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1 Introduction

During the last two decades adaptive estimation has become one of the most active areas
of research in non-parametric statistics. The introduction of different models of adaptive
estimation reflects the existing practical needs for more realistic models and flexible methods
of estimation. Study of these models brought with it new challenging problems which required
creation of new statistical methods and approaches.

In this paper we study non-parametric adaptive regression in a fixed design model in
which an unknown regression function f(x) can be observed on an equidistant grid of the
whole real line. More precisely, for a given bin-width h > 0, we consider the additive model
of observations given by

y` = f(`h) + ξ`, ` = 0,±1,±2, . . . (1)

where ξ` are independent centered Gaussian random variables N (0, σ2), with a given variance
σ2 > 0. Often in the statistical literature more advanced results are obtained in the white
noise model

dV (x) = f(x) dx + ε dW (x), −∞ < x < ∞, (2)

which is just an approximation to the model (1), with ε =
√

σ2h. Here V is the noisy
observation of an unknown regression function f , ε is the resolving noise and W (x) represents
a standard Wiener process.

There exists a huge literature on the equivalence between these two models, cf. e.g. Brown
and Low [1996] and Nussbaum [1996], but this does not cover our main problem here, namely
adaptive non-parametric estimation. Our approach is greatly influenced by a recent paper,
Lepski and Levit [1998], which was a milestone in adaptive estimation of infinitely differen-
tiable functions, in the white noise model (2). Below we will explain main differences between
our approach and that of Lepski and Levit [1998].

In non-parametric statistics, classes of functions are in general described by smoothness
parameters. In this paper we shall study classes of functions defined in terms of positive
parameters γ, β and r whose interpretation will be explained below. We will study estimation
of f in (1), under the assumption that f belongs to the functional class A(γ, β, r) which is
the collection of all continuous functions such that

‖f‖2
γ,β,r :=

∫ ∞

−∞

γ

β2
e2|γt|r |F [f ](t)|2dt ≤ 1. (3)

Here F [f ] represents the Fourier transform of f . The collection of all such classes will be
called functional scale. Note that when the parameters are assumed known, we are dealing
with the problem of non-parametric estimation much studied recently, especially since the
publications, Ibragimov and Has’miskii [1981], [1982], [1983], Stone [1982]. The situation in
which neither of these parameters is known a priori is much more realistic and complex. A
real progress in this problem which is usually referred to as adaptive estimation, has been
only achieved in the last decade, most notably since the publication of Lepski [1990], [1991],
[1992a], [1992b]. Further progress was achieved in Lepski and Levit [1998], [1999].

For all γ, β, r, the class A(γ, β, r) is a class of infinitely differentiable functions, and each
of the parameters affects the smoothness – and the accuracy of the best non-parametric
estimators – in its own way. The parameter γ is some kind of ‘scale’ parameter: one can
verify that f(·) ∈ A(1, β, r) if and only if 1

γ f( ·γ ) ∈ A(γ, β, r). Therefore, of all parameters, it
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affects the smoothness of f most dramatically. The bigger is γ, the smoother are the functions
of the class.

The parameter β can be interpreted as a ‘size’ parameter and represents the radius of
the corresponding L2-ellipsoid defined by (3). Note that f(·) ∈ A(γ, 1, r) if and only if
βf(·) ∈ A(γ, β, r). Therefore the bigger is β, the less smooth are the functions of the class.

Finally, r can be best described as a parameter responsible for the ‘type’ of smoothness.
It is well known that for r = 1 all functions in the class A(γ, β, r) admit bounded analytic
continuation into the strip {z = x+iy : |y| < γ} of the complex plane (Paley-Wiener theorem),
and therefore for all r > 1 the functions in A(γ, β, r) are entire functions (i.e. functions
admitting analytic continuation into the whole complex plane). For r < 1 these functions are
‘only’ infinitely differentiable, and their smoothness increases together with r.

In the Gaussian white noise model Lepski and Levit [1998] studied adaptive estimation
for even broader classes of functions with rapidly vanishing Fourier transforms F [f ](t). How-
ever, their main conclusions are readily interpretable in the special example of functional
classes A′(γ, γ, r) = {f continuous, |F [f ](t)| ≤ γ exp−(γt)r} which are quite similar to our
classes A(γ, γ, r). Let us remind some of these conclusions here, as a starting point for out-
lining our main results. For simplicity, we will assume, after Lepski and Levit [1998], that
0 < r− < r < r+ < ∞.

In the adaptive estimation, when the parameters such as γ, β, r are unknown, one is looking
for statistical procedures which can ‘adapt’ to the largest possible scope of these parameters.
As the smoothness of the underlying functions is most notably affected by the ‘scale’ parameter
γ, we will mainly refer to the ensuing uncertainty in the value of this parameter. More
specifically, the accuracy of the best methods of estimation will be determined by the ‘effective
noise’ ε2/γ, where ε is the average noise intensity in the observation model (1).

To realize the whole scope of the problem, it is useful to look at the extreme cases. On
one hand, the situation could be so ‘bad’, that no consistent estimation of the unknown
function would be possible at all, even if the parameter γ was completely known. On an
intuitive level, it is quite clear that such a situation occurs when ε2/γ 6→ 0. We can exclude
this case from consideration on the ground that “nothing can be done” in such an extreme
situation. Thus one can restrict attention to the case γ À ε2. The situation deteriorates
further in the adaptive setting, due to the uncertainty in parameter γ. According to Lepski
and Levit [1998], adaptive methods can only work efficiently if γ À ε2−τ , for some 0 < τ < 2.
On the other hand, if γ becomes too big, the underlying functions become unrealistically
smooth and can be estimated with accuracy O(ε), i.e. with the same accuracy which could
be achieved if all underlying functions were either constant, or just included a few unknown
parameters. According to Lepski and Levit [1998], such an off-beat situation occurs only
when γ becomes of order log1/r ε−1. Therefore one can restrict attention to those γ for which
ε2−τ ¿ γ ¿ log1/r ε−1, which, in a sense, is the largest possible range for which adaptive
procedure can exist. For all γ in this range, an efficient adaptive non-parametric procedure
has been proposed in Lepski and Levit [1998]. Note that this discussion led us, by the
very nature of the statistical problem of adaptation, to a situation in which the unknown
parameter of the scale γ belonged to a region Γ = Γε depending on the index ε of the model.
In other words, our adaptive setting leads us to a natural assumption that the unknown scale
parameter γ may itself depend on the index ε.

Now, in the model we have just discussed the essential role was played by the noise
intensity ε and the scale parameter γ. Our model of discrete regression is more realistic and
also contains more parameters: σ, h, γ, β, r. Since the white noise model (2) is known to
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approximate the discrete regression model (1), one can expect some similarity between the
ensuing results, namely that similar procedure could lead to an efficient adaptive method
of estimation in the discrete regression. Without aiming at precise definitions, one could
speak in this case of a “weak” equivalence between the white noise and discrete time adaptive
regression schemes.

However, just as the relation between the two parameters involved played an important
role in the above discussion, a more complicated relation between all involved parameters
affects the quality of the optimal adaptive procedure in the discrete models. In fact, such
relations become more complex in the discrete case, not only because of additional parame-
ters, all of which may be unknown and, therefore vary together with ε, but also due to the
limitations to which the continuous time model (2) captures the underlying properties of the
discrete model (1). In particular, the obvious naive recipe of just replacing ε in all the above
restrictions by

√
σ2h does not provide a correct answer.

We comment next that the classes similar to (3) are well known in statistics. Apparently
they have been introduced first (for r = 1) in Ibragimov and Has’minskii [1983], where optimal
rates of convergence were found in estimating an unknown density function f ∈ A(γ, β, 1).
Later Golubev and Levit [1996] showed (again for r = 1) that these non-parametric classes
are quite unique, in the sense that not only optimal rates, but exact asymptotically minimax
estimators, even point-wisely, can be explicitly constructed for such classes. Asymptotically
efficient non-parametric regression for the classes A(γ, β, 1) was studied in Golubev, Levit
and Tsybakov [1996]. Here we consider more general classes A(γ, β, r), use kernel-type esti-
mators, different from Golubev, Levit and Tsybakov [1996] and, more significantly, consider
the problem of adaptive estimation.

In the Gaussian white noise model Lepski and Levit [1998] considered still more gen-
eral classes of infinitely differentiable functions, with rapidly vanishing Fourier transforms.
However, the restriction on the Fourier transform of f in their paper was based on the L∞-,
rather than on the L2-norm, as in our case. They have not only proposed asymptotically min-
imax estimators for all of the corresponding classes, but have also constructed asymptotically
optimal adaptive estimators for the whole scale of such classes.

Since in most applications the information about an unknown function is typically con-
veyed by discrete measurements, our model can be viewed as a more realistic approximation,
than the classical white noise model. Therefore our model contains an additional “discretiza-
tion” parameter h – the bin-width.

Our goal is to study, to what degree the method of the adaptive procedure proposed in
Lepski and Levit [1998] works in the discrete regression setting. More precisely, we are seeking
to find natural conditions under which our equidistant regression model is weakly equivalent
to the classical white noise model, in the sense that the asymptotically optimal adaptive
estimators proposed for the later model, are still asymptotically optimal in the equidistant
non-parametric regression models.

In the next section we introduce the model. In Section 3 we prove some auxiliary lemmas.
In Section 4, the problem of asymptotic minimax regression is studied first under the as-
sumption that the class of functions is completely determined by a fixed vector of parameters
(γ, β, r), these parameters being independent of the index of the model h. At the end of this
section we give the first steps towards the adaptive framework by allowing the parameters of
the class depend on the index of the model. In Section 5 we consider the functional scales
which are collections of functional classes, see (40). We define the optimality criteria based
on the classification of the scales in pseudo-parametric (PP) and non-parametric (NP) scales.
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We then prove optimality of the adaptive procedure. We shall see that, compared to a given
functional class A(γ, β, r), an additional logarithmic factor in the exact rate of convergence
has to be paid as a price for the uncertainty about the actual class the regression function
belongs to, see Theorem 3.

2 The model

Let us formalize our model.

Definition 1 Let γ, β, r > 0 be given. We denote by A(γ, β, r) the class of continuous
functions f : R→ R, whose Fourier transform F [f ] satisfies

‖f‖γ,β,r :=
∫

γ

β2
e2|γt|r ∣∣F [f ](t)

∣∣2dt ≤ 1. (4)

In this study we use the following definition of the Fourier transform,

F [f ](t) =
∫

eitxf(x) dx. (5)

Note that the Fourier inversion formula

f(x) =
1
2π

∫
e−itxF [f ](t) dt (6)

certainly holds under assumption (4). It is easy to see that for all γ, β, r > 0, functions in
A(γ, β, r) are infinitely differentiable.

Now, let us consider the following observation model

y` = f(`h) + ξ`, ` = 0,±1,±2, . . . , (7)

where ξ` are i.i.d. Gaussian random variables, N (0, σ2), σ2 > 0. We assume that the function
f belongs to the family A(γ, β, r), for some γ, β, r > 0.

Our purpose is to estimate the unknown function f(x) based on the vector of observations
y = (. . . , y−2, y−1, y0, y1, y2, . . .). We will choose our optimal estimator from the family of
kernel type estimators

f̂h,s(x,y) = h

∞∑

`=−∞
ks(x− `h) y` (8)

where ks, s ≥ 0, is the so-called sinc-function

ks(x) =
sin sx

πx
, (9)

and ks(0) = s
π . This kernel has the property

F [ks](t) = [−s,s](t) (10)

and therefore, according to the convolution theorem,

F [f ∗ ks](t) = [−s,s](t)F [f ](t), (11)
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where * represents the convolution operator.
The kernel ks is just one of many possible, but its very tractable properties make it an

attractive tool: it helps significantly in the search of the most general possible results and
clarifies the underlying ideas. For practical purposes some other kernels, such as de la Vallée
Poussin kernel (cf. Nikol’skĭı [1975], p. 301), may be more relevant and typically would work
better.

The parameter s is called the bandwidth. As we shall see in Section 4, for any fixed class
there exists an optimum bandwidth s. The optimum bandwidth will depend on parameters
γ, β, r, σ as well as the index of the model h, called the bin-width, which in our asymptotic
study will tend to zero.

Denote by f̃h(x,y) an arbitrary estimator of f(x) based on the observations y. To shorten
the notation we will often write f̃h(x) instead of f̃h(x,y). Let Pf be the distribution of the
vector y and let Ef and Varf denote the expectation and the variance with respect to this
measure. When there is no possibility of confusion we will simply write P, E and Var
respectively.

Let W be the class of loss functions w(x), x ∈ R, such that

w(x) = w(−x),

w(x) ≥ w(y) for |x| ≥ |y|, x, y ∈ R,

and for some 0 < η < 1
2 ∫

e−ηx2
w(x) dx < ∞.

With an appropriate normalizing factor σh to be defined shortly, and w ∈ W, we will consider
the maximum risk, over a fixed functional class A(γ, β, r), given by

sup
f∈A(γ,β,r)

Ef w
(
σ−1

h

(
f̃h(x,y)− f(x)

))

as a global measure of the error of the estimator f̃h over the whole class A(γ, β, r). When
the classes A(γ, β, r) are considered fixed, our main goal is to find an estimator such that
the corresponding maximum risk is as small as possible, i.e. achieves (asymptotically) the
minimax risk

inf
f̃h

sup
f∈A(γ,β,r)

Ef w
(
σ−1

h

(
f̃h(x,y)− f(x)

))

where f̃h is taken from the class of all possible estimators.
In the adaptive setting, we shall allow (γ, β, r) to vary freely inside large scales K. Con-

ditions under which an adaptive study is suitable are presented and a notion of adaptive
asymptotic optimality is introduced based on distinguishing, among all possible functional
scales, between the so-called non-parametric (NP) and pseudo-parametric (PP) scales.

3 Auxiliary results

In this section we present, for the reader’s convenience, two auxiliary results which will be
used in the subsequent sections. The aim of the first lemma is to approximate summation
formulas by integrals, with a good approximation error in the case of very smooth integrands.
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This result is a version of the celebrated Poisson summation formula. It has been used in
a similar situation in Golubev, Levit and Tsybakov [1996]. Below A(γ, β, r), γ, β, r > 0 are
the functional classes of infinitely differentiable functions previously defined and ks(x) is the
kernel (9).

Lemma 1 The following properties hold:

(a) Let f, g be continuous functions in L2(R) such that F [f ],F [g] ∈ L1(R), then

h

∞∑

`=−∞
g(x− `h)f(`h− y) =

1
2π

∫
e−it(x−y)F [g](t)F [f ](t) dt +

1
2π

∑

` 6=0

ei 2π`
h

y

∫
e−it(x−y)F [g](t)F [f ]

(
t +

2π`

h

)
dt

=
∫ ∞

−∞
g(x− z)f(z − y) dz +

1
2π

∑

` 6=0

ei 2π`
h

y

∫
e−it(x−y)F [g](t)F [f ](t +

2π`

h
) dt.

(b) For arbitrary numbers s1, s2 (0 ≤ s1 ≤ s2) denote ∆(x) = ks2(x) − ks1(x).2 Then,
uniformly in γ, β, r, si ≥ 0, i = 1, 2, and f ∈ A(γ, β, r) as h → 0

h

∞∑

`=−∞
∆(x− `h)f(`h) =

1
2π

∫
e−itxF [∆](t)F [f ](t) dt +

O
(
e−(2π γ

h)r
/cr

)(∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2

,

where cr = max(1, 2r−1).

(c) Let s1, s2 and ∆(x) be as before. Then, uniformly in s1, s2, for h → 0,

h
∞∑

`=−∞
∆2(x− `h) =

s2 − s1

π

(
1 + O(1)h(s2 − s1)

)
.

Proof. (a) The proof is based on the formula
∞∑

`=−∞
e2πi `x =

∞∑

`=−∞
δ(x− `), (12)

known in the theory of distributions (cf. e.g. Antonsik et al. [1973], Ch. 9.6). Using the Fourier
inversion formula, the distributional formula (12) and with some algebra, one obtains

h
∞∑

`=−∞
g(x− `h)f(`h− y) =

h

(2π)2

∞∑

`=−∞

∫
e−it(x−`h)F [g](t) dt

∫
e−is(`h−y)F [f ](s) ds

2Notice that if we take s1 = 0 and s2 = s then ∆(x) = ks(x).

7



=
h

(2π)2

∫ ∫
e−itxF [g](t) eisyF [f ](s)

∞∑

`=−∞
e−i(s−t)`h dt ds

=
h

(2π)2

∞∑

`=−∞

∫ ∫
e−itxF [g](t) eisyF [f ](s) δ

(
h(s− t)

2π
− `

)
dt ds

=
1
2π

∞∑

`=−∞

∫
e−itxF [g](t)

∫
eisyF [f ](s) δ

(
s− t− 2π`

h

)
ds dt

=
1
2π

∞∑

`=−∞

∫
e−itxF [g](t) ei(t+ 2π`

h
)yF [f ]

(
t +

2π`

h

)
dt

=
1
2π

∫
e−it(x−y)F [g](t)F [f ](t) dt

+
1
2π

∑

6̀=0

ei 2π`
h

y

∫
e−it(x−y)F [g](t)F [f ]

(
t +

2π`

h

)
dt

=
∫ ∞

−∞
g(x− z)f(z − y) dz

+
1
2π

∑

6̀=0

ei 2π`
h

y

∫
e−it(x−y)F [g](t)F [f ]

(
t +

2π`

h

)
dt.

(b) If f ∈ A(γ, β, r) then f belongs to L2(R) according to the Parseval’s formula. Also,
F [f ] ∈ L1(R) according to (4) and the Cauchy-Schwartz inequality. Thus we can apply the
previous result in (a), using g = ∆ and y = 0. Notice that F [∆](t) = (s1,s2](|t|). Applying
the Fourier inversion formula, the Cauchy-Schwartz inequality and the cr-inequality, we obtain
after a few transformations
∣∣∣∣∣h

∞∑

`=−∞
∆(x− `h)f(`h)− 1

2π

∫
e−itxF [∆](t)F [f ](t) dt

∣∣∣∣∣ ≤

≤ 1
2π

∑

` 6=0

∣∣∣∣
∫

e−itxF [∆](t)F [f ](t +
2π`

h
) dt

∣∣∣∣

≤ 1
2π

(∫
γ

β2
e2|γt|r ∣∣F [f ](t)

∣∣2 dt

)1/2 ∑

` 6=0

( ∫ ∣∣F [∆](t)
∣∣2 β2

γ
e−2|γ (t+ 2π`

h )|rdt

)1/2

≤ 1
2π

∑

` 6=0

(∫
(s1,s2](|t|)

β2

γ
e2|γt|re−2| 2π`γ

h
|r/crdt

)1/2
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≤ 1
2π

∑

` 6=0

e−|
2π`γ

h
|r/cr

(
2
∫

(s1,s2](t)
β2

γ
e2(γt)r

dt

)1/2

=
1
π

(
2
∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2 ∞∑

`=1

e−(2π` γ
h
)r/cr

≤ 1
π

(
2
∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2 (
e−(2π γ

h
)r/cr +

∫ ∞

1
e−(2π γ

h
x)r/crdx

)

= O
(
e−(2π γ

h
)r/cr

)(∫ s2

s1

β2

γ
e2(γt)r

dt

)1/2

, (h → 0),

where the last asymptotic can be easily derived by partial integration.

(c) Applying (a) and taking f = g = ∆ and x = y, we see that

h
∞∑

`=−∞
∆2(x− `h) = h

∞∑

`=−∞
∆(x− `h)∆(`h− x)

=
1
2π

∫ (F [∆](t)
)2

dt +
1
2π

∑

` 6=0

ei 2π`
h

x

∫
F [∆](t)F [∆]

(
t +

2π`

h

)
dt.

Therefore∣∣∣∣∣ h
∞∑

`=−∞
∆2(x− `h)− sj − si

π

∣∣∣∣∣ ≤ 1
2π

∑

` 6=0

∫
F [∆](t)F [∆]

(
t +

2π`

h

)
dt

≤ 1
π

∞∑

`=1

∫
(s1,s2](|t|) (s1,s2]

(∣∣∣t +
2π`

h

∣∣∣
)

dt

≤ 5h(s2 − s1)2

2π2
= Oh(1)h(s2 − s1)2,

which completes the proof of the lemma. 2

The following elementary properties will be used below. They will help in bounding the
bias and the approximation errors.

Lemma 2 For any positive γ and r the following inequality holds
∫ ∞

s
e−2(γt)r

dt ≤ s e−2(γs)r

r(γs)r
(13)

for all s > t0 where t0 satisfies r(γt0)r = 1 and
∫ s

0
e2(γt)r

dt =
s e2(γs)r

2r(γs)r
(1 + o(1)) (14)

uniformly in r− < r < r+ for γs →∞, where r−, r+ > 0 are arbitrary fixed numbers.
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For the first inequality see e.g. Lepski and Levit [1998], eqs. (2.8), (2.10). The second
property can be easily proven by partial integration.

4 Minimax regression in A(γ, β, r)

4.1 Optimality in the case of fixed classes

The first result we present in this section is obtained in the classical framework, i.e. in a
situation where the function f(x) although unknown belongs to a given class. In other
words, the parameter α = (γ, β, r) of the class is known and fixed. Denote for shortness
A(α) = A(γ, β, r). We will prove that asymptotically minimax estimators can be found
among kernel estimators using a specified bandwidth and we will also calculate to a constant
their maximal asymptotic risk, for a variety of loss functions.

Theorem 1 Let α > 0 and ω ∈ W. Then for any x ∈ R, the kernel estimator f̂h = f̂h,sh
, in

(8) with the bandwidth

sh = sh(α, σ2) =
1
γ

(
1
2

log
β2

π γσ2h

)1/r

, (15)

satisfies

lim
h→0

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(
f̂h(x)− f(x)

))
=

lim
h→0

inf
f̃h

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(
f̃h(x)− f(x)

))
= Ew(ξ)

where f̃h is taken from the class of all possible estimators of f and ξ ∼ N (0, 1).

Proof: Upper bound for the risk. Let us first study the sample properties of the family
of estimators we use. According to the model for the observations (7) and the formula for the
estimator (8) one can split the error term as follows,

f̂h,s(x)− f(x) =
(
h

∞∑

`=−∞
ks(x− `h)f(`h)− f(x)

)
+

(
h

∞∑

`=−∞
ks(x− `h)ξ`

)

:= b(f, x, s, h) + v(σ, x, s, h).

For simplicity we shall write below bs = b(f, x, s, h), vs = v(σ, x, s, h). The mean square error
can be decomposed as

E
(
f̂h,s(x)− f(x)

)2 = b2
s + Var vs, (16)

where bs is the bias and vs is a normally distributed zero mean stochastic term.
First, let us consider the bias. In order to apply Lemma 1 we take s1 = 0 and s2 = s. In

this case ∆ = ks. Now, applying Lemma 1(b) and the Fourier inversion formula for f(x) we
see that uniformly in f ∈ A(α)

bs =
1
2π

∫
e−itx(F [ks](t)− 1)F [f ](t)dt + O

(
e−(2π γ

h
)r/cr

)(∫ s

0

β2

γ
e2(γt)r

dt

)1/2

,

10



for h → 0. Furthermore, applying Cauchy-Schwartz inequality, property (10), and definition
of the class A(γ, β, r) we get

b2
s ≤ 2

∣∣∣∣
1
2π

∫
e−itx(F [ks](t)− 1)F [f ](t) dt

∣∣∣∣
2

+ O
(
e−2(2π γ

h
)r/cr

)∫ s

0

β2

γ
e2(γt)r

dt

≤ 1
2π2

∫

|t|>s

β2

γ
e−2|γt|rdt + O

(
e−2(2π γ

h
)r/cr

)∫ s

0

β2

γ
e2(γt)r

dt

≤ 1
π2

∫ ∞

s

β2

γ
e−2(γt)r

dt + O
(
e−2(2π γ

h
)r/cr

)∫ s

0

β2

γ
e2(γt)r

dt. (17)

Second, let us consider the variance term. From Lemma 1(c), with s1 = 0 and s2 = s, we see
that

Var vs = σ2h2
∞∑

`=−∞
k2

s(x− `h) =
σ2h s

π

(
1 + O(1)hs

)
, (18)

when h → 0. For any s denote

σ2
h,s =

σ2hs

π
(19)

and for the chosen bandwidth s = sh denote the resulting variance

σ2
h = σ2

h(α, σ2) =
σ2hsh

π
. (20)

From equations (16)–(18) we see that the mean square error of the estimator f̂h,s satisfies

∣∣∣E
(
f̂h,s(x)− f(x)

)2 − σ2
h,s

∣∣∣ ≤ σ2
h,s

(
O(hs) + (πσh,s)−2

∫ ∞

s

β2

γ
e−2(γt)r

dt

+σ−2
h,sO

(
e−2(2π γ

h
)r/cr

)∫ s

0

β2

γ
e2(γt)r

dt
)
. (21)

Now we shall verify that, taking s = sh as defined in (15), the term of the right hand side
of the previous equation is equal to σ2

h o(1). Before going into details, let us remark that the
bandwidth sh is precisely the bandwidth that balances the main terms of the bias and the
variance in the mean square error, i.e. it minimizes

σ2hs

π
+ π−2

∫ ∞

s

β2

γ
e−2(γt)r

dt

(with respect to s), this is because by (15)

e2(γsh)r
=

β2

πγσ2h
. (22)

Let us return to equation (21). Note first that

hsh → 0, when h → 0. (23)

11



Second, applying the identity (22) and Lemma 2, we see that

(πσh)−2

∫ ∞

sh

β2

γ
e−2(γt)r

dt =
β2

π γσ2h

∫∞
sh

e−2(γt)r
dt

sh
=

∫∞
sh

e−2(γt)r
dt

she−2(γsh)r

≤ 1
r(γsh)r

=
(

r

2
log

β2

πγ σ2h

)−1

= o(1), (24)

when h → 0. Finally, applying the identity (22) and trivial inequality

σ−2
h e−2( 2πγ

h
)r/cr

∫ sh

0

β2

γ
e2(γt)r

dt ≤ π
β2

γ σ2h
e−2( 2πγ

h
)r/cr+2(γsh)r

=
(

β2

γ σ2h

)2

e−2(2π γ
h)r

/cr = o(1), (25)

when h → 0. Thus, from (21) and (23)–(25) we have that

E
(
f̂h(x)− f(x)

)2 = σ2
h (1 + o(1)), (h → 0).

Note that when we normalize the error of our estimator by σh, the normalized error term
(f̂h(x) − f(x))/σh has a normal distribution, with mean of order o(1) and variance equal to
1 + o(1) where the terms o(1) are small uniformly in f ∈ A(α) when h goes to zero. Because
the loss function w has only countably many discontinuity points, applying the dominated
convergence theorem

lim
h→0

sup
f∈A(α)

Ef w
(
σ−1

h

(
f̂h(x)− f(x)

))
= Ew (ξ). (26)

Lower bound for the risk. Consider the parametric family of functions

fθ(z) = θg(z), g(z) =
π

sh
ksh

(z − x).

These functions satisfy fθ(x) = θ, and if we assume that |θ| ≤ θ(h) where

θ2(h) =
s2
h

2π2

(∫ sh

0

γ

β2
e2(γt)r

dt

)−1

(27)

then
∫

γ

β2
e2|γt|r ∣∣F [fθ](t)

∣∣2dt = θ2 π2

s2
h

∫
γ

β2
e2|γt|r ∣∣F [ksh

](t)
∣∣2 dt

≤ θ2(h)π2

s2
h

∫
γ

β2
e2|γt|r

[−sh,sh](t) dt ≤ 1.

Thus fθ ∈ A(α) for all θ such that |θ| ≤ θ(h).
Now, we can apply Kakutani’s theorem using the fact that

∑∞
`=−∞ g2(`h) < ∞ according

to Lemma 1(c), and see that

dP(h)
θ

dP(h)
0

(y) = exp

{
1

2σ2

∞∑

`=−∞

(
2θ y` g(`h)− θ2g2(`h)

)
}

, (28)

12



where Pθ = Pfθ
(cf. e.g. Hui-Hsiung [1975], Sect. II.2). The statistic

T =
∑∞

`=−∞ y` g(`h)∑∞
`=−∞ g2(`h)

(29)

is sufficient for the parameter θ of the family of distributions Pθ. Obviously T is normally
distributed. Given fθ(`h) = θg(`h), we can easily verify that

T ∼ N
(

θ ,
σ2

∑∞
`=−∞ g2(`h)

)
, (30)

and applying Lemma 1(c), with s1 = 0 and s2 = sh, we see that

1
σ2

∞∑

`=−∞
g2(`h) =

π2

σ2hs2
h

(
h

∞∑

`=−∞
k2

sh
(x− `h)

)
=

π

σ2hsh

(
1 + O(1)hsh

)
,

when h goes to zero. Thus, T can be represented as

T = θ + ϕ ξ where ξ ∼ N (0, 1) (31)

and, according to the previous arguments,

ϕ2 =
σ2

∑∞
`=−∞ g2(`h)

= σ2
h

(
1 + o(1)

)
. (32)

To derive the required lower bound, let us assume the unknown parameter θ has a prior
density λ(θ); a convenient choice is

λ(θ) =
1

θ(h)
cos2

πθ

2θ(h)
, |θ| ≤ θ(h).

We obtain then, due to the sufficiency of the statistic T ,

inf
f̃h

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(
f̃h(x)− f(x)

)) ≥ inf
f̃h

sup
|θ|<θ(h)

Ef w

(√
π

σ2hsh

(
f̃h(x)− fθ(x)

))

≥ inf
θ̂

sup
|θ|<θ(h)

Eθw

(√
π

σ2hsh

(
θ̂ − θ

)) ≥ inf
θ̂

∫ θ(h)

−θ(h)
Eθw

(√
π

σ2hsh

(
θ̂ − θ

))
λ(θ)dθ

= inf
θ̂(T )

∫ θ(h)

−θ(h)
Eθw

(√
π

σ2hsh

(
θ̂(T )− θ

))
λ(θ)dθ

= Ew

(
ϕ

σh
ξ

)
− ϕ2

θ2(h)
1√
2π

∫
(x2 − 1)w(x)e−

x2

2 dx (1 + o(1)).

Here the last equation follows from Levit [1980]. According to (32), ϕ
σh

= 1 + o(1), (h → 0),
while applying identity (22) and Lemma 2 we see that

σ2
h

θ2(h)
= 2

πγσ2h

β2

∫ sh

0 γe2(γt)r
dt

γsh
=

2
∫ γsh

0 γe2trdt

γshe2(γsh)r ≤ 1
r(γsh)r

→ 0, (33)
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when h → 0. Thus we have that, according to the dominated convergence theorem,

lim inf
h→0

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(
f̂h(x)− f(x)

)) ≥

lim inf
h→0

inf
f̃h

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(
f̃h(x)− f(x)

)) ≥ Ew(ξ). (34)

Together the relations (26) and (34) prove the theorem. 2

4.2 An extension to non-fixed classes

Up till now we assumed that the classes A(α) were fixed, i.e. not depending on the param-
eter h, though the function we wanted to estimate could vary freely within the given class
A(α) and, in particular, could depend on h. The possible dependency of f on h implies
that the estimated function could be as ‘bad’ as our model allowed it to be which justified
the minimax approach of Theorem 1. To summarize, the assumption that our functional
class A(α) is fixed implies that the smoothness properties of the elements of the class are
fixed. However, we might want to further relax this restriction by allowing the class itself
depend on h. Indeed, there is neither practical justification, nor a logical requirement, that
the smoothness of the underlying function remains the same while the level of noise decreases
and consequently the resolution of the available statistical procedures increases. This will
become even more natural in the adaptive setting of Section 5 where the smoothness of the
underlying function is not known beforehand.

Thus, as a first step towards introducing the adaptive framework, we let the parameters of
the model γ, β and r depend on h. Even so, they still be assumed to be known to the statis-
tician – this assumption will be abolished later in the adaptive framework of Section 5. This
approach will allow us to explore the ‘limits’ of the model where its parameters are allowed
to change freely. Let sh be as defined in Theorem 1. Note that now the optimum bandwidth
sh depends on h also through the parameters γ, β and r. Nevertheless the statement of
Theorem 1 still holds, as we shall see, under corresponding assumptions.

Theorem 2 Let w ∈ W, and let the parameters β = βh, r = rh, γ = γh and σ = σh be all
positive and such that

0 < lim inf
h→0

r ≤ lim sup
h→0

r < ∞, (35)

lim inf
h→0

β2

γ σ2h
= ∞, (36)

lim sup
h→0

h

γ

(
log

β2

γ σ2h

)1/r

= 0. (37)

Then

lim
h→0

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(
f̂h(x)− f(x)

))
=

lim
h→0

inf
f̃h

sup
f∈A(α)

Ef w

(√
π

σ2hsh

(
f̃h(x)− f(x)

))
= Ew(ξ)

where sh, f̃h and f̂h are the same as in Theorem 1.
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Remark 1 Note that the conditions (35) and (37) imply hsh → 0 when h → 0. As a direct
consequence of this, we obtain consistency, provided σ2 is bounded, since then σ2hsh

π → 0.
However, our asymptotic optimality result doesn’t require σ2 to be bounded; in other words
they apply even when there is no consistency!

Proof: We prove this theorem following the same proof of Theorem 1. It is sufficient to see
that relations (23)–(25) and (33) still hold for the class A(γh, βh, rh). The limit (23) follows
from (35) and (37), the limits (24) and (33) follow from (35) and (36). Finally (25) follows
from the identity

β2

γ σ2h
e−

(
2π γ

h

)r
/cr = exp

{
− c−1

r

(
2π

γ

h

)r(
1− cr

(2π)r

(h

γ

(
log

β2

γ σ2h

)1/r)r)}
(38)

and conditions (35)–(37). Notice that h/γ → 0, by (36) and (37). The rest of the proof
remains the same.

2

The important conclusion which can be drawn from the last result is that in order to prove
asymptotic optimality of our estimation procedure, we do not have to invoke the assumption
– not always realistic – that the smoothness of the estimated function remains the same, even
when the level of noise decreases and, as a consequence, the resolution of available statistical
methods increases. Note that in this more general situation the corresponding optimal rate
of convergence

σ2
h(α, σ2) =

σ2h

πγ

(
1
2

log
β2

πγ σ2h

) 1
r

, (39)

can be of any order, with respect to any of the parameters, h or σ2h, varying from extremely
fast, parametric rates, to extremely slow, non-parametric ones, and even all the way down to
no consistency at all. The problem which we will face in next section, is that in practice we
often do not know the real class at all.

5 Adaptive minimax regression

5.1 Adaptive estimation in functional scales

As a transition from the classical minimax setting, studied in the previous sections, to the
adaptive setting we introduce functional scales

AK =
{
A(α)

∣∣ α ∈ K
}

, (40)

corresponding to a subset K ⊂ R3
+ in the underlying parameter space. As our scales AK can

be identified with corresponding subsets K, we will speak sometimes about a scale K, instead
of AK, when there is no risk that could lead to a confusion. Sometimes we can think of the
scale AK as the collection of functions

{
f ∈ A(α)

∣∣ α ∈ K
}

.

We will say that some limit exists uniformly in AK to express that it exists uniformly in
f ∈ A(α) for every α and they converge uniformly in α ∈ K.
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Our goal is to estimate a function which belongs to A(α) for some α ∈ K. So, we must
find an estimator, which does not depend on α and such that it performs “optimally” well
over the whole scale K. For this new setting a new definition of optimality is necessary. We
use the following definition which was used in Lepski and Levit [1998]. From now on we will
restrict ourselves to the loss functions w(x) = |x|p, p > 0. Let AK be a functional scale and
F a class of estimators f̃h.

Definition 2 An estimator f̂h ∈ F is called (p,K,F)-adaptively minimax, at a point x ∈ R,
if for any other estimator f̃h ∈ F

lim sup
h→0

sup
α∈K

supf∈A(α) Ef

∣∣f̂h(x)− f(x)
∣∣p

supf∈A(α) Ef

∣∣f̃h(x)− f(x)
∣∣p ≤ 1.

The simplest example of a scale AK can be obtained when K is a fixed compact subset of R3
+.

Our results below cover a much broader setting in which the set K itself can depend on the
parameter h. In our approach, such results serve two goals. First of all, they allow a better
understanding of the true scope of adaptivity of statistical procedures, since they describe the
‘extreme’ situation in which an adaptation is still possible. In fact all what is needed below is
that the assumptions of our ‘non-adaptive’ Theorem 2 hold uniformly on the scale K; below
we formulate these assumptions more explicitly.

Definition 3 A functional scale AKh
(or the corresponding scale Kh) is called a regular, or

an R-scale if the following conditions are satisfied:

0 < lim inf
h→0

inf
α∈Kh

r ≤ lim sup
h→0

sup
α∈Kh

r < ∞, (41)

lim inf
h→0

inf
α∈Kh

β2

γ σ2h
= ∞, (42)

and

lim sup
h→0

sup
α∈Kh

h1−δ

γ

(
log

β2

γ σ2h

)1/r

= 0 (43)

for some 0 < δ < 1.

The second goal that can be achieved by considering more general scales Kh is to introduce
the notion of optimality in adaptive estimation, by specifying a natural set of estimators F in
the above Definition 2. Note that within a large scaleAKh

, unknown functions f can vary from
extremely smooth ones, allowing parametric rate σ2O(h2), to much less smooth functions,
allowing slower rates σ2O(h2δ), δ < 1, or even extremely slow rates σ2O(log−1(1/h)). The
first possibility is not typical in non-parametric estimation and only can happen in some
extreme cases. These ideas are made more precise by introducing the following terminology
classifying functional scalesAKh

into pseudo-parametric (PP) and non-parametric (NP) scales
depending of their global rates of convergence.

Definition 4 A functional scale AKh
(or the corresponding parameter scale Kh) is called

(a) pseudo-parametric, or a PP scale if

lim sup
h→0

sup
α∈Kh

sh(α) < ∞,

16



(b) non-parametric, or an NP-scale if

lim
h→0

inf
α∈Kh

sh(α) = ∞.

We shall call regular pseudo-parametric and regular non-parametric scales respectively RPP
and RNP scales.

Since pseudo-parametric scales are not typical, in non-parametric estimation and can only
happen in some extreme cases, we will only require our statistical procedure to achieve the
optimal rate σ2O(h2) for such scales; cf. the Definition of the corresponding classes Fp below.
Note that even with such procedures, a better rate will be achieved, in estimating functions
in any pseudo-parametric scale than in any of the non-parametric scales. Further a strong
evidence suggests that there is hardly much more one can do than require rate optimality,
for any of the pseudo-parametric scales. On the other hand, such an approach allows to
develop natural optimality criteria, for any adaptive procedure in the classes F in the case of
non-parametric scales.

Let Fp = Fp(x) be the class of all estimators f̃h that satisfy

lim sup
h→0

sup
α∈Kh

sup
f∈A(α)

Ef

∣∣∣(σ2h)−1/2
(
f̃h(x)− f(x)

)∣∣∣
p

< ∞

for arbitrary RPP functional scales AKh
. Let F0

p = F0
p (x) denote the class of estimators such

that
lim sup

h→0
E0

∣∣(σ2h)−1/2 f̃h(x)
∣∣p < ∞.

It is easy to notice that Fp ⊂ F0
p . In the next subsection we present an adaptive estimator

f̂h ∈ Fp and prove it to be (p,K,Fp)-adaptively minimax for arbitrary RNP functional scales.

5.2 The adaptive estimator: upper bound

Section 5.1 outlined the general adaptive setting, introduced a notion of optimal adaptive
estimation and described regular non-parametric scales of infinitely differentiable functions.
Our first result describes accuracy which can be achieved for such scales. Its proof starts
with the construction of an adaptive estimator achieving this accuracy. In this, the Lepski’s
method will be used, with the recent modification of Lepski and Levit [1998]. Note that the
accuracy of our procedure loses a logarithmic factor compared to the non-adaptive case where
the parameters of the underlying classes are known. In Section 5.3 we will see that this is an
unavoidable pay for not knowing the smoothness a priori and we will prove optimality of the
proposed procedure in the sense of Definition 2.

Remark 2 In principle, one could also study adaptation to the unknown parameter σ2. This
however leads to entirely different problems, and is not considered in this thesis. Therefore
we always assume that σ2 is known, although it can vary with h.

Denote
ψ2

h = ψ2
h(α) = p(log sh(α)) σ2

h(α)

where sh(α) and σ2
h(α) were defined in (15) and (20).
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Theorem 3 For any p > 0 there exists an adaptive estimator f̂h such that for any x ∈ R
and for any RNP functional scale AKh

, f̂h ∈ Fp

lim sup
h→0

sup
α∈Kh

sup
f∈A(α)

Ef

∣∣∣ψ−1
h

(
f̂h(x)− f(x)

)∣∣∣
p
≤ 1.

The adaptive estimator. First, let us choose parameters, 1/2 < l < 1, 1/2 < δ < 1, p1 > 0,
l1 = δl, and define the sequence of bandwidths s0 = 0, si = exp(il) for i = 1, . . .. For each h,
we take a subsequence Sh =

{
s0, s1, . . . sIh

}
where

Ih = arg max
i

{
hsi ≤ log−1 1/h

}
, (44)

h < 1. Our asymptotic study considers h → 0, thus, without loss of generality, we define Ih

just for h < 1.
Now, let us denote

f̂i(x) = f̂h,si(x), bi = Ef f̂i(x)− f(x),

σ2
i = Var f̂i(x), σ̂2

i =
σ2h si

π
,

σ2
i,j = Var

(
f̂j(x)− f̂i(x)

)
, σ̂2

i,j =
σ2h (sj − si)

π
,

and define the thresholds
λ2

j = p log sj + p1 logδ sj .

Finally we define

î = min
{

1 ≤ i ≤ Ih :
∣∣f̂j(x)− f̂i(x)

∣∣ ≤ λj σ̂i,j ∀j (i ≤ j ≤ Ih)
}

. (45)

We will prove below that the estimator

f̂h(x) = f̂î(x)

satisfies both the statements contained in Theorem 3.
Let us get first some insight into the algorithm. The sequence Sh of bandwidths has

several important properties. First, it is increasing, thus the variance of the corresponding
estimators is also increasing.

Second, according to the definition of R-scales the bandwidths sh(α), see eq. (43), are
such that hsh(α) ≤ hδ uniformly in Kh for some δ < 1, and h small enough. Thus, sIh

is large
enough for h small enough, so that for each α, the optimum bandwidth sh(α) corresponding
to A(α), can be sandwiched between two consecutive elements of the sequence Sh, i.e. there
exists i(α) = i(α, h) such that

si(α)−1 < sh(α) ≤ si(α).

The sequence is also dense enough so that

lim
i→∞

si+1

si
= 1.
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This guarantees that sh(α) and si(α) are asymptotically equivalent since sh(α) →∞ for h → 0
in NP scales.

The sequence of thresholds λj has been chosen in such a way that, for large i, j (i(α) ≤ i ≤ j),
the probability of the event

∣∣f̂j(x)− f̂i(x)
∣∣ > λj Var1/2

(
f̂j(x)− f̂i(x)

)
, (46)

is very small since, except for an event of a small probability, this can only occur if the bias
(bj − bi) À Var1/2

(
f̂j(x) − f̂i(x)

)
which is not the case for bandwidths greater than sh(α)

as we will see. Therefore, for any given i and j > i we reject si in favor of the subsequent
elements of the sequence Sh, if the event (46) occurs. This pairwise comparison is performed
for every i, and from all the accepted si we select the smallest, i.e. we choose the estimator
with the smallest variance. Note that according to the previous argument no bandwidth si,
i ≥ i(α) will be rejected, with high probability. However it is possible that a bandwidth si,
i < i(α) is chosen. In that case our procedure warrants that, cf. (45),

∣∣f̂î(x)− f̂i(α)(x)
∣∣ ≤ λi(α) Var1/2

(
f̂î(x)− f̂i(α)(x)

)(
1 + o(1)

)

Thus in the worst case the accuracy of f̂h decreases by a factor 1 + λi(α) which is of order
log sh(α) asymptotically as h → 0. In the next subsection we prove that the accuracy of
this algorithm is asymptotically optimal in the adaptive setting, for all RNP scales subject
to certain mild additional assumptions; see Theorems 1 and 6.

Now, let us turn to the proof of the theorem. We start with an auxiliary result needed
in the proof where we use the same notations as those used in describing the estimation
procedure.

Lemma 3 For h → 0, uniformly with respect to i, j (1 ≤ i, j ≤ Ih) and with respect to α
varying in a regular scale,

(a) b2
j = o(1)σ̂2

j for all j such that i(α) ≤ j ≤ Ih.

(b) σ2
j = σ̂2

j

(
1 + O(log−1(1/h))

)
.

(c) (bj − bi)2 ≤ (1 + o(1))σ̂2
i,j for all i, j such that i(α) ≤ i ≤ j ≤ Ih.

(d) σ2
i,j = σ̂2

i,j

(
1 + O(log−1(1/h))

)
.

Proof. (a) Using the bound for the bias given in (17), equation (22), and Lemma 2 we see,
with some algebra, that

b2
j ≤ 1

π2

∫ ∞

sj

β2

γ
e−2(γt)r

dt + O
(
e−2(2π γ

h
)r/cr

)∫ sj

0
βγe2(γt)r

dt

≤ σ2hsj

π

β2

πγ σ2h

e−2(γsj)
r

r(γsj)r
+ O

(
e−2(2π γ

h
)r/cr

) σ2hsj

π

β2

πγ σ2h
e2(γsj)

r

= σ̂2
j

(
e2(γsh)r−2(γsj)

r

r(γsh)r
+ O

(
e−(2π γ

h
)r/cr+2(γsh)r

e−(2π γ
h
)r/cr+2(γsj)

r
))

.
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Now, given sj ≥ sh(α) and using conditions (44) in the definition of the sequence of band-
widths Sh and conditions (41)–(43) in the definition of R scales, we obtain b2

j = o(1)σ̂2
j when

h → 0, uniformly with respect to j (i(α) ≤ j ≤ Ih) and with respect to α in Kh.

(b) This is just a reformulation of the asymptotic relation (18) using the fact that, according
to (44), hsj ≤ log−1(1/h).

(c) Applying Lemma 1(b) taking s1 = si and s2 = sj , and arguing as in (17) and in the
proof (a), we see that

(bj − bi)2 ≤ 2
∣∣∣∣

1
2π

∫
e−itxF [∆i,j ](t)F [f ](t) dt

∣∣∣∣
2

+

O
(
e−2(2π γ

h
)r/cr

)∫ sj

si

β2

γ
e2(γt)r

dt

≤ 1
π2

∫ sj

si

β2

γ
e−2(γt)r

dt + O
(
e−2(2π γ

h)r
/cr

)∫ sj

si

β2

γ
e2(γt)r

dt

≤ σ2h(sj − si)
π

β2

πγ σ2h
e−2(γsi)

r
+

O
(
e−2(2π γ

h
)r/cr

) σ2h(sj − si)
π

β2

πγ σ2h
e2(γsj)

r

= σ̂2
i,j

(
e2(γsh)r−2(γsi)

r
+ O

(
e−(2π γ

h
)r/cr+2(γsh)r

e−(2π γ
h
)r/cr+2(γsj)

r
))

= σ̂2
i,j

(
1 + o(1)

)
, (h → 0).

(d) It follows directly from Lemma 1(c), taking s1 = si and s2 = sj . Here, as in (18), we
can verify that

σ2
i,j = σ2h2

∞∑

`=−∞

(
ksj (x− `h)− ksi(x− `h)

)2

=
σ2h (sj − si)

π

(
1 + O(1) h(sj − si)

)
. (47)

and thus, using (44), this completes the proof of the lemma. 2

We now proceed with proving Theorem 3. For arbitrary f in any R-functional scale AKh
,

Rh(f) := E
∣∣f̂î(x)− f(x)

∣∣p = R−
h (f) + R+

h (f)

where
R−

h (f) = E
{

{̂i≤i(α)}
∣∣f̂î(x)− f(x)

∣∣p
}

and
R+

h (f) = E
{

{̂i>i(α)}
∣∣f̂î(x)− f(x)

∣∣p
}

.
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Let us examine R−
h (f) first. We have

{
î ≤ i(α)

}
⊂

{ ∣∣f̂î(x)− f̂i(α)(x)
∣∣ ≤ λi(α)σ̂î,i(α)

}

⊂
{ ∣∣f̂î(x)− f̂i(α)(x)

∣∣ ≤ λi(α)σ̂i(α)

}
,

therefore

R−
h (f) ≤ E

(
{̂i≤i(α)}

( ∣∣ f̂î(x)− f̂i(α)(x)
∣∣ +

∣∣ f̂i(α)(x)− f(x)
∣∣
)p )

≤ E
(
λi(α)σ̂i(α) +

∣∣ f̂i(α)(x)− f(x)
∣∣
)p

≤ E
(
λi(α)σ̂i(α) + |bi(α)|+ σi(α)|ξ|

)p

where ξ ∼ N (0, 1). Now according to Lemma 3, (a) and (b), uniformly with respect to α in
any regular scale

σi(α) = σ̂i(α)(1 + o(1)) and |bi(α)| = o(1)σ̂i(α), (h → 0).

It follows that for h → 0 uniformly with respect to any RPP scale

R−
h (f) = O(hp/2), (48)

while by the dominated convergence theorem, uniformly in any RNP scale

R−
h (f) ≤ ψp

h(α)
(
1 + o(1)

)
. (49)

Now let us examine R+
h (f). Consider the auxiliary events

Ai =
{

ω :
∣∣ f̂i(x)− f(x)

∣∣ ≤
√

2λiσ̂i

}
.

Applying Hölder’s inequality we obtain

R+
h (f) = E

(
{̂i>i(α)}

∣∣f̂î(x)− f(x)
∣∣p

)
=

Ih∑

i=i(α)+1

E
(

{̂i=i}
∣∣f̂i(x)− f(x)

∣∣p
)

=
Ih∑

i=i(α)+1

E
( ∣∣f̂i(x)− f(x)

∣∣p (
{̂i=i}∩Ai

+ {̂i=i}∩Ac
i

) )

≤ R+
h,1(f) + R+

h,2(f),

where

R+
h,1(f) =

Ih∑

i=i(α)+1

(2λ2
i σ̂

2
i )

p/2 P(̂i = i)

and

R+
h,2(f) =

Ih∑

i=i(α)+1

E1/2
∣∣∣f̂i(x)− f(x)

∣∣∣
2p

P1/2(Ac
i ).
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We have

P(̂i = i) ≤
∞∑

j=i+1

P
( ∣∣f̂j−1(x)− f̂i−1(x)

∣∣ > σ̂i−1,j−1 λj−1

)
. (50)

By writing f̂j(x)− f̂i(x) = σi,jξ + bj− bi, where ξ ∼ N (0, 1), applying Lemma 3(d), and using
the well known bound on the tails of the normal distribution (cf. Feller [1968], Lemma 2), we
find for some C > 0 and all h small enough

P
( ∣∣f̂j(x)− f̂i(x)

∣∣ > λj σ̂i,j

)
≤ P

(
|ξ| > λj

σ̂i,j

σi,j
− |bj − bi|

σi,j

)
(51)

≤ exp
{
− 1

2

(
λj

σ̂i,j

σi,j
− C

)2}
≤ exp

{
− 1

2
λ2

j

σ̂2
i,j

σ2
i j

+ Cλj
σ̂i,j

σi,j

}

≤ exp

{
−1

2
λ2

j + Cλj
σ̂i,j

σi,j
+

1
2
λ2

j

(
1− σ̂2

i,j

σ2
i j

)}
. (52)

Since by Lemma 3(c) and (44)

λ2
j

σ2
i,j − σ̂2

i,j

σ2
i,j

= λ2
j O

(
log−1(1/h)

)
= o(1), (h → 0),

it follows from the last inequality that for some C1 > 0

P
( ∣∣f̂j(x)− f̂i(x)

∣∣ > λj σ̂i,j

)
≤ C1 exp

{
−1

2
λ2

j + 2Cλj

}

for all α, j ≥ i ≥ i(α) and all sufficiently small h.
Returning to (50) we obtain that

P(̂i = i) ≤ C1

∞∑

j=i+1

exp
{
−1

2
λ2

j−1 + 2Cλj−1

}
= C1

∞∑

j=i

exp
{
−1

2
λ2

j + 2Cλj

}

= C1

∞∑

j=i

exp
{
−pjl + p1j

l1

2
+ 2C

√
pjl + p1jl1

}

≤ C1

∞∑

j=i

exp
{
− pjl

2
− p1j

l1

3

}
∼ C1

2
pl

i1−l exp
{
− pil

2
− p1i

l1

3

}

= C1
2
pl

i1−ls
−p/2
i exp

{
− p1i

l1

3

}
≤ C2s

−p/2
i exp

{
− p1i

l1

4

}
(53)

for some C2 > 0 and all i ≥ i(α), when h is sufficiently small. Therefore uniformly in AKh

R+
h,1(f) = O(hp/2)

∞∑

i=1

ipl/2 exp
{
− p1i

l1/4
}

= O(hp/2), (h → 0).
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In order to obtain a bound on R+
h,2(f) we write again f̂i − f(x) = bi + σiξ , ξ ∼ N (0, 1).

Applying Lemma 3, (a) and (b), in the same way as before, we have

P(Ac
i ) ≤ P

(
|ξ| >

√
2λi

σ̂i

σi
− |bi|

σi

)
≤ P

(
|ξ| >

√
2λi

σ̂i

σi
−
√

2
)

≤ exp

{
−1

2

(√
2 λi

σ̂i

σi
−
√

2
)2

}
≤ C3 exp

{
− λ2

i + 2 λi

}

≤ C3 exp
{
− pil − p1i

l1/2
}

= C3s
−p
i exp

{
− p1i

l1/2
}

,

for some C3, all i ≥ i(α) and all α provided h is small enough. Thus,

R+
h,2(f) =

Ih∑

i=i(α)+1

E1/2
∣∣f̂i(x)− f(x)

∣∣2p P1/2(Ac
i )

≤
Ih∑

i=i(α)+1

σ̂p
i E1/2

∣∣ o(1) + (1 + o(1))ξ
∣∣2p P1/2(Ac

i )

= O
(σ2h

π

)p/2
∞∑

i=1

exp
{
− p1i

r1/4
}

= O
(
hp/2

)
, (h → 0), (54)

uniformly in AKh
.

We can thus conclude that, uniformly in any RPP scale Kh, our estimator satisfies

sup
α∈Kh

sup
f∈A(α)

E
∣∣∣h−1/2

(
f̂h(x)− f(x)

)∣∣∣
p

= O(1),

while for any RNP scale Kh

sup
α∈Kh

sup
f∈A(α)

E
∣∣∣ψ−1

h (α)
(
f̂h(x)− f(x)

)∣∣∣
p
≤ 1 + o(1),

when h → 0. 2

5.3 Lower bound: optimality results

In Section 5.2 we have established an upper bound for the risk of adaptive procedures, by
evaluating the quality of a proposed adaptive estimator. In this section we will establish a
lower bound for arbitrary such estimator, which will allow us to establish optimality of the
proposed procedure in the sense of Definition 2.

Theorem 4 Let p > 0. Let AKh
be an arbitrary RNP scale such that quantities s̃h = s̃h(α),

s̃h ≤ sh(α), and φ̃h(α) can be defined in such a way that for all sufficiently small h and
α ∈ Kh

φ̃2
h = φ̃2

h(α) ≤ min( p log s̃h , r(γs̃h)r/2 ) (55)
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and

lim
h→0

inf
α∈Kh

φ̃h = ∞. (56)

Denote

ψ̃2
h = ψ̃2

h(α) =
σ2h s̃h

π
φ̃2

h.

Then for any estimator f̃h ∈ F0
p (x)

lim inf
h→0

inf
α∈Kh

sup
f∈A(α)

Ef

∣∣∣ψ̃−1
h

(
f̃h(x)− f(x)

)∣∣∣
p
≥ 1.

Proof. Letting θ = φ̃h −
√

φ̃h consider the following pair of functions:

f0(z) ≡ 0,

f1(z) = θ g̃(z), g̃(z) =

√
σ2h π

s̃h
ks̃h

(x− z). (57)

Note that f1 satisfies

f1(x) = θ

√
σ2h s̃h

π
.

Obviously f1 is a continuous function and using (10), definition (15) of sh, and Lemma 2, we
get

∫
γ

β2
e2|γt|r ∣∣F [f1](t)

∣∣2 dt = θ2 σ2hπ

s̃h

∫
γ

β2
e2|γt|r ∣∣F [ks̃h

](t)
∣∣2 dt

= 2 θ2 γσ2hπ

β2

∫ s̃h

0 γe2(γt)r
dt

γs̃h
= 2 θ2 e−2(γsh)r

∫ s̃h

0 γe2(γt)r
dt

γs̃h

=
θ2

r(γs̃h)r
e2(γs̃h)r−2(γsh)r

(1 + o(1)) ≤ φ̃2
h

r(γs̃h)r
e2(γs̃h)r−2(γsh)r

(1 + o(1)) (58)

≤ 1
2
(1 + o(1)) ≤ 1,

uniformly in Kh for h small enough. Thus f1 ∈ A(α) for all sufficiently small h and every
α ∈ Kh.

Let f̃h ∈ F0
p (x) be an arbitrary estimator and denote f∗h = ψ̃−1

h f̃h(x) and L = φ̃−1
h θ; then

ψ−1
h

(
f̃h(x)− f1(x)

)
= f∗h − ψ−1

h f1(x) = f∗h − φ̃−1
h θ = f∗h − L (59)
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whereas
√

π

σ2h

(
f̃h(x)− f0(x)

)
=

√
π

σ2h
f̃h(x) =

√
π

σ2h
ψ̃h f∗h(x)

=
√

π

σ2h

√
σ2h s̃h

π
φ̃h f∗h(x) = s̃

1/2
h φ̃h f∗h(x)

= f∗h exp
{ log s̃h

2
+ log φ̃h

}
. (60)

Denote q = exp
{− φ̃h

}
so that by (56), q → 0 uniformly with respect to α for h → 0. Now,

with the thus defined f1 ∈ A(α), for any f̃h ∈ F0
p (x), uniformly in α ∈ Kh as h → 0, we have

Rh := sup
f∈A(α)

Ef

(
ψ̃−1

h

∣∣f̃h(x)− f(x)
∣∣
)p
≥ E1

(
ψ̃−1

h

∣∣f̃h(x)− f1(x)
∣∣
)p

≥ q E0

(√
π

σ2h

∣∣f̃h(x)− f0(x)
∣∣
)p

+ (1− q)E1

(
ψ̃−1

h

∣∣f̃h(x)− f1(x)
∣∣
)p

+ O(q).

(61)

According to (55) and (59)–(61),

Rh ≥ q exp
{ φ̃h

2
+ p log φ̃h

}
E0

∣∣f∗h(x)
∣∣p + (1− q)E1

∣∣f∗h(x)− L
∣∣p + O(q)

≥ (1− q)E1

(
Z

∣∣f∗h(x)
∣∣p +

∣∣f∗h(x)− L
∣∣p

)
+ O(q)

≥ (1− q)E1 inf
x

(
Z|x|p + |x− L|p

)
+ O(q) (62)

where

Z = q exp
{ φ̃h

2
+ p log φ̃h

} dP(h)
0

dP(h)
1

(y).

For each value of Z consider the optimization problem of minimizing the function:

g(x) = Z|x|p + |L− x|p.

As was shown in Lepski and Levit [1998],

min
x

g(x) =





min(Z, 1)Lp if p ≤ 1,

(
1 + Z

− 1
p−1

)−(p−1)
Lp if p > 1.

(63)

Thus for any p > 0 we can write
min

x
g(x) = χLp, (64)

where χ is defined by (63) and satisfies 0 < χ ≤ 1.
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Now, let us consider the likelihood corresponding to f0 and f1. Using the same arguments
that we used in (28)–(32) we can see that

dP(h)
0

dP(h)
1

(y) = exp

{
− 1

2σ2

∞∑

`=−∞

(
θ2g̃2(`h) + 2θ y` g̃(`h)

)
}

,

= exp

{(
− θξ − θ2

2

)( π

s̃h
h

∞∑

`=−∞
k2

s̃h
(x− `h)

)}

= exp
{(

− θξ − θ2

2

)(
1 + Oh(1)hs̃h

)}

where ξ ∼ N (0, 1) with respect to P1. Using the definition of θ, condition (55) and defini-
tion (57) we can see that

dP(h)
0

dP(h)
1

(y) =
(
1 + o(1)

)
exp

{
−θ2

2
− θξ

}
, (h → 0).

Note that by (56)

Z =
(
1 + o(1)

)
exp

{
−φ̃h +

φ̃2
h

2
+ p log φ̃h − ( φ̃h −

√
φ̃h)ξ − 1

2
( φ̃h −

√
φ̃h)2

}
P1→∞

when h → 0, hence χ
P1→ 1. Also L = 1+o(1), according to its definition. Therefore according

to equations (62)–(64), uniformly in α ∈ Kh,

Rh ≥ (1− q)LpE1χ + O(q) = 1 + o(1), (h → 0).

2

Corollary 1 Let AKh
be an arbitrary RNP scale such that

lim inf
h→0

inf
α∈Kh

r(γsh)r

log sh
= ∞ (65)

where sh is the optimum bandwidth defined in (15). Then for any p > 0 and x ∈ R, the
estimator f̂h of Theorem 3 is (p,Kh,Fp(x))-adaptively minimax at x.

Proof. This is a consequence of Theorems 3 and 4. In order to prove the lower bound use
the previous theorem taking sh in place of s̃h. 2

Now, we prove a version of Theorem 4 under a weaker condition. It will be used below
to provide an easily verifiable conditions for adaptive optimality of the estimator proposed in
Section 5.2.

Theorem 5 Let AKh
be an arbitrary RNP scale such that

lim inf
h→0

inf
α∈Kh

r(γsh)r

log log sh
= ∞ (66)
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where the optimum bandwidth sh was defined in (15). Then for any estimator f̃h ∈ F0
p (x),

lim inf
h→0

inf
α∈Kh

sup
f∈A(α)

Ef

∣∣∣ψ−1
h

(
f̃h(x)− f(x)

)∣∣∣
p
≥ 1,

where

ψ2
h = ψ2

h(α) = p (log sh)
σ2hsh

π
.

Proof: We prove this theorem in the same way as Theorem 4 by choosing φ̃2
h = p log s̃h and

subsequently defining s̃h in such a way that

2p log s̃h

r(γs̃h)r
e2(γs̃h)r−2(γsh)r ≤ 1 (67)

for h small enough. The point here is that condition (67) was only needed in proving (58),
which now becomes (67). We construct an appropriate s̃h asymptotically equivalent to sh

that satisfies the previous inequality for h small enough. Let us first, for fixed α, define the
auxiliary bandwidth s̄h as the solution of the equation

2(γsh)r = 2(γs̄h)r + log r(γs̄h)r. (68)

We know that γsh goes to infinity as h goes to zero uniformly in regular scales. Thus from
the previous equation, γs̄h goes to infinity too and we can see that

(
sh

s̄h

)r

= 1 +
log r(γs̄h)
2(γs̄h)r

= 1 + o(1),

uniformly in Kh according to (66). Thus the auxiliary bandwidth s̄h is asymptotically equiv-
alent to sh. It also satisfies (66), see that

lim inf
h→0

inf
α∈Kh

r(γs̄h)r

log log s̄h
= lim inf

h→0
inf

α∈Kh

r(γsh)r

log log s̄h
(1 + o(1)) ≥ lim inf

h→0
inf

α∈Kh

r(γsh)r

log log sh
= ∞.

Now, let us define s̃h = ϑs̄h where ϑ (0 < ϑ < 1) is the closest solution to 1 of the equation

2r(γs̄h)r

log log s̄h
ϑr log ϑ−1 = 1.

We can see that ϑ → 1 as h → 0 thus implying that s̃h is asymptotically equivalent to s̄h and
sh. Now, after few transformations,

−2(γs̃h)r = −2(γs̄h)r + 2
∫ s̄h

s̃h

r(γt)rt−1 dt

= −2(γsh)r log r(γs̄h)r + 2
∫ s̄h

s̃h

r(γt)rt−1 dt

≥ −2(γsh)r + log r(γs̄h)r + 2r(γs̃h)r

∫ s̄h

s̃h

t−1 dt

= −2(γsh)r + log r(γs̄h)r + 2r(γs̄h)rϑr log ϑ−1

= −2(γsh)r + log r(γs̄h)r + log log s̄h
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and we see that

e−2(γs̃h)r ≥ e−2(γsh)r
r(γs̄h)r log s̄h = e−2(γsh)r 2p log s̃h

r(γs̃h)
ϑrr2(γs̄h)2r/(2p)

≥ e−2(γsh)r 2p log s̃h

r(γs̃h)

for h small enough. The rest of the proof is the same as for Theorem 4. Finally, given
ψ̃h := p log s̃h

σ2hs̃h
π is asymptotically equivalent to ψh we have the proof of the lemma.

2

Finally, we prove that the estimator we constructed in Theorem 3 is adaptively minimax, for
any RNP scale satisfying a condition just a little stronger than condition (42) used in the
definition of a regular scale.

Theorem 6 Let Kh be a RNP scale such that

lim inf
h→0

inf
α∈Kh

β2

γσ2h1−δ
≥ C

for some δ (0 < δ < 1) and C > 0. Then for any p > 0 and x ∈ R, the estimator f̂h of
Theorem 3 is (p,Kh,Fp(x))-adaptively minimax at x.

Proof. The upper bound result was proved in Theorem 3. To prove the lower bound we
notice that

r(γsh)r =
r

2
log

β2

πγσ2h
≥ r

2
log Ch−δ

while according to conditions (41)–(43) for R scales

log log sh = log log
1
γ

(
1
2

log
β2

πγσ2h

)1/r

< log log h−1

thus r(γsh)r

log log sh
goes to infinity when h → 0, uniformly with respect to the scale Kh. The desired

lower bound follows now from Theorem 5.
2
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