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1 Introduction

In this paper we prove a functional analytic theorem (Theorem 4) which can be
considered as a general Version of LeCam’s randomization criterion (Theorem
1). The generalization is four-fold:

1. The theorem applies to more general loss function spaces, so that the
situation of unbounded loss functions can be handled. (This makes it possible
to compare statistical experiments with respect to their moments, or gives us the
possibility to apply the randomization criterion to compare statistical exper-
iments with respect to stochastic orders of distributions, since such stochastic
orders are often generated by function spaces consisting of unbounded functions
(see [7], [8] and the example following Theorem 7).

2. The family of loss functions may depend on the parameter.

3. The Theorem applies to the case of filtered decision problems and we
obtain from it results analogous to results of Norberg [3].

4. Our general functional analytic approach frees LeCam’s Theorem from
the (rather special) structure of L- and M -Spaces. It makes it possible to prove
results analogous to the randomization criterion for Operators on Hilbert spaces
and to reverse the role of the family of stochastic operators and the statistical
experiment.

The paper is organized as follows:

In section 2 (The classical randomization criterion) we start with some def-
initions and considerations concerning stochastic operators and we present a
version of the classical randomization criterion for statistical experiments (The-
orem 1). In this presentation we follow the lines of LeCam [1], LeCam and Yang
[2], Strasser [9], Shiryaev and Spokoiny [4] and Torgersen [10]. All these presen-
tations (approaches) are essentially equivalent by the Kakutani-representation
theorem for abstract L-spaces (see Torgersen [10] Theorem 5.7.4 and Schaefer [5]
Chapter 5 Section 8.5) and by the equivalence of the description of generalized
decision rules (see Torgersen [10] 4.5).

Next we present (also in section 2) a theorem (Theorem 2) which is equiv-
alent with the version of the randomization criterion we stated as Theorem 1.
We then prove that the Theorems 1 and 2 are equivalent. The Theorem 2 is
then our starting point for all further investigations. We remark, that in con-
trast to the randomization criterion as usually stated (see the cited literature)
in the hypotheses of our Theorem 1 the stochastic operators must be induced by
Markov kernels, since otherwise the Theorems 1 and 2 would not be equivalent.
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This fact can not be considered as a drawback of our approach, since there is no
real reason for more general operators in the hypotheses of the randomization
criterion; one rather would wish that the stochastic operator provided by the
conclusion of the randomization criterion could also be induced by a Markov
kernel, but this is as we know in general not possible. (A way out of this prob-
lem can in general only be found by proving a theorem which drops L-space
structure (Theorem 4) and then applying it in special cases where we are given
a compact convex set of Markov operators; but compare with [10] 4.5.8. - 4.5.10.)

In section 3 (The setting of locally convex spaces) we introduce first the no-
tions of locally convex spaces, dual spaces and polar sets needed for the state-
ment and proof of the theorems 3 and 4. Then we state Theorem 3 (and the
slightly more general Theorem 3’) and show that Theorem 3 implies Theorem 2.
Theorem 3 is the first step in the abstraction towards the very general Theorem
4; the theorems 3 and 3’ are immediate consequences of Theorem 4. With the
proof of Theorem 4 we thus also complete the proof of the theorems 1,2 and 3.
The proof of Theorem 4 is based on the separation theorem for convex sets (see
Schaefer [5] Chapter 2 Section 9.2).

In section 4 (Applications) we introduce the notion of filtered statistical ex-
periment and derive the compactness of the space of filtered stochastic operators
from the compactness of the space of stochastic operators. We then state and
prove Theorem 5 which is a filtered version of Theorem 2. Further we state
the theorems 6 and 7 which are more general versions of filtered randomization
criterions. They can be proved analogous to Theorem 5. Theorem 7 is also
interesting in the case that the filtration consists only of one σ-algebra, since
it generalizes the randomization criteria also to the case that the family of loss
functions may depend on the parameter.

Also in section 4 we state and derive from Theorem 3’ the Theorem 8 which
is a version of the randomization criterion for Hilbert spaces. Finally we show in
Theorem 9 that from an abstract point of view the role of the space of operators
and the experiment can be reversed.

In section 5 we state a theorem for the case of finite experiments or more
general finite dimensional L-spaces or arbitrary finite dimensional vector spaces.
This theorem is an immediate consequence of Helly’s Theorem (see Valentine
[11]).

In section 6 (Appendix) we state and prove compactness of the space of
stochastic operators. (See also [10] 4.5.13. or compare with [9] 42.3)
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2 The classical randomization criterion

We start with some definitions:

Let (Ω,A) be a measurable space. We denote by ca(Ω,A) the space of
bounded countably additive real-valued set-functions on (Ω,A) (i.e. the space
of σ-additive signed measures of bounded variation on (Ω,A)). By ba(Ω,A)
we denote the space of bounded finitely additive real-valued set-functions on
(Ω,A). We denote by ‖.‖ the variation norm on ba(Ω,A) defined by:

‖µ‖ := 2 · [ sup
A∈A

|µ(A)|]− |µ(Ω)| .

If we like to mention the σ-algebra A explicitly we denote the variation norm
by ‖.‖A.

Let further (Pϑ)ϑ∈Θ be a family of probability measures on (Ω,A). Then
we call E := (Ω,A, (Pϑ)ϑ∈Θ) a statistical experiment. We denote by L(E) the
L-space of the experiment E which is the vector-space of measures defined by

L(E) := {µ ∈ ca(Ω,A) | [ν ∈ ca(Ω,A) and Pϑ ⊥ ν for all ϑ ∈ Θ] =⇒ µ ⊥ ν} .

We denote by ba+(Ω,A) the positive cone of ba(Ω,A) defined by

ba+(Ω,A) := {µ ∈ ba(Ω,A) | µ(A) ≥ 0 for all A ∈ A} .

We further define the positive cones of ca(Ω,A) and L(E) by

ca+(Ω,A) = ca(Ω,A) ∩ ba+(Ω,A) and L+(E) := L(E) ∩ ba+(Ω,A) .

Let E := (Ω,A, (Pϑ)ϑ∈Θ) and F := (Ω2,B, (Qϑ)ϑ∈Θ) be statistical experi-
ments. We say that a linear mapping T : L(E) 7→ L(F ) is a stochastic operator
or a transition (see also [9] 55.2) if

T (L+(E)) ⊆ L+(F ) and µ ∈ L(E)+ ⇒ T (µ)(Ω2) = µ(Ω).

Analogous we say that a linear mapping T : L(E) → ba(Ω2,B) [respectively
T : ba(Ω,A) → ba(Ω2,B)] is a stochastic operator if T (L+(E)) ⊆ ba+(Ω2,B)
and µ ∈ L+(E) ⇒ T (µ)(Ω2) = µ(Ω) [respectively T (ba+(Ω,A)) ⊆ ba+(Ω2,B)
and µ ∈ ba+(Ω,A) ⇒ T (µ)(Ω2) = µ(Ω)].

Note that any stochastic operator fulfills ‖T‖ ≤ 1 with ‖T‖ := sup{|T (µ)| |
‖µ‖ ≤ 1}. This fact can be obtained using the Jordan decomposition (see Segal
and Kunze [6]) of the finitely [respectively countably] additive measure µ and
the properties of stochastic operators.
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We say that a stochastic operator MK is induced by a Markov-kernel

K : Ω× B 7→ IR if [MK(µ)](B) =
∫

K(x,B)dµ(x) .

So far we have introduced the notion of statistical experiment and some ab-
stract spaces related to this notion. Since LeCam-Theory is concerned with the
comparison of statistical experiment based on decisions and losses we have to
introduce further the notions of decision space, decision, loss function and loss.

If we observe the outcome x ∈ Ω of the experiment E we would like to
base a decision d(x) in some measurable space (Ω3,D) solely on x. So a deter-
ministic decision rule is an A − D-measurable mapping d : (Ω,A) → (Ω3,D)
and the space (Ω3,D) is called a decision space. More general we will consider
randomized decision rules. A randomized decision rule makes a decision not by
selecting a single point d(x) ∈ Ω3 for x ∈ Ω, but by instead selecting a probabil-
ity measure Px on (Ω3,D). Formally such a randomized decision rule is given
by a Markov-kernel K : Ω×D 7→ IR by Px(D) = K(x,D).

Given a D-measurable function f : (Ω3,D) → IR and a randomized decision
rule MK given by a Markov-kernel K, we say that if

Rf,ϑ(MK) :=
∫

x∈Ω

∫

Ω3

f(y) K(x, dy)dPϑ(x)

exists, then Rf,ϑ(MK) is the (expected) loss (also called the risk) of the decision
rule MK given the loss function f and the parameter ϑ.

By further abstraction we define the (expected) loss of a general stochastic
operator T to be Rf,ϑ(T ) :=

∫
f dT (Pϑ). We note that any stochastic operator

can be weakly approximated by (a net of) decision rules induced by Markov
kernels (see [10] 4.5.17. or compare with [9] 42.5) and thus a stochastic opera-
tor can be viewed as a generalized decision rule. (We will in the next chapter
generalize the notion of decision rule further.)

We are now in the position to state the classical randomization criterion of
LeCam.

Theorem 1 :Let

E := (Ω,A, (Pϑ)ϑ∈Θ) and
F := (Ω2,B, (Qϑ)ϑ∈Θ)

be statistical experiments indexed by the same set Θ and let (εϑ)ϑ∈Θ be an in-
dexed family of reals ≥ 0. Suppose that for an arbitrary measurable space (Ω3,D)
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(the decision space), any stochastic operator MK : L(F ) 7→ ba(Ω3,D) which is
induced by a Markov-kernel K (the randomized decision rule) and any parame-
terized family (fϑ)ϑ∈Θ of D-measurable functions fϑ : Ω3 7→ [−1 + 1] (the loss
functions) there exists a stochastic operator M : L(E) 7→ ba(Ω3,D) such that

∫
fϑ dM(Pϑ) ≤

∫
fϑ dMK(Qϑ) + εϑ for all ϑ ∈ Θ .

Then there exists a stochastic operator M̃ : L(E) 7→ L(F ) such that

‖Qϑ − M̃(Pϑ)‖ ≤ εϑ for all ϑ ∈ Θ .

There exists an equivalent formulation of this theorem which does not involve
arbitrary decision spaces, but uses instead (Ω2,B) itself as a decision space. We
formulate this theorem now:

Theorem 2: Let E := (Ω,A, (Pϑ)ϑ∈Θ) and F := (Ω2,B, (Qϑ)ϑ∈Θ) be sta-
tistical experiments indexed by the same set Θ and let (εϑ)ϑ∈Θ be a family of
nonnegative real numbers. Suppose that for any parameterized family (gϑ)ϑ∈Θ

of B-measurable functions gϑ : Ω2 → [−1,+1] there exists a stochastic operator
S : L(E) 7→ ba(Ω2,B) such that

∫
gϑ dS(Pϑ) ≤

∫
gϑ dQϑ + εϑ for all ϑ ∈ Θ .

Then there exists a stochastic operator S̃ : L(E) 7→ ba(Ω2,B) such that

‖S̃(Pϑ)−Qϑ‖ ≤ εϑ for all ϑ ∈ Θ .

We prove now that the theorems 1 and 2 imply each other. We do this in
both directions by the following general principle: If one wants to show that a
theorem A implies a theorem B one simply shows that the hypotheses of B im-
ply the hypotheses of A and that the conclusions of A imply the conclusions of B.

We show [Theorem 2 ⇒ Theorem 1] first:

Let (Ω3,D) := (Ω2,B), and let MK be the identical imbedding of L(E) into
ba(Ω2,B2). In this special case the hypotheses of Theorem 1 say that:





For any parametrized family (fϑ)ϑ∈Θ of B-measurable functions
fϑ : Ω2 7→ [−1 + 1] there exists a stochastic operator M such that

∫
fϑ dM(Pϑ) ≤

∫
fϑ dQϑ + εϑ for all ϑ ∈ Θ .
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By a change of notation (i.e. gϑ = fϑ and S = M) we see that these are exactly
the hypotheses of Theorem 2. Thus by assumption of the truth of Theorem 2
we get that there exists a stochastic operator S̃ : L(E) 7→ ba(Ω2,B) such that

‖S̃(Pϑ)−Qϑ‖ ≤ εϑ for all ϑ ∈ Θ .

By [9] 41.7 or [10] 4.5.11. there exists a stochastic operator T : ba(Ω2,B) 7→
L(F ) such that T |L(F )= idL(F ). Since T (being a stochastic operator) fulfills
‖T‖ ≤ 1 and the concatenation of stochastic operators is again a stochastic
operator we obtain a stochastic operator M̃ : L(E) 7→ L(F ) given by M̃ = T ◦ S̃
such that

‖M̃(Pϑ)−Qϑ‖ = ‖[T̃ ◦ S̃](Pϑ)− T̃ (Qϑ)‖ ≤ ‖T‖ · ‖S̃(Pϑ)−Qϑ‖ ≤ εϑ

for all ϑ ∈ Θ. 2

We prove now [Theorem 1 ⇒ Theorem 2].

Let a measurable space (Ω3,D), a stochastic operator MK : L(F ) 7→ (Ω3,D)
and a parameterized family (fϑ)ϑ∈Θ ofD-measurable functions fϑ : Ω3 7→ [−1, 1]
be given. Suppose that MK is induced by a Markov kernel K : Ω2×D 7→ [0, 1].
Define functions gϑ for all ϑ ∈ Θ by

gϑ(x) :=
∫

fϑ(y) K(x, dy)

The gϑ are B-measurable functions on Ω2 with ranges contained in [−1,+1].
Thus by the hypotheses of Theorem 2 there exists for our parameterized family
(gϑ)ϑ∈Θ a stochastic operator S : L(E) 7→ (Ω2,B) such that

∫
gϑ dS(Pϑ) ≤

∫
gϑ dQϑ + εϑ for all ϑ ∈ Θ

If we let M := MK ◦ S then we obtain for all ϑ ∈ Θ∫

Ω3

fϑ dM(Pϑ) =
∫

Ω3

fϑ d[MK ◦ S](Pϑ) =

∫

x∈Ω2

∫

y∈Ω3

fϑ(y) K(x, dy) [dS(Pϑ)](x) =
∫

Ω2

gϑ dS(Pϑ) ≤
∫

Ω2

gϑ dQ + εϑ =
∫

x∈Ω2

∫

y∈Ω3

fϑ(y) K(x, dy) dQϑ(x) =
∫

Ω3

fϑ dMK(Qϑ) + εϑ .

By the arbitrary choice of (Ω3,D), (fϑ)ϑ∈Θ and MK we see that the hy-
potheses of Theorem 1 are fulfilled. Since we assumed Theorem 1 to be true,
the conclusion of Theorem 1 also holds. That the conclusion of Theorem 1 im-
plies the conclusion of Theorem 2 is trivial and thus the implication has been
shown. 2
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3 The setting of locally convex spaces

In this section we free the randomization criterion from the setting of L-spaces.
By this it is possible to consider more general loss function spaces and that the
loss function spaces depend on the parameter. (Theorem 4).

To do this it is most comfortable to use the language of the theory of locally
convex topological vector spaces. So we will state and prove in this section
rather abstract theorems, but we gain by this abstraction a highly flexible the-
ory which can be easily applied to several problems in the next section. Since
applicability of the theorems 3 and 4 depends only on compactness properties of
the space of mappings (abstract randomization rules) involved, it is within this
abstract setting very easy to provide theorems (Theorems 5 to 9) which make
our Theory applicable to the case of filtered stochastic operators, more or less
general loss function spaces and operators on Hilbert spaces.

Theorem 3 introduces the reader to the general form the randomization cri-
terion takes on in the setting of locally convex spaces. Then it is shown that
theorem 2 can be derived from Theorem 3. This shows, that compactness of
the space of abstract randomization rules is the property in the heart of the
randomization criterion and in how far the order structure of the L-spaces is
really involved.

Next we state and prove Theorem 4. Theorem 4 is the most general version
of the randomization criterion provided in this paper. It provides the possibil-
ity to deal with parameterized families of loss functions. It is immediate that
Theorem 3 is a special case of Theorem 4. So altogether we provided a proof of
a version (Theorem 1) of the classical randomization criterion of LeCam.

We introduce some notations and definitions first (See also [5]):

Given a topological space (X, τ) and a subset Y of X we denote by (Y, τ)
the topological space Y endowed with the relative topology Y inherits from τ .

The term vector space always denotes a vector space over the real field.

Given a vector space W and a vector space topology τ which possesses a
basis consisting of convex sets, then we call (W, τ) a locally convex space (ab-
breviated l.c.s.). If we do not want to mention τ explicitly we will also write
W instead of (W, τ) for the topological vector space (W, τ). We denote by W ′

the topological dual of (W, τ). (i.e. the vector space of all τ -continuous linear
functionals on W ).

We denote by (W,σ) the vector space W endowed with the weakest topology
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σ making all the elements of the topological dual W ′ continuous. Symmetrically
we denote by (W ′, σ′) the vector space W ′ endowed with the weakest topology
making all the elements of W to continuous linear functionals on (W ′, σ′). We
note that (W,σ) and (W ′, σ′) are l.c. spaces. We further note that the topo-
logical dual of (W ′, σ′) is the space W (See [5] Chapter 4 Section 1.2). Thus
the relation between (W,σ) and (W ′, σ′) is completely symmetric and we write
〈w′, w〉 for the value the functional w′(.) takes on at w, or equivalently the
functional w(.) takes on at w′. We will in general not mention the vector space
topology explicitly and will write W instead of (W, τ) and W ′ instead of (W ′, σ′).
We will speak of the l.c.s W and its weak dual W ′.

Let M ⊆ W or N ⊆ W ′, then we let

M◦ := {w′ ∈ W ′ | 〈w′, w〉 ≤ 1 if w ∈ M} and

N◦ := {w ∈ W | 〈w′, w〉 ≤ 1 if w′ ∈ N} .

We call M◦ the polar of M and N◦ the polar of N . By N◦◦ we denote the
polar of the polar of N (also called the bipolar of N).

Further we denote by
∏

ξ∈Ξ Wξ the product of the topological vector spaces
Wξ and by

⊕
ξ∈Ξ Wξ the direct sum of the vector spaces Wξ. By card(Ξ) we

denote the cardinality of a set Ξ.

Theorem 3: Let V be a set and let W be a locally convex space. Let G ⊆ W
be given such that G is closed, convex and contains 0. Let L be a compact convex
subset of (W ′)V endowed with the product topology. Let Θ be an index set. Let
(vϑ)ϑ∈Θ be a family of points in V and let (wϑ)ϑ∈Θ be a family of points in W ′.
Let (εϑ)ϑ∈Θ be a family of reals εϑ ∈ [0,∞). Suppose that for any finite subset
Θ0 ⊆ Θ and for any family (gϑ)ϑ∈Θ0 of functionals gϑ ∈ G there exists an l ∈ L
such that for all ϑ ∈ Θ0 we have:

〈 l(vϑ)− wϑ , gϑ 〉 ≤ εϑ .

Then there exists an l ∈ L such that for all ϑ ∈ Θ we have:

sup
gϑ∈G

〈 l(vϑ)− wϑ , gϑ 〉 ≤ εϑ .

The theorem remains true if we replace the points wϑ by compact convex
sets Kϑ; i.e. we have

Theorem 3’: Let V be a set and let W be a locally convex space. Let G ⊆ W
be given such that G is closed, convex and contains 0. Let L be a compact convex
subset of (W ′)V endowed with the product topology. Let Θ be an index set and

8



let (vϑ)ϑ∈Θ be a family of points in V and (Kϑ)ϑ∈Θ be a family of compact
convex subsets of W ′. Let (εϑ)ϑ∈Θ be a family of reals εϑ ∈ [0,∞). Suppose
that for any finite subset Θ0 ⊆ Θ and for any family (gϑ)ϑ∈Θ0 of functionals
gϑ ∈ G there exists an l ∈ L such that for all ϑ ∈ Θ0 we have:

inf
wϑ∈Kϑ

〈 l(vϑ)− wϑ , gϑ 〉 ≤ εϑ .

Then there exists an l ∈ L such that for all ϑ ∈ Θ we have:

inf
wϑ∈Kϑ

( sup
gϑ∈G

〈 l(vϑ)− wϑ , gϑ 〉) ≤ εϑ .

We prove now [Theorem 3 ⇒ Theorem 2]

For this let Mb denote the vector space of bounded B-measurable real val-
ued functions on (Ω2,B) endowed with (the topology induced by) the supremum
norm. Let σ′ be the topology which Mb induces on ba(Ω2,B) by the mappings
µ 7→ ∫

mdµ with m ∈ Mb. Then ba(Ω,B) endowed with σ′ is the weak dual
of the l.c.s. Mb. From Lemma A2 of the appendix we obtain that the space
of stochastic operators from L(E) to ba(Ω2,B) is a compact convex subset of
(ba(Ω2,B), σ′)L(E). The set {m ∈ Mb | −1 ≤ m ≤ 1} is a closed convex subset
of Mb.

Consider now Theorem 3 in the following special case:

Let V denote the space L(E), let W be the space Mb endowed with the
supremum norm. Let G := {m ∈ Mb | −1 ≤ m ≤ 1}, let vϑ = Pϑ and let
wϑ = Qϑ. Denote by L the space of stochastic operators from L(E) to ba(Ω2,B).

With this agreement of notation we see that in the special case we consider
the hypotheses of Theorem 2 imply the hypotheses of Theorem 3. But since the
conclusion of Theorem 3 is in this special case equivalent with the conclusion of
Theorem 2 we see that Theorem 3 in fact implies Theorem 2. 2

Theorem 4: Let Ξ be a set and let (Wξ)ξ∈Ξ be a family of locally convex
vector spaces. Let (Gξ)ξ∈Ξ be a family of sets with Gξ ⊆ Wξ and let (εξ)ξ∈Ξ be
a family of real numbers εξ ∈ [0,∞). Let K,J ⊂ ∏

ξ∈Ξ W ′
ξ.

Suppose that the following hypotheses are fulfilled:

(i) K and J are compact, convex subset of
∏

ξ∈Ξ Wξ.

(ii) The sets Gξ are closed, convex and contain 0.

Then the following hypotheses are equivalent:
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(iii) For any finite Ξ0 ⊆ Ξ and for any selection (gξ)ξ∈Ξ0 of functionals gξ ∈ Gξ

there exists (k, j) ∈ K × J such that for all ξ ∈ Ξ0 we have

〈 j(ξ)− k(ξ) , gξ 〉 ≤ εξ .

(iv) For any finite Ξ0 ⊆ Ξ, for any selection (gξ)ξ∈Ξ0 of functionals gξ ∈ Gξ

there exists (k, j) ∈ K × J such that for any set {αξ | ξ ∈ Ξ0} of real
numbers with αξ ≥ 0 and

∑
ξ∈Ξ0

αξ ≤ 1 we have
∑

ξ∈Ξ0

αξ · 〈 j(ξ)− k(ξ) , gξ 〉 ≤
∑

ξ∈Ξ0

αξ · εξ .

(v) There exists (k, j) ∈ K × J such that for all ξ ∈ Ξ

sup
gξ∈Gξ

(〈 j(ξ)− k(ξ) , gξ 〉) ≤ εξ .

Proof of Theorem 4:

We define for all ξ ∈ Ξ sets G̃ξ by

G̃ξ :=
1
εξ

Gξ if εξ > 0

G̃ξ :=
⋃

n∈IN
nGξ if εξ = 0 .

With these definitions the hypothesis (iii), [resp. (iv) or (v)] becomes equiv-
alent with the following hypothesis (iii′) [resp. (iv′) or (v′)].

(iii′) For any finite Ξ0 ⊆ Ξ and for any selection (g̃ξ)ξ∈Ξ0 of functionals g̃ξ ∈ G̃ξ

there exists (k, j) ∈ K × J such that for all ξ ∈ Ξ0 we have

〈 j(ξ)− k(ξ) , g̃ξ 〉 ≤ 1 .

(iv′) For any finite Ξ0 ⊆ Ξ, for any selection (g̃ξ)ξ∈Ξ0 of functionals g̃ξ ∈ G̃ξ

there exists (k, j) ∈ K × J such that for any set {αξ | ξ ∈ Ξ0} of real
numbers with αξ ≥ 0 and

∑
ξ∈Ξ0

αξ ≤ 1 we have
∑

ξ∈Ξ0

αξ · 〈 j(ξ)− k(ξ) , g̃ξ 〉 ≤ 1 .

(v′) There exists (k, j) ∈ K × J such that for all ξ ∈ Ξ

sup
g̃ξ∈G̃ξ

(〈 j(ξ)− k(ξ) , g̃ξ 〉) ≤ 1 .
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So the statement of Theorem 4 is equivalent with the statement that under
the hypotheses (i) - (ii) the hypotheses (iii′) - (v′) are equivalent.

It is immediate that (iii) implies (iv) [or equivalently that (iii′) implies
(iv′)] and also that (v) implies (iii) [or equivalently that (v′) implies (iii′)]. So
to prove the theorem it remains only to show that (iv) implies (v). This is done
indirect by proving that the negation of (v′) implies the negation of (iv′).

The negation of (v’) is the following statement:

For any (k, j) ∈ K × J there exists a ξ ∈ Ξ such that

sup
g̃ξ∈G̃ξ

(〈 j(ξ)− k(ξ) , g̃ξ 〉) > 1 . (1)

By hypothesis (i) we have that.

(J −K) is a compact convex subset of
∏

ξ∈Ξ

W ′
ξ. (2)

Since the sets G̃ξ

◦
are closed convex subsets of W ′

ξ, the set

∏

ξ∈Ξ

G̃ξ

◦
is a closed convex subset of

∏

ξ∈Ξ

W ′
ξ. (3)

With the notations introduced (1) can be reformulated as

∏

ξ∈Ξ

G̃ξ

◦ ∩ (J −K) = ∅. (4)

From (2) - (4) and the separation theorem for convex sets (see [5] chapter
II, 9.2) we conclude that there exists a continuous linear functional f 6= 0 on∏

ξ∈Ξ W ′
ξ and a constant γ such that

f(
∏

ξ∈Ξ

G̃ξ

◦
) < γ < f(J −K) and (5)

since 0 ∈
∏

ξ∈Ξ

G̃ξ

◦
we get in addition thatγ > 0. (6)

The algebraic dual of
∏

ξ∈Ξ W ′
ξ is

⊕
ξ∈Ξ Wξ (see [5] chapter IV, 4.3). Thus

(and since f 6= 0) our functional f can be represented in the form
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f((wξ)ξ∈Ξ) =
∑

ξ∈Ξ0

fξ(wξ) (7)

for some finite nonempty set Ξ0 ⊆ Ξ and a family of continuous linear function-
als fξ ∈ Wξ with fξ 6= 0 for ξ ∈ Ξ0.

Let Ξ′0 := {ξ ∈ Ξ0 | sup
g∈G̃ξ

◦ fξ(g) > 0} and define reals αξ by

αξ := sup
g∈G̃ξ

◦

fξ(g)
γ

for ξ ∈ Ξ′0. (8)

From (5) - (8) we obtain that

αξ > 0 for ξ ∈ Ξ′0 and that
∑

ξ∈Ξ′0

αξ < 1. (9)

Further, if Ξ′0 6= Ξ0, we define

αξ :=
1−∑

ξ∈Ξ′0
αξ

card(Ξ0 \ Ξ′0)
for ξ ∈ Ξ0 \ Ξ′0 . (10)

By (9) and (10) we get that

αξ > 0

for ξ ∈ Ξ0 and
∑

ξ∈Ξ0
αξ ≤ 1.

(11)

We define linear functionals gξ by

gξ(.) :=
fξ(.)
γ · αξ

. (12)

We obtain from (8) and (12) that gξ ∈ G̃ξ

◦◦
in the case that ξ ∈ Ξ′0. From

the fact that ξ ∈ Ξ0 \ Ξ′0 implies that sup
g∈G̃ξ

◦ gξ(g) = sup
g∈G̃ξ

◦ fξ(g)
γ·αξ

= 0 we

get that gξ ∈ G̃ξ

◦◦
in the case that ξ ∈ Ξ0 \ Ξ′0. So together with (ii) and the

bipolar theorem (see [5] chapt IV, 1.5) we obtain in any case that

gξ ∈ G̃ξ

◦◦
= G̃ξ for ξ ∈ Ξ0. (13)

From (12) and (5) we obtain that

12



∑

ξ∈Ξ0

αξ · gξ(J −K) =
∑

ξ∈Ξ0

fξ(J −K)
γ

>
γ

γ
= 1 . (14)

By (11), (13) and (14) we thus have found that

there exists a finite set Ξ0 ⊆ Ξ, a selection (g̃ξ)ξ∈Ξ0 of functionals
g̃ξ ∈ G̃ξ and there exists a set {αξ | ξ ∈ Ξ0} of real numbers with
αξ ≥ 0 and

∑
ξ∈Ξ0

αξ ≤ 1 such that for any (k, j) ∈ K × J we
have

(
∑

ξ∈Ξ0

αξ · 〈 j(ξ)− k(ξ) , g̃ξ 〉) > 1 .





(15)

The statement (15) is the negation of (iv′) as well as (1) is the negation of
(v′). Since (15) was concluded from (1) we see that (iv′) implies (v′). Thus the
theorem has been proved. 2

Replacing K × J by K̃ our proof of Theorem 4 proves also the following
theorem 4’.

Theorem 4’: Theorem 4 remains true if we replace the compact con-
vex set K × J ⊂ ∏

ξ∈Ξ W ′
ξ ×

∏
ξ∈Ξ W ′

ξ by an arbitrary compact convex set
K̃ ⊂ ∏

ξ∈Ξ W ′
ξ ×

∏
ξ∈Ξ W ′

ξ.

We prove now [Theorem 4 ⇒ Theorem 3’]

We consider Theorem 4 in the following special case:

Let Θ, V , W , G, L, (Kϑ)ϑ∈Θ, (εϑ)ϑ∈Θ and (vϑ)ϑ∈Θ denote the same math-
ematical objects as in Theorem 3’. Suppose without loss of generality that Θ
and V are disjoint. Let Ξ = Θ ∪ V . Let Gξ = G for ξ ∈ Θ and Gξ = {0} for
ξ ∈ V . Let εξ ≥ be arbitrary for ξ ∈ V and let Wξ = W for all ξ ∈ Ξ. Let
K :=

∏
v∈V {0} ×

∏
ϑ∈Θ Kϑ and let

J := {j ∈ (W ′)Ξ | ∃l ∈ L s.t. v ∈ V, ϑ ∈ Θ ⇒ [j(v) = l(v) and j(ϑ) = l(vϑ)]}

In this special case the hypotheses of Theorem 3’ are equivalent with the
conjunction of the hypotheses (i),(ii) and (iii) of Theorem 4. Thus by Theo-
rem 4 the hypothesis (v) of Theorem 4 also holds in this special case. But the
conjunction of the hypotheses (i),(ii) and (v) of Theorem 4 is in this special
case equivalent with the conclusion of Theorem 3’. Thus Theorem 3’ has been
proved. 2
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4 Applications

The case of filtered experiments

We define now filtered experiments and filtered decision rules and generalize
the classical randomization criterion (in the version given by Theorem 2) to the
setting of these filtered objects. This makes it possible to apply the randomiza-
tion criterion to stochastic processes. (See also the preprint of Norberg [3]).

Let a measurable space (Ω,A), a family (Pϑ)ϑ∈Θ of probability measures
on (Ω,A) and a family At of sub-σ-algebras of A be given. We call E :=
(Ω,A, (At)t∈T , (Pϑ)ϑ∈Θ) a filtered statistical experiment. (Note that (At)t∈T

need not be a filtration! But of course (At)t∈T can be any filtration. There-
fore we decided to call also such experiments filtered; for the usual definition
of filtered experiments see [4] 1.10 and [3].) The L-space L(E) of the filtered
experiment E is defined to coincide with the L-space of (Ω,A, (Pt)t∈T ).

Let two filtered statistical experiments E := (Ω,A, (At)t∈T , (Pϑ)ϑ∈Θ) and
F := (Ω2,B, (Bt)t∈T , (Qϑ)ϑ∈Θ) be given. We say that a stochastic operator
S : L(E) → ba(Ω2,B) is a (At)t∈T − (Bt)t∈T−filtered stochastic operator if

µ, ν ∈ L(E) ⇒ [µ |At= ν |At⇒ S(µ) |Bt= S(ν) |Bt ] .

Lemma 1: Let
E := (Ω,A, (At)t∈T , (Pϑ)ϑ∈Θ)

and
F := (Ω2,B, (Bt)t∈T , (Qϑ)ϑ∈Θ)

be filtered statistical experiments. Then the space Sfilt of all (At)t∈T −(Bt)t∈T−
filtered stochastic operators S : L(E) → ba(Ω2,B) is compact (when ba(Ω2,B) is
endowed with the topology induced by the integrals Im(µ) =

∫
mdµ with m ∈Mb

[m a B-measurable bounded real valued function]).

Proof: Since the space S of stochastic operators from L(E) to ba(Ω2,B)
is compact (see Lemma A2 of the Appendix) it suffices to show that Sfilt is a
closed subspace of S. But this is clear since

Sfilt =
⋂

t∈T

{S ∈ S | [µ |At= ν |At ] ⇒ [m ∈Mb(Ω2,Bt) ⇒ Im(S(ν)) = Im(S(µ))]}

and

{S ∈ S | [µ |At= ν |At ] ⇒ [m ∈Mb(Ω2,Bt) ⇒ Im(S(ν)) = Im(S(µ))]}

is for any t ∈ T a closed subset of S. 2
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We can now derive the filtered version of the classical randomization crite-
rion from Theorem 4 with nearly no additional effort:

Theorem 5: Let

E := (Ω,A, (At)t∈T , (Pϑ)ϑ∈Θ) and
F := (Ω2,B, (Bt)t∈T , (Qϑ)ϑ∈Θ)

be filtered statistical experiments indexed by the same sets Θ and T and let
(εϑ,t)ϑ∈Θ,t∈T be a family of nonnegative real numbers. Suppose that for any
finite set Θ0 × T0 ⊂ Θ × T and any selection (gϑ,t)ϑ∈Θ0,t∈T0 of functions
gϑ,t : Ω2 7→ [−1, +1] such that gϑ,t is Bt-measurable there exists a (At)t∈T −
(Bt)t∈T−filtered stochastic operator S : L(E) 7→ ba(Ω2,B) such that

∫
gϑ,t dS(Pϑ) ≤

∫
gϑ,t dQϑ + εϑ,t for all ϑ ∈ Θ and t ∈ T .

Then there exists a (At)t∈T−(Bt)t∈T−filtered stochastic operator S̃ : L(E) 7→
ba(Ω2,B) such that

‖S̃(Pϑ)−Qϑ‖Bt = sup
g∈Mb(Ω2,Bt)
−1≤g≤1

(
∫

g d[S̃(Pϑ)−Qϑ]) ≤ εϑ,t

for all ϑ ∈ Θ and t ∈ T . (Here Mb(Ω2,Bt) denotes the vector space of bounded,
Bt-measurable, real valued functions.)

Proof of Theorem 5:

In analogy with the argument given for deriving Theorem 2 from Theorem 3,
we letMb(Ω2,Bt) denote the vector space of bounded Bt-measurable real valued
functions on (Ω2,B) endowed with the supremum norm. Let σ′t be the topol-
ogy which Mb(Ω2,Bt) induces on ba(Ω2,B) by the mappings µ 7→ ∫

mdµ with
m ∈ Mb. By Lemma 1 we know that the space of (At)t∈T − (Bt)t∈T−filtered
stochastic operators Sfilt from L(E) to ba(Ω2,B) is a compact convex subset of
(ba(Ω2,B, σ′)L(E). The set {m ∈ Mb(Ω2,Bt), | −1 ≤ m ≤ 1} is a closed convex
subset of Mb(Ω2,B).

Consider now Theorem 4 in the following special case:

Let Ξ := (Θ∪L(E))×T . For ξ = (x, t) let Wξ := Mb(Ω2,Bt), then we have
W ′

ξ = (ba(Ω2,B), σ′t). Let

Gξ :=




{m ∈Mb(Ω2,Bt) | −1 ≤ m ≤ 1} if ξ = (ϑ, t) ∈ Θ× T

{0} if ξ ∈ L(E)× T and

15



let εξ > 0 be arbitrary if ξ ∈ L(E)× T .
Let K = {k} with k : Ξ 7→ ba(Ω2,B) defined by

k(ξ) :=





Qϑ if ξ = (ϑ, t) ∈ Θ× T

0 if ξ ∈ L(E)× T.

Let J := Sfilt ◦ h with h : Ξ → L(E) given by

h(ξ) :=





Pϑ if ξ = (ϑ, t) ∈ Θ× T

µ if ξ = (µ, t) ∈ L(E)× T.

In this special case the hypotheses of Theorem 5 are equivalent with the con-
junction of the hypotheses (i),(ii) and (iii) of Theorem 4. Thus by Theorem 4
hypothesis (v) of Theorem 4 also holds in the special case. But the conjunction
of the hypotheses (i),(ii) and (v) of Theorem 4 is in this special case equivalent
with the conclusion of Theorem 5. Thus Theorem 5 has been proved. 2

More general we can use the fact that the sets Gξ can vary with ξ and can
be different from {m ∈ Mb | −1 ≤ m ≤ +1} to formulate a generalization of
the randomization criterion (in the sense of Theorem 2) as follows:

Theorem 6: Let

E := (Ω,A, (At)t∈T , (Pϑ)ϑ∈Θ) and
F := (Ω2,B, (Bt)t∈T , (Qϑ)ϑ∈Θ)

be filtered statistical experiments indexed by the same index sets Θ and T . Let
(εϑ,t)ϑ∈Θ,t∈T be a family of nonnegative real numbers and let (fϑ,t)ϑ∈Θ,t∈T be
a family of B-measurable functions fϑ,t : Ω2 → IR. Suppose that for any finite
set Θ0 × T0 ⊆ Θ × T and any selection (gϑ,t)ϑ∈Θ0,t∈T0 of functions gϑ,t ∈
{g ∈ Mb(Ω2,Bt) | −fϑ,t ≤ g ≤ fϑ,t} there exists a (At)t∈T − (Bt)t∈T−filtered
stochastic operator S : L(E) 7→ ba(Ω2,B) such that

∫
gϑ,t dS(Pϑ) ≤

∫
gϑ,t dQϑ + εϑ,t for all ϑ ∈ Θ and t ∈ T .

Then there exists a (At)t∈T−(Bt)t∈T−filtered stochastic operator S̃ : L(E) 7→
ba(Ω2,B) such that

sup
g∈Mb(Ω2,Bt)
−fϑ,t≤g≤fϑ,t

(
∫

g d[S̃(Pϑ)−Qϑ]) ≤ εϑ,t
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for all ϑ ∈ Θ and t ∈ T .

Remark: Note that even the case T := {t0} and fϑ,t0 = x2 for all ϑ was
not covered by the classical randomization criterion. (Compare with Theorem
1 of this paper and with Theorem 3 of LeCam [1].)

More general we formulate:

Theorem 7: Let

E := (Ω,A, (At)t∈T , (Pϑ)ϑ∈Θ) and
F := (Ω2,B, (Bt)t∈T , (Qϑ)ϑ∈Θ)

be filtered statistical experiments indexed by the same index sets Θ and T , let
(εϑ,t)ϑ∈Θ,t∈T be a family of nonnegative real numbers and let (Gϑ,t)(ϑ,t)∈Θ×T

be a family of closed convex sets of bounded B-measurable functions, such that
0 ∈ Gϑ,t ⊆ Mb(Ω2,Bt). Suppose that for any finite set Θ0 × T0 ⊆ Θ × T and
any selection (gϑ,t)ϑ∈Θ0,t∈T0 of functions gϑ,t ∈ Gϑ,t there exists a (At)t∈T −
(Bt)t∈T−filtered stochastic operator S : L(E) 7→ ba(Ω2,B) such that

∫
gϑ,t dS(Pϑ) ≤

∫
gϑ,t dQϑ + εϑ,t for all ϑ ∈ Θ and t ∈ T .

Then there exists a (At)t∈T−(Bt)t∈T−filtered stochastic operator S̃ : L(E) 7→
ba(Ω2,B) such that

sup
g∈Gϑ,t

(
∫

g d[S̃(Pϑ)−Qϑ]) ≤ εϑ,t

for all ϑ ∈ Θ and t ∈ T .

Remark: Theorem 6 is an immediate consequence of Theorem 7 and The-
orem 7 can be proved in a completely analogous way as Theorem 5 has been
proved. Even in the non filtered case (i.e. T = {t0}) and even if we assume that
the loss function space is independent of the parameter (i.e. Gϑ = G) Theorem
7 still remains very interesting as is shown by the following concrete example
on stochastic orders:

Example: Let F denote the family of all measurable monotone increasing
functions f : IR → [0, 1]. Suppose that we are given two families (Pϑ)ϑ∈Θ and
(Qϑ)ϑ∈Θ of probability measures on (IR,B) (with B the Borel σ-algebra on IR).
Suppose further that for any finite set Θ0 ⊂ Θ and any family (fϑ)ϑ∈Θ0 of
functions fϑ ∈ F there exists a stochastic operator MK induced by a Markov
kernel K such that for all ϑ ∈ Θ0∫

fϑ d[MK(Pϑ)−Qϑ] ≤ 0.
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Then there exists a stochastic operator M such that

sup
ϑ∈Θ

sup
f∈F

∫
f d[M(Pϑ)−Qϑ] ≤ 0;

i.e. there exists a stochastic operator M such that M(Pϑ) (1)
≤ Qϑ for all ϑ ∈ Θ,

with (1)
≤ the stochastic order defined in Section 1.2 of [7].

To see that the example holds simply apply Theorem 7 in the case that there
is no filtration (i.e. T = {t0}), that Gϑ,t0 = F for all ϑ ∈ Θ and note that F

induces the relation (1)
≤ in the sense of [7]; i.e. µ1

(1)
≤ µ2 ⇔

∫
fdµ1 ≤

∫
fdµ2 for

all f ∈ F .

Application to Hilbert spaces

The following theorem is an easy consequence of Theorem 3’ but it can not
be established using the classical randomization criterion.

Theorem 8: Let H be a Hilbert space and let Θ be a set. Let (vϑ)ϑ∈Θ be
a indexed family of vectors in H and let (Kϑ)ϑ∈Θ be a family of convex norm-
closed norm-bounded subsets of H. Let L be a norm-bounded norm-closed convex
family of linear operators l : H → H such that for any finite set Θ0 ⊆ Θ and
any family (gϑ)ϑ∈Θ0 of elements of H with ‖gϑ‖2 = 1 there exists an l ∈ L such
that

inf
wϑ∈Kϑ

〈 l(vϑ)− wϑ , gϑ 〉 ≤ εϑ .

Then there exists an l ∈ L such that for all ϑ ∈ Θ we have:

inf
wϑ∈Kϑ

‖l(vϑ)− wϑ‖2 ≤ εϑ .

Proof of Theorem 8: Note that the weak dual of a Hilbert space is the
Hilbert space itself endowed with the weak topology induced by itself via the
inner product. Note further that the hypothesis ‖gϑ‖2 = 1 is equivalent with the
hypothesis ‖gϑ‖2 ≤ 1. Note further, that the sets Kϑ and the set L are weakly
compact. (This is the theorem of Alaoglu-Bourbaki in the case of the sets Kϑ

and can in the case of the set L be concluded using the Tychonoff Theorem
analogous to the theorem of Alaoglou-Bourbaki [see [5] Chapter 3 Section 4.3]).
Apply now Theorem 3’ with V = W = H and G = {‖gϑ‖2 ≤ 1}. 2

Finally we show that it is possible to reverse the role of the space of stochas-
tic operators and the experiment E := (Ω,A, (Pϑ)ϑ∈Θ) in Theorem 2. To be
more precise we state and prove the following Theorem:

18



Theorem 9: Let Θ be an index set. Let Υ ⊂ ba(Ω,A) be compact and
convex. Let (fϑ)ϑ∈Θ be a family of functions from L(Ω,A, Υ) to ba(Ω2,B)
and let (Qϑ)ϑ∈Θ be a family of elements of ba(Ω2,B). Denote by Mb(Ω2,B) the
space of bounded measurable real valued functions endowed with the supremum
norm.

Suppose that for any finite set Θ0 ⊆ Θ and any family (gϑ)ϑ∈Θ of functions
gϑ ∈Mb(Ω2,B) with supx∈Ω2

|gϑ| ≤ 1 there exists a P ∈ Υ such that
∫

gϑ d[fϑ(P )] ≤
∫

gϑ dQϑ + εϑ .

Then there exists a P ∈ Υ such that ∀ϑ ∈ Θ

‖fϑ(P )−Qϑ‖ ≤ εϑ.

Remark: The functions fϑ : L(Ω,A,Υ) 7→ ba(Ω2,B) can be arbitrary.
They can of course be of the form fϑ = Sϑ or fϑ = Sϑ− id, with id the identity
on L(Ω,A) and (Sϑ)ϑ∈Θ a family of stochastic operators. If we let fϑ = Sϑ− id
and Qϑ = 0 for all ϑ ∈ Θ then we obtain the following corollary:

Corollary: Let Υ ⊂ ba(Ω,A) be compact and convex and let (Sϑ)ϑ∈Θ be
a family of stochastic operators from L(Ω,A,Υ) to ba(Ω2,B). Suppose that
for any finite Θ0 ⊆ Θ and any family (gϑ)ϑ∈Θ0 with gϑ ∈ Mb(Ω2,B) and
supx∈Ω2

|gϑ| ≤ 1 there exists a µ ∈ Υ with
∫

gϑ d[Sϑ(µ)− µ] ≤ εϑ .

Then there exists a µ in Υ such that for all ϑ ∈ Θ we have

‖Sϑ(µ)− µ‖ ≤ εϑ .

Proof of Theorem 9: To obtain Theorem 9 simply apply Theorem 3 with
vϑ = fϑ, wϑ = Qϑ, L = Υ, G := {g ∈ Mb(Ω2,B) | |g| ≤ 1} in a completely
analogous way as in the derivation of Theorem 2 from Theorem 3.

5 The finite dimensional case and Helly’s The-
orem

We consider now the case that the spaces L(E) and L(F ) or two Hilbert spaces
or more general two arbitrary vector spaces are finite dimensional. This makes
it possible to prove a theorem which is in principle of the form of the theorems
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2 - 9, but which involves in its hypotheses only a constant finite number (de-
pending on the dimension of the vector spaces involved) of constraints.

Theorem 10: Let L be a compact convex family of linear mappings l :
IRm → IRn, let Θ be an index set, let (Zϑ)ϑ∈Θ be a family of convex subsets
of IRn and let (εϑ)ϑ∈Θ be a family of real numbers. Let further (xϑ)ϑ∈Θ with
xϑ ∈ IRm and (yϑ)ϑ∈Θ with yϑ ∈ IRn be given. Let I be an index set consisting
of (m · n) + 1 points. Suppose that for any indexed family (ϑi)i∈I with ϑi ∈ Θ
and any indexed family (zϑi)i∈I with zϑi ∈ Zϑi there exists an l ∈ L such that

〈 l(xϑi)− yϑi , zϑi 〉 ≤ εϑi .

Then there exists an l ∈ L such that for all ϑ ∈ Θ we have

sup
z∈Zϑ

〈 l(xϑ)− yϑ , z 〉 ≤ εϑ.

Proof of Theorem 10: The sets

Lϑ,z := { l ∈ L such that 〈 l(xϑ)− yϑ , z 〉 ≤ εϑ }
with z ∈ Zϑ are compact convex subsets of L and thus subsets of the m · n-
dimensional space of all linear mappings from IRm to IRn. Our Hypothesis says
that the intersection of any (m ·n)+1 sets Lϑ,z wit z ∈ Zϑ is nonempty. There-
fore by Helly’s Theorem (see [11] Part VI) the intersection

⋂
ϑ∈Θ,z∈Zϑ

Lϑ,z is
nonempty which is precisely the conclusion of our Theorem. 2

6 Appendix

Let Mb denote the vector space of B-measurable real valued functions on
(Ω2,B). In the following Lemmata we denote by σ′ the topology on ba(Ω2,B)
induced by the integrals Im : (Ω2,B) → IR defined by Im :=

∫
mdµ. By

E := (Ω,A, (Pϑ)ϑ∈Θ) we denote a statistical experiment.

Lemma A1 The set {ν ∈ ba(Ω2,B) | ‖ν‖ ≤ 1} is σ′-compact.

Sketch of proof: Let G := {m ∈ Mb | −1 ≤ m(ω) ≤ 1 for all ω ∈ Ω2}
and let I : (Ω2,B) → IRG be the unique mapping such that Im = prm ◦ I for
all m ∈ G. The topology σ′ is of course the same as the topology induced by
the family of integrals {Im | m ∈ G}. Thus ({ν ∈ ba(Ω2,B) | ‖ν‖ ≤ 1}, σ′) is
homeomorphic with the set I({ν ∈ ba(Ω2,B) | ‖ν‖ ≤ 1}) ⊆ [−1, +1]G. Since
[−1, +1]G is by the Tychonoff product theorem compact, it suffices to prove
that I({ν ∈ ba(Ω2,B) | ‖ν‖ ≤ 1}) is closed in [−1, +1]G. But this is clear since

I({ν ∈ ba(Ω2,B) | ‖ν‖ ≤ 1}) =
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= {f ∈ [−1, +1]G | −1 ≤ prm1+m2(f) = prm1(f) + prm2(f) ≤ 1
∀ m1, m2 ∈Mb with − 1 ≤ m1,m2,m1 + m2 ≤ 1}. 2

Lemma A2 The space S of stochastic operators S : L(E) → ba(Ω2,B) is a
compact subset of (ba(Ω2,B))L(E).

Sketch of proof: We have

S ⊆
∏

µ∈L(E)

{ν ∈ ba(Ω2,B) | ‖ν‖ ≤ 2‖µ‖}

and we know by the preceding Lemma and the Tychonoff product theorem that∏
µ∈L(E){ν ∈ ba(Ω2,B) | ‖ν‖ ≤ 2‖µ‖} is compact. It therefore suffices to show

that S is closed in
∏

µ∈L(E){ν ∈ ba(Ω2,B) | ‖ν‖ ≤ 2‖µ‖}. But this is clear since
the space of stochastic operators can be described by

S := {S | S ∈ ba(Ω2,B)L(E), S is linear and
[µ ∈ L+(E) ∧ ‖µ‖ = 1] =⇒
[∀m ∈Mb(m ≥ 0 ⇒ Im(S(µ)) ≥ 0) and I1(S(µ)) = 1]}. 2
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