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1 Introduction

Pioneering research on the iterative behaviour of 1-norm nonexpansive maps was
done by Akcoglu and Krengel in [1]. They observed that the asymptotic behaviour
of the iterates of 1-norm nonexpansive maps is periodic. Indeed they proved the
following theorem (compare [1]).

Theorem 1.1. Let X C R™ be closed and let f : X — X be a I-norm nonexpan-
sive map. If there exists ' € X such that (| f*¥(z")||1)x is bounded, then for each
x € X there exist an integer p, = p > 1 and a point &, = & € X such that

(i) the sequence (f*?(z))r converges to &;

(i) the point £ is a periodic point of f of minimal period p, that is fP(€) = &
and f7(€) # & for 0< j <p.

In later work Theorem 1.1 has been generalized by Weller [22] to norms on R™
that have a polyhedral unit ball; examples of such norms are the 1-norm and the
sup-norm. Furthermore Misiurewicz [10] showed for the 1-norm that the integer
pe in Theorem 1.1 is at most n!22" for all € X. Other upper bounds for the
integer p, for different polyhedral norms have been derived in: [2], [7], [8], [9], [11],
and [21]. In particular, Nussbaum [11] has conjectured for the sup-norm that the
optimal upper bound for the integer p, is 2™. At present this conjecture is proved
solely for n = 1,2, and 3 (see [8]).

These results motivate the following question: given a polyhedral norm on
R™ and a subset X of R™, can one determine the finite set of integers p > 1 for
which there exist a nonexpansive map f : X — X and a periodic point of f of
minimal period p, explicitly? In this paper this question is answered if X = R"
and the polyhedral norm is the 1-norm. It should be remarked that this case is
different from the case where X can be an arbitrary subset of R”, because a 1-norm
nonexpanive map f : X — X, with X C R”, may not have a 1-norm nonexpansive
extension to the whole of R™. Some results for the case where X can be an arbitrary
subset of R* can be found in [7] and [10].



In [12], [15], [16], [17], and [19] one has examined the set P*(n), consisting
of integers p > 1 for which there exist a 1-norm nonexpansive map f : K* — K",
with f(0) = 0, and a periodic point of f of minimal period p. Here K" denotes
the positive cone in R™. The main motivation for studying these maps is that
they can be used as models for diffusion processes on a finite state space (see
[1] and [14]). Surprisingly the set P*(n) allows a characterization by arithmetical
and combinatorial constraints. Indeed Nussbaum, Scheutzow, and Verduyn Lunel
showed in [15] and [16] that P*(n) is precisely the set of periods of admissible
arrays on n symbols. Here an admissible array is defined as follows.

Definition 1.1. Let (L, <) be a finite totally ordered set and let ¥ = {1,... ,n}.
For each A € L let 9y : Z — 3 be a map. The sequence ¥ = (¥ : Z - £ | A € L)
is called an admissible array on n symbols if the maps ¥, satisfy

(i) for each A € L there exists an integer p) with 1 < py < n such that the map
¥y : Z — X is periodic with period p,, and moreover ¥, (s) # 9,(t) for all
1 <s<t< DX,

(if) if A < Ag < ... < App1 is a sequence of distinct points in L and
"9)\1' (Si) = 19)\i+1 (t,') for 1 S ) S T,

then

T

Z(ti — ;) Z0mod p, where p=ged({py, : 1 <i<r+1}).

i=1

Here gcd(S) denotes the greatest common divisor of the elements of S. The
period of an admissible array is said to be lem ({px : A € L}), that is the least
common multiple of the periods py. Thus, if one defines for n > 1 the set

Q(n) ={p >1: pis the period of an admissible array on n symbols}, (1)

then the characterization of the set P*(n) is given by the following equality.
Theorem 1.2 ([16], Theorem 3.1). P*(n) = Q(n) for alln > 1.

In [16, Section 4] Nussbaum, Scheutzow, and Verduyn Lunel have asked if a
similar characterization can be found for the set R(n), consisting of integers p > 1
for which there exist a 1-norm nonexpansive map f : R* — R" and a periodic
point of f of minimal period p. It was proved in [13] and [20] that R(n) C P*(2n)
for n > 1, so that Theorem 1.2 yields the inclusion R(n) C Q(2n). A sharpening
of this inclusion was obtained by Lemmens in [6]. Indeed it was shown there that
each element of R(n) is the period of an admissible array on 2n symbols that has
some additional properties. As a result of this sharpening the set R(n) has been
computed for n = 1,2,3,4,6,7, and 10. It remained however, an open problem



to decide if the upper bound for R(n) was tight. In particular, it was not known
if 18 is in R(5), 90 is in R(8), and 126 is in R(9). In this paper the notion of a
restricted admissible array on 2n symbols is introduced, and it is shown that R(n)
is precisely the set of possible periods of these arrays. The restricted admissible
arrays are admissible arrays with one additional property. This additional property
refines the properties that were obtained in [6]. As a consequence we derive that
18 ¢ R(5), 90 ¢ R(8), and 126 ¢ R(9).

A combination of Theorem 1.2 with the following lemma suggests that an
additional property for admissible arrays on 2n symbols can be found, such that
their periods characterize the set R(n).

Lemma 1.1 ([20]). Let E>" = {(z,y) € K* x K" : 7,5, =0 for 1 <i <n}. An
integer p > 1 is an element of R(n) if and only if there exist a 1-norm nonexpansive
map f : K2" — K2", with f(0) =0, and a periodic point £ € K°™ of f of minimal
period p such that f7 (&) € E2™ for all j > 0.

Our proof of the characterization of R(n) relies on this lemma and therefore
we give a proof of it in the appendix. In the next section some basic definitions
are collected, and a precise formulation of the characterization of R(n) is given.

2 The characterization of R(n)

On R™ the I-norm is given by ||z|l1 = >, |zs| for z = (21,...,2,) in R*. A
map f : X — R™, where X C R"”, is called I-norm nonezpansive or simply
1-nonexpansive if

1f£(z) = fW)lls < llz =yl for all z,y € X. (2)

The map f is said to be a I-isometry if equality holds in (2) for all z and y in X.
A point x € X is called a periodic point of f : X — X if there exists an integer
p > 1 such that fP(z) = =z, and p is called a period of x. The smallest such integer
p > 1 is said to be the minimal period of x.

On R™ a partial ordering < is given by ¢ <y if z; < y; for 1 <14 < n. We say
that z and y are comparable if t <yory <z. Wewritex <y if x <y and z # y.
The positive cone in R™ is said to be K* = {z € R* : > 0}. Further for z,y € R*
we let A y be the vector with coordinates (z A y); = min{xz;,y;} for 1 < i < n.
Similarly, z V y denotes the vector in R™ with coordinates (z V y); = max{z;,y;}
for 1 <i<n.Amap f: X — R, with X C R”, is called order-preserving if
z,y € X and z < y implies f(z) < f(y). The map f : X — R™ is said to be
integral-preserving if 3. f(z); = Y, x; for all z € X.

To formulate the characterization of R(n) we need the idea of a restricted
admissible array on 2n symbols. Before this idea is explained it is convenient to
introduce the following notion.

Definition 2.1. Let ¢ = (Y5 : Z — £ | A € L) be an admissible array and let p
denote the period of 9, for A € L. A symbol a € ¥ is called permitted for q € Z if



(i) a =¥x(q) for some A € L, or

(ii) there exist distinct Ay < Ay < ... < Ap41 in L such that
D, (85) = 19A,-+1 (t;) for1<i<r,

and there exists § € Z such that a =9,,(¢ — ) and

T

Z(ti —s;) =6mod p, where p=gced({py,:1<i<r+1}).

=1

For an admissible array 9 and ¢ € Z the set of permitted symbols is denoted
by

P(q,9) = {a € T : a is permitted for ¢}. (3)

If a is a symbol in ¥ and ¥ = {1,...,2n}, then we write a* = a + n mod 2n. A
restricted admissible array on 2n symbols is now defined as follows.

Definition 2.2. An admissible array ¥ = (¥, : Z — X | A € L) on 2n symbols,
where ¥ = {1,...,2n}, is called a restricted admissible array on 2n symbols if

{a,a*} ¢ P(q,9) foralla € ¥ and q € Z.

Remark that if ¥ is an admissible array and ¢ has period p, then P(q,¥) =
P(q+ p, ) for each ¢ € Z. Therefore one can decide in finite time if an admissible
array on 2n symbols is a restricted admissible array.

For n > 1 we set

Q'(2n) = {p > 1: pis the period of a restricted admissible array
on 2n symbols}. (4)

Then the characterization of R(n) is given by the following equality.
Theorem 2.1. R(n) = Q'(2n) for alln > 1.

The proof of Theorem 2.1 is split in two parts. First it is shown in Section
3 that R(n) C Q'(2n). To prove this inclusion we build on results from [15] and
[19]. Subsequently in Section 4 the other inclusion, R(n) D @'(2n), is proved.
To establish this inclusion ideas from [16] are used. In Section 5 some remarks
are made about the computation of R(n) for small n, and analysis of the largest
element of R(n) is given. We conclude with an appendix in which a proof of Lemma
1.1 is given, and a list of elements of R(n) for 1 < n < 10 is displayed.



3 The left inclusion: R(n) C Q'(2n)

If f:K* — K" is a l-nonexpansive map, with f(0) = 0, then Nussbaum and
Scheutzow have constructed in [15] for each periodic point of f of minimal period
p, an admissible array on n symbols with period p. In this section we exploit this
construction to prove the inclusion R(n) C Q'(2n). More precisely, it is shown that
if f: K2® — K2" is 1-nonexpansive, with f(0) = 0, and £ is a periodic point of f of
minimal period p, with f7(£) € B = {(z,y) €e K* x K" : z;y, = 0 for 1 < i < n}
for all j > 0, then the associated admissible array is a restricted admissible array
on 2n symbols with period p. A combination of this result with Lemma 1.1 then
yields the inclusion R(n) C Q'(2n).

So, let us explain the construction of the admissible arrays. The first step is to
relate to each periodic point of a 1-nonexpansive map f : K* — K", with f(0) =0,
a so-called lower semilattice homomorphism. A set V C R™ is called a lower
semilattice if t Ay € V for all z and yin V. A map g : V — V, where V is a lower
semilattice, is called a lower semilattice homomorphism if g(xz Ay) = g(z) A g(y)
for all z,y € V. If S is a subset of R™, then Vg5 denotes the smallest (in the
sense of inclusion) lower semilattice that contains S, and Vs is said to be the
lower semilattice generated by S. The connection between these notions and 1-
nonexpansive maps is given in the following lemma (compare [19, Lemma 3.2]).

Lemma 3.1. Let f : K* — K" be a 1-nonexpansive map, with f(0) = 0, and
& € K" be a periodic point of f of minimal period p. If V. C K" is the lower
semilattice generated by {f7(£) : 0 < j < p}, then the restriction of f to V is a
lower semilattice homomorphism that maps V' onto itself.

The next step is to construct for each periodic point of a lower semilattice
homomorphism g : V — V, where V C R™, an admissible array on n symbols.
To do this it is useful to introduce the following notions. Let V be a finite lower
semilattice on R™. If A C V and there exists 8 € V such that a < g for all a« € A,
then A is said to be bounded above in V, and f is called an upper bound of A in
V. Likewise, we say that A is bounded below in V if there exist 8 € V with a >
for all a € A, and f is called a lower bound of A in V. If A is bounded above in
V', then there exists a unique upper bound a of A in V such that v < « implies
that « is not an upper bound of A in V. The point « is called the supremum of A
in V, and it is denoted by sup, (A). Analogously, the infimum of A in V is said
to be the unique lower bound « of A in V, so that there exists no lower bound S
of Ain V with a < . This element is denoted by infy (4).

For x € V the height is defined by

hy(z) = sup{k > 0 : there exist 3°,... ,y* € V such that
y*=randy <yt for0<j <k} (5)

In particular, we put hy(z) = 0 if no y € V exists with y < z. For every x € V
welet Sp ={y €V :y < z}. An element z € V is called irreducible in V if either



S, is empty or
z > supy (Sz). (6)
If x € V is irreducible in V and S, is nonempty, then we define
Iy (z) = {i: 2 > supy (Sa):}- (7)

We put Iy(z) = {1,...,n} if S, is empty. Observe that if z is an irreducible
element in a finite lower semilattice V. C K", and S, is nonempty, then

z; >0 forall i€ Iy(z), (8)

since x; > supy (Sz); > 0 for all ¢ € Iy (x). This inequality will be useful to us
later. Using these notions the following lemma can proved (see [15, Lemma 1.1]).

Lemma 3.2. Suppose that j € Z, V is a finite lower semilattice in R™, and
f:V =V is a bijective lower semilattice homomorphism.

(i) Ify eV and fj(y) # vy, theny and f7(y) are not comparable, and moreover
hy (y) = hy (£7(y)).-

(ii) If y is irreducible in V, then fi(y) is irreducible in V.

(i) Ify and y' are two irreducible elements in V' that are not comparable, then
Iv(y) N Iv(y') = 0.

(i) Ify €V isirreducible in V and y is a periodic point of f of minimal period
p, then 1 <p <n.

The following technical definition forms the basis from which the admissible
arrays are constructed.

Definition 3.1. Let W be a lower semilattice in R™, let g : W — W be a lower
semilattice homomorphism, and let £ € W be a periodic point of g of minimal
period p. Let V denote the lower semilattice generated by {g?(£) : j > 0} and let
f be the restriction of g to V. A finite sequence (y*)™, C V is called a complete
sequence for &, if the elements satisfy

(i) y* <&forl1<i<m,

(i) ° is irreduciblein V for 1 <i < m,
(iv) hv(y") <hv(y™h) for 1 <i<m,
(v

(vi

)
)
(iii) if p; is the minimal period of y* under f, then p =1lem ({p; : 1 <i < m}),
)
) thesets {f*(y') : k > 0} and {f*(y?) : k > 0} are disjoint for 1 < i < j < m,
)

y* and 37 are not comparable for 1 < i < j < m.



The following proposition ensures that every periodic point of a lower semi-
lattice homomorphism has a complete sequence (compare [15, Proposition 1.1]).

Proposition 3.1. If W is a lower semilattice in R*, g : W — W is a lower
semilattice homomorphism, and &€ € W is a periodic point of g, then there erists
a complete sequence for &.

From a complete sequence an admissible array can be constructed in the
following manner. Suppose that g : W — W is a lower semilattice homomorphism,
where W is a lower semilattice in R™. Assume that £ € W is a periodic point of g
of minimal period p. Let V be the lower semilattice generated by {g’(£) : j > 0},
and let f be the restriction of g to V. Remark that f is a bijective lower semilattice
homomorphism that maps the finite lower semilattice V' onto itself, and its inverse
is fP~1. By Proposition 3.1 there exists a complete sequence (y*)™, for £. Let p;
denote the minimal period of y* under f for 1 < i < m. It follows from property
(i) in Definition 3.1 and Lemma 3.2 that f7(y') is irreducible in V for 1 <i <m
and j € Z. Therefore the set Iy (f7(y')) is not empty, and hence we can select
for 1 <i<mand1<j<p; an integer a;; € Iv(f’(y*)). Further we define for
general j € Z the integer a;; by

ai; = az, wherel <k <p; and j =k mod p;.

Observe that a;; € Iy (f7(y*)) for all 1 <i <m and j € Z, because y* has period
p; under f. The resulting semi-infinite matrix (a;;), where 1 < i < m and j € Z,
is called an array of £. There exists the following connection with the admissible
arrays (compare [15, Proposition 1.2]).

Proposition 3.2. Let W be a lower semilattice in R*, g : W — W be a lower
semilattice homomorphism, and £ € W be a periodic point of g of minimal period p.
Let (ai;), where 1 <i<m and j € Z, be an array of . Put ¥ = {1,... ,n} and let
L={1,...,m} be equipped with the usual ordering. If 9 = (Y5 : Z — £ | A € L)
is defined by

Ir(j) =ar; for A€ L and j€Z, (9)
then 9 is an admissible array on n symbols with period p.

We now consider arrays of periodic points of lower semilattice homomor-
phisms g : W — W, where W C E2", and show that they give rise to restricted
admissible arrays on 2n symbols.

Proposition 3.3. Let W be a lower semilattice in B2, g : W — W be a lower
semilattice homomorphism, and &€ € W be a periodic point of g of minimal period
p. Let (ai;), where1 <i < m and j € Z, be an array of §&. Put ¥ = {1,...,2n} and
let L ={1,...,m} be equipped with the usual ordering. If 3 = (9\ : Z - T | A € L)
is defined by

Ir(j) =ar; forX€ L and j€Z, (10)

then 9 is a restricted admissible array on 2n symbols with period p.



Proof. Let g: W — W be a lower semilattice homomorphism, where W is a lower
semilattice in E?™. Suppose that £ € W is a periodic point of g of minimal period
p. Let V be the lower semilattice generated by {g?(£) : 7 > 0} and let f be the
restriction of g to V. Assume that (a;;), where 1 < ¢ < m and j € Z, is an
array of £, and let (y°)™, be a complete sequence for ¢ that induces this array.
Further let p; denote the minimal period of 4* under f for 1 < i < m. Now set
Y ={1,...,2n} and let L = {1,...,m} be equipped with the usual ordering.
Define 4 = (¥ : Z — £ | A € L) by (10).

It follows from Proposition 3.2 that 1 is an admissible array on 2n symbols
with period p. Therefore it remains to be shown that

{a,a™} ¢ P(q,¥) foralla € X and g € Z. (11)

There are two cases: |L| =1 and |L| > 1. If |L| = 1, then it follows from Definition
2.1 that |P(g,?)| = 1, and hence (11) is true for this case.
To obtain (11) for the second case we show the following claim.

Claim. If |L| > 1 and a € P(g,1), then there exists a point y € V such that y, > 0
and y < f1(¢).

It is sufficient to prove this claim, since {a,a™} C P(g,?¥) implies that there exist
elements y and %' in V, with y, > 0 and %/, > 0, such that y < f9({) and
y' < f9(€). This of course contradicts the fact that f9(¢) € E*".

So suppose that |L| > 1 and a € P(q,¥). As |L| > 1 it follows from property
(vi) in Definition 3.1 that y* > infy (V) for all A\ € L. This implies that Sri(yr) 18
not empty for A € L and j € 7Z, because f is order-preserving and y* is periodic.
Therefore we know by (ii) in Lemma 3.2 and (8) that for all A € L and j € Z:

fi(y")i >0 forallie Iv(fi(y)). (12)

According to Definition 2.1 there are two possibilities. We begin with the first
one: a = ¥,(q) for some X\ € L. By construction a = 95(q) = ar, € Iv(f9(y")).
Hence by (12) we find that f9(y), > 0. Moreover property (i) in Definition 3.1
says that y* < &. As f is a lower semilattice homomorphism it is order-preserving,
so that f9(y*) < f9(¢). This completes the proof of the claim for this case.

To prove the claim for the second case we assume that there exist distinct
A1 < A2 < ...< App1 in L such that

Vxi(8:) = Vnips () for1<i <,

and there exists § € Z such that a = ¥, (g — 6) and

T

Z(ti —s;) =6mod p, where p=ged{py, :1<i<r+1}).

i=1



Observe that there exist constants Aj, As,..., A, 41 such that p = >, A;py,. As
>or_i(t: — 8;) = § mod p we can find constants By, Bs, ... ,By41 such that

r r+1

> (ki - s:) ZBlpAl = 6. (13)

=1

Since A; < Ai41 we know by (iv) in Definition 3.1 that hy (yi) < hy (yti+1),
so that (i) in Lemma 3.2 implies:

hy (f5 (™)) < by (fi(yh+t)) for1<i < (14)
By construction we have that
19/\1(31) =ays; € IV(fSi (y)\i)) and 19/\z+1( ) = Qx;4qt; € IV(fti (y)\H-l))'

Therefore the equality ¥, (s;) = ¥, (t:) and (iii) in Lemma 3.2 imply that
fei(y*) and f*i(y*i+1) are comparable, so that (14) yields:

fe (y’\) < fh (yki“) for1<i<nr. (15)

As f is order-preserving and y* has period py under f, we can deduce from (15)
that

yh < frimsimBim(glivt) for 1 <i <. (16)

Applying (16) iteratively gives:

T

g™ < fy(y)\r+1) where v = Z (ti — 54 Zsz/\, (17)

=1

Now set jt = —B,11Px,.,- As fA(y +1) = y*+1 it follows from (13) and (17) that

Yt < ) = oy, (18)

Finally we use property (i) of Definition 3.1 and the fact that f is order-preserving
to deduce from (18) that

FI70 ™) < Uy < £
Moreover it follows from (12) that f9=°(y*t), > 0, because
a=95(q—6) = ar,es € v(f17°(y™)).

This shows the claim for the second case, and hence the proof of the proposition
is complete. O

The results from this section yield the following inclusion.



Corollary 3.1. R(n) C Q'(2n) for allm > 1.

Proof. Let p be an element of R(n). By Lemma 1.1 there exist a 1-nonexpansive
map f: K2" — K?", with f(0) =0, and a periodic point & of f of minimal period
p, such that f7(£) € E2" for all j > 0. Let V be the lower semilattice generated
by {f/(&¢) : j > 0}, and let g be the restriction of f to V. It follows from Lemma
3.1 that g is a lower semilattice homomorphism that maps V onto itself. Further
observe that V is a lower semilattice in E?™, since 2" is a lower semilattice.
Therefore we can apply Propositions 3.1 and 3.3 to conclude that p is the period
of a restricted admissible array on 2n symbols. O

In the next section we discuss the other inclusion R(n) D Q'(2n).

4 The right inclusion: R(n) D Q'(2n)

To prove the equality P*(n) = Q(n) Nussbaum, Scheutzow, and Verduyn Lunel
have constructed in [16] for each admissible array ¥ on n symbols with period p, a
1-nonexpansive map fy : K* — K", with f4(0) = 0, and a periodic point £ € K*
of fs of minimal period p. With the results from the previous section in mind
it is interesting to know if for a restricted admissible array on 2n symbols, this
construction yields a periodic point £ € K2 such that f;(¢) € E*™ for all j > 0.
If this is the case, then Lemma 1.1 implies the inclusion R(n) D @Q'(2n). In this
section we prove the inclusion in this manner. To explain our arguments it is good
to recall some of the results from [16].

The 1-nonexpansive maps fy : K* — K" that appear in the construction
in [16] are so-called sand-shift maps, which were introduced by Nussbaum in [14,
Example 2]. These maps describe certain diffusion processes on a finite state space,
and they can be conveniently introduced in the following way. Consider n contain-
ers C1, ... ,Cy, each with an amount of sand z;, and put z = (z1,... ,Zn). Suppose
that to each container C; a sequence of buckets b;1, b2, ... is associated. Let v,
denote the volume of bucket b;,,, and assume that

oo
Zvimzoo for 1 <i<n.

m=1

Now start the following procedure to pour sand from the containers into the buck-
ets. For each container C; pour sand into bucket b;; until either b;; is full or C; is
empty. If b;; is full, then pour the remaining sand of C; into bucket b;, until either
b;o is full or C; is empty. Continue in this manner until C; is empty. Observe that
the amount of sand in bucket b;, after this procedure is given by

k—1
M (x) = min{v;y, max{z; — Z Vim, 0}}. (19)

10



We use a rule v: {1,... ,n} x N— {1,... ,n} to redistribute the sand among the
containers. The contents of each bucket b, is poured into container C,; ). The
new distribution of sand in the containers is given by y = (y1,... ,yn), where

y;= >, Miy(z) for1<j<n.
7(i7k):j

This diffusion process is described by a map f : K* — K™ that is given by

fl@);= Y My(r) forz €K' and1<j<n. (20)
v(i,k)=3

Observe that f(0) = 0, and that f only depends on the volume of the buckets and
the rule . To see that the sand-shift maps defined by (20) are 1-nonexpansive
one can use a result of Crandall and Tartar [3] that says: If X C R™ is such that
xVy € X forall z,y € X and f : X — R" is integral-preserving, then f is
1-nonexpansive if and only if f is order-preserving. Next we associate with each
admissible array 9 on n symbols a sand-shift map fy : K* — K”.

Suppose that & = (9, : Z — X | A € L) is an admissible array on n symbols
with period p. Let R(9\) = {Ux(q) : ¢ € Z} denote the range of ¥5. For each
a€Xlet A, ={XN€L:ae R} and put p(a) = |A.|- If p(a) > 0 we label
the elements of A, by Ai(a),A2(a),..., A q)(a) such that A;(a) < Aiyi(a) for
1<i < p(a).

Now fy : K* — K" is defined as the sand-shift map, where v;,, = 1 for
1<i<nandm>1,and theruley:{1,...,n} xN—{1,...,n} is given by:

(a) if 1 <i<mand1l<k<p(i), then
’Y(za k) = ﬁAkz(i)(S + 1)7 where ¢ = 19)\,‘,(1‘)(3), (21)
(b) if 1 <i<nandk > p(i), then

~v(i, k) =i. (22)

Observe that this rule v is well-defined, as the maps 1, are periodic with period
px and 95(s) # I (t) for 1 < s <t < py. Thus, fy : K* — K" is defined by

fo(x); = Z Mipp(z) forx e K* and1<j<m, (23)
y(ik)=j

where v is given by (21) and (22), and
Mr(z) = min{1, max{z; — (k — 1),0}}. (24)
The next step is to produce for fy : K* — K" a periodic point £ of minimal

period p. To do this it is convenient to introduce some auxiliary numbers &7 .
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Definition 4.1. Let ¥ = (¥y : Z — ¥ | A € L) be an admissible array on n
symbols. For ¢ € Z, a € 3, and A € L the numbers 52’/\ are defined by

¢\ =1/2, ifa=0:(q);
SZ“\ =1, if there exist distinct Ay < A2 < ... < Ap41 in L such that A = A; and
Ox,(8i) =, () for1<i<r,

and there exists § € Z such that a = ¥,,(¢ — ) and

T

Z(ti —s;)=6mod p, where p=gcd({py, :1<i<r+1});
=1
€2 5 =0, otherwise.

These numbers are the same as the numbers in [16, Lemma 3.5], even though
they are defined differently. Moreover they have the following properties.

Lemma 4.1. Ifd = () : Z — £ | A € L) is an admissible array and the numbers
527 \ are defined as in Definition 4.1, then the following assertions are true:

(i) The numbers 527,\ are well-defined;
(it) If a € R(9»), then & , = 0;
(ii) If & , >0, then a € P(g,V);
(v) If & y >0, then &\, =1 for all X' < X with a € R(¥).

Proof. To prove the first assertion we suppose, by way of contradiction, that si-
multaneously I , = 1/2 and ¢ , = 1. Then a = ¥5(g) and there exist distinct
A1 < Ag < ...< Appp in L such that A = A; and

19)\1. (Sl) = 19/\1:+1 (ti) for 1 S 7 S T,

and there exists § € Z such that a = 9,,(¢ — §) and

T

Z(ti —s;) =6mod p, where p=ged({py,:1<i<r+1}).

=1

Observe that 95 (g —6) = 9, (¢ — ) = a = ¥.(q). Since 9, is periodic with period
px and 9x(s) # Ia(¢) for 1 < s < t < py, we find that § = 0 mod p) and hence
i1 (ti—s;) = 0mod p. This however contradicts the fact that ¥ is an admissible
array.

The second and third assertion follow directly from Definition 4.1. To prove
the last assertion we assume that {g’/\ > 0 and that A\’ € L is such that A’ < A and

12



a € R(9x). I &, =1/2, then ¥95(¢) = a. Since a € R(V,) there exists k € Z with
P (k) = a. Now put § = ¢— k and observe that ¥y (k) = ¥.(q) and a = 9\ (g —9).
Moreover ¢ — k = § mod p, where p = ged(pa,p),), and hence 52,» = 1. On the
other hand if £, = 1, then there exist distinct Ay < A2 < ... < Aq41 in L such
that A = A, and

Ix;(8:) =V, () for1<i<n,

and there exists § € Z such that a = ¥, (g — ) and

T

Z(ti —s;) =6mod p, where p=ged({py, :1<i<r+1}).
=1

Further dx(k) = a for some k € Z, since a € R(Jx ). Now put Ag = X, 50 = k,
to=q—06,8 =qg—k,and p' = ged({p,, : 0 < i <r+1}). Clearly
D, (1) = 19)\1-+1(ti) for0<i<r

and a = ¥),(q¢ — 8"). Moreover there exists m € Z such that

Z(ti—si):to—so+6+mp:q—6—k+6+mp:q—k+mp.
i=0

Since p' is a divisor of p we find that >_._,(¢; — s;) = ¢—k = 6’ mod p/, and hence
we conclude that gg, v = 1. This completes the proof of the lemma. O

Now for ¢ € Z define £7 € K* by

ggzz:g;{A for 1 <i<n. (25)
AEL

It is shown in [16, Lemma 3.6] that if ¢ is an admissible array on n symbols with
period p, then £7 as defined in (25) is a periodic point of fy of minimal period
p. For the sake of completeness we give a proof of this result here (compare [16,
Lemma 3.6]).

Lemma 4.2. Let 9 = (¥ :Z — T | A € L) be an admissible array on n symbols
with period p, and let fy : K* — K" be given by (23). If €7 € K™ is given by (25),
then for each q € Z we have that f9(£9) = £9FY and €9 is a periodic point of fy of
mintmal period p.

Proof. The proof of this lemma is based on two claims.
Claim 1.

& (o = &0t (ernn forg,s,t € Zand A€ L.

13



Clatm 2.

fo(€9); = > 7y forgeZand1<j<n.
(4,A): Oa(s)=1, 9 (s+1)=73
If we assume these claims for a moment we can complete the proof of the lemma
in the following manner. It follows from the claims and (ii) of Lemma 4.1 that

fo(€7); = > 4
(3,A): Ox(8)=1, 9 (s+1)=3

+1
- Z £g;(s-q-l),)\

(4,A): 95 (s)=1, 9 (s+1)=7J
— §q+1
- 75 A
XEL: jER(V))
— §q+1
= A

for ¢ € Z and 1 < j < n. Therefore fy(£9) = £91L for q € Z.

It follows from Claim 1 that if j = ¥,(s), then

— — 9+ _ 9+
5?7)\ - é‘gA(S)J\ - égx(i):l-zm),)\ - é‘j’APA '
Moreover if j is not in R(¥5), then (ii) in Lemma 4.1 gives £, = 5;{“;” = 0.
Therefore {117 = ¢? for ¢ € Z and p = lem ({p» : A € L}), and hence f5(£9) = €9.

It remains to be shown that p is the minimal period of £? under fy. To do this
let u > 1 be the smallest integer with f5(£7) = £7. Remark that it suffices to show
that py divides p for all A € L, since p = lem ({p) : A € L}). So, take A € L and
put 7 = 9x(q)- It follows from (ii) and (iv) of Lemma 4.1 that A is the only element
of L with £}, = 1/2in the sum }_, {7 . Therefore £ is not an integer, and hence
{g"'“ is not an integer, as {g"'“ = f§(€%); = &. This implies that there exists a
unique X’ € L such that {;{J;f‘ =1/2, and thus 9\ (¢ + p) = j. It is clear from (iv)
in Lemma 4.1 that if A’ < A, then £77# < ¢7. Likewise A’ > A implies £ > ¢7.
As £9H = £9 we conclude that X' = ), so that 9x(qg+p) = 9 (g+p) = 5 = 9 (q).
Since 19, is periodic with period py, and ¥, (s) # 9. (t) for 1 < s <t < py, we find
that py divides p. This shows that £7 has minimal period p under fy.

To complete the proof of the lemma we need to show the claims. We begin
with the first one. If §§A(s) y = 1/2, then 95(s) = ¥1(¢) and hence ¥5(s +t) =
9r(gq +t). Therefore §§;"Z’S+t)’>\ =1/2= 51‘1“(5),}\. On the other hand if §§A(s)’/\ =1,
then there exist distinct Ay < A2 < ... < Ar41 in L such that A = A\; and

I, (81) = 19)\,-+1(t1') for1<i<m,
and there exists § € Z such that ¥,(s) = ¥»(g — ) and

T

Z(ti —s;) =6mod p, where p=ged({py, :1<i<r+1}).

i=1

14



As 9x(s) = Ox(g — 6) we find that J\(s +¢t) = Ur(¢ + ¢ — §), and therefore
t
§§T(s+t),x =1= ng(s),x

To establish the second claim remark that by (23), (24), and (25) we have
fa€9);= Y Muy(¢) for1<j<n,
'Y(iwk):j
where M;,(£7) = min{l, max{}", ., &, — (k—1),0}}. It follows from (ii) and (iv)
in Lemma 4.1 that

if & < p(3),
otherwise.

é‘q
Now by using the definition of v (see (21) and (22)) we deduce

fo(§%); = > Mi(gY)

(3,k): v(4,k) =7

Z 3,)\1«(1)

(3,k): v(3,k)=7

—_ q
= A"

(4,2): 9 (s)=1, 9a(s+1)=j

This completes the proof of the lemma. O

Let us go back to the inclusion R(n) D Q'(2n). Before we prove this inclusion
we make the following observation.

Lemma 4.3. If ¥ is a restricted admissible array on 2n symbols and £2 is defined
by (25), then €9 € E2™.

Proof. Seeking a contradiction, we suppose that £ > 0 and £, > 0. Since 53? =
Yoaer iy and £, > 0for 1 < j < 2n and A € L, there exist A and X' in L
such that £f, > 0 and & ,, > 0. Therefore it follows from (iii) in Lemma 4.1
that {i,it} C P(g,¥). This however contradicts the fact that ¥ is a restricted
admissible array on 2n symbols. O

Corollary 4.1. R(n) D Q'(2n) for alln > 1.

Proof. Let p € Q'(2n). Then there exists a restricted admissible array ¥ on 2n
symbols with period p. Now let fy : K2® — K2" be given by (23) and let £7 € K2
be as in (25) for ¢ € Z. It follows from Lemma 4.2 that £° is a periodic point of fy
of minimal period p. Moreover fy(£9) = £9+! for q € Z, so that Lemma 4.3 implies
(€% € B2 for all j > 0. Applying Lemma 1.1 now gives p € R(n). O
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5 Some remarks concerning the set R(n)

In this section the set R(n) is determined for 1 < n < 10. Moreover it is shown
that the largest element 1 (n) of R(n) satisfies:

log¥(n) ~ +/2nlogn.

The set R(n) has been computed for n = 1,2,3,4,6,7, and 10 by the first
author in [5] and [6]. To obtain R(n) for all 1 < n < 10 it only remained to be
decided whether 18 is in R(5), 90 is in R(8), and 126 is in R(9). We will see that
none of these integers can occur. To prove this the following notion is used.

Definition 5.1. A set S C {1,...,2n} of m elements is called feasible for 2n, if
there exists a restricted admissible array ¢ = (¥5 : Z — X | A € L) on 2n symbols
such that |[L| = m and S = {p, : A € L}. Moreover a feasible set S is said to be
minimal if lem (S') < lem (S) for all §' C S with S" # S.

Remark that if 4 = (¥y : Z — X | A € L) is a restricted admissible array
on 2n symbols, and L' is a subset L with the ordering inherited from L, then
¥ =(Wr:Z— X |XeLis also a restricted admissible array on 2n symbols.
Using this remark we see that

Q'(2n) = {lem(S): S is a feasible set for 2n} (26)
= {lem(S) : § is a minimal feasible set for 2n}. (27)

There exist several necessary conditions for feasible sets in the literature. We
list some of them here. The proofs of these conditions can be found in [5, Section
3.5] and [6, Section 5]. We note that in [5] and [6] the conditions are formulated
in terms of so-called strongly array admissible sets. However, as any feasible set is
strongly array admissible, the conditions also hold for feasible sets.

Lemma 5.1. A4 set S C {1,...,2n} is not feasible for 2n if one of the following
conditions holds:

(1) there exist p1,...,pr € S such that ged(p;,p;) =1 for all1 <i < j <k and

szpi/ﬂ > 2n,

where [p] is the smallest integer k with p < k;

(i1) there exists p € S such that ged(p,q) = 1 for allq € S with p # q, and S\ {p}
is not feasible for 2m, where m = n — [p/2];

(i) there exist p1,p2 € S such that pr + p2 > 2n and ged(pr,p2) = 2;
(1v) there exist p1,p2,p3 € S such that pr + p2 + p3 > 3n and ged(pi,p;) = 3 for
alll1 <i<j<3.
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To prove that 18 ¢ R(5), 90 ¢ R(8), and 126 ¢ R(9) we need the following
lemma.

Lemma 5.2. The set {6,9} is not feasible for 10.

Proof. Seeking a contradiction, we assume that {6,9} is feasible for 10. Then
there exists a restricted admissible array ¢ = (¥ : Z — £ | A € L) on 10 symbols
with period 18, where |L| = {1,2} and L is equipped with the usual ordering.
Furthermore the periods py of ¥, either satisfy: p; =6 and po =9, or p; =9 and
p2 = 6.

In both cases there exist ¢, j, k € Z such that

D2(i) = 91(j) = (k)" (28)

Since 9 is an admissible array we know that ¢ — j Z 0 mod 3. Further we claim
that ¢ — k #Z 0 mod 3. As ¢ — k = 0 mod 3 implies that there exist m,mi,ms € Z
such that i — k + m(myp1 + mape) = 0. Therefore i + mmaps = k — mmyp; and
hence {¥2(i+mmaps), %1 (k—mmyp1)} C P(i+mmaps, ). Using (28) and the fact
that ¥; and 95 have period p; and ps, respectively, we find that {95(7),92(i)*} C
P (i +mmape, ), which contradicts the fact that ¥ is a restricted admissible array.
Furthermore i — j # i — k mod 3, because i — j =i — k mod 3 implies that ¥, (k) =
91(i — (i — k)) € P(i,9), so that (28) gives {92(i),92(i)*} C P(i,99). This again
contradicts the fact that ¢ is a restricted admissible array.

This leaves us two cases: i—j = 1 mod 3,i—k = 2mod 3,and i—j = 2 mod 3,
i —k = 1mod 3. We begin with the first one. By definition ¥:(j) € P(j,?).
On the other hand, j —k = (j — i)+ (1 — k) = =1+ 2 = 1mod 3, so that
i—j=j—kmod 3. Thus, %1 (k) = h(j— (j —k)) € P(j,9), and hence (28) gives
{91(4),91(5)*} C P(j,?¥), which is a contradiction. In the second case ¥1(j) €
P@,9) and j—k = (j—i)+(i—k) = —2+1 = 2 mod 3, so that i —j = j—k mod 3.
This implies that ¥1(k) = 9(j — (j — k)) € P(j,9), and therefore (28) gives
{91(4),91(5)*} C P(j,¥), which is a contradiction. O

This lemma has the following corollary.
Theorem 5.1. We have that 18 ¢ R(5), 90 ¢ R(8), and 126 ¢ R(9).

Proof. To see that 18 ¢ R(5) we look at the candidate minimal feasible sets for
10 that give period 18. There are two such sets: S; = {2,9} and Sy = {6,9}.
However, S is not feasible for 10 by (i) in Lemma 5.1, and S» is not feasible for
10 by Lemma 5.2. Thus we conclude from (27) and Theorem 2.1 that 18 & R(5).

For period 90 in dimension 8 there are five candidate minimal feasible sets:
Sy = {2,5,9}, So = {10,9}, S5 = {2,15,9}, S4 = {6,5,9}, and S5 = {6,15,9}. Tt
follows from (i) in Lemma 5.1 that Si, Sa, and S3 are not feasible for 16. Further
(iv) in Lemma 5.1 tells us that Ss is not feasible for 16. By combining (ii) in
Lemma 5.1 with Lemma 5.2 we see that S, is also not feasible for 16, and hence
90 ¢ R(8).
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For period 126 in dimension 9 there are three candidate minimal feasible set:
S1=1{2,7,9}, S = {14,9}, and S3 = {6,7,9}. The sets S; and S3 are not feasible
for 18 by (i) in Lemma 5.1. Furthermore it follows from (ii) in Lemma 5.1 and
Lemma 5.2 that S3 is not feasible for 18, and thus 126 ¢ R(9). This completes the
proof of the theorem. O

The results in [6, Section 5] and Theorem 5.1 together yield a complete list of

elements of R(n) for 1 < n < 10. This list is given in Table 1 in the appendix.
We conclude this section with a theorem for the largest element of R(n). In

this theorem the notation f(n) ~ g(n) is used to say that lim,, .., f(n)/g(n) = 1.

Theorem 5.2. Let ¢(n) = max{p: p € R(n)}. Then

log¥(n) ~ +/2nlogn. (29)

Proof. Let g(n) denote the maximal order of a permutation on n letters, and let
m(n) denote the number of primes at most n. We first prove the inequality

g(2n —w(2n)) < ¢(n) for all n > 1. (30)

To derive this inequality it is shown that for each order m of a permutation on
2n — w(2n) letters there exists a restricted admissible array on 2n symbols with
period m. This is sufficient, as R(n) = Q'(2n).

So, let m be the order of a permutation on 2n — w(2n) letters, and suppose
that m has a prime factorization Hle ¢;". We know from elementary properties
of permutations that there exists a permutation g on 2n — w(2n) letters that has a
disjoint cycle representation g = pipo ... pr, where p; has order ¢ for 1 < i < k.
Furthermore we have that Y&, ¢* < 2n — m(2n). Let D; denote the domain
of w; for 1 < i < k, and put D = U,;D;. Further for S C {1,...,2n} define
c(S)={a:ae Sorat €S}

As k < 7(2n) we know that Ele(qf"' + 1) < 2n. Therefore we can rename
the elements of D such that D C {1,...,2n} and the sets cl(D;) are pairwise
disjoint. Now let a; be the smallest element of D; for 1 < i < k, and define
=0 :Z—{1,...,2n} |1 <i<k)by

95(j) = pl(a;) forjeZand1<i<k.

As cl(D;) and cl(D;) are disjoint for distinct ¢ and j the array ¢ is a restricted
admissible array on 2n symbols. Moreover, 9; has period ¢;* for 1 <4 < k, so that
9 has period m = Hle ¢;". Hence the proof of (30) is complete.

Now let (n) denote the largest element of @Q(n). Then it follows from (30)
and the inclusion R(n) C Q(2n) that

log g(2n — w(2n)) < log(n) < logv(2n)
V2nlogn ~ V2nlogn ~— 2nlogn

for n > 2. (31)
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It has been shown in [18] that

logy(n) ~ v/nlogn, (32)

and hence
. log~(2n)
1 —==1. 33
et v2nlogn (33)
On the other hand, Landau [4, pp. 222-229] has proved that

log g(n) ~ \/nlogn, (34)
so that we can use the prime number theorem, which says that 7(n) ~ n/logn,
to find that

. logg(2n — w(2n))
1 =1. 35
R0 v2nlogn (35)

The equations (31), (33), and (35) together yield:
log 9(n)

lim ———==1

n—oco \/2nlogn

and hence the proof of the theorem is complete. O

Appendix

Proof of Lemma 1.1. Let p be in R(n). Then there exist a 1-nonexpansive map
h : R* — R® and a periodic point { € R® of A of minimal period p. Define
D = n?Z;B(hi((),d), where B(h’((),d) is the 1-norm ball with radius d around
h7(¢), and d is the 1-norm diameter of the set {h/({) : 0 < j < p}. Observe that
h[D] C D, as h is 1-nonexpansive. Therefore the Brouwer fixed point theorem
implies that there exists an z* € D with h(z*) = z*.

Now let g : R* — R™ be given by g(z) = h(z + z*) — z* for z € R".
Clearly, g is 1-nonexpansive and g(0) = 0. Further let J : R* — E?" be defined
by J(z) = (£ vV O0,(—z) v 0) for z € R™. It is easy to verify that J is a 1-isometry
that maps R” onto E?”. Hence the inverse J~! : E2® — R" is also a l-isometry.
Finally let R : K2* — E?" be the 1-nonexpansive retraction given by

Rlz,y)=(x—(xANy),y—(xAy)) for (z,y) € K* x K".

Observe that f : K2® — K™ given by f(z) = (JogoJ~ 1o R)(z) for z € K"
is a 1-nonexpansive map with f(0) =0. Set £ = J({ — z*) and remark that £ is a
periodic point of f of minimal period p. Moreover f7(¢) € E2™ for all j > 0.

Conversely, if f : K2® — K", with f(0) = 0, is a 1-nonexpansive map, and
¢ € K" is a periodic point of f of minimal period p, such that f7(¢) € E*" for
all j > 0, then h: R* — R" given by h(z) = (J o Ro foJ)(z) for x € R, is
1-nonexpansive and J~1(£) is a periodic point of h of minimal period p. O
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Table 1: The elements of R(n) for 1 <n < 10.

n  Elements of R(n)

1 1,2

2 1,2,3,4

3 1,2,3,4,56

4 1,2,3,4,5,6,7,8,10, 12

5 1,2,3,4,5 6,78, 9,10, 12, 14, 15, 20

6 1,2,3,4,56,7,8,9,10, 11, 12, 14, 15, 18, 20, 21, 24, 28, 30

7 1,2,3,4,56,7,8,9,10, 11, 12, 13, 14, 15, 18, 20, 21, 22, 24,
28, 30, 35, 36, 40, 42, 60

8 1,2,3,4,56,7,8,09,10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22,
24, 26, 28, 30, 33, 35, 36, 40, 42, 44, 45, 48, 56, 60, 70, 84

9 1,2,3,4,56,7,8,09,10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21,
22, 24, 26, 28, 30, 33, 35, 36, 39, 40, 42, 44, 45, 48, 52, 55, 56,
60, 63, 66, 70, 72, 84, 90, 105, 120, 140

10 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 39, 40, 42, 44, 45, 48 52,
55, 56, 60, 63, 65, 66, 70, 72, 77, 78, 80, 84, 88, 90, 105, 110,
120, 126, 132, 140, 168, 180, 210
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