwise en0.2 − k̄ ≤ Zi+1 ≤ a. Since

∑en0.2

i=ı̄+1 Xi ≤ en0.2 − k̄, we get

1
ı̄

en0.2∑

i=k̄+1

Xi ≤ en0.2 − k̄

ı̄
≤ a

ı̄
≤ a2e−n0.2

= exp(6n0.1 − n0.2) <
∆
6

, (4.22)

provided n is big enough.
Hence, by (4.21) we have (recall that we assumed E7,a)

{∣∣∣1
ı̄

ı̄∑

k=1

(Xk − EX a)
∣∣∣ ≤ ∆

3

}
=

{∣∣∣1
ı̄

ı̄∑

k=1

(X a
k − EX a)

∣∣∣ ≤ ∆
3

}
=

en0.2⋃

l= en0.2

a

{∣∣1
l

l∑

k=1

(X a
k − EX a)

∣∣∣ ≤ ∆
3

, ı̄ = l
}

⊃
{∣∣∣1

l

l∑

k=1

(X a
k − EX a)

∣∣∣ ≤ ∆
3

, l =
en0.2

a
, . . . , en0.2

}
= E7,b.

Similarly,
{∣∣∣1

ı̄

ı̄∑

k=1

(Xk − EX a)
∣∣∣ ≤ ∆

3

}
⊃ E7,c.

Thus, by (4.22) on E7a ∩ E7b ∩ E7c we have

|∆I | ≤ |EX a − EX|+ 2
∆
3

= E(X − X a) + 2
∆
3

|∆II | ≤ |EZa − EZ| − 2
∆
3

= E(Z − Za) + 2
∆
3

.

Fix k = 1, 2, . . .. Denote by n0, n1, n2, . . . integers that satisfy n0 = 0, e2n0.1
+ 1 ≥ ni − ni−1 ≥ e2n0.1

,
∀i. Let Yj , j = 0, 1, . . . denote a Bernoulli random variable which is equal to 1 iff between the time
ν(ϑ(k) + 1 + nj) and ν(ϑ(k) + 1 + nj+1) random walk does not visit the point z∗ := z − 2Len0.1

. The
random variables Yj are independent.
By definition, ν(i + 1) − ν(i) ≥ en0.1

. Hence, ν(ϑ(k) + 1 + nj+1) − ν(ϑ(k) + 1 + nj) ≥ e3n0.1
. At time

ν(ϑ(k) + 1), random walk is located on Iz and, therefore, no more than 3en0.1
from z∗. By (4.10), the

probability to visit the point z∗ within the time e3n0.1
starting from the 3en0.1

-neighborhood of z∗ goes
to 1 if n →∞. Hence, supj P (Yj = 1) → 0. Let n be so big, that P (Yj = 1) ≤ e−1, for all j. This means,
for each

P (Zk ≥ te2n0.1
) ≤ P (Yj = 1, j = 0, . . . , ptq− 1) ≤ exp(−ptq) ≤ exp(−t), k = 1, 2, . . . (4.23)

Now,

E(Z−Za) =
∫

{Z≥a}
ZdP−aP (Z ≥ a) = aP (Z ≥ a)+

∫

(a,∞)

P (Z > x)dx−aP (Z ≥ a) =
∫

(a,∞)

P (Z > x)dx.
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By (4.23)
∫

(a,∞)

P (Z > x)dx ≤
∫ ∞

a

exp(−xe−2n0.1
)dx ≤ e2n0.1

exp(−ae−2n0.1
)) ≤ e2n0.1

exp(−en0.1
).

Thus, for n big enough

E(Z − Za) ≤ e2n0.1
exp(−en0.1

) ≤ ∆
3

.

Since, X ≤ Z, we get

E(X − X a) =
∫

(a,∞)

P (X > x)dx ≤
∫

(a,∞)

P (Z > x)dx ≤ ∆
3

.

Thus, on E7a ∩ E7b ∩ E7c we have
|∆I |, |∆II | ≤ ∆. (4.24)

Now recall that we have
δ̂M
z,t =

EX + ∆I

EZ + ∆II
.

Hence, by (4.24)
EX −∆
EZ + ∆

≤ δ̂M
z,t ≤

EX + ∆
EZ −∆

.

By Taylor’s formula,
EX −∆
EZ + ∆

=
EX
EZ −

(EX + EZ
(EZ)2

)
∆ + o(∆).

Since 1 ≤ EX ≤ EZ, the latter means (for ∆ small enough)

∣∣∣EX −∆
EZ + ∆

− EX
EZ

∣∣∣ ≤
(EX + EZ

(EZ)2
)
∆ + o(∆) ≤ 2∆ + o(∆) < 3∆.

Similarly ∣∣∣EX + ∆
EZ −∆

− EX
EZ

∣∣∣ < 3∆.

Now, δM
z,t = EX

EZ implying that
|δM

z − δ̂M
z,t| < 3∆ < e−n0.12

.

Thus, (4.19) holds.

Second step
We now show that P (Ec

7,a), P (Ec
7,b) and P (Ec

7,c) are o(exp(−n1000)).

By taking t = en0.1
(4.23) yields

P (Zk > a) ≤ exp(−en0.1
), k = 1, 2, . . . .

Thus
P (Ec

7,a) ≤ exp(n0.2) exp(−en0.1
) = exp(n0.2 − en0.1

) < exp(−n1000). (4.25)

To estimate P (E7,b) and P (E7,c) we use Höffding’s inequality. Fix l ∈ [ en0.2

a , en0.2
]. By (4.8) we have

P
(∣∣∣1

l

l∑

k=1

(X a
k − EX a

k )
∣∣∣ ≥ ∆

6

)
≤ exp

(
−2l

( ∆
a6

)2
)
.



A localization test for observations 47

On the other hand, since X a
k , k ≥ 2 are iid, we have

∣∣∣1
l

l∑

k=1

EX a
k − EX a

∣∣∣ =
1
l
|EX a − EX a

1 | ≤
2a

l
≤ 2a2e−n0.2

= 2 exp(6n0.1 − n0.2) <
∆
6

.

Thus,

P
(∣∣∣1

l

l∑

k=1

X a
k − EX a

∣∣∣ ≥ ∆
3

)
≤ P

(∣∣∣1
l

l∑

k=1

(X a
k − EX a)

∣∣∣ ≥ ∆
6

)
≤ exp

(
−2l

( ∆
a6

)2
)
≤ exp(−Ken0.2 ∆2

a3
),

where K = 2
36 . Now,

en0.2 ∆2

a3
= exp(n0.2 − 1

2
n0.2 − 9n0.1) = exp(

1
2
n0.2 − 9n0.1) > exp(

n0.2

4
)

and

P
(∣∣∣1

l

l∑

k=1

X a
k − EX a

∣∣∣ ≥ ∆
3

)
≤ exp(−Ke

n0.2
4 ).

Finally

P (Ec
7,b) ≤

en0.2∑

l= en0.2

a

P
(∣∣∣1

l

l∑

k=1

X a
k −EX a

∣∣∣ ≥ ∆
3

)
< en0.2

exp(−Ke
n0.2

4 ) < exp(−en0.1
) < exp(−n1000).

(4.26)
The same bound holds for P (Ec

7,c).

Because of (4.19), (4.25) and (4.26) we now get

P (Enc
7S(c, t)) ≤ 3 exp(−n1000). (4.27)

The bound in (4.27) do not depend on chosen z, t and ψ. Note that on [−cm, cm]× [0,m2] there are no
more than (cm)3 values of (z, t). Hence

P
(
Enc

7,S

) ≤ Σz∈[−cm,cm],t∈[0,m2]P
(
Enc

7,S(z, t)
)
.

From (4.27) it follows
P

(
Enc

7,S

) ≤ (cm)33 exp(−n1000). (4.28)

Recall, by (3.10) (cm)3 ≤ c3e6n. Hence, the right side of (4.28) is less than 3c3 exp(6n − n1000). This is
of order o(exp(−3n)). By (4.6) we, therefore, have

Pψ(Enc
7S) → 0.

Outline of the proof that Pψ(En
8,S) → 1

Note that in the previous proof the exact nature of Xz,i, Xz(k) as well as Xz,t,i, Xz,t(k) were not used.
Hence, the proof holds, if they were replaced by Uz,i, Uz(k), χ(νz,t(i) + en0.1

) and

κ(k)∑

κ(k−1)+1

χ(νz,t(i) + en0.1
),

respectively. By (2.12) this proves that Pψ(En
8,S) → 1.
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Proof that Pψ(En
5,S) → 1.

Fix ψn ∈ En
cell OK.

For each k = 0, 1, 2, . . ., let τk(0) := ρ(k) and for each j = 1, 2, . . ., let τk(j) be the smallest time
t > τk(j − 1) + 2en0.1

for which S(t) ∈ I(ρ(k)).
Let Xk(j) be the Bernoulli random variable which is equal to one iff during time [τk(j), τk(j)+(n3000+n2)]
we observe n2 + 1 consecutive 0’s or 1’s. That is Xk(j) = 1 iff ∃t ∈ [τk(j), τk(j) + n3000] such that
χ(t) = χ(t + 1) = · · · = χ(t + n2).
Clearly, for each k, the random variables Xk(j), j = 0, 1, 2, . . . are independent
At first we show that there exists a constant a > 0, not depending on n, such that for each k and j,

P (Xk(j) = 1) ≥ n−a ln n = e−a ln2 n. (4.29)

Fix k = 0, 1, . . . and let I := I(ρ(k)). Let z̄ be the signal carrier point such that Iz̄ = I. Since z̄ is a signal
carrier point, then, by Corollary2.2 and c) of Proposition2.1, I contains at least one big block of ψn. Let
T = [a, b] ⊂ I be that block. Now, let a < a∗ < b∗ < b be such that a∗ − a, b∗ − a∗, b − b∗ ≥ |T |

3 ≥ ln n
3n .

Denote T ∗ = [a∗, b∗]. Now,

P (Xk(j) = 1) ≥ P (S(τk(j) + n3000) ∈ T ∗)P (χ(t) = χ(t + 1) = · · · = χ(t + n2)|S(t) ∈ T ∗).

Now, by LCLT

P (S(τk(j) + n3000) ∈ T ∗) ≥ 1
cn1500

−O(
1

n3000
) ≥ n−1501,

provided that n is big enough.
Now, denote N = ( n

ln n )2 (w.l.o.g we assume that this is an integer) and estimate

P (χ(t) = χ(t + 1) = · · · = χ(t + n2)|S(t) = j ∈ T ∗) ≥ P (Sj(i) ∈ T, ∀i = 1, 2, . . . , n2) ≥

P
(

max
i=1,...,N

|Sj(i)| ≤ |T |
3

, Sj(N) ∈ T ∗
)ln2 n

= P
(

max
i=1,...,N

|Sj(i)|√
N

≤ 1
3
,
Sj(N)√

N
∈ T ∗√

N

)ln2 n

.
(4.30)

Note: |T ∗| ≥ √
N . By (4.10)

P
(

max
i=1,...,N

|Sj(i)|√
N

≤ 1
3
,
Sj(N)√

N
∈ T ∗√

N

)
→ P ( sup

0≥t≤1
|Wt| ≤ 1

3σ
,W1 ∈ I) > γ > 0.

Thus, for n big enough there exists a < ∞ such that the right side of (4.30) is bigger than ( 1
a )ln

2 n =
n−c ln n, with c > 0. Hence, (4.29) holds with a = c + 1.

Define the following events:

Ea(k) =





if ρ(k) ≤ m2

then during the time [ρ(k), ρ(k) + en0.3 − en0.1
]

S visits I(ρ(k)) more than en0.22
times



 k = 0, 1, . . .

and
Ea := ∩25000

k=1 Ea(k).

Also define

Eb(k) :=
{en0.21∑

j=0

Xk(j) ≥ en0.2
}

, Eb := ∩n25000

k=0 Eb(k).
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Now, clearly, on Ea(k) we have τk(en0.21
) ≤ ρ(k)− en0.21 − 2en0.1

. Thus En
5,S holds, if

en0.21∑

j=0

Xk(j) ≥ en0.2
.

Hence
E5,S ⊃ Ea ∩ Eb and Pψ(Ec

5,S) ≤ Pψ(Ec
a) + Pψ(Ec

b).

We are now proving that Pψ(Ec
a) → 0 and Pψ(Ec

b) → 0.

Proof that Pψ(Ec
b) → 0

By (4.6) it is enough to show that
P (Ec

b |ψn) = o(e−3n). (4.31)

Note that for big n, exp(n0.2 − n0.21) < EXk(j), ∀j. Thus,

exp(n0.2 − n0.21) <
1

en0.21 exp(−n0.21)
en0.21∑

j=0

E(Xk(j)) =: m̄.

By Höffding’s inequality we obtain that for a constant K > 0

P (Ec
b(k)|ψn) = P

( 1
en0.21

en0.21∑

j=0

Xk(j) < exp(n0.2 − n0.21)
)
≤ P

( 1
en0.21

en0.21∑

j=0

Xk(j) <
m̄

2

)
=

P
( 1

en0.21

en0.21∑

j=0

(
Xk(j)− EXk(j)

)
< −m̄

2

)
≤ exp(−Km̄2en0.21

) ≤ exp(−Ken0.21−2a ln2 n).

Hence,
P (Ec

b |ψn) ≤ n25000 exp(−Ken0.21−2a ln2 n) = o(e−3n).

Proof that Pψ(Ec
a) → 0

This proof is a little tricky because unlike the other proofs we have that P (Ea|ψn) is much bigger than
P (S(m2) = m).
Let L = n100000 and consider the event

C =
{

S
(
m2(1− n−3L)

) ∈ [
m(1− n−L),m(1 + n−L)

]
= [m− m

nL
,m +

m

nL
]
}

.

Here and in the rest of the proof we assume (w.l.o.g.) that all ratios and exponents are integers. Also
define

Ec(k) =
{
ρ(k) /∈ [m2(1− n−3L),m2]

}
, k = 0, 1, . . . , Ec := ∪25000

k=1 Ec(k).

The event Ec means that no stopping time ρ(k) occur in time-interval [m2(1 − n−3L),m2], the event
Ea ∩ Ec satisfies

Ea ∩ Ec = E∗
a := ∩25000

k=1 E∗
a(k),

where

E∗
a(k) =





if ρ(k) ≤ m2(1− n−L)
then during the time [ρ(k), ρ(k) + en0.3 − en0.1

]
S visits I(ρ(k)) more than en0.22

times



 .

We now show that the probability of our interest, P (Ea|En
1,S , ψn), can be very well approximated by the

probability P (E∗
a |C, ψn) and the latter goes to 0 if n →∞. We proceed in three steps.
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1) At first note: since

Cc ∩ En
1,S = {S(m2(1− n−3L)) 6∈ [m(1− nL),m(1 + nL)], S(m2) = m},

we get, by Höffdigs inequality

P (Cc ∩ En
1,S |ψn) =P (Cc ∩ En

1,S) = P (En
1,S |Cc)P (Cc) ≤ P (En

1,S |Cc)

=P
(∣∣∣S

(
m2

n3L

)∣∣∣ ≥ m

nL

)
≤ exp(−dnL) = o(n−3n).

The latter implies
Pψ(Cc) = o(1) (4.32)

2) Secondly, use the relations

P (E∗c
a ∩ En

1,S ∩ C|ψn) ≤ P (Ec
a ∩ En

1,S ∩ C|ψn) ≤ P (E∗c
a ∩ En

1,S ∩ C|ψn) + P (Ec
c ∩ En

1,S |ψn).

Since ψ ∈ En
7 , it has no signal carrier points in [m − EZn−11001]. Hence, Ec

c ∩ En
1,S can hold only, if

during time interval [m2(1−n−3L),m2] the random walk covers the distance at least EZn−11001−Ln1000.
Thus,

P (Ec
c ∩En

1,S |ψn) ≤ P
(

max
l=1,..., m2

n3L

|S(l)| ≥ EZn−11001−Ln1000
)
≤ P

(
max

l=1,..., m2

n3L

|S(l)| ≥ m

n11003
−Ln1000

)
.

Now use the maximal inequality (4.15) together with Höffdings inequality to estimate

P
(

max
l=1,..., m2

n3L

|S(l)| ≥ m

n11003
− Ln1000

)
≤ max

l=1,..., m2

n3L

3P
(
|S(l)|

≥ 1
3

m

n12000

)
≤ 3 exp(−dn3L−12000) = o(e−3n).

This implies

P (Ec
a ∩ C ∩ En

1,S |ψn)− P (E∗c
a ∩ C ∩ En

1,S , |ψn)
P (En

1,S |ψn)
= Pψ(Ec

a ∩ C)− Pψ(E∗c
a ∩ C) = o(1) (4.33)

3) Finally, note that

P (E∗c
a ∩ En

1,S ∩ C|ψn) = P (E∗c
a ∩ C|ψn)P (En

1,S |E∗c
a ∩ C, ψn) = P (E∗c

a ∩ C|ψn)P (En
1,S |C,ψn).

On the other hand,

P (En
1,S |ψn) ≥ P (En

1,S ∩ C|ψn) = P (En
1,S |C,ψn)P (C|ψn).

Hence,

Pψ(E∗c
a ∩ C) =

P (E∗c
a ∩ En

1,S ∩ C|ψn)
P (En

1,S |ψn)
≤ P (E∗c

a ∩ C|ψn)P (En
1,S |C, ψn)

P (En
1,S |C, ψ)P (C|ψn)

= P (E∗c
a |C,ψn). (4.34)

By CLT, P (C|ψn) = P (S
(
m2(1− n−3L

) ∈ [m − m
nL ,m + m

nL ]) is of order 1
nK for some big K > 0. We

now estimate the probability P (E∗c
a |ψn).

To do that fix k and let T1, T2, . . . denote the waiting times of S between visits of the point S(ρ(k)) (when
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we start at the time ρ(k)). Although ETi = ∞, it is known that ET
1
3

i =: K ′ < ∞ (see, e.g. [19]). The
quantity K ′, obviously, does not depend on n. Thus, by Markov’s inequality we have

P (E∗c
a ) ≤ P

(en0.22∑

i=1

Ti > en0.3 − en0.1
)

= P

((en0.22∑

i=1

Ti

) 1
3
>

(
en0.3 − en0.1) 1

3

)

≤ P
(en0.22∑

i=1

T
1
3

i >
(
en0.3 − en0.1) 1

3
)
≤ en0.22

K ′
(
en0.3 − en0.1

) 1
3
≤ e−n0.25

.

Thus, P (Ec
a∗) ≤ n25000e−n0.25

= o(n−K) implying that

P (Ec
a∗|C,ψ) ≤ P (Ec

a∗|ψn)
P (C|ψn)

= o(1). (4.35)

To complete the proof, use (4.32), (4.33), (4.35), (4.35) to get

Pψ(Ec
a) ≤ Pψ(Ec

a ∩ C) + Pψ(Cc) = Pψ(E∗c
a ∩ C) + Pψ(Ec

a ∩ C)− P (E∗c
a ∩ C) + o(1)

≤ P (E∗c
a |C, ψn) + o(1) = o(1).
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5 Combinatorics of g and ĝ

In this section we show: if all scenery dependent events and random walk dependent events hold, then
our estimates δ̂M

T and ĥt are precise. This means, we can observe our signals and, just like in our 3-color
example, we can well estimate the g-function.
At first we give the definition of g-function in 2-colors case.

5.1 Definition of g

In this subsection we give the formal definition of function

g : {0, 1}m+1 7→ {0, 1}n2+1.

The function g depends on n. When n is fixed, we choose m = pn2.5EZq, where the random variable
Z is the location of the first Markov signal point after 2Ln1000 in ξ. We now consider the signal carrier
points z̄1, z̄2, . . . , in [0,m]. Define the following subset of {0, 1}m+1:

E∗ := {ψ ∈ {0, 1}m+1 : z̄1(ψ) ≥ L(en0.1
+ n1000), z̄n2+1 ≤ m− L(en0.1

+ n1000)}.

Here, z̄i(ψ) = ∞, if the piece of scenery ψ has less than i signal carrier points.
Clearly En

cell OK ⊂ E∗. If ψ ∈ E∗, then for each z̄i(ψ) we define the vector of the frequency of ones h(i),
i = 1, . . . , n2 + 1. Recall from (2.13) that

h(i) = h(z̄i(ψ)) = P (ψ(U + S(en0.1
)) = 1),

where U is a random variable with distribution µ(z̄i).
Now, if ψ ∈ E∗, let

gi(ψ) =





1 , if h(i) > 0.5
0 , if h(i) < 0.5
z̄i(ψ) otherwise.

(5.1)

When ψ 6∈ E∗, define
gi(ψ) = ψ(i), , i = 1, 2, . . . , n2 + 1. (5.2)

Definition 5.1 g(ψ) = (g1(ψ), . . . , gn2+1(ψ)), where gi(ψ) is (5.1), if ψ ∈ E∗ and gi(ψ) is (5.2), if
ψ 6∈ E∗.

The Definition 5.1 ensures that g(ψ) depends on ξm
0 , only, and (g1(ξ), . . . , gn2+1(ξ)) is i.i.d. random

vector, with the components being Bernoulli random variables with parameter 1
2 .

5.2 Definition of ĝ

We are now going to formalize the construction of the ĝ-function. The function ĝ : {0, 1}m2+1 7→ {0, 1}n2

aims to estimate the (non-observable) function g. The argument of ĝ is the vector of observations
χm2

0 := (χ(0), . . . , χ(m2)), and the estimate is given up to first or last bit. In other words, ĝ aims to
achieve ĝ(χm2

) 4 g(ξ|[0,m]).
The algorithm for computation ĝ has 5 phases and it differs from the ĝ-reconstruction algorithm for
3-colors case by the first step, only. The rest of the construction is the same.

1. For all T = [t, t + en0.3] ⊂ [0,m2] compute the estimate of Markov signal probability δ̂M
T . Select all

intervals T1 = [t1, t1 + en0.3
], T2 = [t2, t2 + en0.3

], . . . , TK = [tK , tK + en0.3
], t1 < t2 < · · · < tK ,

where the estimated Markov signal probability were higher than cr. Here K stands for the number
of such intervals.
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2. For all selected intervals estimate the frequency of ones. Thus, we obtain the estimates ĥT1 , . . . , ĥTK ,
i = 1, . . . , K.

3. Define clusters

Ci := {ĥTj : |ĥTj − ĥTi | ≤ 2 exp(−n0.12)}, f̂i :=
1
|Ci|

∑

j∈Ci

ĥTj , i = 1, . . . , K.

4. Apply real scenery construction algorithm ARn (see subsection 1.3) to the vector (f̂1, . . . , f̂K). Denote
the output, ARn(f̂1, . . . , f̂K), by

(f1, . . . , fn2). (5.3)

If the number of different reals in (f̂1, . . . , f̂K) is less than n2 (e.g. K ≤ n2), then complete the
vector (5.3) arbitrarily.

5. Define the final output of ĝ as follows

ĝ(χm2
) := (I[0.5,1](f1), . . . , I[0.5,1](fn2)).

5.3 Main result

We are now going to prove the main result - when all previously stated events hold, then ĝ algorithm
works, i.e. ĝ(χm2

0 ) 4 g(ξm
0 ).

Recall En
cell OK = ∩9

i=1E
n
i . Similarly define the union of random walk dependent events En

S := ∩8
i=1E

n
i,S .

Finally, let Eg−works be the event that ĝ works, i.e.

Eg−works :=
{

ĝ(χm2

0 ) 4 g(ξm
0 )

}
. (5.4)

At first we show that the step 1 in the definition of ĝ works properly, i.e. an time interval T is selected
(i.e. δ̂M

T > cr) only if during the time T the random walk is close to an unique signal carrier point z̄.
The closeness is defined in the following sense: we say that during time period T , the random walk S is
close to z, if there exists s ∈ T such that S(s) ∈ Iz.

Proposition 5.1 Suppose En
cell OK ∩ En

S holds. Let T = [t, t + en0.3
] ⊂ [0,m]. If during T the random

walk is close to a signal point z, and ν̂t(en0.2
) ≤ t + en0.3 − en0.1

, then δ̂M
T = δ̂M

z,t and ĥT = ĥz,t.

Proof. Since ξ and S are independent, we fix ξ = ψ ∈ En
cell OK and show that the claim of the proposition

holds.
Let S be close to the signal point z. By En

2 ∩En
8 ∩En

9 , the point z has empty neighborhood and empty
borders. Hence, in the area

([z − L(n1000 + en0.3
), z + L(n1000 + en0.3

)]− [z − LM̃, z + LM̃ ]) ∩ [−cm, cm]

there are no blocks that are bigger than n0.35. Recall that M̃ = n1000−2n2. Since 2n0.35 < n0.4 < n2, this
means: all blocks with length at least n0.4 must lay inside the interval [z−L(n1000−n2), z+L(n1000−n2)].
In particular, this implies - if, during the time T the random walk S visits a block bigger than n0.4, then
during the n2 step before and after that visit, it must stay in the interval Iz. Formally: if ∃s ∈ T :
S(s) ∈ B, then

S(s− n2), S(s− n2 + 1), . . . , S(s + n2 − 1), S(s + n2) ∈ Iz. (5.5)

Here B stands for a block of ψ with length at least n0.4.
We now take advantage of the event En

6,S : the random walk cannot generate n2 + 1 same colors, if it
does not visit block bigger than n0.4. By (5.5) this means that all n2 + 1 same colors must be generated
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on Iz. Hence, inside the time interval T the stopping times ν̂t(i) are equal to the stopping times νz,t(i).
Similarly, Xt,i = Xz,t,i, provided ν̂t(i) + n1000 ≤ t + en0.3

.
Now by assumption, there are at least en0.2

stopping times ν̂t(i) in [t, t+en0.3−en0.1
] These stopping times

are then equal to νz,t(i). Similarly, Xt,i = Xz,t,i, i = 1, . . . , en0.2
. The latter means that the observable

estimates δ̂M
T and ĥT equals the non-observable estimates δ̂M

z,t and ĥz,t, respectively.

Corollary 5.1 Suppose En
cell OK ∩En

S holds. Let T = [t, t + en0.3
] ⊂ [0,m]. If during T the random walk

is close to a signal point z, then δ̂M
T > 0 implies that ĥT = ĥz,t and δ̂M

T = δ̂M
z,t .

Proof. By definition, δ̂M
T > 0 if in the time interval [t, t + en0.3 − en0.1

] there are at least en0.2
stopping

times ν̂t(i). Now Proposition 5.1 applies.

Lemma 5.1 Suppose En
cell OK∩En

S holds. Let T = [t, t+en0.3
] ⊂ [0,m] be such that δ̂M

T > cr. Then there
exists an unique signal carrier point z̄ ∈ [−cm, cm] such that S is close to z̄ during T and δ̂M

T = δ̂M
z̄,t.

Proof. Fix ξ = ψ ∈ En
cell OK. At first note, since En

2 holds, then all signal points in [−cm, cm] have
empty neighborhood. Together with d) of Proposition 2.1 it means – all signal points in [−cm, cm] are
in clusters with diameter less than 2Ln1000. The distance between the any two clusters, i.e. the distance
between closest signal points in these clusters, is bigger than en0.3

. Moreover, by En
8 ∩ En

9 , all signal
points have empty borders.
If En

2,S holds, then during time [0,m2], our random walk stays in [−cm, cm]. Together with the clustering
structure of the signal points, this means: if during the time interval T ⊂ [0,m2] of length en0.3

the
random walk S is close to some signal points, then they all belong to the same cluster. Hence, during T ,
S can be close to at most one signal carrier point (recall, every cluster has one representant, the signal
carrier point). We have to show that if δ̂M

T > cr, then there exists at least one signal carrier point z̄ such
that, (during T ) S is close to z̄.
During T , the random walk S has 3 options :

• S is not close to any signal point

• S is close to the signal points that are not Markov signal points

• S is close to a Markov signal point.

If S is not close to any signal point, then by En
3,S , δ̂M

T ≤ cr. This excludes the first possibility. Hence,
δ̂M
T > cr cannot happen, if during T , S is not close to any signal point.

Suppose now that there exists a signal point z such that (during T ) S is close to z. By assumption we
have δ̂M

T > cr > 0. By Corollary 5.1 we have that δ̂M
T = δ̂M

z,t. Now we reap benefit from the events En
5

and En
7,S . The event En

5 ensures that z is regular, i.e. |δM
z − cr| ≥ ∆ > e−n0.12

(recall, ∆ is polynomially
small). On the other hand, the event En

7,S ensures |δ̂M
T − δM

z | = |δ̂M
z,t − δM

z | ≤ exp(−n0.12). Thus on
En

5 ∩ En
7,S we have

δ̂M
T > cr iff δM

z > cr −∆. (5.6)

Suppose we have the second possibility – S is close to some signal points, but not close to any Markov
signal points. Then z is not a Markov signal point. Hence, (5.6) ensures that δ̂M

T ≤ cr. This contradicts
our assumption that δ̂M

T > cr. Hence, z must be a Markov signal point and our third option holds.
Thus δ̂M

T > cr implies that during T , the random walk S is close to a Markov signal point. By clustering
structure we know that S is close to a cluster of signal points with at least one Markov signal points. In
subsection 3.4 we argued that such a cluster serves as the signal carrier. However, to complete the proof
we must show that, during T , S is also close to the corresponding signal carrier point, say z̄.
The points z̄ and z belong to the same cluster, i.e. |z̄ − z| < 2Ln1000. Consider the interval

Jz := [z − L(exp(n0.3), z + L(exp(n0.3)] ∩ [−cm, cm].
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This is the region, where random walk S stays during the time T . We know that the intervals Iz and Iz̄

both have empty neighborhood and empty borders. Thus in all blocks of ψ|Jz that are longer than n0.4

must lie in Iz ∩ Iz̄ (by c of Proposition 2.1, in Iz ∩ Iz̄ there is at least one big block of ψ). Now argue as
in the proof of Proposition 5.1: because of En

6,S , to generate n2 + 1 consecutive 0’s or 1’s, S must visit
a block with length at least n0.4. To have δ̂M

T > 0, during T , S must have at least en0.2
such visits. All

those blocks are in Iz ∩ Iz̄ ⊂ Iz̄. Thus, when δ̂M
T > 0, then during T , S visits z̄ at least en0.2

times. This
means that during T , S is close to z̄. By Corollary 5.1 we now get δ̂M

T = δ̂M
z,t.

Theorem 5.2 If En
cell OK and En

S both hold, then, for n big enough, ĝ works. In other words,

En
cell OK ∩ ES ⊂ Eg−works. (5.7)

Proof. Suppose En
cell OK ∩ En

S hold. Fix ξ = ψ ∈ En
cell OK and let

g(ψ) = (g1(ψ), . . . , gn2+1(ψ))

We have to show: if En
S holds, then given the observations χm2

0 , the function

ĝ(χm2

0 ) := (I[0.5,1](f1), . . . , I[0.5,1](fn2))

is equal to ĝ(ψ) up to the first or last bit.
Let χm2

0 be the observations. Apply the ĝ-construction algorithm.
1) At the first step we pick the intervals T1 = [t1, t1 + en0.1

], . . . , [tK , tK + en0.1
] such that for each j,

δ̂M
T > cr, j = 1, . . . , K. By Lemma 5.1 we know that each interval Tj corresponds to exactly one signal

carrier point, say z̄π(j).

Let us investigate the mapping π : {1, . . . , K} 7→ Z, where π(j) is the index of the signal carrier corre-
sponding to the interval Tj . We now show that π posses the properties A1), A2), A3) that are familiar
from the subsection 1.3.3.

A1) π(1) ∈ {0, 1}
A2) π(K) ≥ n2 + 1

A3) π is skip-free, i.e. ∀j, |π(j)± π(j)| ≤ 1.

All these properties hold because of E4,S ∩E5,S . Indeed, during the time interval [0,m2] the random walk
starts at 0 and, according to the event En

1,S , ends at m. Let z̄1 . . . , z̄u denote all signal carrier points
of ψ in [0,m]. By En

1 , u > n2. The maximal jump of S is L and, therefore, on its way, S visits all
intervals Iz̄1 , . . . Iz̄u . Recall that the stopping times ρ(k) denote the first visits of the new interval (the
first visit of the next interval, not necessarily new for the past). By En

4,S ∩ En
5,S , for each k such that

ρ(k) < m2 we have: there is at least en0.2
stopping times ν̂ρ(k)(i) in T := [ρ(k), ρ(k) + en0.3 − en0.1

]. Let
z̄ be the signal carrier point such that S(ρ(k)) ∈ Iz̄. Thus the assumptions of Proposition 5.1 hold and
δ̂M
T = δ̂M

z̄,t. Moreover, by (5.6) we have that δ̂M
T > cr, i.e. the interval T will be selected in the first step

of ĝ reconstruction.
To summarize: the random walk starts at 0, by convention the first signal carrier point in [0,∞) is z̄1,
the biggest signal carrier point in (−∞, 0] is z̄0. From Lemma 5.1 we know - during T1, S must be close
to a signal carrier point. On the other hand [ρ(0), ρ(0) + en0.3

] is the first time interval, during which S
is close to a signal carrier point. We know that this interval will be selected. Hence π(1) ∈ {0, 1}.
On its way S visits all signal carrier interval Iz̄1 , . . . Iz̄u . Right after the first visit in a new signal carrier,
ρ(k), the random walk produces an interval T = [ρ(k), ρ(k) + en0.3

] that will be selected. Together with
Lemma 5.1 the latter yields that π is skip-free.
Recall that z̄u is the last signal carrier point in [0,m]. Thus, the last signal carrier interval S visits during
[0,m2] is z̄u or z̄u+1. By En

7 we know that z̄u lays in [0,m−Len0.3
] is at least z̄u. Hence, if S(ρ(k)) ∈ Iz̄u ,
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then [ρ(k), ρ(k) + en0.3
] will be selected. We now get that last selected interval corresponds to the signal

carrier that is at least z̄n2+1. Thus π(K) ≥ n2 + 1.
Let π∗ := min{π(j) : j = 1, . . . ,K}, π∗ := max{π(j) : j = 1, . . . , K}. We just saw that π∗ ≤ 1, π∗ ≥ n2+1
and π is a skip-free random walk on {π∗, π∗ + 1, . . . , π∗}.
The rest of the algorithm was already argued in section 1.3. However, in the following we give a bit more
formal explanation.
2) At the second step we calculate ĥT1 , . . . , ĥTK

. By Lemma 5.1 we know that, for each j = 1, . . . , K

ĥTj
= ĥz̄π(j),tj

.

3) Since En
8,S holds, we know that, for each j = 1, . . . , K,

|ĥTj
− h(z̄π(j))| = |ĥz̄π(j),tj

− h(z̄π(j))| < exp(−n0.12).

This means: if π(i) = π(j) then |ĥTi − ĥTj | ≤ 2 exp(−n0.12).
On the other hand, by En

3 we know that π(i) 6= π(j) implies

|h(z̄π(j))− h(z̄π(i))| ≥ exp(−n0.11). (5.8)

We assume n to be big enough to satisfy exp(−n0.12) < 5 exp(−n0.11). Hence π(i) 6= π(j) implies that
|ĥTi − ĥTj | > 2 exp(−n0.12). Thus, if En

8,S ∩ En
3 , then for each i, j = 1, . . . , k we have

ĥj ∈ Ci iff π(i) = π(j). (5.9)

Hence the clusters Ci and Cj are either the same or disjoint; Ci = Cj iff π(j) = π(i). The same, obviously,
holds for the averages:

f̂j = f̂i iff π(i) = π(j).

Let for each i = {π∗, π∗ + 1, . . . , π∗}, f̂(z̄i) = f̂j , if π(j) = i. Hence, f̂(z̄i) is the estimate of h(z̄i) and

f̂j = f̂(z̄π(j)), j = 1, . . . , K.

Hence, j 7→ f̂j can be considered as the observations of the skip-free random walk π on the different reals
{f̂(z̄π∗), f̂(z̄π∗+1), . . . f̂(z̄π∗)}.
4) The real scenery construction algorithm ARn is now able to reproduce the numbers f̂(z1), . . . , f̂(zn2+1)
up to the first or last number. Thus

(f1, . . . , fn2) = AR(f̂1, . . . , f̂K) 4 (f̂(z̄1), . . . , f̂(z̄n2+1)).

5) By En
4 , we have that |h(z̄i)− 0.5| ≤ exp(−n0.11). From (5.8) and (5.9), it follows

|f̂i − h(z̄π(i))| ≤ exp(−n0.12).

The latter implies
f̂(z̄i) ≥ 0.5 iff h(z̄i) ≥ 0.5.

Hence , for each i = 1, . . . , n2 + 1 we have that I[0.5,1](f̂(z̄i)) = I[0.5,1](h(z̄i)). Thus

ĝ(χm2

0 ) =
(
I[0.5,1](f1), . . . I[0.5,1](f2

n)
)

4
(
I[0.5,1](h(z̄1)), . . . I[0.5,1](h(zn2+1))

)
= g(ψ).

We now state the main result of the paper.



A localization test for observations 57

Theorem 5.3 There exists constants c > 0 (not depending on n), N < ∞, m(n) > n, the maps

g : {0, 1}m+1 7→ {0, 1}n2+1

ĝ : {0, 1}m2+1 7→ {0, 1}n2

and the sequence of events En
cell OK ∈ σ(ξ(z)|z ∈ [−cm, cm]) such that:

1) P (En
cell OK) → 1

2) For all n > N and ψn ∈ En
cell OK we have:

P
(

ĝ(χm2

0 ) 4 g(ψm
0 )

∣∣∣ S(m2) = m, ξ = ψn

)
> 3/4.

3) g(ξm
0 ) is an i.i.d. binary vector where the components are Bernoulli with parameter 1/2.

Proof. Fix c > 0 such that Proposition 4.1 holds for ε = 1
8 . Use this particular c to define all scenery

dependent events as well as all random walk-dependent vents.
The intersection of all scenery-dependent events is En

cell OK. In Section 3.2 we proved that P (En
cell OK) →

1. Hence 1) holds.
Now consider the event En

S . Use Theorem 5.2 to find the integer N1 < ∞ such that for each n > N1,
(5.4) hold. Then, for each n > N1, ψn ∈ En

cell OK we have

P (g(χm2

0 ) 4 g(ξm
0 )|S(m2) = m, ξ = ψn) ≥ P (En

S |S(m2) = m, ξ = ψn) = Pψ(En
S).

In the Section 4.3 we proved that lim infn Pψ(En
S) ≥ 1− 1

8 . Let N2 be so big that Pψ(En) > 3
4 ∀n > N1.

Take N := N1 ∨N2. With such N , 2) holds.
Finally, the statement 3) follows from the definition of g in Section 5.1.



A localization test for observations 58

References

[1] Itai Benjamini and Harry Kesten.

Distinguishing sceneries by observing the sceneries along a random walk path.

J. Anal. Math 69, 97-135, 1996

[2] Krzysztof Burdzy.

Some path properties of iterated Brownian motion.

In Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992),
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In Itô’s stochastic calculus and probability theory,

pages 171–183. Springer, Tokyo, 1996.

[13] Harry Kesten.

Distinguishing and reconstructing sceneries from observations along random walk paths.

In Microsurveys in discrete probability (Princeton, NJ, 1997),

pages 75–83. Amer. Math. Soc., Providence, RI, 1998.

[14] H. Kesten and F. Spitzer.

A limit theorem related to a new class of self-similar processes.

Z. Wahrsch. Verw. Gebiete

50(1), 5–25, 1979.

[15] Arnoud Le Ny and Frank Redig.

Reconstruction of sceneries in the Gibbsian context.

In preparation, Eurandom, 2002.

[16] D.A. Levin, R. Pemantle and Y. Peres.

A phase transition in random coin tossing.

Preprint, 2001.

[17] Elon Lindenstrauss.

Indistinguishable sceneries.

Random Structures Algorithms, 14(1), 71–86, 1999.

[18] M. Löwe and H. Matzinger.

Scenery reconstruction in two dimensions with many colors.

Preprint: Eurandom Report 99-018, Eurandom, 1999.

Submitted to The Annals of Applied Probability.
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