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1 Introduction

Recently considerable progress has been made in the interesting ficld of infi-
nitc dimensional extreme value theory. After the characterization of max-stable
stochastic processes in C|0,1] by Giné, Hahn and Vatan (1990), de Haan and
Lin (2001, 2002) investigated the domain of attraction conditions and cstablished
weak consistency of estimators of the extreme valuc index, the centering and stan-
dardizing sequences, and the exponent measure. Statistics of infinite dimensional
extremes will find various applications, c.g. in coast protection (flooding) and
risk assessment in finance. Also from a mathematical point of view the rescarch
is challenging, because of the new features of C[0, 1]-valued random clements,
when compared to random variables or vectors, in particular the uniformity in
t € [0,1] of the results asks for novel approaches.

It is the purpose of this paper to establish the weak convergence of cstimators
of the cxtreme value index, which is now an clement of C[0, 1], and the normal-
izing scquences. In fact, we will show the asymptotic normality on C|[0, 1] of the
cstimators under a suitable sccond order condition and present all the limiting
processes involved in terms of onc underlying Wiener process, which means that
we have the simultancous weak convergence of all the cstimators. The results
arc on the onc hand interesting in themselves, because the extreme value index
mcasures the tail heaviness of the distribution of the data, and on the other hand
the results are a major step forward in the cstimation of probabilitics of rare
events in C[0, 1]: sec de Haan and Sinha (1999) for a study of this problem in the
finitc dimensional casc.

In order to be more explicit let us now specify the sctup and introduce no-
tation. Lot &1,&,... be 1id. random clements on C[0,1]. Throughout as-
sume that P{inf,c03&(t) > 0} = 1 and that F, : /R — [0,1], defined by
Fi(z) = P{&(t) < z}, is a continuous and strictly incrcasing function on its
support. Define

Ul(s)=F~(1-1/58),s>0,0<t <1,

We assume that the domain of attraction condition holds, i.c.
) {(mex &0 -8 fatm), 2 € 0,11}

converges in distribution on C0,1] to a stochastic process, n say, with non-
degencrate marginals, where a,(n) > 0 and b;(n) arc continuous (in ¢) normalizing
functions, chosen in such a way that for cach ¢

P{n(t) < } = exp (~(1+ 7(B)a) 51,

sce dc Haan and Lin (2001); we can and will take b, = U;. Then v:[0,1] — R,
the extreme value index (function), is continuous. Define

1
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7(t) = (1+y()n())' ",
and v (E) = sP{(; € sE}, with sE = {sh : h € E}. Clearly the (;(t) arc
standard Parcto random variables, i.c. P{{i(t) <z} =1-—1/z, > 1. It follows
from Thcorem 2.8 in de Haan and Lin (2001), that there cxist a homogencous
measure v on C[0,1], such that for any g > 0

P{n < g} = exp{—v({f € C[0,1], f£ 9]},

and
v, — I, a5 § — 00,

weakly on 5. := {f € C[0,1] : sup,g(p,) f(t)} > c}, for any ¢ > 0, and

U(nz) — Uy(n) . 7 1
ay(n) vty

uniformly in ¢ € [0, 1] and locally uniformly in z € (0, co).

Throughout assume that & = k(n) is a scquence of positive integers satisfying
k—ooand k/fn — 0,asn — oo. Fixt € [0,1]. Lot &.,(2) € &La(t) £ ... £
£.x(t) be the order statistics of &,(f),i =1,2,...,n. We definc the following
statistical functions

as n — 00,

k—

Z lOg'fn 111(t log-ﬁn_k,n(t))r r=1,2

t=()

—n

2) MU

?"‘ll—'

Sct y*(t) = v(t) V0, v () = v(¢) A 0 and obscrve that y(t) = v*(#) + v (¢).
Now we define estimators for v*(t), v (t), (t), a/(%) and b;(}) as in Dckkers,
Einmahl and dc Haan (1989):

(3) 5+@) = M{Nt) (Hill cstimator):

- (@)
4 ty=1—x (122 X0 ).
(4) T () 2 ( M) :
(5) Fn(t) = 47 (t) + 4,, () (moment estimator);
(6) O}(%) En—k.n(t) {(location cstimator);



(7) at(%) = Enin(®)3T @)1 = 4 (1)) (scale estimator).

For fixed ¢ these are well-known one-dimensional cstimators (sce c.g. de Haan
and Rootzén (1993)).

The following weak consistency results have been shown in de Haan and Tao
(2002).

Theorem 1.1 As k — co and ﬁ — 0, we have

(8) sup |4 (t) —+(@t)| 2o,
0<t<1
9) sup [3.(t) — ()| S 0,
0=tcl

0,2y — U, (2
(10) sup Lnt(k) £,
o<1 at(:)
a(%) P
11 su -1 —=0.
(1) nstlgjl ai(3)

The main results of the paper are given in Scetion 2: the proofs arc deferred
to Scction 3.

2 Main results

In this scction we present our main result, dealing with the asymptotic normality
of the estimators of which the weak consistency is shown in Theorem 1.1. In
order to cstablish our main result we first present a result that is a key tool for
its proof. This result deals with the weak convergence of a tail empirical process
based on the ¢;,i = 1,...,n. Write Cy, = {h € C[0,1] : h(t) > =} and definc

1 T 1 Tt
Snu(T) = n Z Ligeciny = - Z Ltz
i=1 1]
Denote the corresponding tail empirical process with

wn(t,z) = Vk (ESM (xg) - %) )

k k
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Let W be a zero-mean Gaussian process with EW(By)W(B2) = v(B; N Bs).
Clearly for fixed ¢ € [0,1], {W(Cy1/),y < 2} is a standard Wicner process, since
(Criy NCrijge) = 1 Aye. For 3 > 0 and ¢ > 0, set for any (¢,x),(s,y) €
[05 1] X [c, OO))

d((ta 3:): (8, y)) = \/E (mﬁw(ct,w) - yﬁW(Cs,y))2
= (@ = 45 ¥(Ciu N Coy) + 36(Cie \ Cg) + ¥%0(Ciy \ Cia).

For convenient prescntation and convenicent application in the proofs of the main
result, this result is presented in an approximation sctting, with the random
clements involved, defined on one probability space. So the random clements in
this theorem arc only equal in distribution to the original ones, but we do not
add the usual tildes to the notation.

Theorem 2.1 Suppose the conditions of the Introduction, in particular (1), hold
and assume that there exist positive constants d, K € IR, such that P{{, Vd €
E} =1 with

E={h€C[O,l]:h20, M<K(log

-3
h(t;) vV h(ts) — ) for all ty,t; € [0, 1‘} ,

|t1 = o
then, with a special construction, we have for any 0 < B < 3 and c > 0

(12) sup 2 |w,(t,2) = W(Cr)| = 0, as n — oo,

0<t<l, >
Define Z(t,z) = 1°W(C,,), then the process Z is bounded and uniformly d-
continuous on [0,1] X [¢, 00).

Note that it is well-known that for one fixed ¢, the restriction 3 < % is also
nceded for weak convergence of the (one-dimensional) tail empirical process. So
our condition on 3 in the present infinite dimensional sctting is the same as in
dimension one. It is important to transform the & to processes with standard
marginals, as we did by transforming to the ¢;. Although the choice of stan-
dard Parcto marginals is convenient, it is also rcasonable to transform to other
marginal distributions, like the uniform-(0,1) distribution. Clearly, uniform-(0,1)
marginals arc obtained by taking 1/¢;. It is intcresting to note and readily checked
that the set E, defining the Lipschitz-type condition in Theorem 2.1, is invariant
under this transformation.

We also need the following corollary which deals with certain quantiles and
can be obtained by the usual ‘inversion’, from the tail cmpirical process thecorem.

Corollary 2.2 We have under the conditions of Theorem 2.1 for any o € IR

vk ((C,,_k:,,(t)—g)u - 1) - aW(Ciy)

(13) sup 50, asn — 0.

0<i<1




Finally we present the main result, which gives the asymptotic distributions
of the estimators of 4+, =y, a, and b in terms of the process W, figuring in Theorem
2.1.

Theorem 2.3 Suppose the conditions of Theorem 2.1 are satisfied and the fol-
lowing second order condition holds:

(14)
log Uj(sz) —logUy(s) 27 ¥ -1
ar(s)/U(s) (1)

) JAd(8) = Hy-1)p{x), s s — oo,
uniformly in t € [0, 1) and locally uniformly in z > 0, with

£E _ '}
Hy- 0 0 () / yr o1 [ WO dudy,
1 1

and p € C[0,1] with p(t) < 0 for all t € [0,1]. For any sequence k = k{n)

satisfying k — o0, % — 0 and
n
15 k Al —0,
(1) vE s |4 ()]
(16) VE sup | () -7 ()| =0,
o<e<t | U (%)
as n — 00, we have
a7) sup |VEG () = v @) -7 OP®)| 50,
n<i<l
(18) sup [VEG®) - () - D) 5o,
0<t<1
(Y — U, (2
(19) sup \/IL,;U"(") ~u@| o,
0<t<1 an(;)
(20) sup [Vk (at(f) - 1) — A(t) LA 0,
0<t<1 ar(%)

asn — 00, where P, Q,I',\U and A are the following functions defined in terms
of the process W :



PO) = [ WG - T W (G

¥ () :
2 [ WG T i — 2~ 7 O) -2 ) WG,

O
—
e
S
Il

D) = {700 - 20 =7 @120 - 27 ()} P&) + 501 -7 (011 - 27 ()Q)
Ut) = WiCu),
A = 7O =7 (OW(C) + (B = 4y~ O — 7~ O)P()

_%(1 — @)1 = 2y (1)) Q(t),

t€0,1].

Note that for the case infieo1) ¥(t) > 0 and sup;epgq) 2(2) < 0, it follows from
the sccond order condition (14) that

o) (38 - (@) 1
Al(s) -

(21) sup — 0, as s — o0.

t€[0,1]

So in this case (16) is superfluous, since it follows from (21} and (15). Also note
that, condition {15) can be replaced by the stronger, but casier condition: for

some € > 0
\/E (%)5"'5“[3:5[0,1]#’(1) -
For the case supgjp; 7(t) < 0 and supyepy p(t) < 0, it follows from the second

order condition (14) that conditions (15) and (16) can be replaced by the stronger
condition: for some ¢ > 0

7\ EFSUPsg(p. 1 p(t)VsuptE[UJ] (&)
VE(R) -

When sup,e(q,1) o(t) = 0 or y(t1) = 0 for some ¢, € [0, 1] (this also implics p(t;) =
0) we do not have a simple sufficient condition on the growth of &, but it is
nceessary that &k grows slower than any power of n.

3 Proofs

Proof of Theorem 2.1 Wc only give a proof for the case ¢ = 1; for general
¢ > 0 the proof is similar. For any 3 € [0, %), definc

ft,:l: = ]'Cz,IIB)
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F={fi-:0<t<,z>1}

Also define the random moeasurcs

Zn K]

sl

1
4, &;
vk ¢
Z, ; is a random function on F, with

1
Znilfrw) = ﬁl{ci(n%a}xﬁ-

Then

Tt

xﬁwn(ta 27) = Z(zn,i(ft,w) - EZn,i(fl,x))
i=1
First we arc going to prove the tightness of {> "1 ,(Z,.(f) — EZ,.(f)), f € F}.
We need the following version of Theorem 2.11.9 in van der Vaart and Wellner
(1996).

Definition 3.1 For any € > 0, the bracketing number Nyj(e, F, L) is the mini-
mal nurnber of sets N. in a partition F U;.V_'l Fe; of the index set into sets F;
such that, for every partitioning set F.;

(22) Y E* sup [Z.:(f) — Zuilg)l <%

=1 fyEFe;

Theorem 3.2 For eachn, let Z,1, Zp2, ..., Znq be independent stochastic pro-
cesses with finite second moments indexed by a totally bounded semimetric space
(F,d). Suppose

(23) Z EY 2 ill7 1z, 750 = O, forevery A > 0,

t=]

where || 2, || x = supper | 24:(f), and

dn
(24) / \/Eg Nyj(e, F, Lg)de — 0, foreveryéd, | 0.
0

Then the sequence ) . ,(Z.; — EZ,;) is asymptotically tight in {=°(F) and con-
verges weakly, provided the finite-dimensional distributions converge weakly.

=]



We can define d on F by d(fiz, fsy)} = d((t, z), (5, ¥)); sce the first paragraph
of Scetion 2. Since v is a finite and hence tight measure on {z € Cl0,1] :
SUPseo,) T(£) = 1}, it is casy to check that our class of functions F is totally
bounded under the metric d.

To prove (23), obscrve

nill? \/_A‘ 0<t<] ' n '
SO

n

> BlZuillrLuzuirsn

i=1

n EN?
- \/EE sup Ci(t)n 1{50005:51Ci(t)§>(‘/’:'\)”ﬁ}

0<E<1
n o0
g
= — 2"dF,(z)
VE Jivmaya l
00

= _M™ 8 w0 o =101 —
(25) \/E (1 Fn(.’L‘)) (VEML/E +ﬁ\/E (\/E)\)Uﬂx (1 -Fn(a:))dm:

where 1 — F,(z) = P{supgg<, G:(t)2 > z}. Note that for z > 0

™1 Fufz)) = ZP{sup G)E > 2} = il s € C0,1]: sup (1) > 2}
k A n 0<t<1
— v{feCl0,1]: sup f(t) >z} = —l-u{f € C[0,1] : sup f(¢t) > 1} = g,
0=i<1] x 0<i<1 T
c

with C' > 1. Since £(1 — F},) is non-increasing and since the function = — % is
continuous and tends to 0 if £ — co, we have that this convergence is uniform
on [b,00), for any b > 0. So for n large cnough, we have for = > b that

1 n 2C
26 - <-(1-F, < —.
(26) SSZ0-RE@)sZ
Henee the right hand side of {25) is bounded from above by

2CVE(VEN T+ 28CVE [pan o e
= 20 LNT R 0.

That is (23).
Next we will prove (24). For any (small) ¢ > 0, let ¢ = ¥ § =
exp{—e~'} and 8 = 1/(1 — Ke*). Definc

Fla) = {fi. € F,xz > a},
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Fl,y={fize F,I6<t< (l+1)5}93‘ <z< 9j+1}’

1 loga
then we have the ‘partition’ F = Fla) U UL‘SJ) }:3"] F(L, 7). First we check (22)

for F(a):

T

E sup |Z.:(f) = Z.:(9))

= nE sup (Z.:(f) — Zni(g))?

f.9eF{a)
< 4nE sup Zﬁz(f)
JeF(a)
dn n\*
< TE (08;;21 Ci(f)z) Hsupyerer i)k 2}
4 o0
- T” 2 dF, ()
- 80 a-zﬂ_l
= 1_-28
- & e <€
1-28

where the last but one inequality follows from intcgration by parts and (26). Now
we consider (22) for the F(I, 7). First note that

1 .
. . . (+1)8
f:;-'l(ll),_;‘) Zpi(f) < \/El{supnsgmu-:-l)& Ci(l)ﬁZBJ}e :

From the Lipschitz-type condition in the theorem it follows that sup;s<;<(141)6 Ci(t)f >
& implics that almost surely

sup  Gi(t) — G(I6) € Kb sup (1),

1<t<(1+1)6 1<t <(i+1)s
and henee (I(M)% > 8571, s0

. ’
sup Zoilf) < —=1; 0k spi-1n 89D
fEF(LR n,a( ) \/E {Gi(18YE>gi~1)

Similarly it can be shown that

1 o
inf Z.:(f) 2 =105k .
fel}l(i.j) ! (f) - \/E {(,(I&)%EGJ'Fz}



This yiclds

Z E* sup |Z.i(f) = Zui(9)]?

o] foeF(l.5)

IA

FeFLF) JeF s

nE*( sup Z,:(f)— inf Zn,i(f))

= %E (l{cfr_zaliPei-l}B(H”ﬁ B l{cf(té)fzem}ajﬁ)z

< %E ((9(j+1)£3 — 01 sy k 2001y + g.fﬁl{gﬁz)g(m)%zw_l}ng)2

< 2620+D8(] _ 9—13)291_1__1 + 0928 (9_}13 B %)

< 2671 - 9—%)2% + 209 (93_1_1 _ 9}_1”) < 3(KeS + 3KeY) < &2,

It is casy to scc that the number of clements of the partition is bounded by
exp(2/e), which leads to (24). Hence by Theorem 3.2 we proved the asymptotic
tightness condition.

It remains to prove that the finite-dimensional distributions of 3 ) (2. —
EZ,.) converge weakly. This follows from the fact that multivariate weak con-
vergence follows from weak convergence of lincar combinations of the components
and the (univariate) Lindeberg-Feller central limit theorem. It is casily scen that
the Lindeberg condition is fulfilled for the lincar combinations, since the fi; arc
made up of indicators and hence bounded.

The fact that Z is bounded and uniformly d-continuous follows from the
general theory of weak convergence and properties of Gaussian processes; sce
Scction 1.5 in van der Vaart and Wellner (1996). O

Proof of Corollary 2.2 Write V,,, = ¢, k_n(t)f. Woe first show the result for
a=—1,1c

1
(27) sup |VE ( - 1) + W(C}1) £o.
0<i<1 Vit
Clearly
] 1\| »
sup |V 1) 4w, [t,— ]| =0,
ozeg1 (v,.,t ) ( Vn,t)
so (12), with 3 = 0, yiclds
1 P
3 El— -1 W (C 0.
021:121 L (Vn,t ) * ( iv;,‘—,) -
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Now by the boundedness and uniform d-continuity of W, we obtain (27). Finally,
write

Vi —
VEVE, - 1) = VRV - ) —
’ ‘/n,l -
Since by (27)
Vnt 1 P
. + iy 0,
ozt V=1 °

we obtain, again using (27), (13). O

Proof of Theorem 2.3 First from (14) we can prove: for any € > 0 there
cxist s, > 0suchthatif s >s,andz > 1wechaveforall0<¢t <1
(28)
log Uy(sz) — log Us(s) z7 ¥ —1
a(s)/Ui(s) 7 (1)

the proof follows along the lines of that for the onc-dimensional situation in
dc Haan and Stadtmiiller (1996). Incquality (28) implics

<e(l+ :E"—(t)"’":);

) [Ai(s) — Hw-(t),p(t)(-'b”)

logUp(sz) —logUfs) 27 ® —1

(29) W)U

< JAus)|(Ce + %),

where C; € (0,00) is a constant. Notc that

M(” Z 103 Us Cn-—z n.(t)) - lOg Ui(cn-kﬂ"(t))'

Hence we have for sufficiently large n

(=1

?"In—'
M’"

k

e in(t) a7t
(Cn k nl:t ) 1
n Z |At(Cn k. n

(Cn kn ) )

M,‘.”(t)

S at(Cn—k ﬂ(t))/Ut(Cﬂ k.”(t))
) o (g m)“’ 9y 182/ Goin®) )
(30)< i 2‘; GRS + |Ai(Curn (1)) (C + k Z (C::::(t)) ) '

11



As before, write Vie = Guokn(£)£. Noxt

(£}
k—1 Cn 1n(t))7 —
(Cn kn(t 1 ].

(1) 1Y)

e

=0

178
Y O A (ﬁ) -1 a n 1
- \/I /ant /Y_(t) d(_ESn,t(mE)) - 1— 7_(t)

_ Sifyre [Tr Ty (-1 ® -2
— \/I 1/n,t‘. I 1Lt($E)$ dz — z dz
Vot 1
V) / wn(t, z)z7 W de
Vﬂ!

00 1
VRV O - )] 7O 24y 1+ Vi 7 W2y
Vn.t

Vit
So
k=1 Cn—i.n(f-) ‘T_(t’) _ 1
1 (Cn—k.n(t)) ]_
ay: - - P(t
k ;., ¥ () 11— @) )
= W (:/‘ (walt, 2) = W(Cz))a" O da
+VT -1 [T WG
Vnl
- o0
HVRVT O =)+ OWCW) [ o7 O
Vit
1
+(VE [ 27 O24z 4 W(CL1))
Vit
st - Ve
(31) —/ W(C; )z (t)_ld:r+')’_(t)W(C¢.1)f 2702,
! 1

From Theorem 2.1 we obtain for the first term on the right in (31)

sup V.7

te[0,1]
< sup V[ “. sup 20w (t, ) — W(Cio)|

7.t
te|0,1] te0,1), x>Va.e

(32) -sup/ 7 OBy
LE[01] SV

o0
f (wa(t, x) — W{(C,;))z"” O 1dx
Vn.!

12



Now it follows from Theorem 2.1 with 3 positive (this is crucial) and Corollary
2.2, that the right hand side of (32) converges to 0 in probability. It readily
follows from Corollary 2.2 that the 5 other terms in the right hand side of (31)
converge to 0 in probability. So we have

(33)
k=1 Cn—i.n(t) 7—(” _ 1
1 (cn-m(a)) 1
sup |Vk | = - P} =0, asn —
osist k ; v (&) 1—7() L

For the remainder term of
M)
at((ﬂ—k,n(t))/Ut(Cﬂ k.n(t))

in (30), note that we obtain from Lemma 3.2 in dc Haan and Lin (2002) that for
0<ex1

(34) sup £0, asn — .

0=t=1

Cn 1 1’1 1
kZ(Cn k. t) ]-_E
It can be derived from the sceond order condition (14) and Corollary 2.2 that

A (%) =
At (Cn Ln(t))

sup
0<t<1

Using this in combination with (15) and (34) we scc that the remainder term in
(30) is ncgligible, so we obtain that

D)
\/I( Mo (0 - (t)) —P(o)| &

(35) sup
05t<1

a (C’rt—k,n (t) )/Ut (Cn kn (t))

as n — oo, Similarly

(36)
: MP(2) _ 2 _om| &
OSSII}‘EI \/E ((at(Cn—k,n(t))/Ut(Cn-k,rl(t)))2 (1 - (t))(l - 2’7_ (t))) Q(t) ’

as n — 00. Henece we get

(37) sup V& (3 (8) = v~ (8)) - M(®)] 5 0

0<t<1

as n — oo, where
M(t) = =201 =7~ ({1201 = 27 O)P() + 51— 7 ()1 - 27~ (0)*Qe).
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Note
VEFE @) -7+ (®) -7 0P@)
 alGunal®) M (2) 1 N
B Ui(Cﬂ—k,n(t)) (‘/Z (at(Cn—k,n(t))/Ut(Cn—-k,n(t)) 1- 'Y—(t)) P(t))
A CE:(Cn k,n(t)) R 1 at(Cn k.n(t)) _ At
+\/Z (UI(Cn—k,n(t)) ! (t)) 1- 7_(t) * (Ut(Cu—k,n(t)) K (t)) P(t)
It follows from the second order condition (14) and Corollary 2.2 that
a (%) /U (})
ai(Cﬂ k,n(t))/Ut(Cn k,n(t))

Combining this with (16), we get {17). Finally, we obtain (18) from (17) and
(37).
For (19) note

£o.

sup -1

0<t<1

VE2E)-0(E)

ey
_ /i UelGnokn())—log U () .g,,_k,,,(t))) = (5"_,:.,,(;) B )
o ey (bg( vi(%) @ 1)
and
£n—k,n(t) _ En—k.‘n(t) - Ut (%) at( )

—-1= 3 .
U (%) w(®)  U(R)

lim sup
00 il

Combining this with (10) yiclds

sup éﬂ—l —P>O, asn — 00.
o<1 | Uy (%)
Hence
1
sup || log én k”:t(t) n k":l(t) ~1]-11& 0, asn — 0.
0st<1 U (3) U (%)

A proof similar to the onc lcading to (35) shows

lOg Ut(Cn—k n(t)) - lOg Ut(ﬂ) p
NV , D ol 2.0 aem oo
osis (/0D 0] 50, asn — o0

14




So we have obtained (19).
For (20) note

\/E(at (g)_l) = VR = U ey — 47 )

a (3) (%)
I e B =70
+ﬁ(at(%)/w(’xf) 1—7-(1:))“ T l) = VAT

From (19), (17}, {37) and Theorem 1.2 we get (20). O
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