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Introduction

One function of financial markets in any economy is to aggregate the information
that agents might have on the traded asset and to disseminate this information
throughout the economy. Economists have studied extensively the role the mar-
ket price plays in aggregating and relaying information and practitioners use
market prices to guide their economic decision making. However, price is not
the only informational output of markets. Other indicators of market activity,
such as trading volume, are available to the general public. For example, data
on daily trading volume in futures markets are freely available on the websites
of the major exchanges and in the financial press. Hence, it may be interesting
to develop a method to extract information on the true value of the traded asset
based on the trading volume and the market price.

This paper introduces such a method when the joint distribution of the
traders’ demands, the market price, and the asset value is known and the market
clears. The paper also applies the method to a chosen noisy rational-expectations
model and a market-making model.

We first derive a general result: if a random variable is symmetrically dis-
tributed around zero with the traders’ demands, the covariance between this
random variable and the trading volume is zero (Proposition 1). Proposition 4
extends this result by showing that the conditional distribution of such a random
variable conditioned on the market price and the trading volume is symmetric
and consequently its conditional expectation based on volume is zero. This re-
sult is quite intuitive. For example, as trading volume is defined as the sum of
the buy orders, a surge in volume indicates a large flow of executed buy orders.
But as the market clears, this strong influx of executed buy orders corresponds
necessarily to a equally strong flow of executed sell orders. Hence, intuitively,
trading volume should offer little guidance about the mean of the asset value.

Under the additional assumption that the random variable and the traders’
demands are normally distributed, and that there are only three traders, we
obtain a closed-form expression for the covariance between the absolute value of
this random variable and volume and show that this covariance is positive unless
the variable is independent of the traders’ demands (Proposition 2). The random
variable under consideration may be the true value of the asset, the price or, in
a dynamic model, the price change.

The results presented in this paper can be extended to market-making envi-
ronments if the same distributional assumptions are maintained. Any market-
marking model can be reframed as a market-clearing model by considering the
market-maker as one of the traders. Indeed, when there is one market maker
and n traders, the trading volume is defined as z = 1

2Σn
i=1|yi| + 1

2 |Σn
i=1yi|,

where yi is the trader i’s demand. By defining the market maker’s demand
as yn+1 = −Σn

i=1yi, and using the fact that yi = y+
i + y−i and |yi| = y+

i − y−i ,
one gets z = 1

2Σn+1
i=1 |yi| = Σn+1

i=1 y+
i , which is the definition of volume used in the

paper.
Empirical observations seem to support the predictions of the paper concern-

ing the covariance between trading volume and the level or the absolute value
of any random variable whose joint distribution with the traders’ demand is
symmetric or normal. In almost all empirical studies, the covariance between
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the absolute value of the price change and trading volume is positive, while the
covariance between the price change per se and volume is statistically zero, at
least on futures markets, where the absence of short-sale constraints preserves
the symmetry between buy and sell orders.

We also derive the conditional distribution of the true value of the asset
conditioned on trading volume alone or on price and trading volume and present
quantitative results based on a chosen noisy rational expectation model. Given
the joint distribution of the equilibrium price (p), the traders’ demands, and the
true value of the asset (x), and letting z be the trading volume, we can compute
cov(|p|, z), cov(|x|, z), and the conditional density of x conditioned on p and z or
on z alone.

Results from the multivariate conditioning contrast with those of the univari-
ate conditioning. Conditioning on volume alone seems to yield little information
on the true value of the asset: E[x|z] = E[x] and the conditional density of x
given z differs little from the unconditional density (except for very large values
of z). Still, the volume-based conditional distribution of the true asset value has
slightly fatter tails than the unconditional distribution when volume is high, and
thinner tails when volume is low. In contrast, in the multivariate conditioning,
when the market price is above its mean, a surge in volume can lower the con-
ditional likelihood in the upper tail. Indeed, the conditional value of the traded
asset E[x|p, z] can be decreasing in trading volume for a given price. It can even
be decreasing in price when volume is high.

Results obtained in the Kyle market-making framework differ from those
obtained in the market-clearing framework. In Kyle (1985), the price fixed by
the dealer equals the conditional expectation of the true asset value conditioned
on the order flow (the sum of the informed trader’s and the liquidity trader’s buy
or sell orders). This may explain why E[x|p, z] = E[x|p] with probability 1 in this
framework. However, including volume in the conditioning set gives additional
information about the tails of the distribution of x.

In the remainder of the paper, section 1 briefly reviews the literature, section
2 presents results on the covariance between trading volume and the level or
the absolute value of any random variable. Section 3 shows how to condition
on trading volume or on trading volume and price. Finally, section 4 applies the
method developed in section 3 to a noisy rational expectations model and section
5 applies it to a Kyle (1985) market making model.

1 Review of the empirical literature

1.1 Theoretical literature

The results of this paper apply to the majority of the existing models. Mi-
crostructures models often use normally distributed random variables. This is
the case for, among others, Diamond and Verrechia (1981), Kyle (1985), Wang
(1992), (1994), Foster and Viswanathan (1994), and He and Wang (1995). For
them, Propositions 1 to 4 apply, independently of the particular assumptions of
each model. The only necessary assumptions are that the random variable about
which one wants to extract information and the traders’ demands for the asset
be normally distributed around zero (or, for weaker, more general results, that
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this variable be jointly symmetrically distributed with the traders’ demands),
and that the market clears. The traders’ utility functions, their motives to trade
and their rationality can be left unexamined. Furthermore, the symmetry argu-
ment behind Proposition 1 also applies to some non-normal distribution, like the
elliptically contoured distributions used by Foster and Viswanathan (1993).

Moreover, the model developed by Blume et al (1994), which is not based
on normal or elliptical distributions, also suggests a positive relation between
absolute price change and trading volume. Blume et al construct a model where
the precision of the signals observed by the traders is stochastic. Simulations
based on their model show a positive relation between volume and the absolute
value of price change, and a symmetric relation between price change per se and
volume (i.e., a large volume is associated with a negative or a positive movement
in the asset price). The V shape of the price-volume relation confirms the positive
correlation between the magnitude of the price change and trading volume.

1.2 Empirical literature

In his extensive review of the literature, Karpoff (1987) points out that many
empirical studies have found a positive correlation between the absolute value
of price change and trading volume. Furthermore, Karpoff reports that the cor-
relation between price change per se and volume is statistically insignificant for
futures markets while it is positive and statistically significant for equity mar-
kets, a pattern he attributes to the existence of short sale constraints in stock
and bond markets (see also Karpoff (1988)). Proposition 1, which implies a zero
covariance between volume and price change per se, rests on the assumption
that the traders’ demands are symmetrically distributed. Short sale constraints
would introduce asymmetries in the demands and could hence create a positive
correlation between price change and volume, despite market clearing.

Since 1987, many economists have studied the relation between trading vol-
ume and the magnitude of the price change, and between volume and price change
per se, on stock data and futures data. These empirical studies tend to confirm
Karpoff’s conclusions. Using hourly New York Stock Exchange data between
1979 and 1983, Jain and Joh (1988) find a significant positive relation between
daily trading volume and the absolute value of the Standard & Poor 500 index
returns. Gallant et al (1992) use daily New York Stock Exchange data between
1928 and 1987 to estimate the joint density of current price change and volume
conditional on past price changes and volume. They find that ”the direction
of the daily change in the stock market is unrelated to contemporaneous vol-
ume,” (p. 223) and that unusually high volumes are associated with large price
changes.1 Goodman (1996) uses a random sample of 50 stocks traded on the New
York and the American Stock Exchanges between 1993 and 1994. His findings
confirms that the absolute value of the price change is positively correlated with
trading volume, and shows that strong volume is associated with extreme price
movements, both positive and negative.

As for futures markets, Karpoff uses daily data on futures contracts for 9
1However, using daily Helsinki Stock Exchange data between 1977 and 1988, Martikainen et

al (1994) find some positive and statistically significant cross-correlations between contempora-
neous values of stock returns and volume.
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commodities and 3 financial instruments (also called commodities thereafter) be-
tween January 1972 to December 1979. Fifty-one percent of the 442 contracts
studied displayed a statistically significant positive relation between the absolute
value of the price change and volume whereas only 6 percent of them showed
a statistically significant positive relation between the price change per se and
volume. The analysis is repeated on 12 time series (one for each commodity) con-
structed from the futures contracts data. The relation between the magnitude of
the price change and volume is positive for all the commodities, and statistically
significant for 9 of them. None of the commodities shows a significant relation
between price change per se and volume.

Foster (1995) uses daily data on two oil futures contracts between January
1990 and June 1994, and one oil futures contract between January 1984 and June
1988. As in Gallant et al (1992), volume data are detrended and expressed in
logarithms, and are first grouped in several classes per size. The relative price
change is then plotted against the volume classes. The magnitude of the price
change typically increases with volume but the direction of the change is not
related to trading volume. This conclusion still holds when actual volume data
are used instead of volume classes.

2 Co-moments with trading volume

Let yi be trader’s i demand for the asset (i = 1, . . . , n) and z be the aggregate
trading volume, that is, the sum of the buy orders, z = Σn

i=1y
+
i , with y+

i =
yi I[yi > 0] where I[ ] is the indicator function. The asset market clears, hence
Σn

i=1yi = 0. Let y = (yi)n
i=1, y is assumed to have mean zero. The objective is to

compute cov(x, z) and cov(|x|, z) where x stands here for any random variable
although it will refer to the true asset value later on. Propositions 1 and 2 can
hence also be applied to the market price, and the price change (in a dynamic
framework).

Proposition 1. Let x and y be a random variable and a n-dimensional vector,
respectively, such that Σn

i=1yi = 0 and (x, y) be symmetrically distributed around
zero. Let z = Σn

i=1y
+
i , where y+

i = I[yi > 0]yi. Then, cov(x, z) = 0.

The proof is in the Appendix. This proof does not depend on the value of n.
However, when working with the distribution of z, we have to consider the sign
of each yi, i = 1, . . . , n. One constraint imposed by the market-clearing condition
is that not all yi can be of the same sign, which implies that still m = 2n − 2
cases have to be considered. In other words, we need to consider the sign of
y1, . . . , yn−1 and the sign of

∑n−1
i=1 yi when not all the yi are of the same sign. For

simplicity, assume that n = 3. We have then to consider m = 6 cases (see Table
1). Let 1 ≤ j ≤ m and Aj a cartesian product of n (adequately chosen) segments
equal to (−∞, 0] or (0,+∞) so that the Aj form a partition of Rn. In each case,
z can be written as the sum of two non-negative random variables that are linear
combinations of the yi, i = 1, . . . , n− 1, that is,

z =
m∑

j=1

I[y ∈ Aj ] z =
m∑

i=j

I[v1
j > 0, v2

j > 0] (v1
j + v2

j ), (1)
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For example, when y1 > 0, y2 ≤ 0 and y1 + y2 > 0, z = y1 = (−y2) + (y1 + y2)
with −y2 ≥ 0 and y1 + y2 > 0. Moreover, y1 > 0, y2 ≤ 0 and y1 + y2 > 0, if and
only if −y2 ≥ 0 and y1 + y2 > 0. Equation (1) makes it easy to handle trading
volume.

Proposition 2. Assume that n = 3 and that (x, y) is normally distributed with
mean zero. Then,

E[z] = 1√
2π

(σy1 + σy2 + σ(y1+y2))
var(z) = 2

(
σy1σy2 g(ρy1,y2) + σy1σy1+y2 g(−ρy1,y1+y2) + σy2σy1+y2 g(−ρy2,y1+y2)

)
+ 1

2

(
σ2

y1
+ σ2

y2
+ σ2

y1+y2
− 1

2π (σy1 + σy2 + σ(y1+y2))2
)

cov(|x|, z) = σu
π

(
σy1 h(ρu,y1) + σy2 h(ρu,y2) + σy1+y2 h(ρu,y1+y2)

)
(2)

where σ and ρ are the standard deviation and the correlation coefficient, respec-
tively. The functions g and h are defined as:

g(t) = t (1
4 + 1

2π arcsin(t)) + 1
2π

√
1− t2

h(t) = t arcsin(t) +
√

1− t2 − 1
(3)

Equation (2) implies that cov(|x|, z) ≥ 0, and cov(|x|, z) = 0 if and only if u and
y are independent.2

The proof is in the Appendix.

3 Conditioning on trading volume and price or on
trading volume alone

The aim is to compute the conditional density of x on z or on (p, z). To do so,
we first need to establish the existence of the density of (x, p, z) and compute it.
In the remainder of the paper, u, t and h denote the realizations of the random
variables x, p, and z, respectively, and fz(h), fp,z(t, h), and fx,p,z(u, t, h) are the
density functions of z, (p, z), and (x, p, z), respectively.

Proposition 3. Let f i(x, p, v1
i , v

2
i ) and f i(p, v1

i , v
2
i ) the densities of (x, p, v1

i , v
2
i )

and (p, v1
i , v

2
i ), i = 1, . . . ,m. Then, fx,p,z and fp,z exist and

fx,p,z(u, t, h) =
∑m

i=1

∫ h
s=0 f i(u, t, s, s− h) ds

fp,z(t, h) =
∑m

i=1

∫ h
s=0 f i(t, s, s− h) ds

The proof is in the Appendix.

Let fx|p,z(u, t, h) be the conditional density of x given p and z, and fx|z(u, h)
be the conditional density of x given z. Naturally,

fx|p,z(u, t, h) = fx,p,z(u,t,h)
fp,z(t,h)

fx|z(u, h) = fx,z(u,h)
fz(h)

(4)

2For all t ∈ [−1, 1], h(t) ≥ 0 and h(t) = 0 if and only if t = 0. To see that h is strictly
increasing on [0, 1], let m(s) = h(sin(s)) with s ∈ [0, π/2] and compute m′(s).
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Proposition 4. The conditional density of x conditioned on p and z (or z alone)
is symmetrical around zero. This implies that

P (x > λ|p, z)(t, h) = P (x < −λ|p, z)(−t, h)
E[x|p, z](−t, h) = −E[x|p, z](t, h)

(5)

P (x > λ|z)(h) = P (x < −λ|z)(h)
E[x|z](h) = 0

(6)

The proof is in the Appendix. Proposition 4 implies that cov(x, p) = 0.

4 Conditioning on price and volume in a noisy rational-
expectations model

Using a particular setup to model the market, we can compute the conditional
density of x conditioned on p and z or z alone. Including the price in the con-
ditioning set seems quite natural because it is an observable variable. However,
conditioning on trading volume alone sheds some light on the difference between
univariate and multivariate conditioning. For example, whereas the (conditional)
probability of x being in its upper tail is increasing in z when volume alone is used,
this probability can be decreasing in z when p > 0. Moreover, whereas E[x|p]
is an linear, increasing function of p, for z fixed (above its mean), E[x|p, z] is a
non-linear, potentially decreasing function of p.

4.1 Presentation of the model

We use a static, competitive equilibrium framework with one liquidity and n− 1
informed traders, each observing a signal correlated with the true value of the
asset, with correlation coefficient ρ. In this framework, developed by Dupont
(1998), the informed traders have CARA utility functions and the state variables
(the signals, the noise, the true value of the asset) are jointly normally distributed,
so that the informed traders’ demands are linear in the market price and their
signals.

We also assumed that the liquidity trader’s demand is linear in price and
the noise. Making the liquidity demand price sensitive is one contribution of
this approach. Assuming that the traders have rational expectations, that is,
that they use the equilibrium market price in their conditioning information, we
derive the joint distribution of the equilibrium price (p), the traders’ demands (y),
and the true value of the asset (x). Based on this, we compute the conditional
distribution of the x using z alone or using p and z. Before turning to the
conditional distributions, we present results on the distribution of z and the
correlations between x and z and between x and p.

4.2 Qualitative characteristics of the joint distribution of (x, p, z)

Figure 1 plots the mean and the standard deviation of trading volume as the
quality of the information of the informed traders improves (the upper panel)
and the probability density function of trading volume for ρ = .2 and ρ = .5
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(the lower panel). Both the mean and the volatility of trading volume rise in
response to an increase in ρ because the informed agents react more strongly to
the realization of their private signals when those are better correlated with the
true value of the asset. This more aggressive trading stance raises the average
volume and makes it more volatile.

Looking at the density function reveals that, although the equilibrium price
and all the demands are normally distributed, the distribution of volume is
skewed, with the mean above the median. This reflects the impact on the dis-
tribution of outlayers: rare events when trading volume is particularly strong.
This theoretical results is consistent with the use of the lognormal distribution
to estimate the distribution of trading volume in empirical observations (see for
instance Gallant et al (1992)). The skewness seems more pronounced for low
levels of ρ. As seen in Figure 1, when ρ = .2, the density function rises sharply
for low values of z but falls slowly in the upper tail. The difference between the
mean and the median relative to the standard deviation is greater for the lower
value of ρ.

4.3 Conditioning on trading volume only

Because of the random vector (x, p, y1, . . . , yn) is symmetrically distributed around
0, E[x|z] = E[x] = 0. This does not imply that no information can be extracted
from trading volume. Since cov(|x|, z) > 0, one should expect that the con-
ditional probability of x being in the left and right tails would increase as z
increases. Figure 2 displays the conditional and unconditional probabilities that
x be above a certain level (fixed equal to 0.2) as z increases. As z becomes higher
than some threshold, the conditional probability becomes greater than the un-
conditional probability. P (x > λ|z)(h) appears to be a convex function of h, the
realization of z, so that the conditional probability picks up at an increasing rate
as z rises. However, the size of the increase is small: even for extreme realiza-
tions of the trading volume, the conditional probability is only barely above the
unconditional probability. For example, when z = 3, P (x > .2|z) is about 0.05
percentage points above P (x > .2) although z = 3 is a fairly extreme realization
of the trading volume: the probability of z being above this level is around 1.25
percent.

This seems to suggest that trading volume is only loosely related to trading
volume. This is confirmed by looking at the conditional distribution of x con-
ditioned on z (see Figure 3). When z = 3, the conditional density of x given z
is nearly indistinguishable from the unconditional density, and we chose a more
extreme value for the trading volume, z = 15 to be able to show a clear effect on
the conditional density of x given z. Both the upper and the lower tails of the
distribution becomes fatter. However, to get this effect, we have to pick such a
high realization of z that the probability of observing higher levels of the trading
volume is of the order of about 1 in a million.

A simple way to visualize the dependence between the trading volume and
true value of the asset or the market price for a wide array of precision of the
informed traders’ signals is to graph the correlation between z and |x| for all
possible values of ρ (the middle panel of Figure 3). Comparing corr(|x|, z) and
corr(|p|, z) is very striking. The trading volume is nearly uncorrelated with
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the true value of the asset while it is strongly correlated with its market price.
Furthermore, the correlation between |p| and z is at its highest when the one
between |x| and z is at its lowest. When ρ = 0, the trading volume is perfectly
correlated with the market price and totally uncorrelated with the true value of
the asset. Naturally, the correlation between the market price and the true value
of the asset is also zero since no trader has information about the true value of
the asset. The correlation between the trading volume and the price is 1 because
the demands of every trader and the price is linear in the noise ε (see proof in
the Appendix). As ρ increases the correlation between |p| and z first decreases
then increases but always remains well above the correlation between |x| and z.
This suggests that trading volume contains a lot of noise, a view confirmed by
looking at the correlation between z and the private signals and that between
z and the noise. The correlation with |G1| (resp., with |G2|) increases with the
precision of the signal but is always much smaller than the correlation between
the trading volume and the noise.

Hence, it seems that trading volume per se brings little information about
the true value of the asset. As we shall see in the next session, this is valid only
if we limit ourselves to extracting information from trading volume alone. This
would mean ignoring another publicly available variable: the market price. The
fact that the trading volume is correlated with the noise could be used to filter
the noise from the price and use that to extract more information about the true
value of the asset, as the next session will show.

4.4 Conditioning on price and volume

We compute P (x > λ|p, z) using λ = .2 as in the previous section. The results
of fixing one conditioning variable at a given level and increasing the other are
displayed in Figure 4. In the upper panel, we fix p equal to 0.5σp (the solid
line) and −0.5σp (the dashed line) and vary z between 0.1 and 1.5. By way of
comparison, we also graph the unconditional probability P (x > .2) (the gray
line). The conditional probability p(x > .2|p, z) is increasing in z when p =
−0.5σp but decreasing in z when p = 0.5σp. This results also holds for other
values of p and the effect on increasing z on P (x > .2|p, z) when p is held fixed
are always greater than on p(x > .2|z)

The middle panel of Figure 4 shows how P (x > .2|p, z) varies when p increases
for different levels of z: z = E[z] (the solid line), z = E[z] + 0.5σz (the long-
dashed line), z = E[z]− 0.5σz (the short-dashed line). Because of the symmetry
of the conditional probability, only positive values of p are used. For average or
below-average trading volume, the conditional probability conditioned on trading
volume and price also increases with p. However, when trading volume is high,
P (x > .2|p, z) is non-monotonous in p: it can be a decreasing function of p for p
below a threshold.

The conclusions drawn from graphing P (x > .2|p, z) fixing one conditioning
variable to some chosen level and letting the other vary are confirmed by looking
at the contour plot of P (x > .2|p, z) where both p and z vary. As z increases,
p(x > .2|p, z) rises for negative values of p and falls for positive values of p, while,
for large levels of the trading volume, P (x > .2|p, z) can be a decreasing function
of p.
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Figure 4 shows how the upper tail of the conditional distribution responds to
changes in p and z. However, traders might be more interested in the conditional
mean of x given p and z. Figure 5 displays how E[x|p, z] reacts to changes in one
conditioning variable when the other is held constant. The conclusions obtained
about the tail of the conditional probability distribution also hold when looking
at the conditional mean. E[x|p, z] is an increasing function of z when the price
is negative but a decreasing function of z when the price is positive. Note that
the price has mean zero by construction, so that a positive (resp., negative) price
should be interpreted in practice as an above-average (resp., below-average) price.
In the market, a strong volume associated with an above-average price should be
a bearish signal for the asset.

When the volume is about average, E[x|p, z] is close to E[x|p] and increases
with p. The positive response of E[x|p, z] to an increase in p is even more pro-
nounced for lower levels of trading volume. However, when volume is strong,
E[x|p, z] can be a decreasing function of p (when p > 0) even though the market
price and the true asset value are positively correlated.

Figures 4 and 5 show that one should be prudent when using the results of
univariate conditioning in a multivariate context. For example, since P (x > .2|z)
and P (x > .2|p) are increasing functions of z and p, it may seem intuitive to think
that P (x > .2|p, z) would be an increasing function of p and z. If this were true,
one would want to adjust upward the value of the asset when the market price
is high relative to its mean and, at the same time, the trading volume is strong.
However, precisely the reverse is true.

This shows that, even though trading volume yields little information on the
true value of the asset when used alone, it can be very useful when used in
combination with the market price. Adding trading volume to the conditioning
information set does not just fine-tune the results of using price alone; in some
cases, it can overturn the conclusions obtained using a univariate conditioning
scheme.

Looking at the joint distribution of price and volume may help one to relate
univariate and multivariate conditioning, Figure 6 displays a contour plot of the
joined density of x (resp. p) and z where x (or p) varies between −1.3 and 1.3 and
z varies between 0 and 2.5. The joint density of p and z is shown in the upper
panel. Even though both densities are symmetric, they display very different
shapes. For high levels of the trading volume, the joint density of p and z is a
bimodal function of p. Consequently, the conditional density of p on z (shown in
the lower panel) becomes bimodal when trading volume is high enough. When
the trading volume is low, the conditional density of of p given z is concentrated
around its mean (which is 0 here). In contrast, for higher levels of the trading
volume, the price is more likely to be either very low or very high than to be
around average. Looking at the joint density of p and z makes it clear that
the covariance between |p| and z must be positive. To relate the univariate and
bivariate conditioning results, recall that

P (x > λ|z)(h) =
∫ +∞
t=−∞ P (x > λ|p, z)(t, h)fp|z(t, h) dt

=
∫ 0
t=−∞ P (x > λ|p, z)(t, h) fp|z(t, h) dt

+
∫ +∞
t=0 P (x > λ|p, z)(t, h) fp|z(t, h) dt

(7)

where fp|z is the conditional density function of p given z. P (x > λ|p, z)(t, h) is
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an increasing function of h when t is negative and a decreasing function of h when
t is positive, and fp|z(t, h) = fp|z(−t, h). Intuitively, the effect of increasing h on∫ 0
t=−∞ P (x > λ|p, z)(t, h) fp|z(t, h) dt and on

∫ +∞
t=0 P (x > λ|p, z)(t, h) fp|z(t, h) dt

should cancel out, to render P (x > λ|z) rather insensitive to changes of z.
Using E[x|z, p] to compute E[x|z] shows even more clearly how the effect on

E[x|p, z] of an increase in z when p > 0 and when p ≤ 0 cancel out.

E[x|z](h) =
∫ +∞
t=−∞E[x|p, z](t, h)fp|z(t, h) dt

=
∫ 0
t=−∞E[x|p, z](t, h) fp|z(t, h) dt +

∫ +∞
t=0 E[x|p, z](t, h) fp|z(t, h) dt

=
∫ +∞
t=0

(
E[x|p, z](t, h)− E[x|p, z](−t, h)

)
fp|z(t, h) dt

= 0
(8)

Because of the symmetry of E[x|p, z] with respect to p, E[x|z] = 0 even though
varying z has a large (positive or negative) effect on E[x|p, z] for a fixed p (for
p 6= 0).

5 Kyle model

Kyle (1985) introduces a dynamic model of insider trading with a single risk-
neutral informed trader, a noise trader and a competitive risk-neutral market
maker. To translate Kyle’s model into our notations, let y1 be the demand of the
informed trader, y2 = ε be the demand of the noise trader, y3 = −(y1+y2) be the
demand of the market maker. As before, x is the true value of the asset (observed
by the informed trader) and p is the market price. The state variables, x and
ε, are normally and independently distributed with means zero and respective
variances σ2

x and σ2
ε . The market maker observes the aggregate order flow and set

the price equal to the conditional mean of the true value of the asset conditioned
on this variable: p = E[x|y1 + y2]. In turn, the informed trader takes the market
price into account to decide how much to trade. Under these conditions, there is
a unique linear Nash equilibrium.

y1 = βx
y2 = ε
p = E[x|y1 + y2] = λ(y1 + y2)

(9)

with β = σε/σx and λ = 1/(2β). Kyle (1985) extends this static setup to dynamic
games. However, we use only the static version of the model described by (9)
because we want to compare E[x|p, z] and E[x|z] with results obtained in the
static setup used in the previous section.

Kyle’s framework has been extended and used by many financial economists.
In these models, traders’ demands, asset value and market prices are jointly
normally distributed. The mean demands are zero, and the asset value mean
(and hence the price mean) can be normalized to zero. Clearing the market by
taking the market maker’s net demand into account, Propositions 1 to 4 apply.
Consequently, with v representing the level or the first difference of the price or
the value of the asset, E[v|z] = cov(v, z) = 0, cov(|v|; z) > 0 and p(v > λ|z) is
increasing in z (the last result being based on numerical examples).

10



Proposition 5. In the Kyle model, using price and volume does not yield more
information about the conditional mean of the stock than using only the price

E[x|z, p] = E[x|p] = p (10)

However, trading volume can yield information on the tails of the distribution.

P [x > s|z, p](z, p) = 1
2I[z > s] for p > 0

P [x > s|z, p](z, p) = 1
2I[z > s + 2β|p|] for p ≤ 0

(11)

The fact that E[x|z, p] = E[x|p] may be due to the fact that the market price
already equals the conditional value of x on the order flow.

6 Conclusion and further research

The contribution of this paper is to show how to use both the equilibrium price
and trading volume to extract information about the true value of a traded
asset. In most market microstructures models, the true value of the asset and
the market price are normally distributed, so that conditioning on the price alone
is easy. In contrast, conditioning on the trading volume is harder because it is
a sum of truncated random variables3. However, when the traders demands
are normally distributed, it is easy to compute the conditional distribution of the
asset value conditioned on trading volume, or on trading volume and price. Once
the signs of all the traders’ demands are known, the trading volume becomes a
sum of normally distributed random variables. Hence, the joint distribution of
the trading volume and a given set of normally distributed random variables
can be easily derived by considering every possible configuration for the signs
of the traders’ demands. Once the joint distribution of the trading volume, the
market price, and the true asset value has been computed, it is easy to derive
the conditional distribution of the asset value on volume and price.

We implement the method on a simple microstructures model. The main
contribution of the microstructures model used is that the noise trader is price
sensitive, which seems more realistic than modeling it as a pure random shock.
Conditioning on both trading volume and price yields very different results than
conditioning on those variables individually. For example, whereas the condi-
tional mean of the true asset value on the market price is a linear, increasing
function of price, the conditional expectation of the asset value on the market
price and volume can be decreasing in price for a given value of the trading
volume. Also, while the conditional mean of the asset value on trading volume
coincides with the unconditional mean, the conditional mean conditioned on price
and trading volume is decreasing in the trading volume when the market price
is above average. Intuitively, in an efficient market, the equilibrium price should
be more responsive to orders stemming from the informed traders than to those
stemming from the noise trader.4 This means that when the informed trader
wants to trade on a positive realization of his private signal, his demand should

3The trading volume is the sum of all the the buy (resp. sell) orders
4Naturally, the trader’s type is not revealed to the others. However, in equilibrium, the price

is a (linear) functional of the private signals and the noise and reacts differently to the informed
traders and the noise traders.
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move the price against him, thus reducing the total amount of trade. In contrast,
when the noise trader places buy orders, he should affect much less the market
price, so that more of his potential demand can be satisfied. It follows that, for a
given, above-average level of the market price, the higher is trading volume, the
more the price should should reflect the buy orders of the noise traders. Hence,
the observer interested in inferring the true value of the asset should use the trad-
ing volume as a proxy for noise trading and apply a discount when the volume
is high.
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Appendix

Proof of Proposition 1

E[z x] =
∑n

i=1 E[x y+
i ]

=
∑n

i=1 E[x yi I[yi > 0]]
=

∑n
i=1 E[(−x) (−yi) I[−yi > 0]]

=
∑n

i=1 E[x yi I[yi ≤ 0]]
=

∑n
i=1 E[x y−i ]

= −E[z x]

(12)

The third line comes from the distribution of (x, y1, . . . , yn) being symmetric
around zero; the fourth line from P (yi = 0) = 0 all i = 1, . . . , n. Hence E[z x] = 0
and cov(x, z) = 0.

Lemma 1: Let u ∼ N(0, 1)

E[u+] = 1√
2π

E[(u+)2] = 1
2

σ(|u|) =
√

1− 2
π

(13)

If v1 and v2 are jointly normally distributed with mean zero, variances σ2
1 and σ2

2

and correlation coefficient ρ12,




E[I[v1 > 0, v2 > 0]v2
1] = σ2

1

(
1
4 + 1

2π arcsin(ρ12) + 1
2πρ12

√
1− ρ2

12

)

E[I[v1 > 0, v2 > 0]v1v2] = σ1σ2

(
ρ12(1

4 + 1
2π arcsin(ρ12)) + 1

2π

√
1− ρ2

12

)

(14)
Proof To prove the first line of equation (13), recall that E[u+] =

∫∞
0 uφ(u)du

where φ is the standard normal density function. Since φ′(u) = −uφ(u),
∫∞
0 uφ(u)du =

[−φ(u)]∞0 = φ(0) = 1√
2π

To prove the second line, recall that E[(u+)2] = E[I[u >

0]u2]. Using E[I[u > 0]u2] = E[I[u ≤ 0]u2] and E[u2] = 1, we get the results. To
obtain the third line, use the fact that |u| = u+−u−, the symmetry of u+ and u−

and E[u+u−] = 0, to get E[|u|] = 2E[u+] = 1 and E[|u|2] = 2E[(u+)2] =
√

2
π .

To prove equation (14), let G1(v1, v2) = v1f(v1, v2), where f is the density func-
tion of v. Let G1

i = ∂G1

∂vi
, i = 1, 2. Then G1

1 = v1f1 + f , and G1
2 = v1f2. Hence,

{
(σ11v2

1 + σ12v1v2)f = −v1f1 = f −G1
1

(σ12v2
1 + σ22v1v2)f = −v1f2 = −G1

2
(15)

We will write v = (v1, v2), I = I[v1 > 0, v2 > 0], and p(v > 0) = p(v1 > 0, v2 > 0).
Noting that, for any value of v2,

∫∞
v1=0 G1

1(v1, v2)dv1 = [G1(v1, v2)]∞v1=0 = 0, we
get

σ11 E[I v2
1] + σ12 E[I v1v2] = p(v > 0). (16)
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Also,

σ12 E[I v2
1] + σ22 E[I v1v2] = − ∫∞

v1=0

∫∞
v2=0

∂
∂v2

G1(v1, v2)dv1dv2

= − ∫∞
v1=0[G

1(v1, v2)]∞v2=0dv1

= 1

2π
√
|Σ|

∫∞
v1=0 v1e

− 1
2
σ11v2

1dv1

= 1

2πσ11
√
|Σ|

∫∞
u=0 ue−

1
2
u2

du

= 1

2πσ11
√
|Σ|

=
√
|Σ|

2πσ22

(17)

Note that 1

σ11
√
|Σ| =

√
|Σ|

σ22
, as, by definition σ11 = σ22

|Σ| . Hence,

(
E[I v2

1] E[I v1v2]
E[I v1v2] E[I v2

2]

)
= Σ


 p(v > 0)

√
|Σ|

2πσ11√
|Σ|

2πσ22
p(v > 0)


 (18)

We can simplify notations, using |Σ| = σ2
1σ

2
2−σ2

12, which yields
√
|Σ|

σ22
= σ1

σ2

√
1− ρ2

12.
Equation (14) follows.

Proof of proposition 2: The formulas for E[z] and var(z) can be derived from
lemma (1). The formula for cov(|u|, z0 is proven below. cov(|u|, z) = 2 cov(u+; z),
and z = Σ6

i=1I[vi
2 > 0, vi

3 > 0](vi
2 + vi

3), where vi
2, vi

3 replace vi
1 and vi

2 defined in
table (1). Noting (ṽi

2, ṽ
i
3) = (v7−i

2 , v7−i
3 ) = −(vi

2; v
i
3), i = 1, 2, 3, one gets

z = Σ3
i=1(I[vi

2 > 0, vi
3 > 0](vi

2 + vi
3) + I[ṽi

2 > 0; ṽi
3 > 0](ṽi

2 + ṽi
3)) (19)

Hence, with v1 = u, one need only compute cov(I[v1 > 0]v1, I[v2 > 0, v3 >
0](v2 + v3)) = E[I[v1 > 0, v2 > 0, v3 > 0]v1(v2 + v3)] − E[I[v1 > 0]v1]E[I[v2 >
0, v3 > 0](v2 + v3)], where v = (v1, v2, v3) is normally distributed with mean
zero. If (y1, y2) is a normally distributed vector with mean zero and variance S,
noting si =

√
sii, E[I[y1 > 0]y1] = s1√

2π
and E[I[y1 > 0, y2 > 0]y1] = ϕ(S), with

ϕ(S) = 1
2
√

2π
(s1 + s12

s2
. Let G(v1, v2, v3) = v1f(v1, v2; v3) where f is the density

function of v, G1(v) = v1f1(v) + f(v), then G2(v) = v1f2, G3 = v1f3. In the
following, Σ = (σij)3i;j=1,Σ

−1 = (σij)3i,j=1, σi =
√

σii, σi =
√

σii. Γ∗i is the matrix
obtained by deleting the ith row and the ith column of Σ−1, v = (v1, v2, v3). The
first derivative of f with respect to v is −(Σ−1.v)f(v), hence





(σ11v2
1 + σ12v1v2 + σ13v1v3)f(v) = −G1(v) + f(v)

(σ21v2
1 + σ22v1v2 + σ23v1v3)f(v) = −G2(v)

(σ31v2
1 + σ32v1v2 + σ33v1v3)f(v) = −G3(v)

(20)

Now, take expectation through the system (27), beginning with the first row.
∫

t>0
G1(t)dt =

∫

t2>0,t3>0
[G(t)]+∞t1=0dt2 dt3 = 0 (21)

and
∫

v>0
f(v)dv = p(v > 0) =

1
8

+
1
4π

(arcsin(ρ12) + arcsin(ρ13) + arcsin(ρ23)) (22)
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Taking expectation through the second row, one gets equation (30).
∫
t>0−G2dt =

∫
t1>0

∫
t3>0−t1[f(t)]+∞t2=0dt1 dt3

=
∫
t1>0

∫
t3>0 t1

1

(2π)
3
2

1

|Σ 1
2

exp(−1
2(σ11t21 + 2σ13t1t3 + σ33t23))dt1 dt2

= (2π|Γ∗2||Σ|)−
1
2

∫
t1>0

∫
t3>0 t1

1
(2π) |Γ∗2|

1
2 exp(−1

2(t1, t3)Γ∗2(t1, t3)
′)dt1dt3

= (2π|Γ∗2||Σ|)−
1
2 E[I[η1 > 0, η2 > 0]η1]

= 1
σ2

√
2π

E[I[η1 > 0, η2 > 0]η1]
= 1

σ2

√
2π

ϕ(Γ∗−1
2 )

(23)
where (η1, η2) is normally distributed with mean zero and variance Γ∗−1

2 . The
last but one line of (30) follows from the identity σ22 = |Γ∗2|

Σ−1 , the last line from
E[I[η1 > 0, η2 > 0]η1] = ϕ(Γ∗−1

2 ). Likewise,
∫
t>0−G3dt = 1

σ3

√
2π

ϕ(Γ∗−1
3 ). Let

ρ∗2 = σ13
σ1σ3

and ρ∗3 = σ12
σ1σ2

. Using the definition of Γ∗−1
2 and noting that σ33

|Γ∗2| =
1

σ11(1−(ρ∗2)2)
, one gets ϕ(Γ∗−1

2 ) = 1
2σ1

√
2π

√
1−ρ∗2
1+ρ∗2

. Finally




E[I[v > 0]v2
1]

E[I[v > 0]v1v2]
E[I[v > 0]v1v3]


 = Σ




1
8 + 1

4π (arcsin(ρ12) + arcsin(ρ13) + arcsin(ρ23))
1

4πσ2σ1

√
1−σ∗2
1+σ∗2

1
4πσ3σ1

√
1−σ∗3
1+σ∗3




(24)
and

E[I[v > 0]v1(v2 + v3)] = (σ12 + σ13)(1
8 + 1

4π (arcsin(ρ12) + arcsin(ρ13) + arcsin(ρ23)))

+ 1
4πσ1

√
1−σ∗2
1+σ∗2

(σ2 + σ23
σ2

) + 1
4πσ1

√
1−σ∗3
1+σ∗3

(σ3 + σ23
σ3

)
(25)

Let ṽ = (ṽ1, ṽ2, ṽ3) = (v1,−v2,−v3) and var(ṽ) = Σ̃ = (σ̃ij)3i,j=1. Naturally,
ρ̃12 = −ρ12, ρ̃13 = −ρ13, ρ̃23 = ρ23. Writing Σ̃−1 = (σ̃ij)3i,j=1 and using the
definition of the inverse, one also gets σ̃ii = σii for i = 1, 2, 3, σ̃12 = −σ12,
σ̃13 = −σ13, and σ̃23 = σ23, and consequently ρ̃∗2 = −ρ∗2, ρ̃∗3 = −ρ∗3. Hence

E[I[ṽ > 0]ṽ1(ṽ2 + ṽ3)] = −(σ12 + σ13)(1
8 + 1

4π (− arcsin(ρ12)− arcsin(ρ13) + arcsin(ρ23)))

+ 1
4πσ1

√
1+σ∗2
1−σ∗2

(σ2 + σ23
σ2

) + 1
4πσ1

√
1+σ∗3
1−σ∗3

(σ3 + σ23
σ3

)
(26)

and

E[I[v > 0]v1(v2 + v3)] + E[I[ṽ > 0]ṽ1(ṽ2 + ṽ3)] =
(σ12 + σ13) 1

2π (arcsin(ρ12) + arcsin(ρ13))+
1

4πσ1 (σ2 + σ23
σ2

)
(√

1−ρ∗2
1+ρ∗2

+
√

1+ρ∗2
1−ρ∗2

)
+ 1

4πσ1 (σ2 + σ23
σ2

)
(√

1−ρ∗3
1+ρ∗3

+
√

1+ρ∗3
1−ρ∗3

) (27)

1
2σ1

(√
1−ρ∗2
1+ρ∗2

+
√

1+ρ∗2
1−ρ∗2

)
= 1

σ1
√

1−(ρ∗2)2

=
√

σ33

|Γ∗2|

=
√

σ33|Σ|
σ22

=
√

σ11σ22−σ2
12

σ22

= σ1

√
1− ρ2

12

(28)
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and
E[I[v > 0]v1(v2 + v3)] + E[I[ṽ > 0]ṽ1(ṽ2 + ṽ3)] =
(σ12 + σ13)( 1

2π (arcsin(ρ12) + arcsin(ρ13))+
1
2πσ1(σ2 + σ23

σ2

√
1− ρ2

12) + 1
2πσ1(σ3 + σ23

σ3

√
1− ρ2

13)
(29)

Since
E[I[v1 > 0]v1] =

1√
2π

σ1 (30)

and

E[I[v2 > 0, v3 > 0](v2+v3)] = E[I[ṽ2 > 0; ṽ3 > 0](ṽ2+ṽ3)] =
1

2
√

2π

(
σ2 +

σ23

σ3
+ σ3 +

σ23

σ2

)

(31)
cov(I[v1 > 0]v1, I[v2 > 0, v3 > 0](v2 + v3)) + cov(I[ṽ1 > 0]ṽ1, I[ṽ2 > 0, ṽ3 > 0](ṽ2 + ṽ3)) =
σ1
2π (H(Σ) + G(Σ))

(32)
H(Σ) =

(
σ12
σ1

+ σ13
σ1

)
(arcsin(ρ12) + arcsin(ρ13))

G(Σ) =
(
σ2 + σ23

σ2

)(√
1− ρ2

12 − 1
)

+
(
σ3 + σ23

σ3

) (√
1− ρ2

13 − 1
) (33)

Let v1 = u, and (v2, v3) can take three values; in the first case (v2, v3) =
(y1, y2), in the second case, (v2, v3) = (−y2, y1 + y2), in the third case (v2, v3) =
(y1,−(y1+y2)). Call Σi the variance matrix of v in case i, H = H(Σ1)+H(Σ2)+
H(Σ3), and G = G(Σ1) + G(Σ2) + G(Σ3). Then cov(u+, z) = σu

2π (H + G).

H = σ−1
u

(
cov(u, y1) arcsin(ρu,y1)+cov(u, y2) arcsin(ρu,y2)+cov(u, y1+y2) arcsin(ρu,y1+y2)

)

(34)
This is because

σuH = cov(u, y1 + y2)[arcsin(σu,y1) + arcsin(σu,y2)]
+cov(u, y1)[− arcsin(σu,y2) + arcsin(σu,(y1+y2))]
−cov(u; y2)[− arcsin(σu,(y1+y2)) + arcsin(σu,y1)]

(35)

which rearranging terms, equals

cov(u, y1) arcsin(σu, y1)+cov(u, y2) arcsin(σu, y2)+cov(u, y1+y2) arcsin(σu, .y1+y2)

(36)
Likewise,

G = σy1(
√

1− ρ2
u,y1

−1)+σy2(
√

1− ρ2
u,y2

−1)+σy1+y2(
√

1− ρ2
u,y1+y2

−1) (37)

Finally,

cov(|u|, z) =
σu

π
(σy1h(ρu,y1) + σy2h(ρu,y2) + σy1+y2h(ρu,y1+y2)) (38)

with h(t) = t arcsin(t) +
√

1− t2 − 1. For all t ∈ [−1, 1], h(t) ≥ 0 and h(t) = 0 if
and only if t = 0. Consequently, cov(|u|, z) is non-negative and is zero only if u
is independent of (y1, y2)
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Proof of Proposition 3. Let’s show that

fp,z(t, h) =
m∑

i=1

∫ h

s=0
f i(t, s, s− h)ds (39)

the proof for fx,p,z is similar. We know that

P (|z − h| < ε, |p− t| < η) =
m∑

i=1

P (y ∈ Ai, |z − h| < ε, |p− t| < η) (40)

Take the case i = 1, let f1 = f be the density of (y1, y2, p) and show that

1
2ε

1
2η

P (y ∈ A1, |z − h| < ε, |p− t| < η) →
∫ h

y1=0
f1(y1, h− y1, t)dy1 (41)

If the equation above holds, the same will be true for i > 1 and equation (39)
and proposition (3) will be proven.

p(y ∈ A1, |z − h| < ε, |p− t| < η) = p(y1 > 0, y2 > 0, |z − h| < ε, |p− t| < η)
= p(0 < y1 < h− ε, |y2 − (h− y1)| < ε, |p− t| < η)
+ p(h− ε < y1 < h + ε, 0 < y2 < h + ε− y1, |p− t| < η)

(42)
As ε and η converge to 0, the term in the first line converges to f(y1, h− y1, t).
and the term in the second line to 0.

1
2ε

1
2ηp(0 < y1 < h− ε, |y2 − (h− y1)| < ε, |p− t| < η)

=
∫ h−ε
y1=0

[
1
2ε

∫ y2=h−y1+ε
y2=h−y1−ε

(
1
2η

∫ p=t+η
p=t−η f(y1, y2, p)dp

)
dy2

]
dy1

(43)

As η → 0, the term within the inner brackets converges to f(y1, y2, t), substituting
this expression in the equation and letting now ε → 0, we get

1
2ε

1
2η

p(0 < y1 < h− ε, |y2 − (h− y1)| < ε, |p− t| < η) →
∫ h

y1=0
f(y1, h− y1, t)dy1

(44)
The remaining term converges to 0, as is shown below.

1
2ε

1
2ηp(h− ε < y1 < h + ε, 0 < y2 < h + ε− y1, |p− t| < η)

=
∫ h+ε
y1=h−ε

[
1
2ε

(∫ y2=h−y1+ε
y2=0

1
2η

∫ p=t+η
p=t−η f(y1, y2, p)dp

)
dy2

]
dy1

≤ ∫ h+ε
y1=h−ε

[
1
2ε

(∫ y2=2ε
y2=0

1
2η

∫ p=t+η
p=t−η f(y1, y2, p)dp

)
dy2

]
dy1

≤ ∫ h+ε
y1=h−ε

[
1
2η

∫ p=t+η
p=t−η f(y1, θ(ε), p)dp

]
dy1

(45)

The 3rd line stems from 0 < h − y1 < 2ε, the 4th line stems from the mean-
value theorem. The term in the inner bracket of the last equation converges
to f(y1, θ(ε), t) as η → 0, which is bounded, hence when ε → 0, the integral
converges to 0. We conclude that, when ε → 0 and η → 0, 1

2ε
1
2ηp(h − ε < y1 <

h + ε, 0 < y2 < h + ε− y1, |p− t| < η) → 0.

Proof of Proposition 3. First, we show that

p(z ∈ H, p ∈ T ) = p(z ∈ H,−p ∈ T ) (46)
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The proof of p(z ∈ H, p ∈ T, x ∈ U) = p(z ∈ H,−p ∈ T,−x ∈ U) is similar.
The random variable z coincides with vi when y ∈ Ai, i = 1, . . . , n, (vi, y, p)
are symmetrically distributed around zero. Furthermore, vn+1−i = −vi and
[yi ∈ Ai] = [−yn+1−i ∈ An+1−i].

p(z ∈ H, p ∈ T ) =
∑n

i=1 p(y ∈ Ai, z ∈ H, p ∈ T )
=

∑n
i=1 p(y ∈ Ai, vi ∈ H, p ∈ T )

=
∑n

i=1 p(−y ∈ Ai,−vi ∈ H,−p ∈ T )
=

∑n
i=1 p(y ∈ An+1−i, vn+1−i ∈ H,−p ∈ T )

=
∑n

j=1 p(y ∈ Aj , vj ∈ H,−p ∈ T )
=

∑n
j=1 p(y ∈ Aj , z ∈ H,−p ∈ T )

= p(z ∈ H,−p ∈ T )

(47)

Hence,
fx,p,z(−u,−t, h) = fx,p,z(u, t, h)
fx,z(−u, h) = fx,z(u, h)
fp,z(−t, h) = fp,z(t, h)

(48)

Proposition (3)follows from equation (48) and the fact that

E[x|p, z](t, h) =
∫ +∞
u=−∞ u fx|p,z(u, t, h)du

P (x > λ|p, z)(t, h) =
∫ +∞
u=λ fx|p,z(u, t, h)du

E[x|z](h) =
∫ +∞
u=−∞ u fx|z(u, h)du

P (x > λ|z)(h) =
∫ +∞
u=λ fx|z(u, h)du

(49)
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Proof of Proposition 5. The price is p = λ(y1 + y2) and the trading volume is
z = 1

2(|y1|+ |y2|+ |y1 + y2|), hence observing p and z is equivalent to observing
y1+y2 = 2 βp and |y1|+ |y2| = 2 (z−β|p|) where y1 = β x is the informed trader’s
demand and y2 is the noise. Knowing that y1 and y2 are of different sign, we
can infer the value of y1 (and hence that of x) from the realizations of z and
p. In contrast, when y1 and y2 are of the same sign, observing z and p gives us
information only on y1 + y2.

Let a = y1 + y2 and b = |y1|+ |y2|. Since |y1|+ |y2| ≥ |y1 + y2|, b ≥ |a|, i.e.,
−b ≤ a ≤ b. If −b < a < b, then y1 and y2 must be of different signs, although
the sign of each variable cannot be determined. When (y1 > 0, y2 ≤ 0), (y1, y2) =
((a + b)/2, (a− b)/2), when (y1 ≤ 0, y2 > 0), (y1, y2) = ((a− b)/2, (a + b)/2)),

Let B(a, η) and B(b, ε) be the open ball with centers a and b and radius η
and ε.

p(y1 + y2 ∈ B(a, η), |y1|+ |y2| ∈ B(b, ε)) =
p(y1 > 0, y2 > 0, y1 + y2 ∈ B(a, η), |y1|+ |y2| ∈ B(b, ε))+
p(y1 > 0, y2 ≤ 0, y1 + y2 ∈ B(a, η), |y1|+ |y2| ∈ B(b, ε))+
p(y1 ≤ 0, y2 > 0, y1 + y2 ∈ B(a, η), |y1|+ |y2| ∈ B(b, ε))+
p(y1 ≤ 0, y2 ≤ 0, y1 + y2 ∈ B(a, η), |y1|+ |y2| ∈ B(b, ε))

(50)

That is,

p(y1 + y2 ∈ B(a, η), |y1|+ |y2| ∈ B(b, ε)) =
p(y1 > 0, y2 > 0, y1 + y2 ∈ B(a, η) ∩B(b, ε))+
p(y1 > 0, y2 ≤ 0, y1 + y2 ∈ B(a, η), y1 − y2 ∈ B(b, ε))+
p(y1 ≤ 0, y2 > 0, y1 + y2 ∈ B(a, η), y2 − y1 ∈ B(b, ε))+
p(y1 ≤ 0, y2 ≤ 0, y1 + y2 ∈ B(a, η) ∩B(−b, ε))

(51)

For a 6= b and a 6= −b, we can find η and ε small enough so that B(a, η) ∩
B(b, ε)) = ∅ and B(a, η) ∩B(−b, ε)) = ∅, so that

p(y1 + y2 ∈ B(a, η), |y1|+ |y2| ∈ B(b, ε)) =
p(y1 > 0, y2 ≤ 0, y1 + y2 ∈ B(a, η), y1 − y2 ∈ B(b, ε))+
p(y1 ≤ 0, y2 > 0, y1 + y2 ∈ B(a, η), y2 − y1 ∈ B(b, ε)) =
p(y1 > 0, y2 ≤ 0, y1 ∈ B((a + b)/2, (η + ε)/2), y2 ∈ B((a− b)/2, (η + ε)/2))+
p(y1 ≤ 0, y2 > 0, y1 ∈ B((a− b)/2, (η + ε)/2), y2 ∈ B((a + b)/2, (η + ε)/2)) =
p(y1 ∈ B((a + b)/2, (η + ε)/2), y2 ∈ B((a− b)/2, (η + ε)/2))+
p(y1 ∈ B((a− b)/2, (η + ε)/2), y2 ∈ B((a + b)/2, (η + ε)/2)) =

(52)
The last two lines stem from the fact that, since a + b > 0 > a − b, for η and ε
small enough, (a + b)/2 − (η + ε)/2 > 0 and (a − b)/2 − (η + ε)/2 < 0. Hence,
if f(y1, y2) is the density function of (y1, y2), then, dividing both the numerator
and the denominator by η + ε and taking the limit, we get:

limη,ε→0
P (y1>0,y2≤0,y1+y2∈B(a,η),y1−y2∈B(b,ε))

p(y1+y2∈B(a,η),|y1|+|y2|∈B(b,ε)) = f((a+b)/2,(a−b)/2)
f((a+b)/2,(a−b)/2)+f((a−b)/2,(a+b)/2)

limη,ε→0
P (y1≤0,y2>0,y1+y2∈B(a,η),y2−y1∈B(b,ε))

p(y1+y2∈B(a,η),|y1|+|y2|∈B(b,ε)) = f((a−b)/2,(a+b)/2)
f((a+b)/2,(a−b)/2)+f((a−b)/2,(a+b)/2)

(53)
To summarize, for −b < a < b,

E[φ(x)|y1 + y2, |y1|+ |y2|](a, b) = f((a+b)/2,(a−b)/2) φ((a+b)/2)+f((a−b)/2,(a+b)/2) φ((a−b)/2)
f((a+b)/2,(a−b)/2)+f((a−b)/2,(a+b)/2)

(54)
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Since y1 = βx with β = σε/σx, y1 and y2 are jointly normally distributed random
variables with the same mean and the same variance. Hence, they are identically
distributed and the distribution of (y1, y2) is symmetric. Moreover,

a = y1 + y2 = 2βp
b = |y1|+ |y2| = 2(z − β|p|) (55)

Since λ = 1/(2β), |a| < b is equivalent to |p| < λz and

(a + b)/2 = z + (p− |p|)β
(a− b)/2 = −z + (p + |p|)β (56)

Hence,

E[φ(x)|z, p](z, p) =
1
2

(φ(z + (p− |p|)β) + φ(−z + (p + |p|)β)) (57)

Plugging in φ(x) = x, we obtain E[x|z, p] = p. Moreover, E[x|p] = p too. To
see that note that because p = λ(y1 + y2) = λ(βx + ε) = 1/2(x + σx/σεε),
E[xp]/E[p2] = 1. Hence

E[x|z, p] = E[x|p] = p (58)

Let now φ(x) = I[x > s] with s > 0. Recall that |p| ≤ λz and we assume that
|p| < λz. When p > 0, z+(p−|p|)β = z > 0 or−z+(p+|p|)β = 2β(−λz+|p|) < 0,
and hence E[φ(x)|z, p](z, p) = 1

2φ(z). When p < 0, z+(p−|p|)β = 2β(λz−|p|) > 0
or −z + (p + |p|)β = −z < 0, and hence E[φ(x)|z, p](z, p) = 1

2φ(z − 2β|p|).
Consequently,

P [x > s||z, p](z, p) = 1
2I[z > s] for p > 0

P [x > s||z, p](z, p) = 1
2I[z > s + 2β|p|] for p < 0

(59)

Proof of: {
corr(|x|, z) = 0
corr(|p|, z) = 1

(60)

when ρ = 0.
In the models we work with, the traders’ demands, y1, . . . , yn+1 and the mar-

ket price p are linear functions of the state variables G1, . . . , Gn and ε. When
there is no private information, the demands and the market price are functions
of ε only: (in part 1 about the model, look at formula when ρ → 0).

yi = di ε , i = 1, . . . , n + 1 (61)

z =
n∑

i=1

y+
i =

n∑

i=1

(di ε)+ (62)

Let I and Ī be the sets so that
{

di > 0 if i ∈ I
di < 0 if i ∈ Ī

(63)

20



Note that we can just omit from the analysis the yi with di = 0.

(di ε)+ =
{

di ε
+ if di > 0

di ε
− if di < 0

(64)

Because the market clears, we have
∑n+1

i=1 yi = 0, that is,
∑

i∈I

di = −
∑

i∈Ī

di (65)

Using equations (64) and (65), we get

z =
∑n+1

i=1 y+
i

=
∑n+1

i=1 (di ε)+

=
∑

i∈I di ε
+ +

∑
i∈Ī di ε

−

=
∑

i∈I di (ε+ − ε−)
= d |ε|

(66)

where d =
∑

i∈I di 6= 0. Since the market price is also a linear function of ε, we
have |p| = c|ε|, with c 6= 0, which implies that corr(z, |p|) = 1. Naturally, since
E[x ε] = 0 and E[ε] = 0, we have corr(x, ε) = 0.
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cases (i) sign of y1 sign of y2 sign of y1 + y2 z vi
1 vi

2

1 + + + y1 + y2 y1 y2

2 + - + y1 −y2 y1 + y2

3 + - - −y2 y1 −(y1 + y2)
4 - + + y2 −y1 y1 + y2

5 - + - −y1 y2 −(y1 + y2)
6 - - - −(y1 + y2) −y1 −y2

Table 1: Decomposition of trading volume

There are three traders; y1 is the first trader’s demand, y2 is the second trader’s demand, the

last trader’s demand is y3 = −(y1 + y2). The trading volume is z = y+
1 + y+

2 + y+
3 . In each case

i, i = 1, . . . , 6, z can be written as vi
1 + vi

2.
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Figure 1: Characteristics of the trading volume distribution. Upper panel: E[z] (solid
line) and σz (dashed line) as information precision (ρ) increases. Lower panel: density of z for
ρ = .5 (solid line) and ρ = .2 (dashed line).
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Figure 2: Conditional tail probability conditioned on trading volume only. Upper
panel: P (x > .2|z) (black line) as a function of z and P (x > .2) (gray line). Lower panel:
(P (z > h) as a function of h.
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Figure 3: Relations between trading volume, price and asset value. Upper panel:
conditional density of x given z for extremely high volume (gray line) and unconditional density
function of x (black line). Middle panel: correlation between z and p (solid line) and between
z and x (dashed line) as information precision ρ increases. Bottom panel: correlation between
z and G1 (solid line) and between z and ε (dashed line) as information precision ρ increases.
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Figure 4: Conditional tail probability conditioned on trading volume and price.
Upper panel: P (x > .2|p, z) as a function of z when z = 0.5σp (solid line) and z = −0.5σp

(dashed line) and P (x > .2) (gray line). Middle panel: P (x > .2|p, z) as a function of p
increases for different levels of z: z = E[z] (the solid line), z = E[z] + 0.5σz (the dashed
line), z = E[z] − 0.5σz (the short-dashed line). Lower panel: P (x > .2|p, z) as a function of p
(horizontal axis) and z (vertical axis).
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Figure 6: Joint distribution trading volume and price or asset value. Density dunc-
tions of (x, z) (upper panel) and of (p, z) (middle panel). Conditonal density of x given z (lower
panel) for z = .25 (dashed line), z = 1.2 (solid line), z = 2 (gray line).

28



REFERENCES

Blume Lawrence, David Easley, and Maureen O’Hara (1994), ”Market Statistics
and Technical Analysis: The Role of Volume”, The Journal of Finance, Vol XLIX,
No 1, March 1994

Diamond, Douglas and Robert E. Verrechia (1981), ”Information Aggregation in
a noisy rational expectation economy”, Journal of Financial 9, p 221-235

Dupont, Dominique (1998), ”Equilibrium price with institutional investors and
with naive traders”, working paper, Federal Reserve Board.

Foster, A. (1995), ”Volume-Volatility Relationships for Crude Oil Futures Mar-
kets”, The Journal of Futures Markets, vol 15, No 8, pp. 929-951.

Foster, A. and S. Viswanathan (1993), “The Implications of Public Information
and Competition on Trading Volume and Price Volatility”, Review of Financial
Studies, vol 6, pp. 23-56.

Gallant, Ronald, Peter E. Rossi, and George Tauchen (1992), ”Stock Prices and
Volume”, The Review of Financial Studies, Vol 5, No 2, pp 199-242

Goodman, William (1996), ”Statistically Analyzing Volume”, Technical Analysis
of Stocks and Commodities, November 1996, p 21-28

He, Hua, and J. Wang, (1995) “Differential Information and the Behavior of Stock
Trading Volume”, The Review of Financial Studies, Vol 8, No 4, pp. 919-972.

Jain, P. and G. Joh (1988), ”The Dependence between Hourly Prices and Trading
Volume”, Journal of Financial and Quantitative Analysis, Vol 23, No 3, Septem-
ber 1988, pp. 269-282.

Karpoff, Jonathan M. (1987), ”The Relationship between Price Changes and
Volume: A Survey”, Journal of Financial and Quantitative Analysis, Vol 22, No
1, March 1987

Karpoff, J. M. (1988) ”Costly Short Sales and the Correlation of Returns with
Volume,” The Journal of Financial Research, vol XI, No 3, pp. 173-188.

Kyle, Albert (1985), ”Continuous Auction and Insider Trading”, Econometrica,
53, p 1315-1335.

Wang, Jiang (1992), ”A Model of Intertemporal Asset Prices under Asymmetric
Information”, The Review of Financial Studies, p 249-281

Wang, Jiang (1994), ”A Model of Competitive Asset Trading Volume”, Journal
of Political Economy, vol 102, No 1, p 127-168

29


