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1 Introduction

Suppose that we want to insure ourselves against the loss associated with the
occurrence of an unfortunate event E. This could for example be the event
that the development of some product has to be blown off and the loss results
from the development costs which accumulated so far. We suppose that the
occurrence of the event can be modelled by the fact that a stochastic process
S, is at time T in a certain set. (The stochastic process might for example be
the process of estimated total gain of selling the product minus the estimated
development costs. T might be some time point where the management evalu-
ates the development.) We suppose further, that there exists an asset traded on
the market with a price process S, which is highly correlated to our process S..
We investigate in this paper how we can insure against the loss associated with
the occurrence of the event E by trading in the correlated asset S, and a bond B.

This paper is therefore concerned with insurance against risks concerning
assets not traded on the market, using options on a correlated asset traded on
the market. We consider the important case that the price process of the asset
not traded can not be observed between the starting time ¢ = 0 and the constant
stopping time t = T'. The risk-measure we consider is the shortfall probability,
which is in general used to study partial hedging (see the papers [3] and [4] of H.
Foellmer and P. Leukert). We will show that under certain conditions (within
the Black-Scholes model) the best insurance against such risks is a binary option
on the correlated asset. To get a better insight into the economical situation
under which such an insurance is desirable we give two examples:

Example 1: Let S denote the stock of a pharmaceutical company and sup-
pose that this company has developed a new drug which we denote by S. The
market is well informed about this drug and there are only a few clinical trials
open. We suppose that there exists a price process S, which describes the ex-
pected discounted total income the company will get by selling the drug in the
future. This process can of course not be observed. The pharmaceutical com-
pany now faces the risk that the outstanding clinical trials are negative, which
would cause the value S, of the drug to decrease dramatically. The price process
S, of the stock is the sum of the value of S, of the drug under consideration, the
value of all the other products of the pharmaceutical company on the market,
and the projected value of new research projects of the company. If we sup-
pose that the market gets only little information about other research projects,
but nearly all information about the clinical trials on the new drug during this
phase of last clinical trials, there is a high correlation between the process S,
and S, during the trial-time period. In particular, if the value of the drug S
dramatically decreases we know that with high probability also the value of the
stock S will dramatically decrease. As already mentioned, the price process S,
can not be observed. The pharmaceutical company does not try to estimate S,



itself using the outcome of the clinical trials, but it trusts in the opinion of the
market which is given by S,. Therefore the pharmaceutical company decides to
insure against the risk that the trials are negative (i.e. that the value of $ at
some time T after the clinical trials becomes smaller than some constant ¢) by
buying a binary option H on its own stock S (or another stock whose price is
assumed to be highly correlated with §). We will show in this paper, that in
the context of the Black-Scholes model this is the best action the company can
take in the following sense:

Suppose the company is willing to invest a certain amount of money in op-
tions on its own stock to insure itself against the risk that St falls below a
threshold value ¢. If the company wants to maximize the probability that it
does not lose more than a prescribed amount of money in case of a negative
outcome of the clinical trials, the best action the company can take is to buy a
binary option on its own stock §.

Example 2: Suppose that a mining company wants to exploit a certain
mining area. In order to do this, the mining company has to make some in-
vestments. The mineral M which the mining company would produce after this
investment is not traded now, but there exists another mineral M with nearly
the same compounds and structure which is already traded on the market. We
suppose therefore that the price process S, of the mineral M is highly corre-
lated with the price process S, of the mineral M. The mining company faces
the following risk: If the price of the mineral M after the period of investment is
below the production costs ¢ then the company will make losses. We will show
below that a binary option on M is the best action the company can take if it
wants to invest money in options on mineral M to insure against this risk.

From the viewpoint of real options theory (see the book of M. Amram and N.
Kulatilaka (1999) [1]) the investment the companies in example 1 and 2 should
make is a real option. A frequently asked question concerning real options is
whether we should buy it (make the investment) or not if the price for it is given.
However, it is not possible to answer this question from no arbitrage arguments
only. Therefore, this article considers instead the question of how we can deal
with the risk which arises from buying a real option most efficiently. We will
obtain explicit formulas for the relevant binary options in the cases S < ¢ and
St > ¢ which are most interesting from a practical point of view.

How important real options are in practice can be estimated from the articles
of T. A. Luehrman (1998) (6] and of M. Amram and N. Kulatilaka (1999) {2].
In these articles it is clearly pointed out how real options can be used as tools
to decrease the risks of management decisions and how investment strategies
can be translated into the terminology of real options. The present paper now
shows how the risk of investment can be further decreased by insuring the real



option by some option traded on the financial market, and by this transferring
the risk to the market. (Of course in practice the company will have to pay a
risk premium for this transfer, which is not considered in our model.)

In this paper we do not use the heavy machinery of stochastic analysis.
Instead we make use of a version of the Neyman-Pearson Lemma, some easy
lemmas on conditional expectations and the fact that the Black-Scholes Model
is complete. By this we circumnavigate all technical difficulties.

We remark finally that in contrast to the paper {3] we do not minimize
the shortfall probability of a strategy on a stochastic process with respect to a
constraint on its equivalent martingale measure; i.e. we do not minimize the
shortfall probability of a strategy based on a process observable at any time
with respect to this process. Instead we minimize the shortfall probability of a
strategy based on an observable process with respect to another not observable
process. The price for this more general situation is that we can only consider
binary options while in [3] arbitrary options are considered (and the case of
a European call is explicitly calculated in the Black-Scholes Model). Another
important difference to the paper [3] is, that our method developed so far only
works if the market given by the observable process and the bond is complete
while in [3] also incomplete markets are considered.

2 The Setting

Let (2, 7, IP) be a probability space and let W and W.be two standard Brownian
motions defined on this space. Suppose that W and W are correlated with fixed

correlation p € (~1,1) \ {0}; i.e. there exists a standard Brownian motion W+
(also defined on Q) such that W+ is independent of W and

= oW + /1 - p2W+. (1)

Equivalently W can be expressed as

W= oW +/1-p2W+

with W+ a standard Brownian motion independent of W.

We denote by (.Ft)ge[o 7] the natural (right continuous, saturated) filtration

generated by W up to time T. We assume that Wy = Wy = 0 so that Fy
becomes trivial.

Let 5,5 be two assets (S not traded and § traded). We denote by S, and
S, the price processes of S and S and by S; and S; these price processes at time



t. Let B denote the bond. For simplicity of notation we assume in the following
that the interest rate is equal to 0 and that the price processes are given by

gﬂ‘?i:de, So=1and
St

dS: - &

St ¢ I}

More general situations are considered in the appendix. As can be easily
verified by Itd’s formula (see the book of Steele 2001 [7] Chapter 8) solutions of
these equations are given by

S; = e"t—% and 5} = ew“%.
These solutions are also unique (see [7] Chapter 9.4).

Thus we obtain that the joint distribution of In(S7) + £ and In(S7) + Lis
multivariate normal and given by

In(Sp)+ < 0 T pT
( In(St) + % N{lo oT T : (2)
From (2) the conditional distribution of In(St) + 72' under the condition that
In(St) + % = a can be inferred. According to Exercise 3.3 of [7] we obtain that

r [ln(ST) + g— €.

In(S7) + 2 =a] ~ Np,T1-). ()

We are interested in the following situation:

Suppose we would like to hedge a binary option on S; i.e. we would like to hedge
H =14,{(Sr) (with Ar a Borel set in {0, c0)), but at time ¢ € [0,7] we are only
given the information (gtf)tre[o,t] and we are only allowed to invest in the bond
B and in the stock 5. So we are interested in the trading strategies ¢(t) =
(¢B(t), 05(t)), where ¢a(t) denotes the amount of money held in the bond and
¢5(t) denotes the number of stocks held at time . We assume that $(t) is a
predictable process with respect to the filtration {F}), that it is self-financing and
at any time ¢ € [0, T) of non negative value Vq‘f’ = ¢_§(t)5'¢ + ¢p(t). We further
suppose that the initial wealth is given by some fixed value vy = V¥ € [0,1].
We call such strategies admissible and denote the set of all admissible strategies
by ®. We note that a self financing strategy fulfills the following stochastic
differential equation:

d(¢5(t)S:) + dés(t) = d5(t)dSe ,  $5(0)So + ¢5(0) = vo.



We introduce further the following notations:
We denote by IR the real line and let R, = [0,00). By B respectively B we de-
note the family of Borel sets on IR respectively IRy. We let pr, : ROT - R be
the mapping which projects R'%T) onto its s-th coordinate; i.e. pr, (=t )eero,m) =
5. We denote by BEE’T] the o-algebra of subsets of ]RE’T] generated by
Use[o,'r] P”'s_l (B4).

3 The Problem and the Main Theorems

We consider a set Ar € By, the binary option H := 14,(S7), and the initial
value V¥ := vy € [0,1]. We would like to solve the following problem: What are
the strategies ¢ such that the shortfall probability i.e. the probability that the
value VT‘? ig strictly smaller than H is minimized within the class of strategies
$7

To be more precise: Find a strategy ¢ which is optimal with respect to the
criterion:

min {IP(V;¥ < 14,(87)) : ¢ € 8} } (@)
subject to the constraint Vod’ =up.

We will prove the following theorems:

Theorem 1: Given T > 0, Ar € By, and v € [0,1], there exists a set
Cr € By and an admissible strategy ¢ = (@g, ¢3) which completely replicates
1o-(St) and solves (4).

In some special cases it is possible to obtain the solution of problem (4) in
a more specific form:

Theorem 2: Let Fr be the distribution function of N(0,T), letc = e'r )%
and ¢ = efr (1=v)-% | Then the following relations hold:

If p > 0 and At is of the form (0, a], then the set Cr in Theorem
1 is given by Cr = (0,7¢] a.s.

If p > 0 and A is of the form [a,+0c0), then the set Cr in
2. .
Theorem 1 is given by Cr = [¢, 00) a.s.

set Cr in Theorem 1 is a.s. bounded and a.s. bounded away from

{If p > 0 and Ap is bounded and bounded eway from 0, then the
3
0.



If p < 0 and Ar is of the form (0, a], then the set Cr in Theorem
4 \1is given by Cr = [2e™7,00) a.s.

5 If p < 0 and A7 is of the form [a,+00), then the set Cr in
Theorem 1 is given by Cr = (0,1e77] a.s.

set C'p in Theorem 1 is o.5. bounded and a.s. bounded away from

{If p < 0 and Ar is bounded and bounded away from 0, then the
6
0.

Notice that € and ¢ are independent of a and |p|.

Theorem 3: Let c,a,T > 0 be fizred. Let p be the correlation of W and
W, let AT = (0,0, and let ¢ be the solution (granted by Theorem 1) of (4) for
vo = Epp(li0,e](ST)) + €. Then the shortfall probability Err(p,¢,a,T) defined
by Err(p,e,a,T) := IP(VT‘? < 1(0,a)(ST)), tends for p — 1 quicker to 0 than any
polynomial in (1 — p).

Since V.f? > 0 by the admissibility of ¢ and because of the special structure
of H the constraint optimization problem (4) is equivalent to:

min {P(VE < 1|14,(S7) =1} : ¢ € &} }
subject to the constraint V¥ = vo

which is further equivalent with

max {IP(V$ > 1| 87 € Ar) : ¢ € 8} (5)
subject to the constraint VO¢’ =vp.

We denote the wealth at time ¢ along a path w under the strategy ¢ by
V2 (w). We let Cy € RI®T] be the set of all paths w of 5. for which Vq‘f’ (w) > 1;
ie.

Cp = {w e ROT: vE(w)>1}.
Notice that for all ¢ which solve (5) we have

P(S, € Cy | St € A7) =P(V2 > 1| S € A7) } 6)
and IP(S, € Cy) < wo

We try to solve the more general optimization problem (recall that we as-
sumed v € [0, 1])



max {P(5. € C | St € Ar) : C € BY'™) )
subject to the constraint IP(S, € C) = vp.

If we can find a set C which solves (7) and for which there exists a ¢ such
that C = C, this ¢ fulfills (6). By (6) and the fact that it fulfills IP(S, € C) = vp
this ¢ is also a solution of the optimization problems (5) and (4). We will show
in this paper that it is indeed possible to find such a set C and a ¢ with C = Cj
and thus obtain a solution of (5) and (4).

Problem (7} is now (partially} solved by an application of the following
Proposition, which can be viewed as a special version of the Neyman-Pearson
Lemma.

Proposition 1: Let Q and R be measures on a measurable space (1, D).
Let R be nonatomic and @ absolutely continuous with respect to R. Then for
any vo € (0,1) there exists a unique 8 € [0, 00) such that the family C of ail sets
C € D which solve

max {Q(C) : C € D} subject to the constraint R(C) =vp (8)

is nonempty and equals the family of all sets C € D which fulfill
{weﬂzﬁ%(w)>ﬁ}§C§{w€ﬂ:%%(w)2ﬂ} (9)
and R(C) = vp.

Proof: This Proposition can be be proved in an analogous way as the
Neyman-Pearson Lemma. For a proof of this Lemma see for example the book
of E.L. Lehmann [5]. O

We define probability measures @7 and R on (]REE’T], B!f ’T]) by
Q47(D) :=P(8, € D | Sr € Ar)} and R(D):=1P(S, € D) (10)

for D e B!'?’T]. We will show below in the proof of Theorem 1 that R and Q47
are nonatomic and that Q4T is absolutely continuous with respect to R.

If we let @ = R%7), D = BI7T] @ = QAr, then by definition (10) the
optimization problems (8} and (7) become identical and thus by an application
of Proposition 1, reformulating (9) in terms of (10) we get that there exists a

unique # € R, such that aset C € B!E‘T] is a solution of (7) if and only if



(Let W and W be correlated Brownian motions with correlation
p € (~1,41)\ {0}. Let § and S be assets with price processes
given by:

s, _
(MGS) { 5, =W+, 50)=1 and

ds - -
Bt _ W, + 4, 50) =1
N

Land let B be a bond with interest rate e® — 1.

Note that S and B form a complete financial market and that in analogy
with (2) we obtain:

In(S7)+ L — uT 0 T T ,
5 ~ . 2
(1n(sT)+§—ﬁT NilojlorT (2)
Since all the results derived in this paper are derived from (2) and the fact

that the market formed by S and B is complete, Theorems 1-3 remain essen-
tially true:

Theorem 1’: Theorems I and 8 remain true under MGS.

Theorem 2°: Under MGS Theorem 2 remains true if we denote by Fr the
distribution function of N{(uT,T) instead of N(0,T).
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dQA”
9 (@) > B} €€,

Cop = {(Zt)ecjom € ]R!E'Tl :

d Aq (11)
€ € {@hem € BET: 247 (@)yeom) > B) =: Cs
and R{C) =g

P,
So to solve the problem (7) we only have to calculate d—o&% and 3 and then
choose C according to condition (11).

In the next section we show that there exists a solution C of our optimization
problem (7) which is of the form C = {(z¢)iecpo,m) : 27 € C1} = pri!(Cr) for
some set Cr € B,..

4 'The proof of Theorem 1

For the proof we need some Lemmata:

Lemma 1: Let Q and R be probability measures on (Q, D) and let Dy € D
be o sub o-algebra. Suppose that

VD eD, IEg(lp|Dr)=Er(lp|Dr) a.s.

and that Q |p, is absolutely continuous with respect to R [p,. Then Q is
absolutely continuous with respect to R and

dQ _ dQ o,
dR ~ dR|p,

Proof: We have to show that for all D € D

_ [ dQ oy

and do this by the following calculation:

QD) = Eq(lp) = Eq,, (Eq(lp | D7) = Eq)p, (Er(lp | Dr))

f Er(lp | Dr)dQ |p, = / IER(IDlDT)jg I?

aQ |p _ aQ |
Egs, (dR fD: Er(1p | DT)) =gy, (]ER (mlb | Dr

dQ |’D'r ) f dQ |'DT
Eg | —1 = ——LdR
R (dR lor )~ JpdR|p;

dRr |DT




Here the 37 equality follows from the hypothesis and the 5% and 7" equalty
follow since %{%’r’- is Dr measurable.0

Next we define for Ar € B the measures Qi}ﬂ" and R on (R, By) by

Q#T(DT) = II?(S'T € Dr | St € Ar) and } (12)
Rr(Dr) :=WP(Sr € Dr) with Dy e B, .

For ease of notation and calculations we will also consider the measures Q%T
and R which are defined on (IR, B) by

Q47 (Dr) = Q#"({a : In(z) + 7 € Dr})

and
Rr(Dr) := Rr({z : In(z) + % eDr}).

If we let In(Ay) + £ := {In(z) + T : 2 € A7} we obtain

QA#’T(DT’\) =] ]P(ln(.f;'T) + % e Dy | ln(ST) + rg = lﬂ(AT) + %), } (13)
Rr(Dr) =P(In(S7) + T € D7) for Dr e B.

Since by (2} the random variable ln(ST)+% is N(0,T) distributed and by (3)
the conditional distribution of In(S7) +% under the condition that In(S¢)+ £ =
ais N{ap,T(1 — p?)) it is easy to obtain from (13) that the measures Q7 and
Ry are absolutely continuous with respect to Lebesgue measure A on (IR, B)
and their densities are given by

2
(2—pa) 2
f+:>c 1 e 2(1-p2)T 1 &=
o 2nT

: prd
dQpT _ Jow Vmmaoh T AT a3 (D
dx o - 3
f—oc s X Lngagy+ 3 (9) dAla) (14)
dRr _ _1_ %7
dXx 2rT )

Thus Q?.T is absolutely continuous with respect to Rz and the Radon-
Nykodym derivative is given by:

_ (:—Ea!2 .2.:':.
d(QA";‘T)( ) _ ::;?e 20i—p%}T g~ 2T ]‘ln(AT)+§(a) dA(a)

T 5 pos e 5
d(Rr) VI= e #r (12637 1,4,y 5 2 (a) dA(a)

From this we get immediately:

(15)




Lemma 2: The measure Ry is nonatomic and the measure Q#T is absolutely
continuous with respect to Ry. The Radon-Nykodym derivative is given by

LT VR & TEHT e Liary 3 (0) @)
d(Rr) V=g 3% [, h1lnmﬂ+¥( a)d\(a)

Lemma 3: Let QAT and R be given by (10) and let By C B!E’T] be the
o-elgebra generated by the projection pro; i.e. let

D e Br © D=pr;' (D7) for some set Dr € By.
Then we have for all D € D
IEQM-(ID | By) = Er{lp | Br) a.s

Proof: All equalities in this proof are to be considered in the almost sure
sense.

QA7(D | Br)((z1)sepo,ry) = P(Se € D | St € Ar, ST = 27)

B ( In(S,) + %e D)+ L | )
= In(Sr) + L € n(4r) + T,n(S7) + T =In(z7) + £
]P( € In{D) + ‘W € In(Ar) +3 T ,W(T) = In(z7) + 221)
= ln(D
= P ( 1-— pzWJ' €In(Ar) + ,W(T) =In(zr)+ % )
_p ( Weln(D)+ T | )
= lin(er) + I) - VIZ@WL € In(Ar) + I, W(T) = In(er) + 5
Weln(D)+ |
) ]P( Wi g AntE et ) 1(7) = In(ar) + § )
= IP (W € In(D) + I W(T) = In{zr) + T)
= (ln(S.) €ln(D) + 3 T 10 + % = In(z7) + g)

= P(5 € D |87 =z7) = R(S, € D | Br)({(ze)eeo,1)-

Here the 7t* equality holds since W and W+ are independent.}

10



Remark: The measures Q#T and Ry are related to Q4T and R by

#7(Dr) = Q*7 |, (pry(Dr)) and Rr(Dr) = R |5, (pry' (D))  (16)

for all Dr € By. Therefore we get by (16) and Lemma 2 that dQ47 |g, is
absolutely continuous with respect to dR ]z, and thus by (16)

dQA™ | dQ7”
ﬁ((%):c[o,n) = dRT; (zr) as. . (17)

An application of Lemma 1 and Lemma 3 with i = ]R[,L_)’T], D=B,, Dr=08r
and Q = QAT gives that

dQAT . dQA'r dQAr |Br
R~ exists and _dR“((xt)tE[O.T]) = "a"RB_T((xt)te[D,T]) as.

which together with (17} gives

Ar Ar
ng ((ze)eco,m) = ddRTT (z7) as. . (18)

We thus see that there exists a version of d—oé%((:cg)te[o‘ﬂ) which only depends
on the last coordinate zr of (¢):eo,1). If we use this version in the definition of
Csp and Cg, then whether a point (z;)icjo,7) is in the set Cs 5 or C»5 defined
in (11), depends only on its last coordinate; i.e. it is possible to choose C» 3 and
C> 3 such that we have

Csp = pr7'(prr(C>p)) and Csp =pr* (prr(Csp)) i (19)
ie. Csp,Cop€Br.

Since R is nonatomic by Lemma 2 and Rr(prr(D)) = R |, (D) for all
D € By we see that also R |g, is nonatomic.

By (19) the sets C.3 and C»p are Br-measurable. We conclude from (11)
that

R |5, (C>p) <vo < R |5y (Cop) - (20)
Since R |g, is nonatomic we conclude from (20} that there exists a Brp-
measurable set C' such that C.p € C € Cyp and R |5, {(C) = vp. Since

Br-measurable sets are of the form C = {{(2:)iefo,1}) : T € Cr} We see that
there exists a solution of (11) and thus of (7) of the desired form.

We thus obtain the following Lemma:

11



Lemma 4: The measure R defined by (10) is nonatomic end the measure
QA defined by (10) is absolutely continuous with respect to R. The Radon-

Nykodym derivative d—?% : R%T) s R can be chosen to depend only on the
last coordinate and is given with respect to this coordinate by Lemma 2. The
sets Csp and C>g can be chosen to depend also only on their last coordinate;
i.e. they can be chosen to be elements of BY. There exists a set C € By which
solves (7); i.e. there exists a solution C € RI®T) of (7) which depends only on
the last coordinate. There exists a trading strategy ¢ which replicates 1c(S5,)
and this strategy solves (4).

Proof: That R is nonatomic follows from Lemma 2 and (16). That Q4
is absolutely continuous with respect to R is a consequence of Lemma 2 and

{18). By {18) we also know, that d—o&; : RI%7) — R can be chosen to depend
only on its iast coordinate and that again by (18) it is given with respect to this
coordinate by Lemma 2. That the sets C',3 and C>a can be chosen to depend
only on their last coordinate is the assertion of {19), and that there exists a
solution C' of (7} which depends only on its last coordinate is the assertion of
the paragraph preceding the Lemma, which is based on (20). Thus 1z is a
binary option on § and by completeness of the Black-Scholes model there exists
a trading strategy ¢ which completely replicates 1¢(S,), if the initial wealth vg
equals IP(S, € C) as assumed in (7). This trading strategy ¢ therefore solves (4).

Proof of Theorem 1: Lemma 4 implies Theorem 1 if we let Cr := prr(C)
with C given by Lemma 4. Then the trading strategy ¢ given by Lemma 4
replicates 1o, (ST) = 1¢(S,) and solves (4).

5 Further Results

We prove in this section the theorems 2 and 3.

Lemma 5: Let a function f : R? - IR and a measure u on (IR, B} be given,
such that f and p fulfill the following hypotheses:

(i}  f is strictly positive

For all y € IR the function x — f(x,y) is strictly unimodal; i.e.
(ii) F(.,y) possesses one and only one local extreme point x, which is
a global mazimizer and y <y = z, < Ty.

(i)  limg g0 flz,y) =0 forallye R

12



(iv) p is absolutely continuous with respect to Lebesgue measure and

f_ ” flzy)dp(y) =1.

oo

For A € B we denote by fa : IR — IR the function

fale) = [A F(z9)duly) (21)

The following conclusions hold:

strictly monotone decreasing, limg——oo fa{z) = 1 end

If A = (-o0,a) for some & € IR, then fa is
(1)
limg,. 400 falz) =0.

If A = (@, +0c0) for some & € IR, then f4 is strictly mono-
(1) tone increasing, limg, . oo f4(z) = 0 andlimztoo f4(7)

1.
If A is a bounded subset of IR and u(A) > 0, then fa(z) >0
foranyz € R and lim,_. 400 fa(z) =0.

(IIT) {

Remark: (ii) implies that f(.,y) is strictly monotone increasing on {—00, 2y}
and strictly monotone decreasing on [z, +00).

Proof: We show first:

The measure u does not vanish on sets of the form (—oo, &)}

and (&, +oc0). 2

We prove this fact by contradiction. Suppose that u(—co,4) = 0 for some
@€ R. Thenforall z € R

oo +00
[ flz,y)duly) = [ flz,y)dp(y) = 1. (23)

—0o0

For y > & we get by hypothesis (ii} (see the preceding Remark) that z, > x4
and thus that f(.,y) is strictly monotone increasing on (—o0,zs) for y > @.
But then we must also have that z — fa°° Flz,y)du(y) is strictly monotone
increasing on (—co, &) which contradicts (23). So we have proved that p does
not vanish on sets of the form {—oo, &@). An analogous argument shows that also
the measure of sets of the form (&, co) is strictly positive and thus (22) is proved.

13



As another important fact we note that

fio0,8(Z) = 1 = fla,.c0) (%) - (24)

This fact follows directly from (iv).

We prove now (I).
To prove (I) we show first that for & € IR fixed the function

£ fiooa)(2) = / f(@,y)du(y)

[—oc,a]

is strictly monotone decreasing on each of the intervais [z, 00), (—00,z3]. That
f—co,a)(z) is strictly monotone decreasing on [zz,00) can be seen as follows:

Since by hypothesis (ii) we have that for y < & the unique local maximizer
zy of f(.,y) is smaller than z;4; i.e. zy < 5 we see that for y < & the functions
f(.,y) are strictly monaotone decreasing on [z, 00). Therefore and since by (22)
the measure p does not vanish on sets of the form (—o0,d] we get that also the

function f(_4 = _[_“oo F(.,y)du(y) is strictly monotone decreasing on [zs, 00).

An analogous argument shows now that fiz o0)(z) is strictly monotone in-
creasing on (—00, 23] and since by (24) we have f_oo 3] = 1 — fla,00) We see that
f(—o0,a) 18 also strictly monotone decreasing on (—o0, 7).

We show next that limgco fi—se,a)(x) = 0:

We know by hypothesis (iv) that f(_. s(z) <1 and by hypothesis (ii} that

wEp > . > T2 > X1 > x5 and y € (—oo, &] implies tha.t} (25)

v > fl21,9) > flz,4) > > flEa,y) > o
We choose now an arbitrary monotone increasing sequence (), ., n € R
with 1 > zz and lim,_.oZT, = oc. Then by hypothesis (iii) and (25) above
the sequence (f(zn,y)), v decreases for each y € (—oo,a] monotone to 0.
Since ffm flz, 0)du(y) <1 and f(z1,y) > f(zn,y) = 0 we get by dominated

convergence that the sequence (f(—ooaj(Tn) := ffoo f(zn, ¥)dp(y)) e N tends
to 0. Thus we have proved that limy_co f(—co,4)(z) = 0.

Analogous we can show that lim; . _ oo fia,00)(%) = 0. And by (24) we get
from this that lim;— - f—c0,a)(z) = 1.

Thus (I} has been proved.

Since by (24) we have fiz 00) = 1 — f(~00,a) We obtain (II) from (I).
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We finally prove (III).

Suppose that A is bounded and p(A) > 0. Then fa(z) = [, fz,y)duly) >
0, since f(x,y) > 0 for all z,y € IR by hypothesis (i}. Let now a,b € IR be such
that A C [a,b]. Then

0 < fa(z) £ flap)() =1 = f—co,a) — fitio0) (26)

Since liMgm —co f{—o0,3) = 1 and limzoo fip,00) = 1 we obtain from (26) that
limg 400 fa = 0.

Thus the Lemma has been proved. O

Lemma 6: There exists a version of the conditional Probability P(n(S7) +
L € D |In(S7) + £ = y) =: Q%(D) such that Q% is absolutely continuous with
respect to Rt and
a _ = ev}? +;3.
dQy) _ b th
d(Rr) V1i-p?
Proof: The result is an immediate consequence of (15) if we consider a

proper sequence of sets (A%), N which converges {with respect to the Haus-
dorff metric) to y. O

Lemma 7: Let p > 0. Let f : IR2 — IR be defined by
z 2 =

R e A
V1-p?

and let u(y) = ‘/;T—Te‘%;'d)\(y). Then f and p fulfill the hypotheses of Lemma 5.

flz,y) =

Proof: Hypothesis (i) of Lemma 5 follows from the strict positivity of the
exponential function. Since we assumed p > 0 an easy calculation shows that
(ii) holds with z, = %. It is also not difficult to see that (iii) holds if we keep
in mind that we assumed p > 0. So it remains to prove that hypothesis (iv)
is fulfilled. That p is absolutely continuous with respect to Lebesgue measure
follows from its definition. To show that [ +:§ Flz,y)du(y) = 1 we note that

Q}‘“"*m) = R (which follows easily from the definition of Q, R, Q and f?,).
So the integral can be calculated as follows:

z - py)2 2
+o0 c_étl_pg)]_'f*-g’r 1 e_gdA( )
+oo —c0 ]_—-_,;;2 2nT y
| s = S
—0Q
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= : 2
+oo B HEET e=¥r dA(y)
-0 ;;1—p2 ;21‘|’T y

to _1 e g;d)\(y)

=00 ogT
dQF =) _ dikr) _,
d(Rr) d(Rr)

Proof of Theorem 2: We will only prove the Theorem in case 1; i.e. in the
case Ar := (0,a). We show first that there exists ¢ € IR such that Cr := (0,7
fulfills condition (11). By Proposition 1 and equation (18) it is sufficient for this

{0,a]
to show that %—)—l is monotone decreasing, which is clearly equivalent to the

d(o(—oc.lntanfl) o
fact that _TT(!%T)—' is monotone decreasing. But this is a consequence of
Lemma 5 and Lemma 7, since if we let f(.,.) and u be defined as in Lemma 6,

then

d(QgF-oo,ln(aH%}) e /ln(a)+%

d(Ry) —o0
which is by conclusion (I) of Lemma 5 (with & := In(a) + %) a monotone
decreasing function. So we proved that Cr is of the form (0,¢] and thus it

remains only to show that ¢ = efr "(v)-%  But since by Lemma 4 and Theorem
1 the set pr3'((0,¢]) fulfills (7) we have by (2)

f(z,y)dply)

Fr(ln(@)) + % =1P(St € (0,8) = P(S, € pr7'((0,8)) = vo -

Proof of Theorem 3: We know by Theorems 1 and 2 that the set C'r which
determines our optimal hedge equals a.s. pr3' ({0, ¢(€)]), with c(€} a real number
depending on &. Since St and St possess the same (marginal) distribution, our
assumptions imply that

Rr((0,c(e)}) = vo = Ep(H) +¢ = Rr((0,a]) +&. (27)
Since Ry is absolutely continuous with respect to Lebesgue measure and ‘%@1 is
bounded, we obtain from {27) that c¢(¢) > a + €k for a suitable constant & > 0.
The hedging error Err(p,¢,a,T) is now given by

Err(p,e,a,T) =P (Vf <H) =1-P (V¢ > 1|57 € (0,0])
=1 1P(5‘.€C¢|ST€(0,G])=1—]P(.§T€(O,c(e)]|ST€(O,a})
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< 1 ]P(.§'T€(0,a+5k]IST€(O,a])=]P(5'T€[a+sk,oo)|STe(0,a])

P (m(S'T) + % € In(a +¢k) + %,oo)

In(Sr) + % € (—o0o,In(a) + %l)

= er oo;In(a}+ ¥ ([ln(a +ek) + §,+oo))

AL— n s T
< Qe ([ln(a) +3 +eln(a+k) - ln(a)),oo))
sln(e)+ % T
< @7 [In{a) + 7 + &(In{a + k} — In(a)), 00)
- T ~
3 f+00 dQ!F(“)"'z dR7 I
In{a)+ £ +e(Inf{e+k)—In{a))} dRT dA
z—p{in{a i )2
f-l-oo e_( ::lx (p).;-T ) d,\( )
= ——d\(x
in(a)+ L +e(In(a+k)=In{a)) /1 — 2V2rT
_ Onga)+ T +eQnfe+k) —Intah - piina)+ T2 _ (&(n(atk)~Infa)})?
< e 2(1-p%)T < e M1 p2)T
- V- p*V2rT V1-—p2V22T

Here the 37¢ equality follows by Theorem 1, the 4t* by Theorem 1 and Theorem
2; the 1*t inequality follows since by (27) c(€) > a+<k. The T** equality follows
from (13), the 27¢ inequality follows by concavity of the logarithm and the 3™¢
inequality by the definition of Qg. in Lemma 6 and an application of Lemma
7 and Lemma 5. The last equality follows by the definition of QE".L and the 4th
inequality follows easily from the well known fact that fory > 0, et > I et
Finally, since £,k > 0 an easy calculation shows that the last expression tends
for p — 1 faster to 0 than any pelynomial in 1 —p. O

6 Appendix

We reinvestigate theorems 1-3 in a slightly more general setting (MGS). We
allow drift terms g and j in our model:
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